KR20160120377A - Electrode manufacturing method having a carbon nano-plane structure - Google Patents

Electrode manufacturing method having a carbon nano-plane structure Download PDF

Info

Publication number
KR20160120377A
KR20160120377A KR1020150049004A KR20150049004A KR20160120377A KR 20160120377 A KR20160120377 A KR 20160120377A KR 1020150049004 A KR1020150049004 A KR 1020150049004A KR 20150049004 A KR20150049004 A KR 20150049004A KR 20160120377 A KR20160120377 A KR 20160120377A
Authority
KR
South Korea
Prior art keywords
base material
graphene
coating
electrode
titanium
Prior art date
Application number
KR1020150049004A
Other languages
Korean (ko)
Inventor
김원용
류재성
Original Assignee
주식회사 마텍스코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 마텍스코리아 filed Critical 주식회사 마텍스코리아
Priority to KR1020150049004A priority Critical patent/KR20160120377A/en
Publication of KR20160120377A publication Critical patent/KR20160120377A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form

Abstract

The present invention relates to a method for manufacturing an electrode, having a substance with a 2D carbon nanoplane structure. The manufacturing method of an electrode having the carbon nanoplane structure comprises: a coating step for coating a base material of any one material of titanium, a titanium-group alloy, nickel, stainless, and graphite with graphene; and a processing step for thermally treating the coated base material. Provided in the present invention is the manufacturing method of a graphene electrode having a carbon nanoplane structure, for increasing the treatment efficiency with respect to underwater non-degradable pollutants or nitric organic substances.

Description

탄소 나노평면구조를 갖는 전극 제조방법{Electrode manufacturing method having a carbon nano-plane structure}[0001] The present invention relates to a method of manufacturing an electrode having a carbon nano planar structure,

본 발명은 이차원 탄소 나노 평면 구조를 갖는 물질을 가지고 전극을 제조하는 방법에 관한 것으로서, 상세하게는 환경 분야의 오폐수처리 및 표면처리, 수처리, 물산업 등 다양한 산업분야에 적용 가능한 코팅 된 복합구조층을 형성하는 전극 및 전극 제조에 관한 것으로서 전극 모재를 티타늄 및 티타늄 합금, 흑연, 코발트, 니켈 및 니켈합금, 스텐인리스 강 등을 사용하고 전극모재 표면에 탄소 나노평면 구조를 갖는 물질 특히, 그래핀을 코팅하도록 하여 오폐수처리 및 표면처리, 수처리 등의 목적을 달성하기 위한 탄소 나노평면구조를 갖는 전극 제조방법에 관한 것이다.
The present invention relates to a method of manufacturing an electrode with a material having a two-dimensional carbon nano planar structure, and more particularly, to a method of manufacturing an electrode using a coated composite structure layer The present invention relates to an electrode and an electrode manufacturing method for manufacturing an electrode and an electrode that use a titanium niobate layer and a titanium niobate layer on a surface of an electrode base material using titanium and a titanium alloy, graphite, cobalt, nickel and nickel alloy, The present invention relates to a method for producing an electrode having a carbon nano planar structure in order to accomplish the purpose of wastewater treatment, surface treatment, water treatment, and the like.

오폐수에는 산업시설에서 배출되는 산업폐수와 가정이나 축산 시설에서 배출되는 생활폐수가 있다. 이러한 오폐수 중 축산 폐수, 음식물 침출수, 매립장 침출수, 제지폐수 등은 색도가 높고 난분해성 유기물을 많이 포함되어 있으므로 이러한 오폐수의 정수를 위한 장치에는 이러한 색도, 난분해성 유기물의 제거를 위한 수단이 요구된다.Wastewater contains industrial wastewater discharged from industrial facilities and domestic wastewater discharged from households and livestock facilities. Since the livestock wastewater, food leachate, landfill leachate, and paper waste wastewater among the wastewater are high in chromaticity and contain a large amount of decomposable organic matter, a device for removing such color and refractory organic matter is required for the apparatus for purifying wastewater.

그러나 통상의 오폐수 처리장치는 1차로 화학적 처리 후, 생물학적 처리를 거쳐 방류하고 있으며, 이에 따라 종래의 오폐수 처리 장치를 이용하여 처리 후 배출되는 오폐수에는 잔류 난분해성 유기물과 색도는 제거되지 않는 잔류성 유기오염물질(Persistent organic pollutants, POP's) 등이 잔류하고 있어 수질 및 토질을 오염시키는 문제가 있었다.However, the conventional wastewater treatment apparatus is subjected to biological treatment after the first chemical treatment, so that the wastewater discharged after the treatment using the conventional wastewater treatment apparatus is subjected to residual organic pollution Persistent organic pollutants (POP's) and the like remain, which pollute water quality and soil quality.

이러한 문제를 해소하기 위해 잔류성 유기오염물질의 처리를 위한 연구가 계속되고 있으며, 이러한 잔류성 유기오염물질의 처리를 위한 방법으로 오존산화, 펜톤산화, UV 처리, 전기분해 등의 방법이 사용되고 있다.In order to solve this problem, researches for the treatment of persistent organic pollutants have been continued, and methods such as ozone oxidation, Fenton oxidation, UV treatment, and electrolysis have been used as methods for treating these persistent organic pollutants.

이러한 잔류성 유기오염물질 처리를 위한 정화시설에 있어서 전기분해 방법을 이용하는 오폐수 처리장치의 경우 전기분해용 전극으로 티타늄 지지체에 백금족계열의 혼합물을 도포하고 소성시켜 전도성 산화막을 형성한 것을 사용하고 있다.In the case of a waste water treatment apparatus using an electrolysis method in a purification facility for treating such persistent organic pollutants, a platinum group-based mixture is applied to a titanium support as an electrode for electrolysis and fired to form a conductive oxide film.

이러한 종래의 오폐수 처리용 전극은 활성의 급격한 손실, 독성 이온의 방출, 짧은 전극수명, 불완전 산화 등 전류효율이 낮아 오염물질 처리효율이 낮고, 많은 전력을 낭비하는 문제가 있었다.Such a conventional electrode for treating wastewater has a problem that the current efficiency is low, such as rapid loss of activity, release of toxic ions, short electrode life, incomplete oxidation, low pollutant treatment efficiency and waste of electric power.

즉, 높은 표면저항 및 낮은 수소/산소 발생 과전위로 인하여 수중의 오염물질의 처리효율이 낮으며, 처리효율을 높이기 위해서는 전력이 많이 소비되어 경제성이 낮은 문제가 있었다.That is, the treatment efficiency of pollutants in water is low due to high surface resistance and low hydrogen / oxygen generation overcharge, and there is a problem that the power consumption is high and the economical efficiency is low.

상기와 같이 난분해성 유기물질이나 질산성 유기물질의 경우는 전기화학적 고도산화공정을 통해 이루어져야 하는데 이를 효과적으로 이용하기 위해서는 불용성 전극을 이용한 전기화학적 처리효율과 전극 물질을 포함한 여러 가지 인자에 의해 조절되어야 한다. 이러한 전극의 분해능을 높이기 위하여 많은 연구자들에 의한 다양한 방법으로 전극 물질 특성향상에 대한 연구를 진행하여 왔다. 그러나 대부분의 전극은 활성의 급격한 손실 (흑연전극), 독성이온의 방출(PbO2), 짧은 전극 수명(SnO2), 불완전 산화 (IrO2) 등 중요한 문제점이 노출되었다. In the case of the refractory organic substance or the nitric acid organic substance as described above, an electrochemical oxidation process should be performed. In order to effectively use the refractory organic substance, the electrochemical treatment efficiency using the insoluble electrode and the electrode material must be controlled by various factors . In order to improve the resolution of these electrodes, many researchers have been studying the improvement of electrode material properties by various methods. However, most of the electrodes were exposed to significant problems such as rapid loss of activity (graphite electrode), release of toxic ions (PbO 2), short electrode life (SnO 2), and incomplete oxidation (IrO 2).

바람직한 전극은 난분해성 유기물질이나 질산성 유기물질 등을 분해시키기 위해서 수산화 라디칼의 진행속도를 매우 느리게 해야 한다. 즉, 산소가스의 발생을 지연시켜 강력한 산화제로서 수중 유, 무기화합물들과 비선택적으로 빠르게 반응시켜 기존 수처리 기술로 처리하기 힘든 난분해성 유기오염물질들도 쉽게 산화 분해 가능하여야 하는데 현 상태에서는 이와 같은 전극의 개발이 미온적인 문제점이 있다.
The preferred electrode should slow the rate of progression of the hydroxyl radicals in order to decompose the degradable organic material or the nitric organic material. In other words, it is necessary to delay the generation of oxygen gas to quickly react non-selectively with water and inorganic compounds as a strong oxidizing agent, and to easily decompose oxidatively decomposable organic contaminants which are difficult to be treated by conventional water treatment techniques. There is a problem that the development of the electrodes is lukewarm.

한국 공개특허 제10-1985-0005513호Korean Patent Publication No. 10-1985-0005513 한국 공개특허 제10-1991-0012344호Korean Patent Publication No. 10-1991-0012344 한국 공개특허 제10-2000-0013786호Korean Patent Publication No. 10-2000-0013786

본 발명은 상기와 같은 종래 기술의 문제점을 해소하기 위해 개발된 것으로서, 탄소 나노평면 구조를 갖는 그래핀을 적용한 것으로 전극물질로서의 그래핀은 수용성 과 비수용성 전해질에서 양극 안정성이 높아 내구성이 우수하며, 넓은 전위창(Potential window)의 범위를 가지고 있기 때문에 응용 범위가 넓고, 수중에서 유기물질을 직접 분해시킬 수 있는 비활성 전극이라 할 수 있다. 또한, 탄소나노평면 구조를 갖는 그래핀은 전극 물질로서 매우 높은 전류효율을 가지고 있기 때문에 낮은 표면저항과 수소/산소 발생 과전위가 높아서 수중 난분해성의 오염물질 또는 질산성 유기물질에 대한 처리효율을 높이고 전력 소비를 줄일 수 있는 탄소나노평면구조를 갖는 그래핀 전극 제조방법을 제공함을 목적으로 한다.The present invention has been developed in order to overcome the problems of the prior art as described above, and it has been found that graphene having a carbon nano planar structure is applied, and graphene as an electrode material has high durability due to high anodic stability in a water- Since it has a wide range of potential windows, it can be said to be an inert electrode which can broadly have a wide application range and can directly decompose organic materials in water. In addition, since graphene having a carbon nano planar structure has a very high current efficiency as an electrode material, it has a low surface resistivity and high hydrogen / oxygen generation potential, so that the treatment efficiency for pollutants or nitric acid organic substances And a method of manufacturing a graphene electrode having a carbon nano-planar structure that can reduce power consumption.

대부분 사용되는 전극모재를 사용할 수 있으며 특히, 티타늄 및 티타늄기 합금을 전극 모재로 사용하고 전극형성 코팅물질을 그래핀으로 함으로써 전기저항을 낮추고, 수소/산소 발생 과전위를 높힘으로서 산화력이 높은 수산화 라디칼(OH-)을 직접 생성시킬 수 있다. 따라서 유기성 오염물질의 전기분해 효율을 높일 수 있으며, 내구성이 향상된 탄소나노평면구조를 갖는 그래핀 전극 제조방법을 제공함을 목적으로 한다.
In particular, it is possible to use the most used electrode base material, in particular, by using titanium and titanium based alloy as electrode base material and by making the electrode-forming coating material as graphene, lowering the electrical resistance and increasing the hydrogen / oxygen generation potential, (OH-) can be directly produced. Accordingly, it is an object of the present invention to provide a method of manufacturing a graphene electrode having a carbon nano planar structure with improved durability, which can increase the efficiency of electrolysis of organic contaminants.

상기와 같은 목적을 달성하기 위한 구체적인 해결적 수단은,In order to achieve the above object,

"티타늄, 티타늄기 합금, 니켈, 스텐레스, 흑연 중 어느 하나 재질의 모재에 그래핀으로 코팅하는 코팅단계와, 상기 코팅된 모재를 열처리하는 가공단계로 이루어진 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법과,"A coating step of coating a base material made of one of titanium, titanium based alloy, nickel, stainless steel and graphite with graphene, and a processing step of heat treating the coated base material. A manufacturing method,

상기 코팅단계에서 코팅은 디핑(Deeping), 브러싱(Brushing), 스프레잉(Spraying), 스핀(spin), 정전 스핑(electrostatic spin), 전착(electrodeposition), 전기도금(electroplating) 및 기계적 코팅 방식중 어느 하나를 이용하는 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법과,In the coating step, the coating may be formed by any one of dipping, brushing, spraying, spinning, electrostatic spinning, electrodeposition, electroplating, A method of manufacturing an electrode having a carbon nano planar structure,

상기 모재에 그래핀을 코팅하고 200℃ 이상에서 열처리하는 공정을 1회 또는 1회이상 반복하여 가공 처리하는 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법과,A method of manufacturing an electrode having a carbon nano planar structure, characterized in that a process of coating the base material with graphene and heat-treating the material at 200 ° C or more is repeated once or more than once,

상기 그래핀의 코팅 두께는 0.001 micron~1 mm 로 한정한 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법과,Wherein the coating thickness of the graphene is limited to 0.001 microns to 1 mm;

상기 모재와 그래핀의 계면은 균일 또는 비균일 방식으로 불연속 계면을 형성하되, 불연속 층을 이루는 그래핀의 간격은 0.001 micron~5 mm 간격으로 이루어진 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법과,Wherein the interface between the base material and the graphene is formed in a uniform or non-uniform manner, and the spacing of the graphenes forming the discontinuous layer is in a range of 0.001 micron to 5 mm. and,

상기 모재를 센딩기를 이용하여 거칠기를 형성한 후 옥살산으로 3초~30분간 에칭하여 모재에 남아있는 불순물을 제거함과 동시에 거칠기를 균일화하도록 한 것을 탄소나노평면구조를 갖는 전극 제조방법과,The base material is etched with oxalic acid for 3 seconds to 30 minutes by using a seeder to remove the impurities remaining on the base material and the roughness is uniformed.

상기 열처리는 그래핀 코팅과 교호로 진행하거나 또는 1회 또는 1회이상 코팅한후 열처리토록 하는 것중 어느 하나를 이용하는 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법"을 구성적 특징으로 함으로서 상기의 목적을 달성할 수 있다.
Wherein the heat treatment is performed either alternately with the graphene coating, or one time or more than once, and then subjected to a heat treatment. The present invention also provides a method of manufacturing an electrode having a carbon nano planar structure, Purpose can be achieved.

본 발명에 의하면, 전극 모재인 티타늄, 티타늄기 합금, 니켈, 스텐레스 및 흑연 등의 전극 모재 외주부 표면층에 그래핀 도금 두께가 균일하도록 함으로서 기존의 전극보다 수소/산소 발생 과전위를 높힘으로서 산소가스 발생을 최대한 지연시켜 수산화 라디칼의 발생을 촉진함으로서 전기전도성을 높여 유기성 오염물질의 전기분해 효율을 높일 수 있으며, 내구성이 향상토록 함으로서 전기분해 산업이나 오폐수 처리산업, 물산업, 제지산업, 화학산업 등에서 효과적으로 적용될 수 있는 유용한 발명이다.
According to the present invention, by uniformizing the thickness of the graphene plating on the surface layer of the electrode base material such as titanium, titanium base alloy, nickel, stainless steel and graphite, which is an electrode base material, oxygen gas generation By accelerating the generation of hydroxyl radicals by promoting the generation of hydroxyl radicals to increase the electrolytic efficiency of organic pollutants and to improve the durability of the electrolytic industrial wastewater treatment industry, the water industry, the paper industry, and the chemical industry It is a useful invention that can be applied.

이상에서는 본 발명을 특정의 바람직한 실시예를 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변경과 수정이 가능할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Various changes and modifications will be possible.

이하, 본 발명인 탄소나노평면구조를 갖는 전극 제조방법에 대하여 구체적으로 설명하고자 한다.
Hereinafter, a method of manufacturing an electrode having a carbon nano planar structure according to the present invention will be described in detail.

본 발명은 크게 코팅단계와 건조단계로 이루어지되,The present invention mainly comprises a coating step and a drying step,

우선, 티타늄, 티타늄기 합금, 니켈, 스텐레스, 흑연 중 어느 하나 재질의 모재에 그래핀으로 코팅하는 코팅단계로서,First, as a coating step in which graphene is coated on a base material made of any one of titanium, titanium-based alloy, nickel, stainless steel and graphite,

본 코팅단계에서 코팅은 디핑(Deeping), 브러싱(Brushing), 스프레잉(Spraying), 스핀(spin), 정전 스핑(electrostatic spin), 전착(electrodeposition), 전기도금(electroplating) 및 기계적 코팅 방식중 어느 하나를 이용하는 것이 가장 바람직하며,In this coating step, the coating may be applied by any of the following methods: dipping, brushing, spraying, spinning, electrostatic spinning, electrodeposition, electroplating, It is most preferred to use one,

상기 그래핀의 코팅 두께는 0.001 micron~1 mm 로 한정함으로서 더욱 바람직하다.The coating thickness of the graphene is more preferably limited to 0.001 micron to 1 mm.

다음, 상기 모재와 그래핀의 계면은 균일 또는 비균일 방식으로 불연속 계면을 형성하되, 불연속 층을 이루는 그래핀의 간격은 0.001 micron~5 mm 간격으로 이루어진 것이며,Next, the interface between the base material and the graphene forms a discontinuous interface in a uniform or non-uniform manner, and the spacing of the graphenes forming the discontinuous layer is in a range of 0.001 micron to 5 mm,

또한, 상기 모재를 센딩기를 이용하여 거칠기를 형성한 후 옥살산으로 3초~30분간 에칭하여 모재에 남아있는 불순물을 제거함과 동시에 거칠기를 균일화하도록 한 것이다.Further, the base material is etched with oxalic acid for 3 seconds to 30 minutes after the roughness is formed by using a sender, thereby removing the impurities remaining in the base material and making the roughness uniform.

한편, 상기 코팅된 모재를 열처리하는 가공단계로 이루어지되, Meanwhile, the coated base material is heat treated,

상기 모재에 그래핀을 코팅하고 200℃ 이상에서 열처리하는 공정을 1회 또는 1회이상 반복하여 가공처리하는 것이다.The process of coating the base material with graphene and heat-treating the base material at a temperature of 200 ° C or more is repeated once or more than once.

바람직하게는, 상기 열처리는 그래핀 코팅과 교호로 진행하거나 또는 1회 또는 1회이상 코팅한후 열처리토록 하는 것중 어느 하나를 이용하는 것이다
Preferably, the heat treatment is performed either alternately with the graphene coating, or one time or more than once, followed by heat treatment

상기와 같이 본 발명은 전극 모재인 티타늄, 티타늄기 합금, 니켈, 스텐레스, 흑연 중 어느 하나 재질의 전극 외주부 표면층에 그래핀 도금 두께가 균일하도록 함으로서 기존의 전극보다 수소/산소 발생 과전위를 높힘으로서 산소가스 발생을 최대한 지연 수산화 라디칼의 진행을 연장 또는 지연토록 함으로서 전기전도성을 높혀 유기성 오염물질의 전기분해 효율을 높일 수 있으며, 내구성이 향상토록 함으로서 전기분해 산업이나 오폐수 처리산업 등에서 효과적으로 적용될 수 있는 것이다.
As described above, according to the present invention, by uniformizing the thickness of the graphene plating on the surface layer of the outer peripheral portion of the electrode made of any one of the electrode base materials of titanium, titanium base alloy, nickel, stainless steel and graphite, The generation of oxygen gas can be extended or delayed as much as possible to delay the progress of the delayed hydroxyl radical, thereby increasing the electric conductivity and improving the electrolysis efficiency of the organic contaminants and enhancing the durability, so that the electrolytic industry and the wastewater treatment industry can be effectively applied .

Claims (7)

티타늄, 티타늄기 합금, 니켈, 스텐레스, 흑연 중 어느 하나 재질의 모재에 그래핀으로 코팅하는 코팅단계와,
상기 코팅된 모재를 열처리하는 가공단계로 이루어진 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법.
A coating step of coating the base material of any one of titanium, titanium-based alloy, nickel, stainless steel and graphite with graphene;
And a processing step of heat-treating the coated base material.
제 1 항에 있어서,
상기 코팅단계에서 코팅은 디핑(Deeping), 브러싱(Brushing), 스프레잉(Spraying), 스핀(spin), 정전 스핑(electrostatic spin), 전착(electrodeposition), 전기도금(electroplating) 및 기계적 코팅 방식중 어느 하나를 이용하는 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법.
The method according to claim 1,
In the coating step, the coating may be formed by any one of dipping, brushing, spraying, spinning, electrostatic spinning, electrodeposition, electroplating, Wherein the carbon nanotubes have a planar structure of carbon nanotubes.
제 1 항에 있어서,
상기 모재에 그래핀을 코팅하고 200℃ 이상에서 열처리하는 공정을 1회 또는 1회이상 반복하여 가공 처리하는 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법.
The method according to claim 1,
A method for manufacturing an electrode having a carbon nano planar structure, characterized in that the step of coating the base material with graphene and heat-treating the material at 200 ° C or more is repeated once or more than once.
제 1 항에 있어서,
상기 그래핀의 코팅 두께는 0.001 micron~1 mm 로 한정한 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법.
The method according to claim 1,
Wherein the coating thickness of the graphene is limited to 0.001 micron to 1 mm.
제 1 항에 있어서,
상기 모재와 그래핀의 계면은 균일 또는 비균일 방식으로 불연속 계면을 형성하되, 불연속 층을 이루는 그래핀의 간격은 0.001 micron~5 mm 간격으로 이루어진 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법.
The method according to claim 1,
Wherein the interface between the base material and the graphene is formed in a uniform or non-uniform manner, and the spacing of the graphenes forming the discontinuous layer is in a range of 0.001 micron to 5 mm. .
제 1 항에 있어서,
상기 모재를 센딩기를 이용하여 거칠기를 형성한 후 옥살산으로 3초~30분간 에칭하여 모재에 남아있는 불순물을 제거함과 동시에 거칠기를 균일화하도록 한 것을 탄소나노평면구조를 갖는 전극 제조방법.
The method according to claim 1,
The base material is etched with oxalic acid for 3 seconds to 30 minutes by forming a roughness using a seeder to remove impurities remaining on the base material and to make the roughness uniform.
제 3 항에 있어서,
상기 열처리는 그래핀 코팅과 교호로 진행하거나 또는 1회 또는 1회이상 코팅한후 열처리토록 하는 것중 어느 하나를 이용하는 것을 특징으로 하는 탄소나노평면구조를 갖는 전극 제조방법.
The method of claim 3,
Wherein the heat treatment is carried out alternately with the graphene coating, or one or more coatings are performed, and then heat treatment is performed.
KR1020150049004A 2015-04-07 2015-04-07 Electrode manufacturing method having a carbon nano-plane structure KR20160120377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150049004A KR20160120377A (en) 2015-04-07 2015-04-07 Electrode manufacturing method having a carbon nano-plane structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150049004A KR20160120377A (en) 2015-04-07 2015-04-07 Electrode manufacturing method having a carbon nano-plane structure

Publications (1)

Publication Number Publication Date
KR20160120377A true KR20160120377A (en) 2016-10-18

Family

ID=57244383

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150049004A KR20160120377A (en) 2015-04-07 2015-04-07 Electrode manufacturing method having a carbon nano-plane structure

Country Status (1)

Country Link
KR (1) KR20160120377A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106917071A (en) * 2017-02-28 2017-07-04 中国工程物理研究院激光聚变研究中心 The preparation method of graphene nano noble metal multiple tube
CN108793339A (en) * 2018-06-08 2018-11-13 淮南师范学院 A kind of novel high catalytic activity electrode prepares and its method of Electrocatalysis Degradation o-chlorphenol
KR102389921B1 (en) 2020-12-10 2022-04-25 지니스(주) Manufacturing method of electrode for water purifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR850005513A (en) 1984-01-31 1985-08-26 오오도시 히로시 Electrolytic electrode
KR910012344A (en) 1989-12-08 1991-08-07 캐스린 이이 켄트 Improved electrocatalyst coating composition and method of preparing electrode using same
KR20000013786A (en) 1998-08-13 2000-03-06 정헌태 PREPARATION METHOD OF ELECTRODE FOR ELECTROOXIDATIVE DECOMPOSITION OF INDUSTRIAL wasteE WATER

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR850005513A (en) 1984-01-31 1985-08-26 오오도시 히로시 Electrolytic electrode
KR910012344A (en) 1989-12-08 1991-08-07 캐스린 이이 켄트 Improved electrocatalyst coating composition and method of preparing electrode using same
KR20000013786A (en) 1998-08-13 2000-03-06 정헌태 PREPARATION METHOD OF ELECTRODE FOR ELECTROOXIDATIVE DECOMPOSITION OF INDUSTRIAL wasteE WATER

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106917071A (en) * 2017-02-28 2017-07-04 中国工程物理研究院激光聚变研究中心 The preparation method of graphene nano noble metal multiple tube
CN108793339A (en) * 2018-06-08 2018-11-13 淮南师范学院 A kind of novel high catalytic activity electrode prepares and its method of Electrocatalysis Degradation o-chlorphenol
KR102389921B1 (en) 2020-12-10 2022-04-25 지니스(주) Manufacturing method of electrode for water purifier

Similar Documents

Publication Publication Date Title
Yang et al. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode
Wang et al. Electrocatalytic degradation of methylene blue on Co doped Ti/TiO2 nanotube/PbO2 anodes prepared by pulse electrodeposition
Jiang et al. Efficient degradation of p-nitrophenol by electro-oxidation on Fe doped Ti/TiO2 nanotube/PbO2 anode
Chu et al. Anodic oxidation process for the degradation of 2, 4-dichlorophenol in aqueous solution and the enhancement of biodegradability
KR101201689B1 (en) Anode for oxygen evolution
Barbari et al. Photocatalytically-assisted electrooxidation of herbicide fenuron using a new bifunctional electrode PbO2/SnO2-Sb2O3/Ti//Ti/TiO2
Zhang et al. Anodic treatment of acrylic fiber manufacturing wastewater with boron-doped diamond electrode: A statistical approach
Zhang et al. Degradation of perfluorinated compounds in wastewater treatment plant effluents by electrochemical oxidation with Nano-ZnO coated electrodes
CN101914782A (en) Metallic oxide anode suitable for Fenton system and preparation method thereof
CN109603794B (en) Photocatalysis net for purifying water quality and preparation and application thereof
CN108328703B (en) Preparation of titanium-based titanium dioxide nanotube deposited tin-antimony-fluorine electrode and application of electrode in chromium-electroplating wastewater chromium fog inhibitor degradation
Belhadj Tahar et al. Electropolymerization of phenol on a vitreous carbon electrode in acidic aqueous solution at different temperatures
KR20160120377A (en) Electrode manufacturing method having a carbon nano-plane structure
Saha et al. The production and quantification of hydroxyl radicals at economically feasible tin-chloride modified graphite electrodes
Lan et al. Electrochemical oxidation of lamivudine using graphene oxide and Yb co-modified PbO2 electrodes: characterization, influencing factors and degradation mechanisms
Jin et al. Fabrication of superhydrophobic Ti/SnO 2-Sb/α-PbO 2/Fe-β-PbO 2-PTFE electrode and application in wastewater treatment
CN111634982A (en) Preparation method of anode material for efficient phenol wastewater degradation
CN108178252A (en) A kind of four electrodes pair electrolysis system and use system processing organic wastewater with difficult degradation thereby method
CN112499729A (en) Electrode with active layer containing S-doped GO and preparation and application thereof
Wang et al. Mechanism and effectiveness of Ti-based nano-electrode for electrochemical denitrification
KR101472621B1 (en) Bifacial anode for water treatment with photoelectrocatalytic layer and electrocatalytic layer, a preparation method thereof and a water treatment method using the same
Smaili et al. Electrocatalytic efficiency of PbO 2 in water decontamination
CN114229962B (en) Electrochemical tubular ceramic membrane for water treatment and preparation method and application thereof
EP3348521A1 (en) Process of electrochemical oxidation
JP7317298B2 (en) Diamond electrode, method for manufacturing diamond electrode, and method for applying conductive diamond

Legal Events

Date Code Title Description
E601 Decision to refuse application