KR20160071067A - Offset correction method of the inverter hall sensors for air blower of fuel cell vehicle - Google Patents

Offset correction method of the inverter hall sensors for air blower of fuel cell vehicle Download PDF

Info

Publication number
KR20160071067A
KR20160071067A KR1020140178321A KR20140178321A KR20160071067A KR 20160071067 A KR20160071067 A KR 20160071067A KR 1020140178321 A KR1020140178321 A KR 1020140178321A KR 20140178321 A KR20140178321 A KR 20140178321A KR 20160071067 A KR20160071067 A KR 20160071067A
Authority
KR
South Korea
Prior art keywords
angle
syn
offset
fuel cell
inverter
Prior art date
Application number
KR1020140178321A
Other languages
Korean (ko)
Other versions
KR101704136B1 (en
Inventor
류창석
강민수
김성도
이동훈
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020140178321A priority Critical patent/KR101704136B1/en
Publication of KR20160071067A publication Critical patent/KR20160071067A/en
Application granted granted Critical
Publication of KR101704136B1 publication Critical patent/KR101704136B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K24/00Machines adapted for the instantaneous transmission or reception of the angular displacement of rotating parts, e.g. synchro, selsyn
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/32Arrangements for controlling wound field motors, e.g. motors with exciter coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The present invention relates to an offset correction method of inverter hall sensors for an air blower of a fuel cell vehicle, to measure and correct the offset angle of the hall sensors before controlling current of a permanent magnet synchronous motor (PMSM). According to an embodiment of the present invention, the offset correction method of inverter hall sensors for an air blower of a fuel cell vehicle comprises the following steps of: an inertial braking step to block current applied to a permanent magnet synchronous motor (PMSM) driving a blower used for an air supply system of a fuel cell; a step of calculating an angle to calculate an offset angle by measuring Vd_syn and Vq_syn in the inertial braking step; and a step of correcting an angle of the hall sensor based on the calculated angle of a synchronous coordinates.

Description

연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법{Offset correction method of the inverter hall sensors for air blower of fuel cell vehicle}[0001] The present invention relates to an offset correction method for an inverter hole sensor for an air blower of a fuel cell vehicle,

본 발명은 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법에 관한 것으로, 보다 상세하게는 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법에 관한 것이다.
The present invention relates to an offset correction method for an inverter hole sensor for an air blower of a fuel cell vehicle, and more particularly, to an offset correction method for an inverter hole sensor for an air blower of a fuel cell vehicle.

연료전지의 공기공급계에 사용되는 블로워는 PMSM(Permanent Magnet Syncronous Motor)로 구동된다. PMSM를 제어하기 위해 로터의 현재 위치를 센싱해야 하는데 패키징 및 원가를 고려하여 크기가 비교적 작고 저가형인 홀센서를 이용하여 로터의 현재 위치를 센싱한다. 홀센서는 위치 센서를 로터와 스테이터에 부착하여 로터의 위치를 판단하는데 PMSM에 위치센서를 부착하는 제작 편차에 의해 홀센서의 로터 위치 센싱 시 옵셋이 존재한다. The blower used in the air supply system of the fuel cell is driven by a Permanent Magnet Synchronous Motor (PMSM). In order to control the PMSM, the current position of the rotor must be sensed. In consideration of packaging and cost, the rotor position is sensed using a relatively small and low cost Hall sensor. The hall sensor has an offset in sensing the rotor position of the hall sensor by the manufacturing deviation of attaching the position sensor to the PMSM to determine the position of the rotor by attaching the position sensor to the rotor and the stator.

이러한 옵셋을 보정하기 위해 PMSM의 초기 제작 샘플의 홀센서 각도 옵셋을 측정하여 s/w의 각도 계산 시 각도에 옵셋값을 더하여 홀센서의 위치를 보정한다. 그러나 현실적으로 PMSM간 제작 편차에 의해 홀센서 옵셋의 제품간 편차가 보통 5~6º 정도 존재하는데 위와 같은 방식으로 모든 PMSM에 일괄적으로 같은 홀센서 각도 옵셋 값을 적용하게 되므로 제품간 편차에 의해 발생하는 옵셋 각도는 반영할 수 없다. To correct these offsets, we measure the hall sensor angle offset of the initial sample of PMSM and correct the position of Hall sensor by adding the offset value to the angle when calculating s / w angle. However, in reality, due to manufacturing variations between PMSMs, there is a deviation of about 5 ~ 6º between Hall sensor offsets. In this way, the same Hall sensor angle offset values are applied to all PMSMs in the same way, The offset angle can not be reflected.

또한 PMSM의 사용 시간에 따라 홀센서의 위치가 틀어지는 문제가 발생할 수 있다. 이는 로터 위치 센싱에 오차가 존재하게 되는 것이므로 인버터내 전류제어 정밀도 저하를 초래하여 인버터 효율을 떨어뜨리게 된다. 따라서 PMSM의 전류 제어 전에 홀센서 옵셋을 측정하여 보정할 필요가 있다.
Also, the position of the hall sensor may be changed according to the use time of the PMSM. This is because there is an error in the rotor position sensing, so that the accuracy of current control in the inverter is lowered and the inverter efficiency is lowered. Therefore, it is necessary to measure and correct the Hall sensor offset before current control of the PMSM.

본 발명이 해결하고자 하는 과제는 소프트웨어 로직을 통해 PMSM의 전류 제어 전에 홀센서 옵셋을 측정하여 보정하는 것이다.The problem to be solved by the present invention is to measure and correct the Hall sensor offset before the current control of the PMSM through the software logic.

본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
The problems of the present invention are not limited to the above-mentioned problems, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.

상기 과제를 달성하기 위하여, 본 발명의 일 실시예에 의한 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법은, 연료전지의 공기 공급계에 사용되는 블로워를 구동하는 PMSM(Permanent Magnet Syncronous Motor)에 인가하는 전류를 차단하는 관성제동단계; 상기 관성제동단계시 Vd_syn와 Vq_syn을 측정하여 오프셋 각도를 계산하는 각도계산단계; 및 상기 계산된 동기좌표계의 각도에 기초하여 홀센서의 각도를 보정하는 보정단계를 포함한다.According to an aspect of the present invention, there is provided an offset correction method for an inverter hole sensor for an air blower of a fuel cell vehicle, including: a Permanent Magnet Synchronous Motor (PMSM) for driving a blower used in an air supply system of a fuel cell; An inertia braking step of interrupting a current to be applied to the motor; An angle calculation step of calculating an offset angle by measuring Vd_syn and Vq_syn during the inertia braking step; And a correction step of correcting an angle of the hall sensor based on the calculated angle of the synchronous coordinate system.

기타 실시 예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
The details of other embodiments are included in the detailed description and drawings.

본 발명에 의하면 다음과 같은 효과가 있다. The present invention has the following effects.

첫째, PMSM의 전류제어의 정밀도를 향상시키는 것이다.First, it is to improve the precision of current control of PMSM.

둘째, 홀센서 옵셋을 보정하여 인버터 효율을 향상시킬 수 있다.Second, the efficiency of the inverter can be improved by correcting the Hall sensor offset.

본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the description of the claims.

도 1은 본 발명의 일 실시예에 의한 연료전지차량 공기블로워용 PMSM 및 인버터 시스템의 구성을 나타낸 것이다.
도 2는 3phase의 홀센서 출력 파형의 예시를 나타낸 것이다.
도 3은 본 발명의 일 실시예에 의한 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법의 순서도이다.
도 4는 관성제동 시 Vd_syn, Vq_syn의 거동을 나타낸 도표이다.
도 5은 도4의 측정된 데이터에 이동평균을 실시한 결과를 나타낸 그래프이다.
1 shows a configuration of a PMSM and an inverter system for an air blower of a fuel cell vehicle according to an embodiment of the present invention.
Fig. 2 shows an example of a hall sensor output waveform of 3phase.
3 is a flowchart of an offset correction method for an inverter hole sensor for an air blower of a fuel cell vehicle according to an embodiment of the present invention.
4 is a graph showing behaviors of Vd_syn and Vq_syn during inertial braking.
5 is a graph showing a result of performing a moving average on the measured data of FIG.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving them will become apparent with reference to the embodiments described in detail below with reference to the accompanying drawings.

그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. Is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.

이하, 본 발명의 실시 예들에 의하여 연료전지차량 공기블로워용 인버터(5) 홀센서(3)의 옵셋 보정방법을 설명하기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.Hereinafter, the present invention will be described with reference to the drawings for explaining the offset correction method of the inverter 5 for the air blower of the fuel cell vehicle according to the embodiments of the present invention.

도 1은 본 발명의 일 실시예에 의한 연료전지차량 공기블로워용 PMSM(1) 및 인버터(5) 시스템의 구성을 나타낸 것이다. 도 2는 3phase의 홀센서(3) 출력 파형의 예시를 나타낸 것이다. 도 3은 본 발명의 일 실시예에 의한 연료전지차량 공기블로워용 인버터(5) 홀센서(3)의 옵셋 보정방법의 순서도이다.1 shows a configuration of a PMSM 1 and an inverter 5 system for an air blower of a fuel cell vehicle according to an embodiment of the present invention. 2 shows an example of the output waveform of the Hall sensor 3 of 3phase. 3 is a flowchart of an offset correction method of the Hall sensor 3 of the inverter 5 for the air blower of the fuel cell vehicle according to the embodiment of the present invention.

도1 내지 도3을 참조하면, 홀센서(3)의 각도가 로터의 실제 위치보다 틀어져 있다면 좌표변환이 틀어지게 된다. PMSM(1)은 q축 전류제어를 실시할 때 가장 효율이 좋다. 즉 전류제어기의 d축에 입력하는 커맨드는 0을 대입해야 한다. 1 to 3, if the angle of the hall sensor 3 is smaller than the actual position of the rotor, the coordinate transformation is distorted. The PMSM (1) is most efficient when performing q-axis current control. That is, the command to be inputted to the d-axis of the current controller should be 0.

3phase 홀센서(3)의 경우 60º 간격으로 센서를 부착하여 센서를 부착한 위치를 중심으로 로터의 기준점 위치가 60º 사이에 들어올 경우 출력값을 1로 내보내게 된다. 이런 특성을 가진 홀센서(3) 신호의 A, B, C상을 조합하여 로터의 각속도 및 위치 각도를 계산하게 된다. In case of 3phase hall sensor (3), the sensor is attached at 60º intervals, and when the reference position of the rotor reaches 60º, the output value will be 1. The angular velocity and position angle of the rotor are calculated by combining the A, B, and C phases of the hall sensor 3 signal having such characteristics.

관성제동시, 홀센서(3)가 정확한 위치를 센싱하게 될 경우 Vd_syn은 0의 값을 나타낸다. 그러나 홀센서(3)의 위치가 틀어질 경우 Vd_syn 은 관성제동 초기에 0이 아닌 다른 값을 가지게 되며 점점 0으로 수렴하게 된다. 그리고 Vd_syn의 값은 홀센서(3)의 옵셋 각도에 따라 결정된다. When the Hall sensor 3 senses the correct position during inertial braking, Vd_syn indicates a value of zero. However, when the position of the Hall sensor 3 is changed, Vd_syn has a value other than 0 at the initial stage of inertia braking and converges to zero gradually. And the value of Vd_syn is determined according to the offset angle of the Hall sensor 3.

본 발명의 일 실시예에 의한 연료전지차량 공기블로워용 인버터(5) 홀센서(3)의 옵셋 보정방법은, 연료전지의 공기 공급계에 사용되는 블로워를 구동하는 PMSM(1)(Permanent Magnet Syncronous Motor)에 인가하는 전류를 차단하는 관성제동단계(S1); 관성제동단계시 Vd_syn와 Vq_syn을 측정하여 오프셋 각도를 계산하는 각도계산단계(S3); 및 계산된 동기좌표계의 각도에 기초하여 홀센서(3)의 각도를 보정하는 보정단계(S5)를 포함한다.The offset correction method of the Hall sensor 3 of the inverter 5 for the fuel cell vehicle air blower according to the embodiment of the present invention is a method for correcting the offset of the PMSM 1 (Permanent Magnet Syncronous An inertia braking step S1 for interrupting a current to be applied to the motor; An angle calculation step (S3) of calculating an offset angle by measuring Vd_syn and Vq_syn during the inertia braking step; And a correction step (S5) of correcting the angle of the Hall sensor (3) based on the calculated angle of the synchronous coordinate system.

각도계산단계는, id=0, iq=0으로 가정하여 오프셋 각도를 계산한다.The angle calculation step calculates the offset angle by assuming id = 0 and iq = 0.

각도계산단계(S5)는, 아래와 같은 수식에 의해 Vd_syn와 Vq_syn를 측정한다. In the angle calculation step (S5), Vd_syn and Vq_syn are measured by the following equation.

Figure pat00001
Figure pat00001

각도계산단계(S5)는, 아래와 같은 수식에 의해 오프셋 각도를 계산한다.In the angle calculation step (S5), the offset angle is calculated by the following equation.

Figure pat00002
Figure pat00002

도 4는 관성제동 시 Vd_syn, Vq_syn의 거동을 나타낸 도표이다. 도 5은 도4의 측정된 데이터에 이동평균을 실시한 결과를 나타낸 그래프이다. 4 is a graph showing behaviors of Vd_syn and Vq_syn during inertial braking. 5 is a graph showing a result of performing a moving average on the measured data of FIG.

도4 및 도5를 참조하면, 로깅된 데이터는 도4와 같이 노이즈 성분이 심하므로 이동평균을 실시하여 각도를 추출하는 것이 바람직하다. 즉, 각도계산단계(S5)는, 노이즈 제거를 위해 Vd_syn와 Vq_syn에 관한 측정값의 평균을 기초로 오프셋 각도를 계산한다. 측정값의 평균을 구하는 방법은, 시계열의 각 항에 대하여 그것을 중심으로 하는 전후 일정 항 수의 평균값을 연결하여 경향선을 구하는 이동평균에 의하는 것이 바람직하다. 상기와 같은 이동평균된 데이터를 가지고 같은 시점의 Vd_syn, Vq_syn의 비를 구하여 역 tan을 취하여 옵셋각을 구하고 여러 샘플을 average하여 최종 옵셋 각을 계산한다. Referring to FIGS. 4 and 5, since the logged data has a noise component as shown in FIG. 4, it is preferable to extract the angle by performing a moving average. That is, the angle calculation step S5 calculates an offset angle based on an average of measured values about Vd_syn and Vq_syn for noise removal. The average of the measured values is preferably determined by a moving average obtained by connecting the mean values of the front and back constant numbers centered on the respective terms of the time series to obtain the trend line. The ratio of Vd_syn and Vq_syn at the same time point is obtained from the moving average data as described above, and the offset angle is obtained by taking the inverse tan, and the final offset angle is calculated by averaging several samples.

상기와 같은 본 발명의 일 실시예에 의한 연료전지차량 공기블로워용 인버터(5) 홀센서(3)의 옵셋 보정방법을 효과를 설명하면 아래와 같다. The effect of the offset correction method of the inverter 5 for the air blower of the fuel cell vehicle according to the embodiment of the present invention will be described below.

먼저 PMSM(1)의 관성제동 여부를 확인하여 PMSM(1)가 관성제동에 진입했다고 판단되면 옵셋각 계산을 시작한다. 이동평균을 실시해야 하므로 이동평균 sample 수 만큼의 Vd_syn, Vq_syn의 buffer를 메모리에 할당하여 이동평균을 실시한다. 이후 이동평균 sample 만큼 이동평균을 실시한 이후 부터 옵셋각을 계산한다. 그리고 PMSM(1) 관성제동 옵셋각 계산을 누적하여 일정 sample의 누적이 완료되거나 Vd_syn이 0이 되면 누적된 옵셋각을 average를 실시하여 최종 옵셋각을 구하고 홀센서(3) 각도에 반영한다. First, whether or not the inertia braking of the PMSM 1 is confirmed and when it is determined that the PMSM 1 has entered the inertia braking, the calculation of the offset angle is started. Since the moving average must be performed, the buffers of Vd_syn and Vq_syn corresponding to the number of moving average samples are allocated to the memory and a moving average is performed. Then, the offset angle is calculated after the moving average is performed by the moving average sample. Then, the PMSM (1) accumulation of the inertia braking offset angle is accumulated, and when the accumulation of a certain sample is completed or the Vd_syn becomes 0, the accumulated offset angle is averaged to obtain the final offset angle and reflected in the angle of the hall sensor (3).

상기와 같은 과정을 통해 0.5º 이내로 옵셋 각도를 정확하게 계산함을 확인할 수 있다. 따라서 연료전지차량에서 쓰이는 공기블로워의 경우 연료전지제어 시 관성제동이 수시로 일어나므로 주행 중에도 실시간으로 홀센서(3)의 각도 옵셋을 측정하여 보정을 실시할 수 있어 홀센서(3)의 각도 틀어짐으로 인한 효율 저하를 방지할 수 있는 장점이 있다. 그리고 이러한 효과를 통해 연료전지차량의 연비 개선에도 도움이 된다. 또한 모터 제작 시 홀센서(3)의 틀어진 각도를 수동으로 측정하여 s/w의 calibration 변수에 반영하는 과정을 거치는데 이러한 과정을 생략함으로써 개발 편의성 증대 및 개발 시간 단축 등의 효과를 얻을 수 있다.Through the above procedure, it is confirmed that the offset angle is accurately calculated within 0.5 占.. Therefore, in the case of the air blower used in the fuel cell vehicle, the inertia braking is frequently performed during the fuel cell control, so that the angle offset of the hall sensor 3 can be measured and corrected in real time during traveling, Thereby preventing the efficiency from being lowered. These effects also help to improve the fuel economy of the fuel cell vehicle. In addition, when the motor is manufactured, the angle of rotation of the hall sensor 3 is manually measured and reflected in the calibration parameters of the s / w. The omission of such a process can improve the convenience of development and shorten the development time.

이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It should be understood that various modifications may be made by those skilled in the art without departing from the spirit and scope of the present invention.

1: PMSM
3: 홀센서
5: 인버터
1: PMSM
3: Hall sensor
5: Inverter

Claims (6)

연료전지의 공기 공급계에 사용되는 블로워를 구동하는 PMSM(Permanent Magnet Syncronous Motor)에 인가하는 전류를 차단하는 관성제동단계;
상기 관성제동단계시 Vd_syn와 Vq_syn을 측정하여 오프셋 각도를 계산하는 각도계산단계; 및
상기 계산된 동기좌표계의 각도에 기초하여 홀센서의 각도를 보정하는 보정단계를 포함하는 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법.
An inertia braking step of interrupting a current applied to a Permanent Magnet Synchronous Motor (PMSM) for driving a blower used in an air supply system of a fuel cell;
An angle calculation step of calculating an offset angle by measuring Vd_syn and Vq_syn during the inertia braking step; And
And correcting the angle of the hall sensor based on the calculated angle of the synchronous coordinate system.
제 1항에 있어서,
상기 각도계산단계는,
id=0, iq=0으로 가정하여 상기 오프셋 각도를 계산하는 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법.
The method according to claim 1,
Wherein the angle calculating step comprises:
wherein the offset angle is calculated by assuming that id = 0 and iq = 0.
제 1항에 있어서,
상기 각도계산단계는,
아래와 같은 수식에 의해 상기 Vd_syn와 상기 Vq_syn를 측정하는 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법.
Figure pat00003
The method according to claim 1,
Wherein the angle calculating step comprises:
And the Vd_syn and the Vq_syn are measured by the following formula:
Figure pat00003
제 1항에 있어서,
상기 각도계산단계는,
아래와 같은 수식에 의해 상기 오프셋 각도를 계산하는 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법.
Figure pat00004
The method according to claim 1,
Wherein the angle calculating step comprises:
The offset correction method of an inverter hole sensor for an air blower of a fuel cell vehicle, which calculates the offset angle by the following formula.
Figure pat00004
제 4항에 있어서,
상기 각도계산단계는,
노이즈 제거를 위해 상기 Vd_syn와 상기 Vq_syn에 관한 측정값의 평균을 기초로 상기 오프셋 각도를 계산하는 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법.
5. The method of claim 4,
Wherein the angle calculating step comprises:
And calculates the offset angle based on an average of the measured values of Vd_syn and Vq_syn for noise removal.
제 5항에 있어서,
상기 각도계산단계에서 측정값의 평균을 구하는 방법은,
시계열의 각 항에 대하여 그것을 중심으로 하는 전후 일정 항 수의 평균값을 연결하여 경향선을 구하는 이동평균법에 의하는 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법.
6. The method of claim 5,
The method of calculating the average of the measured values in the angle calculating step includes:
A method of compensating an offset of an inverter hole sensor for an air blower of a fuel cell vehicle by using a moving average method which calculates a trend line by connecting an average value of a predetermined number of front and rear parts around each term of a time series.
KR1020140178321A 2014-12-11 2014-12-11 Offset correction method of the inverter hall sensors for air blower of fuel cell vehicle KR101704136B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140178321A KR101704136B1 (en) 2014-12-11 2014-12-11 Offset correction method of the inverter hall sensors for air blower of fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140178321A KR101704136B1 (en) 2014-12-11 2014-12-11 Offset correction method of the inverter hall sensors for air blower of fuel cell vehicle

Publications (2)

Publication Number Publication Date
KR20160071067A true KR20160071067A (en) 2016-06-21
KR101704136B1 KR101704136B1 (en) 2017-02-07

Family

ID=56353708

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140178321A KR101704136B1 (en) 2014-12-11 2014-12-11 Offset correction method of the inverter hall sensors for air blower of fuel cell vehicle

Country Status (1)

Country Link
KR (1) KR101704136B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258959A (en) * 2018-03-21 2018-07-06 齐鲁工业大学 A kind of control system of permanent magnet synchronous motor
KR20200084577A (en) * 2019-01-03 2020-07-13 현대자동차주식회사 Correcting method for signal delay of hole sensor of air compressor motor
WO2021114419A1 (en) * 2019-12-13 2021-06-17 浙江禾川科技股份有限公司 Calibration method, apparatus and device for rotary magnetoelectric encoder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005528A (en) * 2001-07-09 2003-01-23 엘지전자 주식회사 Rotor position detecting method for sensorless bldc motor
KR20050067914A (en) * 2003-12-29 2005-07-05 엘지전자 주식회사 Method for compensating deviation of location in washing machine with bldc motor directly connected
KR20060030763A (en) * 2004-10-06 2006-04-11 삼성전자주식회사 Motor control device and method thereof
JP3789895B2 (en) * 2003-02-28 2006-06-28 三菱電機株式会社 Winding field type synchronous motor control device and method for correcting rotational position deviation of winding field type synchronous motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005528A (en) * 2001-07-09 2003-01-23 엘지전자 주식회사 Rotor position detecting method for sensorless bldc motor
JP3789895B2 (en) * 2003-02-28 2006-06-28 三菱電機株式会社 Winding field type synchronous motor control device and method for correcting rotational position deviation of winding field type synchronous motor
KR20050067914A (en) * 2003-12-29 2005-07-05 엘지전자 주식회사 Method for compensating deviation of location in washing machine with bldc motor directly connected
KR20060030763A (en) * 2004-10-06 2006-04-11 삼성전자주식회사 Motor control device and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258959A (en) * 2018-03-21 2018-07-06 齐鲁工业大学 A kind of control system of permanent magnet synchronous motor
KR20200084577A (en) * 2019-01-03 2020-07-13 현대자동차주식회사 Correcting method for signal delay of hole sensor of air compressor motor
WO2021114419A1 (en) * 2019-12-13 2021-06-17 浙江禾川科技股份有限公司 Calibration method, apparatus and device for rotary magnetoelectric encoder

Also Published As

Publication number Publication date
KR101704136B1 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
KR102588927B1 (en) Motor control method
KR101829926B1 (en) Position error compensation method of drive motor for vehicle
JP5277787B2 (en) Synchronous motor drive control device
KR102636050B1 (en) Correcting method for signal delay of hole sensor of air compressor motor
KR101704136B1 (en) Offset correction method of the inverter hall sensors for air blower of fuel cell vehicle
US20150091483A1 (en) Electric Motor Control Device
JP3253004B2 (en) Method of estimating speed of permanent magnet type synchronous motor, method of estimating rotor misalignment angle, and method of correcting rotor position
JP4548886B2 (en) Control device for permanent magnet type synchronous motor
US20210293583A1 (en) Method for checking the setting of an angular position sensor of a rotor for a vehicle
JP5392530B2 (en) Motor control device
KR20140029001A (en) Method for detecting a rotor position in permanent magnet synchronous motor
KR102440689B1 (en) Method for computating motor rotor position using hall sensor
CN110168917B (en) Method and apparatus for adjusting magnetic characteristics of synchronous reluctance motor
KR101754441B1 (en) Apparatus for determining start of electric motor
JP2019022353A (en) Offset estimator, inverter control device, and off-set estimation method
CN107809194A (en) The rotor angle compensating control method and control system of motor
KR102561919B1 (en) Method and apparatus for compensating rotator position of AC motor
KR20120106449A (en) On-line parameter correcting method for sensorless control of interior permanent magnet synchronous motor
KR101597440B1 (en) Method for calibrating resolver offset
JP6112832B2 (en) Angle correction device and rotation angle sensor
JP5768255B2 (en) Control device for permanent magnet synchronous motor
JP2019221105A (en) Motor drive device
JP4449419B2 (en) Control device for synchronous motor
JP6207458B2 (en) Electric motor control device
JP6032047B2 (en) Motor control device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 4