KR20160092536A - Growth Inhancing Agent for Microorganism and The Method of Phytoremediation on Soil Contaminated with Heavy Metal Using The Same - Google Patents

Growth Inhancing Agent for Microorganism and The Method of Phytoremediation on Soil Contaminated with Heavy Metal Using The Same Download PDF

Info

Publication number
KR20160092536A
KR20160092536A KR1020150012507A KR20150012507A KR20160092536A KR 20160092536 A KR20160092536 A KR 20160092536A KR 1020150012507 A KR1020150012507 A KR 1020150012507A KR 20150012507 A KR20150012507 A KR 20150012507A KR 20160092536 A KR20160092536 A KR 20160092536A
Authority
KR
South Korea
Prior art keywords
soil
heavy metals
heavy metal
microorganism
lignosulfonate
Prior art date
Application number
KR1020150012507A
Other languages
Korean (ko)
Inventor
한광현
박종찬
이은진
임재홍
우성민
김동욱
Original Assignee
화이젠 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 화이젠 주식회사 filed Critical 화이젠 주식회사
Priority to KR1020150012507A priority Critical patent/KR20160092536A/en
Publication of KR20160092536A publication Critical patent/KR20160092536A/en

Links

Images

Classifications

    • A01N63/02
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G2/00Vegetative propagation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/02Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by biological methods, i.e. processes using enzymes or microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • B09C1/105Reclamation of contaminated soil microbiologically, biologically or by using enzymes using fungi or plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention relates to a microbe growth promoting agent containing lignosulfonate as an active ingredient, and to a phytoremediation for soil contaminated with heavy metal using the same. According to the present invention, the microbe growth promoting agent stimulates activities of microorganisms involved in increasing the degree of biological effectiveness of heavy metals in soil, in order to biologically restore soil contaminated with heavy metals, thereby providing effects of increasing productivity of biomass and phytoremediation effects for soil contaminated with heavy metal by using the same.

Description

미생물 생장촉진제와 이를 이용한 중금속 오염토양에 대한 식물재배정화법{Growth Inhancing Agent for Microorganism and The Method of Phytoremediation on Soil Contaminated with Heavy Metal Using The Same} TECHNICAL FIELD The present invention relates to a microorganism growth promoting agent and a method for purifying a heavy metal contaminated soil using the microorganism growth promoter,

본 발명은 미생물 생장촉진제와 이를 이용한 중금속 오염토양에 대한 식물재배정화법에 관한 것으로, 보다 상세하게는 중금속에 오염된 토양의 생물학적 복원을 위해 토양내 중금속의 생물학적 유효도를 높이는데 관여하는 미생물의 활성을 촉진하는 미생물 생장촉진제와 이를 이용한 중금속 오염토양에 대한 식물재배정화법에 관한 것이다.
The present invention relates to a microorganism growth promoter and a method for purifying a soil contaminated with heavy metals using the microorganism growth promoter. More particularly, the present invention relates to a method for purifying a soil contaminated soil with a microorganism active in increasing the bioavailability of heavy metals in the soil And a plant cultivation purification method for heavy metal contaminated soil using the microorganism growth promoter.

20 세기 이후, 산업화 및 도시화가 급격히 진행됨에 따라 인류의 삶의 질은 크게 향상 되었다. 삶의 질 향상을 위하여 보다 많은 광물자원 개발이 이루어졌으며, 이로 인하여, 광산개발에 의한 환경문제가 지속적으로 대두 되었다(Jung et al., 2004). Jung 등(2004)의 보고에 따르면 전국에는 894 개의 휴/폐 금속광산이 산재하고 있다고 보고하였으며, 광미, 폐석, 광산폐수 등의 폐기물들은 대체로 광산 주변에 방치되어 있어 지반침하, 광미의 중금속오염 및 갱내수 유출 등의 광해가 지속적으로 발생하는 것으로 알려져 있다(Jung et al., 2001). 전국 1937개 휴/폐광산 중 64%는 농경지와 인접하고, 대부분 농경지 상류부에 위치하여 강우로 인한 산성폐수의 유입 등 농경지로의 오염물질 유입 가능성이 매우 큰 것으로 알려져 있다(Yun et al., 2010). 농경지 및 수계의 중금속 오염은 농작물 생육저해 뿐만 아니라 오염 농산물의 생산 및 섭취로 인하여 인체에 유해한 영향을 미치기도 한다(Jung et al., 2005).Since the 20th century, as the industrialization and urbanization have progressed rapidly, the quality of human life has greatly improved. In order to improve the quality of life, more mineral resources have been developed, and environmental problems caused by mine development have been steadily emerging (Jung et al., 2004). According to the report of Jung et al. (2004), 894 waste / waste metal mines are scattered all over the country. Wastes such as tung mine, mine waste, and mine waste are generally left in the vicinity of the mine, (Jung et al., 2001). 64% of the 1937 abandoned mines / abandoned mines in the country are adjacent to agricultural land, and most of them are located in the upstream part of agricultural land, and it is known that there is a high possibility of inflow of pollutants into farmland such as inflow of acidic wastewater due to rainfall (Yun et al., 2010 ). Heavy metal contamination of agricultural land and water systems has a detrimental effect on the human body due to the production and ingestion of contaminated agricultural products as well as the inhibition of crop growth (Jung et al., 2005).

중금속 오염은 토양 유기물 및 광물질과 반응을 통하여 토양내 축적기간이 길고, 토양 이화학성에 따라 가용화 되어 먹이연쇄에 따른 생물 농축이 발생하기 때문에 중금속 오염에 대한 대처가 필수적이다(Chung and Cho, 2005). 과거에 사용되던 물리·화학적 제거기술들은 고비용, 2차 오염원 발생, 토양의 생물적 기능 상실 등의 문제가 발생하여, 대체 기술로서 식물체와 미생물을 활용한 생물학적 복원기술(Bioremediation)이 점차 확대되고 있다(Kuiper et al., 2003; Yi et al., 2013). 대표적인 생물학적 복원기술로는 식물체로 오염물질을 흡수시켜 제거하는 식물재배정화법(Phytoremediation), 미생물의 표면에 중금속을 흡착시키는 생물적 복원법, 지렁이 등 토양 동물을 이용하여 중금속 독성을 저감시키는 동물적 복원법 등이 있다(Zhitong et al., 2012). 하지만 식물재배정화법은 다른 물리ㅇ화학적 정화기술보다 경제적이고, 친환경적이라는 장점이 존재하지만 토양 중금속의 낮은 유효도는 정화효율 저하의 가장 큰 요인으로 작용한다(Kos et al.,.2003). 이로 인하여, 최근에는 식물생육촉진근권미생물을 활용하여 식물체의 중금속 흡수량을 증대시키는 근권복원기술(Rhizoremediation)이 점차 확대 되고 있어, 토양 미생물의 활용도가 점차 증가하고 있다(Kuiper et al., 2003).Heavy metal contamination is a long period of accumulation in the soil through reaction with soil organic matter and minerals, and solubilization of the soil occurs due to the chemical composition of the soil. Therefore, it is necessary to cope with heavy metal pollution (Chung and Cho, 2005) . The physico-chemical removal techniques used in the past have caused problems such as high costs, secondary pollution sources, and loss of biological functions of the soil, and biological remediation technology (bioremediation) utilizing plants and microorganisms is gradually expanding as an alternative technology (Kuiper et al., 2003; Yi et al., 2013). Typical biological restoration techniques include phytoremediation, which absorbs and removes pollutants from plants, biological recovery methods that adsorb heavy metals on the surface of microorganisms, animal restoration methods that reduce soil toxicity using soil animals such as earthworms (Zhitong et al., 2012). However, there is an advantage that the plant purification method is more economical and environmentally friendly than other physics and chemical purification techniques, but the low effectiveness of the soil heavy metals is the biggest factor of deterioration of purification efficiency (Kos et al., 2003). In recent years, the use of soil microorganisms has been increasing (Kuiper et al., 2003), as Rhizoremediation is increasingly being used to increase the amount of heavy metals absorbed by plants using plant-grown rhizosphere microorganisms.

미생물을 이용한 중금속 제거기술은 1970년대부터 각각의 중금속에 대하여 내성이 있는 균주 선발 및 선발 균주에 대한 중금속 흡수량 분석 등이 지속적으로 연구되었으며, 최근에는 근권 미생물에 의한 식물체의 중금속 흡수 이행 증대 효과, 미생물에 의한 중금속 흡수 메커니즘 및 금속원소 순환에 관여하는 미생물의 역할 등에 대하여 다양한 연구가 이루어지고 있다(Gadd, 1990; Gadd, 2010; Yang et al., 2011; Volesky and Holan, 1995).The removal of heavy metals by microorganisms has been continuously studied since the 1970s, with the selection of strains resistant to heavy metals and the analysis of heavy metal absorption by selected strains. Recently, (Gadd, 1990; Yang et al., 2011; Volesky and Holan, 1995) have been investigated in terms of the mechanism of heavy metal absorption by microorganisms and the role of microorganisms in metal element circulation.

토양 미생물상은 자연 상태에서 양분 상태에 따라 군집 크기가 변하고, 토양 미생물 체내에의 여러 유·무기물은 다시 토양에 환원되어 식물과 미생물의 양분으로 공급된다(Ross and Tate, 1993; Seifeddine et al., 2014). 따라서 토양 미생물 체내에 축적된 중금속 또한 위와 유사한 과정을 거쳐 식물체에 직접적으로 흡수할 수 있는 형태로 토양에 환원되어 식물재배정화효율 증가에 기여할 수 있을 것으로 예상된다. 아울러, 근권에서 토양 미생물과 뿌리의 상호작용은 토양 중금속의 가용화에 영향을 미치는 것으로 알려져 있어(Julian et al., 2000), 토양 미생물 군집의 증폭을 통해 식물체 중금속 제거효율을 향상시킬 수 있을 것으로 기대되어 토양 미생물의 양적·질적 변화를 일으키는 토양 처리 유/무기 신소재의 효과 규명 및 선별이 요구되고 있다.
Soil microbial species vary in population size depending on the nutrient status in the natural state, and various oil and minerals in soil microbes are reduced to soil and supplied as plant and microbial nutrients (Ross and Tate, 1993; Seifeddine et al. 2014). Therefore, it is expected that the heavy metals accumulated in the soil microbial body can be reduced to the soil in a form that can be absorbed directly to the plant through a process similar to that described above, thereby contributing to an increase in plant purification efficiency. In addition, the interaction of soil microbes and roots in rhizosphere is known to affect the solubilization of soil heavy metals (Julian et al., 2000), and it is expected that the amplification of soil microbial communities can improve the removal efficiency of plant heavy metals And to identify and select the effects of new soil / mineral processing materials that cause quantitative and qualitative changes of soil microorganisms.

본 발명은 상기한 바와 같은 종래기술이 가지는 문제를 해결하기 위해 안출된 것으로, 그 목적은 중금속에 오염된 토양의 생물학적 복원을 위해 토양내 중금속의 생물학적 유효도를 높이는데 관여하는 미생물의 활성을 촉진하는 미생물 생장촉진제와 이를 이용한 중금속 오염토양에 대한 식물재배정화법을 제공함에 있다.
The object of the present invention is to solve the problems of the prior art as described above, and its object is to accelerate the activity of microorganisms involved in increasing the biological effectiveness of heavy metals in the soil for biological recovery of soil contaminated with heavy metals And a plant cultivation purification method for soil contaminated with heavy metals using the microorganism growth promoter.

상기한 바와 같은 본 발명의 기술적 과제는 다음과 같은 수단에 의해 달성되어진다.The technical problem of the present invention as described above is achieved by the following means.

(1) 리그노설포네이트를 활성성분으로 함유하는 미생물 생장촉진제.
(1) Microorganism growth promoter containing lignosulfonate as an active ingredient.

(2) 리그노설포네이트를 토양에 처리하여 토양미생물의 생장을 촉진하는 단계; 상기 생장이 촉진된 토양미생물에 의해 생물학적 유효도가 촉진된 토양내 중금속을 식물이 흡수하는 단계; 및 상기 중금속을 흡수한 식물을 제거하여 바이오매스를 생산하는 단계;를 포함하는 중금속 오염토양에 대한 식물재배정화법.
(2) treating the soil with a lignosulfonate to promote the growth of the soil microorganism; Wherein the plant absorbs heavy metals in the soil in which bio-availability is promoted by the growth-promoted soil microorganisms; And removing the heavy-metal-absorbing plant to produce a biomass.

(3) 상기 (2)에 있어서,(3) In the above (2)

토양미생물은 유기산 생성 균주 또는 사이드로포어 생성 균주인 것을 특징으로 하는 중금속 오염토양에 대한 식물재배정화법.
Wherein the soil microorganism is an organic acid-producing strain or a sidelopore-producing strain.

(4) 상기 (2)에 있어서,(4) In the above (2)

질소 및 인산을 중량비로 10:2 내지 10:5로 하여 리그노설포네이트와 함께 처리하는 것을 특징으로 하는 중금속 오염토양에 대한 식물재배정화법.
Nitrogen and phosphoric acid at a weight ratio of 10: 2 to 10: 5 with lignosulfonate.

상기와 같은 본 발명에 따르면, 중금속에 오염된 토양의 생물학적 복원을 위해 토양내 중금속의 생물학적 유효도를 높이는데 관여하는 미생물의 활성을 촉진하고, 이를 이용하여 중금속 오염토양에 대한 식물재배정화 효과 내지 바이오 매스의 생산량을 증가시키는 효과를 제공한다.
According to the present invention, the activity of microorganisms involved in raising the biological effectiveness of heavy metals in the soil is promoted for the biological restoration of the soil contaminated with heavy metals, and the effect of purifying the plant to heavy metals contaminated soil And provides an effect of increasing the production amount of biomass.

도 1은 본 발명에 따른 화학비료/녹비 처리에 따른 누적 CO2 발생량 변화 측정결과이다.
도 2는 본 발명에 따른 화학비료/녹비 처리에 따른 토양 미생물 생체량 변화 측정결과이다.
도 3은 본 발명에 따른 유/무기자재 처리에 따른 미생물 생체량과 가용성 중금속 함량간 상관관계를 측정한 결과이다. 3a: 배양 2 주 경과 시; 3b: 배양 4주 경과시.
도 4는 본 발명에 따른 미생물 생체량과 식물체 흡수 중금속량 간 상관관계를 측정한 결과이다.
도 5는 본 발명에 따른 유기자재 처리에 따른 누적 CO2 발생량 변화를 측정한 결과이다.
도 6은 본 발명에 따른 유/무기소재 처리에 따른 토양 미생물 생체량 변화를 측정한 결과이다.
도 7은 본 발명에 따른 유/무기소재 처리에 따른 토양 pH 변화를 측정한 결과이다.
도 8은 본 발명에 따른 유/무기소재 처리에 따른 토양 EC 변화를 측정한 결과이다.
FIG. 1 is a graph showing the results of measurement of cumulative CO 2 generation amount change according to the chemical fertilizer / green tea ratio treatment according to the present invention.
FIG. 2 shows the result of measurement of biomass changes in soil microorganism according to the present invention.
FIG. 3 is a graph showing the correlation between microbial biomass and soluble heavy metal content according to the present invention. 3a: 2 weeks after culture; 3b: 4 weeks after culture.
FIG. 4 is a graph showing the correlation between microbial biomass and heavy metal absorption amount according to the present invention.
FIG. 5 is a graph illustrating the results of measurement of cumulative CO 2 generation amount according to the organic material treatment according to the present invention.
FIG. 6 is a graph showing the results of measurement of changes in soil microbial biomass according to the treatment of organic / inorganic materials according to the present invention.
FIG. 7 shows the results of measurement of the soil pH change according to the treatment of the oil / inorganic material according to the present invention.
FIG. 8 is a graph illustrating the results of measurement of soil EC changes according to the present invention.

본 발명에 따른 미생물 촉진제는 리그노설포네이트를 활성성분으로 함유한다. 상기 본 발명에 따른 미생물 생장촉진제는 바람직하게는 토양내 중금속의 생물학적 유효도를 촉진하는 토양 미생물의 생장을 촉진한다.The microorganism accelerator according to the present invention contains a lignosulfonate as an active ingredient. The microbial growth promoter according to the present invention preferably promotes the growth of soil microorganisms that promote the bioavailability of heavy metals in the soil.

이를 위해 상기 본 발명에 따른 미생물 생장촉진제는 리그노설포네이트 100중량% 혹은 0.1~99.9 중량% 함유하는 조성을 취할 수 있으며, 기타 담체를 포함하여 토양에 일반적으로 첨가되는 각종 첨가제가 더 포함되어질 수 있다.To this end, the microorganism growth promoter according to the present invention may have a composition containing 100 wt% or 0.1-99.9 wt% of lignosulfonate, and may further include various additives generally added to the soil including other carriers .

상기 본 발명에 따른 미생물 생장촉진제는 다양한 형태로 제형화될 수 있으며, 예를 들어 입상제제, 분상제제, 액상제제와 같이 공지된 방식에 의해 다양한 제형으로 제조되어 각 제형에 따른 처리방법에 의해 토양에 처리되어질 수 있다.The microorganism growth promoter according to the present invention may be formulated into various forms and may be manufactured into various formulations according to a known method such as granular preparation, powdered preparation and liquid preparation, Lt; / RTI >

또한, 본 발명은 상기 미생물 생장촉진제를 토양에 처리하여 토양 미생물의 생장을 촉진시키는 것에 의해 토양내 중금속의 생물학적 유효도를 증진시켜 중금속에 오염된 토양을 정화함과 동시에 바이오매스의생산량을 극대화하는 식물재배정화법방법을 제공한다.In addition, the present invention promotes the growth of soil microorganisms by treating the microorganism growth promoter with the soil, thereby improving the biological effectiveness of the heavy metals in the soil, thereby purifying soil contaminated with heavy metals and maximizing the production of biomass A method of plant cultivation purification method is provided.

상기 본 발명에 따른 토양내 중금속의 생물학적 유효도의 촉진을 위해 바람직하게는 리그노설포네이트를 토양내 10~50 kg N 10 a-1 가 되도록 처리하는 것으로 한다.In order to promote the bioavailability of the heavy metals in the soil according to the present invention, the lignosulfonate is preferably treated to be 10 to 50 kg N 10 a -1 in the soil.

본 발명에 의하면, 리그노설포네이트를 처리하는 경우 토양내 중금속의 생물학적 유효도를 높이는데 관여하는 것으로 알려진 미생물의 군집량이 현저히 증가하는 것으로 나타난다. 리그노설포네이트의 토양내 처리량이 10 kg N 10 a-1 미만에서는 이와 같은 효과를 기대하기 곤란하며, 50 kg N 10 a-1 를 초과할 경우에는 미생물 활성촉진의 한계효과가 감소하는 것으로 나타나 상기 범위내로 처리하는 것이 바람직하다.According to the present invention, when lignosulfonate is treated, the amount of microbial clusters known to be involved in enhancing the biological effectiveness of heavy metals in the soil is remarkably increased. It is difficult to expect such an effect when the lignosulfonate has an in-soil throughput of less than 10 kg N 10 a -1 , and when it exceeds 50 kg N 10 a -1 , the marginal effect of promoting microbial activity is reduced It is preferable to perform processing within the above range.

상기와 같은 토양 미생물 들은 주로 근권세균으로써, 아세트산, 옥살산, 말레산, 푸말산 등과 같은 유기산을 분비할 수 있으며, 근권세균에 의해 분비된 유기산에 의해 토양 입자에 흡착된 중금속이 가용화 상태로 전환되어 식물 뿌리로 흡수되어 제거될 수 있으므로 중금속 제거 효율 향상 효과를 가져올 수 있게 되는 것이다. The soil microorganisms are mainly rhizobial bacteria that can secrete organic acids such as acetic acid, oxalic acid, maleic acid, fumaric acid and the like, and the heavy metal adsorbed on the soil particles by the organic acid secreted by the rhizobacter bacteria is converted into the solubilized state It can be absorbed and removed by the plant roots, so that the heavy metal removal efficiency can be improved.

대개의 경우 근권세균은 자신이 분비한 유기산에 의해 가용화된 중금속 독성에 의해 근권세균의 활성이 저하될 수 있으므로 중금속에 어느 정도 내성을 지닌 근권세균을 활용하는 것이 필요하다.In most cases, rhizosphere bacterium may be affected by the heavy metal toxicity solubilized by the organic acid secreted by the bacterium. Therefore, it is necessary to utilize rhizospheric bacteria having a certain degree of tolerance to heavy metals.

이러한 미생물의 예로는 글루코노박터 속(Gluconobacter sp.), 메틸로박테리움 속 미생물(Methylobacterium sp.) 등을 들 수 있다. 이들 중 많은 종은 중금속에 대한 내성이 우수할 뿐만 아니라 생리활성물질의 생산 능력이 우수하며 다양한 종류의 유기산을 생산할 수 있어 중금속으로 오염된 토양의 정화제, 식물 생장 촉진제 등의 유효 성분으로 활용될 수 있다.Examples of such microorganisms include Gluconobacter sp., Methylobacterium sp., And the like. Many of them are excellent in resistance to heavy metals, have excellent ability to produce physiologically active substances, and can produce various kinds of organic acids. Therefore, they can be used as effective ingredients for soil remediation agents and plant growth promoters contaminated with heavy metals have.

또한, 상기 본 발명에 의해 활성화 가능한 토양 미생물의 예로 사이드로포어를 생산하는 각종 미생물이 포함되어진다. 사이드로포어는 토양내 Fe3+에 대한 친화력이 커 식물이 흡수하기 용이한 형태로 전환시켜 이용율을 높여줄 뿐만 아니라, 각종 중금속(예로, 카드뮴, 납 등)에 대한 친화력이 크므로 사이드로포어와 결합한 이들 중금속은 식물체에 흡수되기 쉬운 형태로 변환되어 생물학적 유효도가 증가되어진다. In addition, examples of soil microorganisms that can be activated by the present invention include various microorganisms that produce sidelopore. Saidropore has an affinity for Fe 3+ in the soil, which not only improves the utilization rate by converting into a form that the plant can absorb, but also has a high affinity for various heavy metals (for example, cadmium, lead, etc.) Are converted into a form that is easily absorbed by the plant, thereby increasing the bioavailability.

이들 사이드로포어를 생산하는 토양 미생물의 예로는 수도모나스속균, 바실러스속균, 아조토박터속균(Azotobacter sp.) 등을 들 수 있다.
Examples of the soil microorganisms producing these side roots include, for example, water-borne moth, Bacillus sp., Azotobacter sp., And the like.

본 발명에 의한 방법은 또한, 상기 리그노설포네이트와 함께 토양내에 질소와 인산을 추가적으로 투입하여 줌으로써 상기 미생물의 활성 및 생육을 보다 증진시킨다. The method according to the present invention further enhances the activity and growth of the microorganism by adding nitrogen and phosphoric acid in the soil together with the lignosulfonate.

본 발명에 의하면 질소와 인산의 토양에 투입시 그 조성비가 이들 미생물의 생육 및 활성에 크게 영향을 미칠 수 있는데, 바람직하게는 질소와 인산의 조성비는 중량비로 10:2 내지 10:5이며, 보다 바람직하게는 10:4~10:5, 가장 바람직하게는 10:5이다.According to the present invention, the composition ratio of nitrogen and phosphoric acid can greatly affect the growth and activity of these microorganisms when they are added to the soil of nitrogen and phosphoric acid. Preferably, the composition ratio of nitrogen and phosphoric acid is 10: 2 to 10: Preferably 10: 4 to 10: 5, and most preferably 10: 5.

상기 본 발명에 사용되어지는 질소나 인산은 리그노설포네이트와 함께 토양내에 각각 독립적으로 투입되어도 좋고, 혼합하여 함께 투입하여도 좋다. 이때, 질소와 인산의 투입량은 전체 토양의 중량대비 0.01~1.0 중량%로 한다. Nitrogen or phosphoric acid used in the present invention may be added independently or separately in the soil together with the lignosulfonate. At this time, the amount of the nitrogen and the phosphoric acid is 0.01 to 1.0% by weight based on the weight of the whole soil.

본 발명에 사용할 수 있는 질소 공급원으로는 특히 한정되는 것은 아니며, 기존에 질소비료원으로 자주 사용되고 있는 것이면 충분하며, 예로는 (NH4)NO3, (NH4)2HPO4, (NH4)2SO4, (NH2)2CO 등의 물질을 들 수 있다.A source of nitrogen which can be used in the present invention is not particularly limited, and conventional enough as long as it often used as a nitrogen fertilizer source on, which is exemplified by (NH 4) NO 3, ( NH 4) 2 HPO 4, (NH 4) 2 SO 4 , (NH 2 ) 2 CO, and the like.

인산공급원도 기존에 인산질 비료로서 사용되어 오던 것이면 본 발명에도 적용할 수 있으며, 예로는 (NH4)2HPO4, H3PO4, P2O5, NaH2PO4, Na2HPO4, Na3PO4, Na3PO4, Na5P3O10, Na4P2O7, K4P2O7, (NaPO3)nP2O5 등의 물질을 들 수 있다.
And a phosphoric acid source may also be applicable to the present invention so long as ohdeon been used in existing as a phosphatic fertilizer, which is exemplified by (NH 4) 2 HPO 4, H 3 PO 4, P 2 O 5, NaH 2 PO 4, Na 2 HPO 4, Na 3 PO 4 , Na 3 PO 4 , Na 5 P 3 O 10 , Na 4 P 2 O 7 , K 4 P 2 O 7 , and (NaPO 3 ) n P 2 O 5 .

바람직한 상기 본 발명에 사용되어지는 질소나 인산은 토양내에 각각 독립적으로 투입되어도 좋고, 혼합하여 함께 투입하여도 좋다. Nitrogen or phosphoric acid, which is preferably used in the present invention, may be added individually or separately in the soil.

또한, 상기 각 성분들은 토양내에 투입 시 입상제제, 분상제제, 액상제제와 같이 공지된 방식에 의해 다양한 제형으로 제조되어질 수 있음은 물론이다.
It is to be understood that each of the above components may be manufactured into various formulations by known methods such as granular preparation, powdered preparation, liquid preparation, etc., in the soil.

이하, 본 발명의 내용을 실시예 및 실험예를 참조하여 보다 상세하게 설명하기로 한다. 다만 이들 실시예 및 실험예는 본 발명의 이해를 돕기 위해 예시되는 것일 뿐 본 발명의 권리범위가 이에 의해 제한되어서는 아니된다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. It is to be understood, however, that these examples and experiments are illustrative only for the understanding of the present invention, and the scope of the present invention should not be limited thereby.

[실험예 1] 토양 미생물 생체량 증폭을 통한 식물체의 중금속 제거능 확인시험[Experimental Example 1] Test for the removal of heavy metals from plants by biomass amplification of soil microorganisms

실험방법Experimental Method

중금속 오염 토양에 샐러리를 식재하고, 화학비료처리구, 호밀 1배 처리구, 호밀 2배 처리구를 조성하였다. 모든 처리구에 17kg N 10 a-1 수준에 해당하는 화학비료를 기비로 처리하였으며, 호밀 처리구의 경우 무기질비료와 동일하게 질소함량 기준으로 17 kg N 10 a-1 에 해당하는 양을 추가로 혼합처리 하였으며, 호밀 2배 처리구는 34 kg N 10 a-1 수준으로 추가 혼합처리하였다.Celery was planted in soil contaminated with heavy metals, and chemical fertilizer treatment, rye single treat, and rye double treat were established. All treatments were treated with 17 kg N 10 a -1 level of chemical fertilizer. In the case of rye treatment, the amount equivalent to 17 kg N 10 a -1 was added And the rye two-fold treatment was further mixed with 34 kg N 10 a -1 .

처리 후 30 ℃에서 배양하여 CO2 발생량을 모니터링하였으며, 2주마다 토양을 수거하여 토양 미생물 생체량을 분석하였다. 또 각 토양 컬럼에 샐러리 1주를 식재하여 토양 배양과 동시에 식물체를 재배하였으며, 수거하여 식물체 내 중금속 함량을 분석하였다.After the treatment, the amount of CO 2 produced was monitored by culturing at 30 ° C. Soil was harvested every 2 weeks to analyze soil microbial biomass. In addition, one celery was planted in each soil column, and the plant was cultivated at the same time as the soil cultivation, and the heavy metal content in the plant was analyzed by collection.

시험 토양 중금속 전함량Test soil Heavy metal total content CdCD CuCu PbPb ZnZn NiNi AsAs --- mg kg soil-1------ mg kg soil -1 --- 공시토양Public soil 3.43.4 10.510.5 7.57.5 75.275.2 3.23.2 0.7 0.7

실험결과Experiment result

(1) 토양 미생물 생체량과 토양 중금속 동태(1) Biomass of Soil Microorganisms and Heavy Metal Dynamics of Soil

1) 유·무기소재처리에 따른 토양 미생물 생체량 증폭 효과1) Biomass amplification effect of soil microorganisms by treatment of organic and inorganic materials

실험결과 도 1에 나타낸 바와 같이 호밀 처리에 따라 높은 이산화탄소 발생량을 보였으며 처리수준이 증가할수록 더 많은 이산화탄소 발생량이 분석되었다. 이산화탄소 발생량의 증가는 유기물의 분해 및 토양 미생물 활성의 증가가 반영된 것으로 판단된다. 또한 도 2에 나타낸 바와 같이, 유기물 투입 후, 경시적으로 미생물 생체량이 증가하였으며, 또한 유기물 처리량이 많을수록 미생물 생체량이 증가하는 경향이 확인되었다.
Experimental Results As shown in FIG. 1, the amount of carbon dioxide generated by the rye treatment was higher than that of the treated rye. The increase of carbon dioxide emission is considered to reflect the decomposition of organic matter and the increase of soil microbial activity. Also, as shown in FIG. 2, the biomass of the microorganism increased with time after the addition of the organic material, and the biomass of the microorganism increased as the amount of the organic matter treated increased.

2) 토양 미생물 생체량과 치환성 토양 중금속 변화2) Soil microbial biomass and substitutional soil heavy metal change

도 3a, 3b에 나타낸 바와 같이, 유기물의 토양처리에 따라 미생물 생체량이 증가하였으며, 아울러 토양의 가용성 중금속 함량 또한 증가하는 경향이 있음을 확인하였다. 이는 토양 미생물은 생리물질, 유기산 등을 분비함으로써 중금속 유효도 증가에 기여한 것으로 판단된다. 가용성 중금속 함량의 증가는 잠재적으로 식물체로 전이 가능한 중금속양의 증가를 의미하기 때문에, 결과적으로 식물재배정화효율 증가에 기여할 수 있을 것으로 판단된다.
As shown in FIGS. 3A and 3B, the microbial biomass of the organic material was increased by soil treatment, and the soluble heavy metal content of the soil also tended to increase. It is considered that the soil microorganisms contributed to the increase of heavy metal availability by releasing physiological and organic acids. The increase in solubility heavy metal content implies an increase in the amount of heavy metals that can potentially be transferred to the plant, and consequently, it can contribute to the increase of the plant cultivation efficiency.

3) 식물체 내 흡수된 중금속과 미생물 생체량과의 상관관계3) Correlation between microbial biomass and heavy metals absorbed in plants

도 4에 나타낸 바와 같이, 미생물 생체량이 증가함에 따라 식물체로 전이되는 카드뮴 함량 또한 증가한 것으로 나타났다. 미생물 군집 크기의 증가는 미생물에 의한 중금속의 무해화 작용 등으로, 식물체에 중금속에 대한 독성을 저감시켜 식물재배정화효율을 증가시킬 수 있을 것으로 판단된다.
As shown in Fig. 4, as the microbial biomass increases, the amount of cadmium transferred to the plant also increases. The increase of the microbial community size is considered to increase the efficiency of plant cultivation by reducing the toxicity of heavy metals to plants by the harmless action of heavy metals by microorganisms.

[실험예 2] 중금속오염지 현장적용 가능한 토양 미생물 생체량 증폭 소재 개발[Experimental Example 2] Development of biomass amplification material for soil microbes applicable to heavy metal pollution site

실험방법Experimental Method

토양 미생물 생체량 제어 소재 개발을 위하여 무처리구, 화학비료 처리구, 호밀 처리구, CMS 처리구, 리그노설포네이트(Lignosulfonate) 처리구를 조성하였다. 화학비료와 호밀 처리구는 25 kg N 10 a-1 기준으로 토양에 처리하였으며, CMS와 리그노설포네이트는 25 kg N 10 a-1 에 해당하는 호밀의 탄소량을 기준으로 처리하였다. 각 소재의 토양 처리 후, 30 ℃에서 2주 동안 배양하여 CO2 발생량을 모니터링하였으며, 1주마다 토양을 수거하여 미생물 생체량을 분석하였다.For the development of soil microbial biomass control material, non - treatment, chemical fertilizer treatment, rye treatment, CMS treatment and lignosulfonate treatment were established. Chemical fertilizers and rye treatments were applied to the soil at 25 kg N 10 a -1 and CMS and lignosulfonates were treated based on the amount of rye at 25 kg N 10 a -1 . After soil treatment of each material, CO 2 production was monitored by incubation at 30 ° C for 2 weeks. Soil was harvested every week to analyze microbial biomass.

시험 토양 중금속 전함량Test soil Heavy metal total content CdCD PbPb ZnZn CrCr AsAs --- mg kg soil-1------ mg kg soil -1 --- 공시토양Public soil 17.617.6 1558.61558.6 1340.41340.4 29.329.3 17.8 17.8

실험결과Experiment result

(1) 유기자재 처리에 따른 토양 CO2 발생량 변화(1) Changes in the amount of soil CO 2 produced by organic material treatment

도 5에 나타낸 바와 같이, CMS와 리그노설포네이트 처리구에서 다른 호밀 처리에 비하여 높은 수준의 CO2 방출 특성이 확인되었으며, 이 중 리그노설페이트 처리구에서 가장 높은 수준을 나타내었다. 또한, 도 6에 나타낸 바와 같이, CMS, 리그노설포네이트 모두 호밀보다 높은 수준의 미생물 증폭효과가 있었으며, 이중에서 리그노설포네이트 처리구가 압도적으로 높은 증폭 효과를 보여, 이에 따라 미생물 활성 또한 증가되어 토양 중금속 유효도 증가에 긍정적인 효과를 줄 수 있을 것으로 기대되어졌다.As shown in FIG. 5, higher levels of CO 2 release characteristics were observed in CMS and lignosulfonate treatments compared to other rye treatments, with the highest levels in lignosulphate treatments. In addition, as shown in FIG. 6, both CMS and lignosulfonate had a higher level of microorganism amplification effect than rye, and the lignosulfonate treatment showed an overwhelmingly high amplification effect, thereby increasing microbial activity It is expected that this will have a positive effect on the increase of soil heaviness.

나아가, CMS와 리그노 설포네이트는 펄프 산업 등에서 발생하는 산업 부산물이기 때문에 자원의 재활용적 가치가 크고, 호밀에 비하여 자재 수급에 있어 균일한 품질 유지가 가능하고, 수급의 안정성이 큰 장점을 제공한다.
Furthermore, since CMS and lignosulfonate are industrial by-products that occur in the pulp industry and the like, they have a great recycling value of resources, can maintain uniform quality in the supply and demand of materials compared to rye, and provide the advantage of stability in supply and demand .

(2) 유·무기자재 처리에 따른 토양 pH, EC 변화(2) Soil pH and EC changes due to treatment of organic and inorganic materials

도 7 및 도 8에 나타낸 바와 같이, 리그노설포네이트, CMS 처리에 의해 pH가 낮아지고 EC가 상승하는 경향이 있었고, 모두 pH 6.5 이상의 중성 부근, EC 1.5 dS m-1 이하로 토양 처리시 작물 생육에 부정적인 영향을 미치지 않는 것으로 나타났다. 리그노설포네이트가 CMS에 비해 pH 저하 및 EC 상승 효과가 작으나 CMS는 리그노설포네이트에 없는 질소 등 영양물질의 공급력이 상대적으로 우수한 판단된다.
As shown in Figs. 7 and 8, the pH was lowered and the EC was increased by the lignosulfonate and the CMS treatment, and all of them were near neutral at pH 6.5 or higher and EC 1.5 dS m -1 or lower, And did not have a negative effect on growth. Lignosulfonate has a lower pH and EC synergistic effect than CMS, but CMS has a relatively good supply of nitrogen and other nutrients not found in lignosulfonates.

[실시예 1] [Example 1]

중금속으로 오염된 논토양을 수거한 후, CMS(실시예 1a)와 리그노설포네이트(실시예 1b)를 각각 25 kg N 10 a-1 에 해당되도록 하여 처리 한 후, 소정의 포트에 옮기고 여기에 해바라기 묘를 식재하였다. 리그노설포네이트를 처리하지 않은 논토양에 식재한 해바라기는 대조구로 활용하였다.After paddy soil contaminated with heavy metals was collected, CMS (Example 1a) and lignosulfonate (Example 1b) were each treated to 25 kg N 10 a -1 , transferred to a predetermined port, And sunflower seedlings were planted. Sunflower cultivated in paddy soil without lignosulfonate was used as a control.

실험결과 해바라기의 지상부와 지하부의 생중량에 있어서 하기 표 3에 제시한 바와 같이 리그노설포네이트 처리구가 120일 경과 후 측정한 결과에서 CMS 및 무처리구에 비하여 현저히 증가폭이 큼을 확인할 수 있다.As a result of the experiment, it was confirmed that the lignosulfonate treatment of the sunflower at the upper part and the lower part of the raw weight of the sunflower showed a significant increase in the lignosulfonate treatment after 120 days, as compared with the CMS and untreated group.

구분division 실시예 1aExample 1a 실시예 1bExample 1b 비교예 1Comparative Example 1 지상부(g)Above ground (g) 212212 231231 157157 지하부(g)Underground (g) 4141 4848 1313

[실시예 2][Example 2]

중금속으로 오염된 논토양을 수거한 후, CMS(실시예 2a)와 리그노설포네이트(실시예 2b)를 각각 25 kg N 10 a-1 에 해당하도록 하여 처리한 후, 소정의 포트에 옮기고 여기에 유채 묘를 식재하였다. 리그노설포네이트를 처리하지 않은 논토양에 식재한 유채는 대조구로 활용하였다.After paddy soil contaminated with heavy metals was collected, CMS (Example 2a) and lignosulfonate (Example 2b) were treated to 25 kg N 10 a -1 , respectively, transferred to a predetermined port, And the seedlings were planted. The rapeseed cultivated in paddy soil without lignosulfonate was used as a control.

실험결과 유채의 지상부와 지하부의 생중량에 있어서 하기 표 4에 제시한 바와 같이 리그노설포네이트 처리구가 120일 경과 후 측정한 결과에서 CMS 및 무처리구에 비하여 현저히 차이가 있음을 확인할 수 있다.As shown in Table 4, the lignosulfonate treatment after 120 days showed significant difference in the fresh weight of the top and bottom of the rapeseed compared to the CMS and untreated plots.

구분division 실시예 2aExample 2a 실시예 2bExample 2b 비교예 2Comparative Example 2 지상부(g)Above ground (g) 203203 211211 153153 지하부(g)Underground (g) 2828 3232 1212

[실험예 3][Experimental Example 3]

상기 실시예 1(a,b) 및 2(a,b)에서 각각 재배한 해바라기 및 유채의 초기 식재 전 중금속 함량과 식재 120일 경과 후 수거한 식물체내 중금속 함량을 공지된 방법에 의해 측정하여 비교한 결과는 하기 표 5 내지 7에 각각 나타내었다.
The contents of heavy metals before planting of sunflower and rapeseed cultivated in each of the above Examples 1 (a, b) and 2 (a, b) and the heavy metals in plants collected after 120 days of planting were measured by known methods The results are shown in Tables 5 to 7 below.

해바라기, 유채 식재 전 중금속 함량(무처리구)Heavy metal content before sunflower, rapeseed plant (untreated) 식물명Botanical name 부위part 중금속(mg/kg)Heavy metals (mg / kg) 카드뮴cadmium 비소arsenic lead 식재전Planting before 해바라기
(비교예 1)
sunflower
(Comparative Example 1)
지상ground -- 2.312.31 2.872.87
지하Underground -- -- -- 유채
(비교예 2)
Rapeseed
(Comparative Example 2)
지상ground -- 3.203.20 2.252.25
지하Underground -- -- -- 식재후
120일 경과
After planting
120 days past
해바라기
(비교예 1)
sunflower
(Comparative Example 1)
지상ground 0.260.26 82.1682.16 3.713.71
지하Underground -- 26.4226.42 32.8232.82 유채
(비교예 2)
Rapeseed
(Comparative Example 2)
지상ground 0.130.13 76.2376.23 3.403.40
지하Underground 24.7124.71 34.5134.51

해바라기, 유채 식재 전 중금속 함량(CMS 처리구)Heavy metal content before sunflower and rapeseed planting (CMS treatment) 식물명Botanical name 부위part 중금속(mg/kg)Heavy metals (mg / kg) 카드뮴cadmium 비소arsenic lead 식재전Planting before 해바라기
(실시예1a)
sunflower
(Example 1a)
지상ground -- 2.282.28 2.532.53
지하Underground -- -- -- 유채
(실시예2a)
Rapeseed
(Example 2a)
지상ground -- 3.173.17 2.302.30
지하Underground -- -- -- 식재후
120일 경과
After planting
120 days past
해바라기
(실시예1a)
sunflower
(Example 1a)
지상ground 0.930.93 135.23135.23 12.2312.23
지하Underground -- 76.0276.02 56.7156.71 유채
(실시예2a)
Rapeseed
(Example 2a)
지상ground 0.540.54 126.51126.51 14.8914.89
지하Underground 60.4660.46 43.6643.66

해바라기, 유채 식재 전 중금속 함량(리그노설포네이트 처리구)Heavy metal content before sunflower and rapeseed plant (lignosulfonate treatment) 식물명Botanical name 부위part 중금속(mg/kg)Heavy metals (mg / kg) 카드뮴cadmium 비소arsenic lead 식재전Planting before 해바라기
(실시예1b)
sunflower
(Example 1b)
지상ground -- 3.323.32 3.763.76
지하Underground -- -- -- 유채
(실시예2b)
Rapeseed
(Example 2b)
지상ground -- 5.235.23 3.363.36
지하Underground -- -- -- 식재후
120일 경과
After planting
120 days past
해바라기
(실시예1b)
sunflower
(Example 1b)
지상ground 0.930.93 152.21152.21 21.0821.08
지하Underground -- 92.1892.18 71.2571.25 유채
(실시예2b)
Rapeseed
(Example 2b)
지상ground 0.540.54 143.74143.74 22.9322.93
지하Underground 75.6275.62 55.7155.71

본 실험결과 해바라기 및 유채 모두 오염된 토양에 식재하기 전에는 카드뮴이 축적되어 있지 않았고 다른 중금속 성분도 미량만이 나왔으나, 120일 재배 후에는 다량의 중금속이 지상부와 지하부에 걸쳐 흡수 이행되어진 것을 볼 수 있다. CMS 처리구(실시예 3a)와 리그노설포테이트 처리구(실시예 3b)를 비교한 결과 리그노설포테이트 처리구(실시예 3b)에서 중금속 흡수량이 큰 것을 확인하였다.
As a result of this experiment, cadmium was not accumulated and only a trace amount of other heavy metal components came out before sunflower and rapeseed soil was planted. However, after 120 days of cultivation, heavy metals were absorbed over the ground and underground . Comparing the CMS treatment (Example 3a) with the lignosulphate treatment (Example 3b), it was confirmed that the heavy metal absorption was large in the lignosulphate treatment (Example 3b).

상기와 같은 실험 결과로부터 리그노설포네이트는 저렴한 가격으로 공급이 가능하면서, 특히 미생물 생장촉진 및 중금속 오염토양에 대한 식물재배정화 효과가 가장 큰 것으로 확인되어 본 발명을 위한 신소재로써 가장 적합한 것으로 판단되었다.
From the above experimental results, it has been found that lignosulfonate can be supplied at an inexpensive price, and particularly, it is the most effective as a new material for the present invention, as it has the greatest effect of promoting growth of microorganisms and purification of plants against heavy metal contaminated soil .

상기와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the appended claims. It can be understood that

Claims (4)

리그노설포네이트를 활성성분으로 함유하는 미생물 생장촉진제.A microorganism growth promoter containing lignosulfonate as an active ingredient. 리그노설포네이트를 토양에 처리하여 토양미생물의 생장을 촉진하는 단계; 상기 생장이 촉진된 토양미생물에 의해 생물학적 유효도가 촉진된 토양내 중금속을 식물이 흡수하는 단계; 및 상기 중금속을 흡수한 식물을 제거하여 바이오매스를 생산하는 단계;를 포함하는 중금속 오염토양에 대한 식물재배정화법.Treating the soil with a lignosulfonate to promote the growth of the soil microorganism; Wherein the plant absorbs heavy metals in the soil in which bio-availability is promoted by the growth-promoted soil microorganisms; And removing the heavy-metal-absorbing plant to produce a biomass. 제 2항에 있어서,
토양미생물은 유기산 생성 균주 또는 사이드로포어 생성 균주인 것을 특징으로 하는 중금속 오염토양에 대한 식물재배정화법.
3. The method of claim 2,
Wherein the soil microorganism is an organic acid-producing strain or a sidelopore-producing strain.
제 2항에 있어서,
질소 및 인산을 중량비로 10:2 내지 10:5로 하여 리그노설포네이트와 함께 처리하는 것을 특징으로 하는 중금속 오염토양에 대한 식물재배정화법.
3. The method of claim 2,
Nitrogen and phosphoric acid at a weight ratio of 10: 2 to 10: 5 with lignosulfonate.
KR1020150012507A 2015-01-27 2015-01-27 Growth Inhancing Agent for Microorganism and The Method of Phytoremediation on Soil Contaminated with Heavy Metal Using The Same KR20160092536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150012507A KR20160092536A (en) 2015-01-27 2015-01-27 Growth Inhancing Agent for Microorganism and The Method of Phytoremediation on Soil Contaminated with Heavy Metal Using The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150012507A KR20160092536A (en) 2015-01-27 2015-01-27 Growth Inhancing Agent for Microorganism and The Method of Phytoremediation on Soil Contaminated with Heavy Metal Using The Same

Publications (1)

Publication Number Publication Date
KR20160092536A true KR20160092536A (en) 2016-08-05

Family

ID=56711024

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150012507A KR20160092536A (en) 2015-01-27 2015-01-27 Growth Inhancing Agent for Microorganism and The Method of Phytoremediation on Soil Contaminated with Heavy Metal Using The Same

Country Status (1)

Country Link
KR (1) KR20160092536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108160685A (en) * 2018-01-02 2018-06-15 山西大学 A kind of method that plant-microorganism joint repairs coal mining area soil
CN109092884A (en) * 2018-07-31 2018-12-28 西施生态科技股份有限公司 Method of the Eupatorium adenophorum in remediating heavy metal zinc lead bronze contaminated soil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108160685A (en) * 2018-01-02 2018-06-15 山西大学 A kind of method that plant-microorganism joint repairs coal mining area soil
CN108160685B (en) * 2018-01-02 2020-02-14 山西大学 Method for repairing coal mining area soil by combining plants and microorganisms
CN109092884A (en) * 2018-07-31 2018-12-28 西施生态科技股份有限公司 Method of the Eupatorium adenophorum in remediating heavy metal zinc lead bronze contaminated soil

Similar Documents

Publication Publication Date Title
Guo et al. The role of biochar in organic waste composting and soil improvement: A review
Wu et al. Role of biochar on composting of organic wastes and remediation of contaminated soils—a review
Qian et al. Biochar-compost as a new option for soil improvement: Application in various problem soils
CN106964644B (en) organic matter soil remediation agent, preparation method and application thereof in sludge digestion
CN106905980B (en) Heavy metal soil remediation agent, preparation method and application thereof in sludge digestion
CN104056852B (en) The chemistry of compound heavy-metal contaminated soil and microbial association restorative procedure and application
CN102807872B (en) Biochar mixing type protected horticultural vegetable field soil heavy metal passivant and preparation method thereof
CN106675568A (en) Passivator for repairing compound heavy metal polluted farmland and preparation and application thereof
CN104046361A (en) Composite heavy metal polluted soil conditioner as well as application and application method thereof
CN108130087A (en) A kind of soil conditioner and application process for repairing cadmium-arsenic combined pollution
CN106001103A (en) Ecological restoration method for soil in chemical industrial area
CN106914484B (en) Ecological restoration method for rural solid waste polluted soil
CN104327858A (en) Soil heavy metal compound stabilizer and method using soil heavy metal compound stabilizer for passivation of soil heavy metals
CN113348804A (en) Method for passivation treatment of heavy metal pollution of farmland and reconstruction of soil nutrient health
CN104086001B (en) Treatment process applicable to industrial wastewater and application of industrial wastewater in preparation of bacterial manure
Li et al. Simultaneous in-situ remediation and fertilization of Cd-contaminated weak-alkaline farmland for wheat production
CN109731903B (en) Ecological restoration method for layered coverage of gold mine tailings
CN111073660A (en) Soil bioremediation agent and soil remediation method based on same
CN110734333A (en) microbial soil remediation agent and preparation method thereof
CN112090943B (en) Multi-type land soil ecological restoration system and working method thereof
CN106995704A (en) A kind of renovation agent, its preparation method and the method with its restoration of soil polluted by heavy metal
Sinha et al. Earthworms for safe and useful management of solid wastes and wastewaters, remediation of contaminated soils and restoration of soil fertility, promotion of organic farming and mitigation of global warming: A review
Mahohi et al. The performance of mycorrhizae, rhizobacteria, and earthworms to improve Bermuda grass (Cynodon dactylon) growth and Pb uptake in a Pb-contaminated soil
KR20160092536A (en) Growth Inhancing Agent for Microorganism and The Method of Phytoremediation on Soil Contaminated with Heavy Metal Using The Same
CN114539001A (en) Microbial remediation agent for heavy metal moderately and slightly polluted soil and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application