KR20160121785A - NiCrMo STEEL AND METHOD FOR MANUFACTURING NiCrMo STEEL MATERIAL - Google Patents

NiCrMo STEEL AND METHOD FOR MANUFACTURING NiCrMo STEEL MATERIAL Download PDF

Info

Publication number
KR20160121785A
KR20160121785A KR1020160093336A KR20160093336A KR20160121785A KR 20160121785 A KR20160121785 A KR 20160121785A KR 1020160093336 A KR1020160093336 A KR 1020160093336A KR 20160093336 A KR20160093336 A KR 20160093336A KR 20160121785 A KR20160121785 A KR 20160121785A
Authority
KR
South Korea
Prior art keywords
less
grain
steel
mass
nicrmo
Prior art date
Application number
KR1020160093336A
Other languages
Korean (ko)
Other versions
KR102554100B1 (en
Inventor
혼마 마사카츠
카토 타카히로
하시 쿠니히코
키쿠치 다이스케
사가와 타케시
카토 츠요시
Original Assignee
더 재팬 스틸 워크스 엘티디
가부시키가이샤 나카무라지코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 재팬 스틸 워크스 엘티디, 가부시키가이샤 나카무라지코 filed Critical 더 재팬 스틸 워크스 엘티디
Publication of KR20160121785A publication Critical patent/KR20160121785A/en
Application granted granted Critical
Publication of KR102554100B1 publication Critical patent/KR102554100B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention relates to NiCrMo steel comprising: 0.10-0.30 mass% of C, 0.05-0.30 mass% of Si, 0.20-1.00 mass% of Mn, less than or equal to 0.015 mass% of P, less than or equal to 0.015 mass% of S, 1.50-2.00 mass% of Cr, 0.10-0.50 mass% of Mo, 2.50-4.00 mass% of Ni, 0.01-0.03 mass% of Al, 0.005-0.015 mass% of N, less than 0.10 mass% of V, and the remainder consisting of Fe and inevitable impurities. As such, the present invention enables grain refinement.

Description

NiCrMo강 및 NiCrMo강재의 제조 방법{NiCrMo STEEL AND METHOD FOR MANUFACTURING NiCrMo STEEL MATERIAL}TECHNICAL FIELD [0001] The present invention relates to a method of manufacturing a NiCrMo steel and a NiCrMo steel,

본 발명은, 담금질성이 높은 NiCrMo강의 결정립 미세화에 관한 것이다.The present invention relates to grain refinement of NiCrMo steel having high hardenability.

NiCrMoV강은 예전부터 대형 터빈의 로터 샤프트에 적용되고, 현재에도 축심까지 균일한 강도와 저온 인성이 우수한 실용성이 높은 저합금 강으로 자리매김하고 있다. 따라서, NiCrMoV강은 강도와 인성이 요구되는 다른 대형 부재의 후보 소재로서 자주 검토된다.NiCrMoV steels have been applied to rotor shafts of large turbines from the past, and they are now positioned as highly practical low alloy steels with uniform strength and low temperature toughness up to the shaft center. Therefore, NiCrMoV steels are frequently considered as candidate materials for other large members requiring strength and toughness.

결정립 미세화에 의한 강화는, 일반적인 강화 방법 중에서 유일하게 강도를 향상시키면서, 연·인성의 향상이 가능한 방법인 것은 잘 알려져 있고, NiCrMoV강에 있어서도 그 효과가 기대된다. 그러나, NiCrMoV강은 γ화 처리(α/γ 역변태)에 의한 세립화가 어려운 강종인 점, NiCrMoV강을 두꺼운 부재(厚肉部材)에 적용했을 경우, 급속 승온이나 가공 재결정에 의한 결정립 미세화가 더욱 어려워지는 점에서, NiCrMoV강제의 두꺼운 부재의 결정립 미세화는, γ화 가열과 냉각(냉각은 일반적으로 실온까지)을 반복하는 것에 의해 이루어지는 경우가 많아, 필연적으로 열처리 공수가 늘어나게 되는 문제가 있다.It is well known that strengthening by grain refinement is one of the general strengthening methods capable of improving the strength and toughness while improving strength, and the effect is also expected in NiCrMoV steel. However, NiCrMoV steels are difficult to be refined by γ treatment (α / γ reverse transformation), and when NiCrMoV steels are applied to a thick member, the grain refinement due to rapid temperature rise or processing recrystallization becomes more difficult The NiCrMoV forced thickening of the crystal grains is often performed by repeating the γ heating and cooling (generally cooling to room temperature), which inevitably leads to an increase in the number of heat treatment operations.

결정립 미세화 방법으로서는, Nb나 Ti 등의 탄질화물이나 AlN 등의 결정립계 피닝 효과를 나타내는 화합물을 석출시키는 것이 일반적으로 알려져 있다. 특허문헌1에서는, Nb, Al 및 N을 적당량 첨가하고, 매트릭스 중에 AlN 및 Nb(C, N)를 석출시키는 것에 의해, 결정립 미세화뿐만 아니라 990℃ 이상의 고온 침탄 처리 중의 결정립 조대화의 억제를 가능하게 하는 기술이 개시되어 있다. 특허문헌1에서 개시된 기술은, Nb(C, N) 등이 고온에 있어서도 매트릭스 중에 용해되지 않고 안정적으로 존재하기 때문에 도입되는 것으로 생각된다.As a crystal grain refinement method, it is generally known to precipitate carbonitrides such as Nb and Ti and compounds exhibiting grain boundary pinning effect such as AlN. In Patent Document 1, by appropriately adding Nb, Al and N, and precipitating AlN and Nb (C, N) in the matrix, not only fine grain refinement but also crystal grain coarsening during high temperature carburizing treatment at 990 ° C. or higher can be suppressed And the like. It is considered that the technique disclosed in Patent Document 1 is introduced because Nb (C, N) or the like stably exists without being dissolved in the matrix even at a high temperature.

일본국 특허공개공보 2000-54069호 공보Japanese Patent Application Laid-Open No. 2000-54069

Nb(C, N)의 고온 안정성은, Nb의 탄질화물 형성 경향이 강한 것에 기인하지만, 열간 단련 공정 등에서, 부재 온도가 천천히 저하되는 경우에는, 이 안정성이 높은 이유로, 냉각 중에 Nb(C, N)이 석출, 조대화된다. 결정립계 피닝(pinning) 입자(粒子)가 조대화해버리면, 그 후의 열처리 공정에서의 결정립계 피닝 효과가 저하 혹은 없어질 뿐만 아니라, 연·인성의 저하 원인이 될 수도 있다. 또한, 대형의 강괴를 용제하는 경우에는, Nb나 Ti 등의 탄화물 형성 경향이 강한 원소는, 응고편석을 조장하여, 내부 성상의 악화 원인이 될 수도 있다. 따라서, Nb나 Ti와 같은 고온 안정성이 높은 탄화물이나 질화물을 형성하는 원소를 첨가하는 방법은, 두꺼운 부재에 있어서의 결정립 미세화 방법으로서 적용하기 어렵다.The high temperature stability of Nb (C, N) is due to the strong tendency of Nb to form a carbonitride. However, when the temperature of the member is slowly lowered in the hot annealing process or the like, ) Is precipitated and coarsened. If the grain boundary pinning particles (grain) are coarsened, not only the grain boundary pinning effect in the subsequent heat treatment step is lowered or eliminated, but also may cause a decrease in the softness and toughness. Further, when a large-sized ingot is to be solved, an element having a high carbide formation tendency such as Nb or Ti may promote solidification segregation and cause deterioration of the internal constitution. Therefore, it is difficult to apply a method of adding carbide or nitride forming elements having high stability at high temperatures, such as Nb and Ti, as a grain refining method in a thick member.

본 발명은, 상기 사정을 배경으로 하여 이루어진 것이며, Nb나 Ti 등과 비교하여 고온 안정성이 낮은 AlN에 주목하여, 그 피닝 작용을 최대한으로 이끌어내기 위한 화학 조성을 결정하고, 전술한 방법으로 결정립 미세화가 어려운 NiCrMoV강제의 두꺼운 부재에 있어서, γ화 처리를 반복하지 않고, 결정립 미세화할 수 있는 NiCrMo강 및 NiCrMo강재의 제조 방법을 제안한다.The present invention is based on the above circumstances and focuses on AlN having a low temperature stability in comparison with Nb and Ti, and determines a chemical composition for maximizing the pinning action. It is difficult to refine the grain by the above- A method of manufacturing NiCrMo steel and NiCrMo steel which can make crystal grains finer without repeating the? -Graining treatment in a thick member for forced NiCrMoV is proposed.

본 발명자들은, 물리적으로 가열, 및 냉각 속도를 크게 하기 어렵고, 또한 중심부가 목표 온도가 될 때까지 장시간을 필요로 하는 두꺼운 부재에 있어서, 종래의 NiCrMoV강보다 적은 γ화 횟수로 미세한 결정립을 얻기 위해 필요한 화학 조성의 검토를 진행하여, 다음의 사항을 밝혔다. 또한, 본원 발명으로서는 상기 두꺼운 부재에 한정되지 않는다.The inventors of the present invention have found that in a thick member which is physically difficult to heat and cool at a high rate and requires a long time until the center portion reaches a target temperature, it is necessary to obtain fine crystal grains with a smaller number of times of γ- After reviewing the required chemical composition, the following items were revealed. Further, the present invention is not limited to the above-mentioned thick member.

특정량의 Al 및 N을 함유시키고, 또한 V를 미함유 또는 특정량 이하의 함유량으로 제한하면, 소정 온도의 열처리에 있어서 결정립이 미세화한다. 이는, V 함유량을 0 또는 종래의 일반적인 NiCrMoV강보다 감소시키면, V(C, N)의 석출량도 감소하기 때문에, 필연적으로 결정립계 피닝 작용이 있는 AlN의 석출량이 증가하기 때문이다.When a specific amount of Al and N is contained and V is not contained or is limited to a specific amount or less, the crystal grains become finer in the heat treatment at a predetermined temperature. This is because if the V content is reduced to 0 or less than the conventional NiCrMoV steel, the precipitation amount of V (C, N) also decreases, so that the precipitation amount of AlN having grain boundary pinning action inevitably increases.

상기 결정립 미세화 효과를 나타내는 특정량의 Al, N 및 V를 함유한 상태에서, Nb을 더 첨가해도, 상기 동일한 열처리 조건하에서는 Nb 첨가에 의한 추가적인 결정립 미세화의 효과는 나타나지 않는다.Even if Nb is further added in a state containing a specific amount of Al, N and V showing the crystal grain refining effect, the effect of further crystal grain refinement due to addition of Nb does not appear under the same heat treatment conditions.

결정립 미세화 효과를 나타내는 특정량의 Al, N을 함유하거나, 또는 필요에 따라 V를 더 함유한 상태에서, Cr 함유량을 특정의 조성 범위 내에서 증가시킨 경우, 근소하지만 결정립이 더 미세화한다.When the Cr content is increased within a specific composition range in a state of containing a specific amount of Al and N showing grain refining effect or further containing V as necessary, the crystal grains become slightly smaller.

결정립 미세화 효과를 나타내는 특정량의 Al, N을 함유하거나, 또는 필요에 따라 V를 더 함유한 상태에서, Ni, Si, Mn 및 Mo는 특정의 조성 범위 내에서, 목표의 기계적 특성에 맞춰 함유량을 변동시킬 수 있다.Ni, Si, Mn, and Mo are contained in a specific composition range in a state containing a specific amount of Al, N, or V as required, which shows a crystal grain refining effect. Can be changed.

본 발명은 상기의 식견에 기초하여 이루어진 것이며, 그 내용은 다음과 같다.The present invention has been made on the basis of the above knowledge, and the contents thereof are as follows.

즉, 본 발명은 다음의 (1)~(5)에 관한 것이다.That is, the present invention relates to the following (1) to (5).

(1) 질량 백분율로,(1) by mass percentage,

C: 0.10 ~ 0.30% 미만,C: less than 0.10 to less than 0.30%

Si: 0.05~0.30% 미만,Si: less than 0.05 to less than 0.30%

Mn: 0.20~1.00%Mn: 0.20 to 1.00%

P: 0.015% 이하,P: not more than 0.015%

S: 0.015% 이하,S: 0.015% or less,

Cr: 1.50~2.00%Cr: 1.50 to 2.00%

Mo: 0.10~0.50%Mo: 0.10 to 0.50%

Ni: 2.50~4.00%Ni: 2.50 to 4.00%

Al: 0.01~0.03%Al: 0.01 to 0.03%

N: 0.005~0.015%, 및N: 0.005 to 0.015%, and

V: 0.10% 미만을 함유하고,V: contains less than 0.10%

잔부가 Fe 및 불가피한 불순물로 이루어지는 조성을 갖는 것을 특징으로 하는 NiCrMo강.And the balance of Fe and unavoidable impurities.

(2) (1)에 있어서, 상기 조성이, 질량 백분율로, Nb: 0.10% 미만을 더 함유하는 것을 특징으로 하는 NiCrMo강.(2) The NiCrMo steel according to (1), wherein the composition further contains, by mass percentage, Nb: less than 0.10%.

(3) (1) 또는 (2)에 있어서, 마르텐사이트(martensite) 조직 또는 베이나이트(bainite) 조직, 혹은 이들의 혼합 조직으로 이루어지는 것을 특징으로 하는 NiCrMo강.(3) The NiCrMo steel according to (1) or (2), wherein the NiCrMo steel is composed of a martensite structure, a bainite structure, or a mixed structure thereof.

(4) 질량 백분률로,(4) mass percentage,

C: 0.10∼0.30% 미만,C: less than 0.10 to less than 0.30%

Si: 0.05∼0.30% 미만,Si: less than 0.05 to less than 0.30%

Mn: 0.20∼1.00%,Mn: 0.20 to 1.00%

P: 0.015% 이하,P: not more than 0.015%

S: 0.015% 이하,S: 0.015% or less,

Cr: 1.50∼2.00%,Cr: 1.50 to 2.00%

Mo: 0.10∼0.50%,Mo: 0.10 to 0.50%,

Ni: 2.50∼4.00%,Ni: 2.50 to 4.00%

Al: 0.01∼0.03%,Al: 0.01 to 0.03%

N: 0.005∼0.015%, 및N: 0.005 to 0.015%, and

V: 0.10% 미만을 함유하고,V: contains less than 0.10%

잔부가 Fe 및 불가피한 불순물로 이루어지는 조성을 갖는 강에 대해, 열간 단조, 불림(normalizing), 뜨임(tempering)을 진행하고, 그 후, 800∼930℃의 온도에서 1~100시간의 γ화 가열 처리를 적어도 1회 진행하는 것에 의해, JIS G0551:2013에 준거한 구 오스테나이트 결정립도 번호가, 5.5 이상인 강재를 얻는 것을 특징으로 하는 NiCrMo강재의 제조 방법.Normalizing and tempering are carried out for a steel having a composition consisting of Fe and unavoidable impurities and the balance is subjected to a γ heating treatment at a temperature of 800 to 930 ° C. for 1 to 100 hours And a steel material having an old austenite grain size number according to JIS G0551: 2013 of 5.5 or more is obtained at least once.

(5) (4)에 있어서, 상기 조성이, 질량 백분율로, Nb: 0.10% 미만을 더 함유하는 것을 특징으로 하는 NiCrMo강재의 제조 방법.(5) The method for producing a NiCrMo steel according to (4), wherein the composition further contains, by mass percentage, Nb: less than 0.10%.

본 발명에 의하면 급속 승온할 수 없는 두꺼운 부재에 있어서도 반복 γ화 처리를 하지 않아도, AlN의 결정립계 피닝 효과를 이용하여 결정립 미세화가 가능해진다. 결정립 미세화는 강도나 인성 등의 기계적 성질의 관점에서도 유리하여, 결정립 미세화에 의해 재료 특성이 향상된 NiCrMo강제 부재를 제공할 수 있다.According to the present invention, even in the case of a thick member which can not be rapidly heated, grain refinement can be achieved by utilizing the grain boundary pinning effect of AlN without repeating the? -Graining treatment. The grain refinement is advantageous also from the viewpoint of mechanical properties such as strength and toughness, and it is possible to provide a NiCrMo forcing member whose material characteristics are improved by grain refinement.

다음에, 본 발명에서 규정하는 내용에 대해 설명한다. 또한, 하기에서 제시하는 성분은, 모두 질량 백분율로 나타내고 있다.Next, the contents defined in the present invention will be described. In addition, the components shown below are all represented by mass percentage.

여기서 "질량%", "질량비" 및 "질량ppm"과, "중량%", "중량비" 및 "중량ppm"은, 각각 같은 의미이다.The terms "mass%", "mass ratio" and "mass ppm", and "weight%", "weight ratio" and "weight ppm"

C: 0.10∼0.30% 미만C: 0.10 to less than 0.30%

C는 매트릭스 중에 고용되어, 고용 강도를 부여하는 한편, 다른 합금 원소와 합금 탄화물을 형성하고, 매트릭스 중에 석출함으로써 목적으로 하는 강도의 증가를 가져오기 때문에, 0.10% 이상 첨가한다. 그러나, 너무 많으면 가공성이나 인성의 저하를 초래한다. 따라서 그 범위를 0.10∼0.30% 미만으로 한정한다.C is added in an amount of 0.10% or more since C is dissolved in the matrix to give solid solution strength and to form an alloy carbide with other alloying elements and precipitate in the matrix to increase the intended strength. However, if it is too much, the workability and the toughness are lowered. Therefore, the range is limited to less than 0.10 to 0.30%.

Si: 0.05∼0.30% 미만Si: less than 0.05 to less than 0.30%

Si는 페라이트의 고용 강화 원소이지만, 응고편석을 조장하는 원소이기 때문에, 너무 많으면 강의 속(鋼中)이 불균일한 조직이 되어, 인성의 저하를 초래한다. 따라서 그 범위를 0.05∼0.30% 미만으로 한정한다. 또한, 바람직한 형태로서는, 상한을 0.20%로 하는 것이 바람직하다.Si is an element for solid solution strengthening of ferrite, but because it is an element promoting solidification segregation, if it is too much, the structure of the steel (steel) becomes uneven, resulting in deterioration of toughness. Therefore, the range is limited to less than 0.05 to 0.30%. As a preferable mode, it is preferable to set the upper limit to 0.20%.

Mn: 0.20∼1.00% Mn: 0.20 to 1.00%

Mn은, 오스테나이트 안정화 원소이기 때문에, 담금질성을 향상시켜, 강도를 높이는 효과가 있다. 단, 0.20% 미만이면 담금질성이 불충분해지고, 한편, 1.00%를 넘으면, 재료가 단단해져서 가공성이 저하된다. 따라서 그 범위를 0.20∼1.00%로 한다. 또한, 같은 이유로, 바람직한 형태로서는, 하한을 0.30%, 상한을 0.90%로 하는 것이 바람직하다.Since Mn is an austenite stabilizing element, it has an effect of improving hardenability and increasing strength. If it is less than 0.20%, the hardenability becomes insufficient, while if it exceeds 1.00%, the material becomes hard and the workability deteriorates. Therefore, the range is set to 0.20 to 1.00%. For the same reason, it is preferable to set the lower limit to 0.30% and the upper limit to 0.90% in a preferred embodiment.

P: 0.015% 이하P: not more than 0.015%

P는 구 오스테나이트립계에 편석하여, 입계(粒界)의 취화를 초래하는 원소이기 때문에, 불순물로서 그 범위를 0.015% 이하로 한정한다.P is segregated in the old austenitic phase and is an element which causes embrittlement of grain boundaries. Therefore, P is limited to 0.015% or less as an impurity.

S: 0.015% 이하S: not more than 0.015%

S는, Mn과 화합하여 황화물계 개재물을 형성하지만, 너무 많으면 조대한 황화물계 개재물이 증가하여, 인성의 저하를 초래한다. 따라서, 불순물로서, 그 범위를 0.015% 이하로 한정한다.S combines with Mn to form sulfide-based inclusions, but if it is too large, coarse sulfide inclusions increase, resulting in a decrease in toughness. Therefore, as the impurity, the range is limited to 0.015% or less.

Cr: 1.50∼2.00%Cr: 1.50 to 2.00%

Cr은, Mn과 마찬가지로 담금질성 및 뜨임 연화 저항의 향상을 가져오는 원소이다. 한편, 과도한 함유는, 재료가 단단해져 가공성이 저하된다. 따라서, 그 범위를 1.50∼2.00%로 한정한다.Cr, like Mn, is an element that leads to improvement in hardenability and temper softening resistance. On the other hand, the excessive content causes the material to become hard and the workability to deteriorate. Therefore, the range is limited to 1.50 to 2.00%.

Mo: 0.10∼0.50%Mo: 0.10 to 0.50%

Mo는 뜨임의 강도 저하를 저감하는 역할을 하지만, 과잉 첨가는 인성의 저하를 초래한다. 따라서 그 범위를 0.10∼0.50%로 한정한다. 또한, 바람직한 형태로서는, 상한을 0.30%로 하는 것이 바람직하다.Mo serves to reduce the decrease in the strength of the tempering, but excessive addition causes a decrease in toughness. Therefore, the range is limited to 0.10 to 0.50%. As a preferable mode, it is preferable to set the upper limit to 0.30%.

Ni: 2.50∼4.00%Ni: 2.50 to 4.00%

Ni는 모상에 고용되어 담금질성을 높여, 고 강도화 및 고 인성화에 기여하는 원소이다. 단, 2.50% 미만이면 담금질성이 부족하여, 강도의 저하를 초래한다. 한편, 과도한 함유는, 재료가 너무 단단해져 가공성의 저하를 초래한다. 따라서, 그 범위를 2.50∼4.00%로 한정한다. 또한, 바람직한 형태로서는, 하한을 3.00%, 상한을 3.80%로 하는 것이 바람직하다.Ni is dissolved in the parent phase to increase the hardenability, and contributes to high strength and high toughness. However, if it is less than 2.50%, the hardenability is insufficient and the strength is lowered. On the other hand, an excessive content causes the material to become too hard, resulting in deterioration of processability. Therefore, the range is limited to 2.50 to 4.00%. As a preferable mode, it is preferable that the lower limit is 3.00% and the upper limit is 3.80%.

V: 0.10% 미만V: less than 0.10%

V는, C나 N과 화합하여 V(C, N)을 형성하기 때문에, AlN의 형성에 크게 영향을 미친다. 다량으로 함유하면 다량의 V(C, N)이 형성되어, AlN의 석출량, 석출 온도가 변화되어, AlN의 피닝 작용이 저하된다. 따라서, V는, 무첨가 또는 함유할 경우에는, 그 함유량을 0.10% 미만으로 한정한다. 또한, 바람직한 형태로서는, 상한을 0.07%로 하는 것이 바람직하다. 또한, V을 강화 원소로 하기 위해, 함유량의 하한은, 0.03%로 하는 것이 바람직하다. V을 무첨가로 할 경우, 불가피한 불순물로서 0.03% 미만으로 함유해도 좋고, 0.01% 이하가 바람직하다.Since V forms V (C, N) with C or N, it greatly affects the formation of AlN. A large amount of V (C, N) is formed, and the precipitation amount of AlN and the precipitation temperature are changed to lower the pinning action of AlN. Therefore, when V is not added or contained, the content of V is limited to less than 0.10%. As a preferable mode, it is preferable to set the upper limit to 0.07%. In order to make V a strengthening element, the lower limit of the content is preferably 0.03%. When V is not added, it may be contained as an unavoidable impurity in an amount of less than 0.03%, preferably 0.01% or less.

Al: 0.01∼0.03%Al: 0.01 to 0.03%

Al은 AlN으로서 석출하여, 결정립계를 피닝한다. 너무 적으면 피닝에 효과가 있는 AlN 입자수가 부족하여, 결정립이 미세화하지 않고, 너무 많으면 AlN이 조대화하여, 연·인성의 저하를 초래한다. 따라서 그 범위를 0.01∼0.03%로 한다. 또한, 바람직한 형태로서는, 상한을 0.025%로 하는 것이 바람직하다.Al precipitates as AlN and pinches the grain boundaries. If the amount is too small, the number of AlN particles effective for pinning is insufficient and the crystal grains do not become fine. When the amount is too large, AlN coarsens, resulting in deterioration of toughness and toughness. Therefore, the range is set to 0.01 to 0.03%. As a preferable mode, it is preferable that the upper limit is set to 0.025%.

N: 0.005∼0.015%N: 0.005 to 0.015%

N은, Al이나 V와 화합하여, AlN이나 V(C, N)로서 석출한다. 너무 적으면, 피닝에 효과가 있는 AlN의 석출물 입자수가 부족하여, 결정립이 미세화하지 않고, 너무 많으면 석출물의 조대화하여, 그에 따른 연·인성의 저하를 초래한다. 따라서 그 범위를 0.005∼0.015%로 한다. 또한, 바람직한 형태로서는, 상한을 0.010%로 하는 것이 바람직하다.N combines with Al or V to precipitate as AlN or V (C, N). If the amount is too small, the number of precipitated particles of AlN which is effective for pinning is insufficient and the crystal grains do not become fine, while if too large, precipitates are coarse, resulting in deterioration of the softness and toughness. Therefore, the range is set to 0.005 to 0.015%. As a preferable mode, it is preferable to set the upper limit to 0.010%.

Nb: 0.10% 미만Nb: less than 0.10%

Nb은, 열간 단조시 등의 고온 영역, 예컨대 1000℃∼1150℃에서의 입계(粒界) 피닝 효과를 가져올 수 있어, 필요에 따라 함유시킬 수 있다. 그 경우, 하한량을 0.01%로 하는 것이 바람직하고, 0.03%로 하는 것이 더 바람직하다. 또한, Nb은, 불가피한 불순물로서 0.01% 미만 함유하는 것이어도 좋다.Nb can bring about a grain boundary pinning effect at a high temperature region such as at the time of hot forging, for example, at 1000 ° C to 1150 ° C, and can be contained if necessary. In this case, the lower limit is preferably 0.01%, more preferably 0.03%. Nb may be an inevitable impurity in an amount of less than 0.01%.

조직(組織)Organization

본 발명의 NiCrMo강은, 조질(調質) 후에 있어서, 마르텐사이트 조직 또는 베이나이트 조직 혹은, 이들의 혼합 조직을 갖는다.The NiCrMo steel of the present invention has a martensite structure, a bainite structure, or a mixed structure thereof after the tempering (tempering).

조질(담금질)시에, 가열 후, 800∼200℃까지의 평균 냉각 속도가 50℃/분 이하여도, 상기 조직을 형성할 수 있다.At the time of tempering (quenching), the above-mentioned structure can be formed even when the average cooling rate from 800 to 200 캜 after heating is 50 캜 / min or less.

승온 속도Heating rate

본 발명은, 두꺼운 부재인 이유로 열처리 중의 중심부의 승온 속도가 200℃/시간 이하가 되어버리는 NiCrMo강제의 두꺼운 부재에 바람직하게 적용된다. 예컨대, 두께가 100mm 이상인 부재를 들 수 있다.The present invention is preferably applied to a thick member of NiCrMo forcing, in which the rate of temperature rise at the central portion during the heat treatment becomes 200 DEG C / hour or less because of being a thick member. For example, a member having a thickness of 100 mm or more.

최종 γ화 온도The final γ-

최종 γ화 처리는, 800℃∼930℃에서 진행할 수 있다. 예컨대 100시간을 초과하여 유지해도, 결정립은 거의 조대화하지 않기 때문에, 조질 온도는 목표의 기계적 특성이나 부재의 두께 등에 따라, 이 온도 범위 내에서 자유롭게 선택할 수 있다.The final gamma treatment can proceed at 800 ° C to 930 ° C. For example, even if it is maintained for more than 100 hours, since the crystal grains hardly coarsen, the tempering temperature can be freely selected within this temperature range, depending on the mechanical characteristics of the target, the thickness of the member, and the like.

본 발명의 NiCrMo(V)강은, 결정립경(結晶粒徑)에 있어서, 단강 부재의 일반적인 열간 단조, 열처리(불림, 뜨임) 공정 후, 1회의 γ화 처리로 JIS G0551:2013에 준거한 결정립도 번호가, 5.5 이상이 된다. 세립화된 조직에 의해, 강도가 향상되고, 우수한 인성, 피로 특성을 가져온다.The NiCrMo (V) steel of the present invention is characterized in that, after a general hot forging, heat treatment (annealing and tempering) step of a forged steel member in a crystal grain diameter, The number becomes 5.5 or more. By the fine-grained structure, the strength is improved, and excellent toughness and fatigue characteristics are obtained.

다음에, 본 발명의 일 실시형태를 설명한다.Next, an embodiment of the present invention will be described.

본 발명의 NiCrMo강은 통상적인 방법에 의해 용제(溶製)할 수 있다. 용제에 의해 얻어지는 강괴는, 필요에 따라 단조 등의 가공이나 불림 등의 예비 열처리를 실시하고, 조질(調質)을 더 진행한다. 이와 같은 단조 등이나 열처리는 통상적인 방법에 의해 진행할 수 있고, 본 발명으로서는 특정의 조건에 한정되지 않는다.The NiCrMo steel of the present invention can be solvent (melted) by a conventional method. The steel ingot obtained by the solvent undergoes a preliminary heat treatment such as forging or the like, if necessary, and further proceeds the tempering (tempering). Such forging or heat treatment can be carried out by a conventional method, and the present invention is not limited to specific conditions.

다만, 결정립 미세화에는 γ화 가열 온도를 적정하게 결정하는 것이 바람직하고, 바람직한 형태로서는, 800℃에서 930℃의 온도 범위 내로 하는 것이 바람직하다. 또한, 상한은 870℃로 하는 것이 더 바람직하다. 800℃보다 저온이 되면 미재결정립이 잔존하여 정립(整粒)이 얻어지지 않게 되고, 930℃보다 고온에서는, 온도 증가와 함께 서서히 결정립이 조대화한다. 가열 시간은 특히 한정되지 않지만, 예컨대 1∼100시간으로 진행할 수 있다. 800∼930℃에서 통상적인 방법에 의한 냉각을 실시하면 마르텐사이트 조직 또는 베이나이트 조직, 또는 그들의 혼합 조직이 얻어진다.However, for grain refinement, it is preferable to determine the γ heating temperature appropriately, and it is preferable that the heating temperature is within the temperature range of 800 ° C. to 930 ° C. The upper limit is more preferably 870 캜. When the temperature is lower than 800 ° C, the non-recrystallized grains remain and the grain size can not be obtained. When the temperature is higher than 930 ° C, the grains gradually converge with the temperature increase. The heating time is not particularly limited, but can be, for example, 1 to 100 hours. When cooling is carried out by a conventional method at 800 to 930 캜, a martensite structure or a bainite structure or a mixed structure thereof is obtained.

담금질시의 냉각은, 요구되는 기계적 특성이나 부재의 두께에 따라, 수냉, 유냉, 공냉, 노냉 등을 이용할 수 있다.Cooling during quenching may be performed by water cooling, oil cooling, air cooling, furnace cooling or the like depending on the required mechanical properties and the thickness of the member.

또한, 조질 공정의 뜨임은, 강인성이나 균열 감수성에 큰 영향을 미치지만, 결정립도에 관하여 모든 열처리는 무관계하다고 해도 좋은 열처리 공정이다. 따라서, 적용하는 부재에 있던 뜨임 조건을 통상적인 방법에 의해 진행하면 좋다. 예컨대, 강도나 경도가 필요한 경우에는 150∼200℃, 연·인성이 필요한 경우에는 550∼600℃의 조건을 나타낼 수 있다. 다만, 뜨임 취화가 일어나는 온도, 예컨대 500℃에서 장시간 유지하는 조건으로 실시하는 것은 피하는 것이 좋다.The tempering of the tempering process has a great influence on the toughness and the crack susceptibility, but it is a heat treatment process in which all the heat treatments may be irrelevant with respect to the grain refinement. Therefore, the tempering condition in the member to be applied may be carried out by a conventional method. For example, when strength and hardness are required, 150 to 200 deg. C, and when softness and toughness are required, 550 to 600 deg. However, it is preferable to avoid conducting at a temperature at which tempering occurs, for example, at a temperature of 500 占 폚 for a long time.

결정립도 번호 및 정립인지 여부의 판정은, 일본 공업 규격 (JIS)G0551:2013 "강-결정립도의 현미경 시험 방법"에 의해 판정할 수 있고, 광학 현미경 등의 장치를 이용하여 판정할 수 있다. 조직에 대해서도 광학 현미경을 이용하여 판정할 수 있다.Determination of the grain size number and whether or not the grain size is established can be determined by Japanese Industrial Standard (JIS) G0551: 2013 "Method of Testing Microstructure of Steel-Grain Size", and can be judged by using an apparatus such as an optical microscope. The tissue can also be judged using an optical microscope.

본원 발명의 조질을 거친 강재는, 일반적인 열처리 조건, 즉 열간 단조, 불림(normalizing), 뜨임(tempering), 담금질(quenching) 후, 상기 기준에 있어서의 결정립도 번호로, 5.5 이상의 정립을 나타내고 있다.The steel having undergone the tempering of the present invention has a crystal grain number in the above standard after normal forging, normalizing, tempering and quenching, showing a size of 5.5 or more.

[실시예][Example]

다음에, 본 발명의 실시예를 설명한다. 표 1에 나타내는 조성(Fe의 나머지 부분)의 강종을 50kg 진공유도 용해로에서 용제하고, 얻어진 강괴를 90×90mm의 단면의 각주 형상으로 단조했다. 그 후, 900℃×6시간으로 불림, 670℃×12시간으로 뜨임, 900℃×20시간 유지 후, 물 담금질(water quenching)을 실시했다. 그 후, γ화 처리의 반복 효과를 확인하기 위해, 840℃×5시간 유지 후, 물 담금질을 1∼2회 실시했다. 또한, 급속 승온에 의한 결정립 미세화 효과가 나타나면, AlN에 의한 결정립 미세화 효과의 정도를 확인할 수 없기 때문에, 모든 열처리의 승온 속도는 두꺼운 부재를 상정하여 40℃/시간으로 했다.Next, an embodiment of the present invention will be described. The steel of the composition shown in Table 1 (the remaining portion of Fe) was dissolved in a 50 kg vacuum induction melting furnace, and the obtained ingot was forged into a prism shape having a cross section of 90 x 90 mm. Thereafter, this was called 900 占 폚 for 6 hours, tempered at 670 占 폚 for 12 hours, held at 900 占 폚 for 20 hours, and then subjected to water quenching. Thereafter, in order to confirm the repetitive effect of the? -Gasification treatment, water quenching was carried out once or twice after holding at 840 占 폚 for 5 hours. In addition, when the crystal grain refining effect by the rapid heating is shown, since the degree of grain refining effect by AlN can not be confirmed, the rate of temperature rise of all the heat treatments is 40 ° C / hour on the assumption of a thick member.

시료
번호
sample
number
성분(질량%)Component (% by mass) 비고Remarks
CC SiSi MnMn SS PP NiNi CrCr MoMo VV AlAl NN NbNb 1One 0.200.20 0.100.10 0.320.32 0.00210.0021 0.0030.003 3.623.62 1.571.57 0.250.25 0.140.14 0.0050.005 0.00570.0057 -- 비교재Comparative material 22 0.200.20 0.100.10 0.320.32 0.00210.0021 0.0030.003 3.653.65 1.581.58 0.240.24 0.140.14 0.0210.021 0.00980.0098 -- 33 0.200.20 0.080.08 0.310.31 0.00190.0019 0.0030.003 3.703.70 1.551.55 0.240.24 0.090.09 0.0200.020 0.00990.0099 -- 발명재Invention material 44 0.200.20 0.080.08 0.330.33 0.00200.0020 0.0030.003 3.693.69 1.561.56 0.240.24 0.090.09 0.0300.030 0.01500.0150 -- 55 0.200.20 0.150.15 0.340.34 0.00180.0018 0.0030.003 3.673.67 1.571.57 0.240.24 0.0030.003 0.0210.021 0.00870.0087 -- 66 0.200.20 0.200.20 0.330.33 0.00210.0021 0.0030.003 3.653.65 1.571.57 0.250.25 0.0030.003 0.0050.005 0.00550.0055 -- 비교재Comparative material 77 0.200.20 0.140.14 0.340.34 0.00240.0024 0.0030.003 3.633.63 1.541.54 0.250.25 0.190.19 0.0050.005 0.00580.0058 -- 88 0.190.19 0.120.12 0.330.33 0.00260.0026 0.0030.003 4.004.00 1.551.55 0.240.24 0.090.09 0.0210.021 0.00870.0087 -- 발명재Invention material 99 0.200.20 0.100.10 0.320.32 0.00210.0021 0.0030.003 3.003.00 1.571.57 0.250.25 0.090.09 0.0200.020 0.00990.0099 -- 1010 0.190.19 0.100.10 0.340.34 0.00150.0015 0.0030.003 2.512.51 1.551.55 0.240.24 0.090.09 0.0200.020 0.00780.0078 -- 1111 0.200.20 0.080.08 0.980.98 0.00190.0019 0.0030.003 3.653.65 1.581.58 0.250.25 0.070.07 0.0200.020 0.00840.0084 -- 1212 0.200.20 0.130.13 0.340.34 0.00220.0022 0.0030.003 3.653.65 1.561.56 0.240.24 0.080.08 0.0220.022 0.00830.0083 0.0320.032 1313 0.190.19 0.150.15 0.350.35 0.00220.0022 0.0030.003 3.683.68 1.851.85 0.240.24 0.070.07 0.0210.021 0.00850.0085 -- 1414 0.200.20 0.150.15 0.330.33 0.00220.0022 0.0030.003 3.703.70 2.002.00 0.240.24 0.0070.007 0.0220.022 0.00830.0083 --

표 2에 각 강종의 (1) 열간 단조-불림(N)-뜨임(T)-담금질(Q) 후, (2) 열간 단조-N-T-Q-Q 후, (3) 열간 단조-N-T-Q-Q-Q 후의 결정립도 번호의 측정 결과를 나타낸다. 결정립도 번호는, JIS G0551:2013에 준거하여 측정했다. 또한, 본 명세서에 있어서, JIS G0551:2013의 내용은 본 발명에 참조로서 원용된다.Table 2 shows the results of (1) hot forging-N = annealing (T) -quenching (Q), (2) hot forging-NTQQ, and (3) hot forging-NTQQQ . The grain size numbers were measured in accordance with JIS G0551: 2013. In this specification, the content of JIS G0551: 2013 is hereby incorporated by reference.

본 실시예에서는, 시료 1의 (1)의 열처리 후의 결정립도 번호 4.5와 비교하여, 결정립 미세화 효과의 유무를 판정한다. 시료 1과 시료 2의 비교에서, 단순히 Al 및 N을 첨가한 것만으로는 결정립도 번호는 거의 변화하지 않아, 결정립 미세화 효과가 나타나지 않았다. 그러나, 시료 3, 4 및 5와 같이, Al 및 N을 첨가하면서, V량을 저감했을 경우에는, 결정립도 번호는 6 이상이 되어, 결정립 미세화 효과가 확인되었다. 시료 6 및 7은, Al 및 N을 첨가하지 않고, V량만을 변동시킨 강이지만, 결정립도 번호는 4 정도로, 결정립 미세화 효과는 인정되지 않았다. 이상의 결과로부터, Al 및 N을 첨가하면서, V량을 0.1% 미만으로 저감시켜야 결정립 세립화 효과가 있는 것을 알 수 있었다.In this embodiment, the presence or absence of grain refinement effect is judged by comparing with the grain size number 4.5 after the heat treatment of the sample 1 (1). In the comparison of the sample 1 and the sample 2, only the addition of Al and N hardly changed the crystal grain number and the grain refinement effect did not appear. However, as in the samples 3, 4 and 5, when the amount of V was reduced while Al and N were being added, the number of crystal grains became 6 or more, and the grain refining effect was confirmed. Samples 6 and 7 were steels in which only V was added without adding Al and N, but the grain number was about 4, and grain refinement effect was not recognized. From the above results, it was found that when the amount of V is reduced to less than 0.1% while adding Al and N, grain refining effect is obtained.

시료 8∼11과 같이, Al, N 및 V량을 결정립 미세화 효과를 나타내는 양으로 제어하면서, Ni나 Mn량을 증가시켜도, 결정립도 번호는 6 이상을 나타내어, V과는 달리 Ni 및 Mn의 증량은 AlN의 결정립 미세화 효과를 저하시키지 않는 것을 알 수 있었다.Even when the amounts of Al and N and V are controlled to be the amounts showing the crystal grain refining effect as in Samples 8 to 11, the grain size number is 6 or more even if the amount of Ni or Mn is increased. It was found that the grain refinement effect of AlN was not deteriorated.

시료 8의 조성에 대해 Nb를 첨가한 시료 12는, 결정립도 번호가 6.9로, 시료 8의 그것과 동일한 정도였기 때문에, Al, N 및 V량을 결정립 미세화 효과를 나타내는 양으로 제어한 상태에서는, Nb 첨가의 결정립 미세화 효과는 거의 없다고 추측된다.Sample 12 to which Nb was added with respect to the composition of Sample 8 had a grain size number of 6.9, which was about the same as that of Sample 8. Therefore, in a state where the amount of Al, N, and V was controlled to be an amount showing grain refining effect, Nb It is presumed that there is almost no effect of grain refinement of the addition.

시료 13 및 14는 Cr을 증량한 강이지만, 결정립도 번호가 약간 큰 점에서, Cr 증량은 결정립 미세화에 유효하다고 할 수 있다.Samples 13 and 14 are steels in which Cr is increased. However, since the grain number is slightly larger, it can be said that the Cr increase is effective for grain refinement.

열처리 (1)에 Q를 추가한 열처리 (2) 및 (3) 후에는, 모두 결정립이 미세해졌지만, 시료 1은 결정립도 번호 6 이상이 되는 것은, 열처리 (1)에 Q를 2회 추가한 조건으로, 시료 1은 발명 강에 비해 Q를 2회 추가해야 하는 것을 알 수 있었다.After the heat treatment (2) and (3) in which the Q was added to the heat treatment (1), all of the crystal grains became finer and the sample 1 had the crystal grain number of 6 or more. , It can be seen that Sample 1 needs to be added Q twice as compared with Inventive Steel.

시료 번호Sample number 결정립도 번호Grain number 비고Remarks (1): 열간단조-N-T-Q 후(1): After hot forging-N-T-Q (2): (1)에 Q를 1회 추가 후(2): After adding Q once to (1) (3): (1)에 Q를 2회 추가 후(3): After adding Q twice to (1) 1One 4.54.5 5.25.2 6.36.3 비교재Comparative material 22 4.04.0 4.94.9 -- 33 6.36.3 8.08.0 -- 발명재Invention material 44 6.56.5 8.08.0 -- 55 7.17.1 8.28.2 -- 66 4.04.0 5.15.1 -- 비교재Comparative material 77 3.73.7 4.54.5 -- 88 6.86.8 8.28.2 -- 발명재Invention material 99 6.66.6 8.08.0 -- 1010 7.07.0 8.18.1 -- 1111 7.07.0 8.38.3 -- 1212 6.96.9 8.08.0 -- 1313 7.37.3 8.68.6 -- 1414 7.47.4 8.58.5 --

표 3에 동일한 조건으로 조질한 시료 1 및 시료 5의 실온의 인장강도, 연신, 샤르피 충격 값을 나타낸다. 결정립이 미세한 시료 5는, 비교재의 시료 1에 비해, 인장 특성이야말로 거의 변하지 않지만, 충격 값이 1.5배이상 높은 값을 나타냈다.Table 3 shows the tensile strength, elongation and Charpy impact value at room temperature of Sample 1 and Sample 5 which were tempered under the same conditions. Sample 5 having a fine grain size showed almost no change in tensile properties but a value 1.5 times or more higher than that of sample 1 of the comparative material.

시료 번호Sample number 인장강도
(MPa)
The tensile strength
(MPa)
연신
(%)
Stretching
(%)
2mmU 노치
샤르피 충격값
(J/㎠)
2mmU notch
Charpy impact value
(J / cm2)
1One 13521352 12.912.9 106106 55 13741374 12.512.5 160160

이상, 본 발명에 대해 상기 실시형태에 기초하여 설명했지만, 본 발명의 범위를 일탈하지 않는 한 적절한 변경이 가능하다.While the present invention has been described based on the above embodiments, modifications may be made without departing from the scope of the present invention.

Claims (5)

질량 백분율로,
C: 0.10∼0.30% 미만,
Si: 0.05∼0.30% 미만,
Mn: 0.20∼1.00%,
P: 0.015% 이하,
S: 0.015% 이하,
Cr: 1.50∼2.00%,
Mo: 0.10∼0.50%,
Ni: 2.50∼4.00%,
Al: 0.01∼0.03%,
N: 0.005∼0.015%, 및
V: 0.10% 미만을 함유하고,
잔부가 Fe 및 불가피한 불순물로 이루어지는 조성을 갖는 것을 특징으로 하는 NiCrMo강.
By mass percentage,
C: less than 0.10 to less than 0.30%
Si: less than 0.05 to less than 0.30%
Mn: 0.20 to 1.00%
P: not more than 0.015%
S: 0.015% or less,
Cr: 1.50 to 2.00%
Mo: 0.10 to 0.50%,
Ni: 2.50 to 4.00%
Al: 0.01 to 0.03%
N: 0.005 to 0.015%, and
V: contains less than 0.10%
And the balance of Fe and unavoidable impurities.
제 1항에 있어서,
상기 조성이, 질량 백분율로, Nb: 0.10% 미만을 더 함유하는 것을 특징으로 하는 NiCrMo강.
The method according to claim 1,
Characterized in that the composition further contains, by mass percentage, less than 0.10% of Nb.
제 1항 또는 제 2항에 있어서,
마르텐사이트 조직 또는 베이나이트 조직, 혹은 이들의 혼합 조직으로 이루어지는 것을 특징으로 하는 NiCrMo강.
3. The method according to claim 1 or 2,
A martensite structure, a bainite structure, or a mixed structure thereof.
질량 백분율로,
C: 0.10∼0.30% 미만,
Si: 0.05∼0.30% 미만,
Mn: 0.20∼1.00%,
P: 0.015% 이하,
S: 0.015% 이하,
Cr: 1.50∼2.00%,
Mo: 0.10∼0.50%,
Ni: 2.50∼4.00%,
Al: 0.01∼0.03%,
N: 0.005∼0.015%, 및
V: 0.10% 미만을 함유하고,
잔부가 Fe 및 불가피한 불순물로 이루어지는 조성을 갖는 강에 대해, 열간 단조, 불림, 뜨임을 진행하고, 그 후, 800∼930℃의 온도에서 1~100시간의 γ화 가열 처리를 적어도 1회 진행하는 것에 의해, JIS G0551:2013에 준거한 구(舊) 오스테나이트 결정립도 번호가, 5.5 이상인 강재를 얻는 것을 특징으로 하는 NiCrMo강재의 제조 방법.
By mass percentage,
C: less than 0.10 to less than 0.30%
Si: less than 0.05 to less than 0.30%
Mn: 0.20 to 1.00%
P: not more than 0.015%
S: 0.015% or less,
Cr: 1.50 to 2.00%
Mo: 0.10 to 0.50%,
Ni: 2.50 to 4.00%
Al: 0.01 to 0.03%
N: 0.005 to 0.015%, and
V: contains less than 0.10%
The steel having a composition consisting of Fe and unavoidable impurities is subjected to hot forging, sintering and tempering, and then the γ-oxidation heat treatment at a temperature of 800 to 930 ° C. for 1 to 100 hours is conducted at least once To obtain a steel material having an old austenite grain size number conforming to JIS G0551: 2013 of 5.5 or more.
제4항에 있어서,
상기 조성이, 질량 백분율로, Nb: 0.10% 미만을 더 함유하는 것을 특징으로 하는 NiCrMo강재의 제조 방법.
5. The method of claim 4,
Characterized in that the composition further contains, by mass percentage, less than 0.10% of Nb.
KR1020160093336A 2015-01-28 2016-07-22 NiCrMo STEEL AND METHOD FOR MANUFACTURING NiCrMo STEEL MATERIAL KR102554100B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2015-014761 2015-01-28
JP2015014761A JP6506978B2 (en) 2015-01-28 2015-01-28 Method of manufacturing NiCrMo steel and NiCrMo steel material

Publications (2)

Publication Number Publication Date
KR20160121785A true KR20160121785A (en) 2016-10-20
KR102554100B1 KR102554100B1 (en) 2023-07-12

Family

ID=56558955

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160093336A KR102554100B1 (en) 2015-01-28 2016-07-22 NiCrMo STEEL AND METHOD FOR MANUFACTURING NiCrMo STEEL MATERIAL

Country Status (2)

Country Link
JP (1) JP6506978B2 (en)
KR (1) KR102554100B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053332A (en) * 2016-09-30 2018-04-05 日立金属株式会社 Method for manufacturing turbine material
CN111101064A (en) * 2020-01-10 2020-05-05 泰尔重工股份有限公司 High-performance bolt of bearing seat type joint and manufacturing method thereof
CN111705269A (en) * 2020-07-09 2020-09-25 河南中原特钢装备制造有限公司 Low-silicon steel 27NiCrMoV15-6 and smelting continuous casting production process thereof
WO2023282256A1 (en) * 2021-07-06 2023-01-12 日本製鋼所M&E株式会社 Production method for universal joint component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227555A (en) * 1985-07-29 1987-02-05 Kawasaki Steel Corp Low-alloy tempered forged steel excellent in falling weight characteristics
JP2000054069A (en) 1998-07-30 2000-02-22 Nippon Steel Corp Carburized material excellent in rolling fatigue characteristic
JP2005154784A (en) * 2002-11-12 2005-06-16 Daido Steel Co Ltd Bearing steel excellent in corrosion resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240313A (en) * 1985-08-15 1987-02-21 Kawasaki Steel Corp Production of extra-thick tempered steel material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227555A (en) * 1985-07-29 1987-02-05 Kawasaki Steel Corp Low-alloy tempered forged steel excellent in falling weight characteristics
JP2000054069A (en) 1998-07-30 2000-02-22 Nippon Steel Corp Carburized material excellent in rolling fatigue characteristic
JP2005154784A (en) * 2002-11-12 2005-06-16 Daido Steel Co Ltd Bearing steel excellent in corrosion resistance

Also Published As

Publication number Publication date
JP2016138320A (en) 2016-08-04
JP6506978B2 (en) 2019-04-24
KR102554100B1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
JP5423806B2 (en) High toughness wear resistant steel and method for producing the same
JP4390081B2 (en) Seamless steel pipe for oil well with excellent resistance to sulfide stress cracking and method for producing the same
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
WO2018182480A1 (en) Hot work tool steel
JP6432932B2 (en) High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same
KR102374800B1 (en) Gas turbine disk material and heat treatment method therefor
KR102554100B1 (en) NiCrMo STEEL AND METHOD FOR MANUFACTURING NiCrMo STEEL MATERIAL
KR101654684B1 (en) Mooring chain steels with high strength and high impact toughness at low temperature and method for manufacturing the same
EP2668306B1 (en) High strength, high toughness steel alloy
CN109790602B (en) Steel
CN108368589B (en) High hardness wear resistant steel having excellent toughness and cut crack resistance and method for manufacturing the same
JP2017066460A (en) Age hardening steel
WO2015163226A1 (en) Turbine rotor material for geothermal power generation and method for manufacturing same
CN110462083B (en) Steel having high hardness and excellent toughness
KR101446135B1 (en) Steel for suspension spring with high strength and excellent fatigue and method producing the same
KR101301617B1 (en) Material having high strength and toughness and method for forming tower flange using the same
EP1697552A1 (en) Steel wire for cold forging having excellent low temperature impact properties and method of producing same
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JP2003201513A (en) High strength case hardening steel
JP2011208164A (en) Rolled annealed steel sheet of boron steel and method for producing the same
JP3907986B2 (en) Method for producing case-hardened steel with excellent cold workability and grain size characteristics
KR102359299B1 (en) Ultra-high strength, high co-ni secondary hardening martensitic steel and its manufacturing method
JP6282078B2 (en) Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics
KR102455547B1 (en) Chromium-molybdenum steel having excellent strength and ductility and manufacturing the same
KR101246389B1 (en) Non-heat treated steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right