KR20160066638A - Manganese-based Cathode Active Material for Sodium Secondary Batteries and A Sodium Secondary Battery Comprising The same - Google Patents

Manganese-based Cathode Active Material for Sodium Secondary Batteries and A Sodium Secondary Battery Comprising The same Download PDF

Info

Publication number
KR20160066638A
KR20160066638A KR1020140170618A KR20140170618A KR20160066638A KR 20160066638 A KR20160066638 A KR 20160066638A KR 1020140170618 A KR1020140170618 A KR 1020140170618A KR 20140170618 A KR20140170618 A KR 20140170618A KR 20160066638 A KR20160066638 A KR 20160066638A
Authority
KR
South Korea
Prior art keywords
manganese
secondary battery
sodium secondary
active material
cathode active
Prior art date
Application number
KR1020140170618A
Other languages
Korean (ko)
Inventor
강용묵
조미루
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Priority to KR1020140170618A priority Critical patent/KR20160066638A/en
Priority to PCT/KR2015/010490 priority patent/WO2016088997A1/en
Publication of KR20160066638A publication Critical patent/KR20160066638A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a layered manganese-based cathode active material for a sodium secondary battery and a sodium secondary battery comprising the same, and more particularly to a layered manganese-based cathode active material for a sodium secondary battery having a high capacity, an excellent lifespan characteristic and a high rate-limiting characteristic and a sodium secondary battery comprising the same. The layered manganese-based cathode active material for a sodium secondary battery according to the present invention comprises a manganese-based oxide having a layered structure, and can be prepared in a porous flower form. The layered manganese-based cathode active material for a sodium secondary battery according to the present invention comprises a manganese-based oxide having a porous flower structure, and the sodium secondary battery has a high capacity, an excellent lifespan characteristic and a high rate-limiting characteristic.

Description

나트륨 이차전지용 망간계 양극활물질 및 이를 포함하는 나트륨 이차전지{Manganese-based Cathode Active Material for Sodium Secondary Batteries and A Sodium Secondary Battery Comprising The same}TECHNICAL FIELD [0001] The present invention relates to a manganese-based cathode active material for a sodium secondary battery, and a sodium secondary battery comprising the same. [0002] Manganese-based cathode active material for a sodium secondary battery,

본 발명은 나트륨 이차전지용 망간계 양극활물질 및 이를 포함하는 나트륨 이차전지에 관한 것으로, 더욱 상세하게는 높은 용량과 우수한 수명 특성 및 높은 율속 특성을 갖는 나트륨 이차전지용 층상형 망간계 양극활물질 및 이를 포함하는 나트륨 이차전지에 관한 것이다.
The present invention relates to a manganese-based cathode active material for a sodium secondary battery and a sodium secondary battery comprising the same. More particularly, the present invention relates to a layered manganese-based cathode active material for a sodium secondary battery having high capacity, excellent lifetime characteristics and high rate- Sodium secondary battery.

현재 리튬이차전지의 사용은 휴대용 전자기기뿐만 아니라 대형 에너지 저장장치 (ESS), 하이브리드 전기자동차 (HEV), 전기자동차 (EV)등의 개발로 활용도가 증가하고 있는 추세이다.Currently, lithium secondary batteries are being used not only for portable electronic devices but also for development of large energy storage devices (ESS), hybrid electric vehicles (HEV), and electric vehicles (EV).

그러나 리튬이차전지의 경우 리튬 매장량의 한계로 경제적 측면에서 대형 전원장치로의 사용에 제한적이다. 따라서 리튬이차전지를 대체할 새로운 에너지 저장장치가 개발되어야 한다. However, in the case of lithium secondary batteries, due to the limitation of lithium reserves, it is limited in terms of economical use to a large power source device. Therefore, new energy storage devices that replace lithium secondary batteries should be developed.

나트륨 이온전지의 전지 시스템은 리튬 이온 전지와 동일하여 기존의 리튬 이온 전지에서 사용되던 연구 기술을 그대로 적용할 수 있기 때문에 리튬 이온전지를 대체할 수 있는 차세대 이차전지로 활용이 상당히 용이할 것으로 예상된다. 또한, 나트륨 이온의 매장량은 지구에서 6번째로 많은 원소로 경제적 가치 또한 우수하다.Since the battery system of the sodium ion battery is the same as that of the lithium ion battery, it can be used as a next-generation secondary battery that can replace the lithium ion battery because the research technology used in the conventional lithium ion battery can be applied as it is . In addition, the reserves of sodium ions are the sixth most abundant element in the earth and are also excellent in economic value.

그러나, 나트륨 이온의 경우 리튬 이온의 이온 반경비보다 대략 70% 크기 때문에 실제적인 합성 및 전기화학 반응의 kinetics 측면에서 단점을 갖고 있어 나트륨 이온의 확산이 용이한 구조가 적합하다.However, in the case of the sodium ion, the ionic radius of the lithium ion is about 70% larger than the ionic radius of the lithium ion, which is disadvantageous in terms of kinetics of the synthetic and electrochemical reactions.

최근, 나트륨 이온전지의 양극소재에서 나트륨 이온 확산이 용이한 층상구조 산화물이 주목 받고 있으며 연구가 활발히 진행되고 있다. In recent years, layered oxides in which sodium ion diffusion is easy to occur in the anode material of a sodium ion battery are attracting attention and researches are actively proceeding.

망간계 산화물의 경우 나트륨의 조성에 따라 결정구조가 층상(layer)구조와 터널(tunnel)구조로 구분되며 결정구조의 차이에 의해서 전기화학 특성에서 차이를 보인다. In the case of the manganese oxide, the crystal structure is classified into a layer structure and a tunnel structure according to the composition of sodium, and the electrochemical characteristics are different due to the difference in crystal structure.

터널구조의 경우 수명특성에 장점이 있지만 용량이 낮아 고용량 에너지소재에 적합하지 않다. 이와 반대로 층상구조의 경우 이론용량이 250 mAh/g정도로 높아 고용량 에너지 소재로 적합하다. 그러나, 층상구조의 경우 구조붕괴로 인한 열화로 수명특성이 나쁘다는 단점이 있다.
The tunnel structure has advantages in lifetime characteristics but it is not suitable for high capacity energy materials because of its low capacity. In contrast, the layered structure has a high theoretical capacity of 250 mAh / g, which is suitable as a high-capacity energy material. However, in the case of the layered structure, there is a disadvantage that the life characteristic is poor due to deterioration due to structural collapse.

한국등록특허 제1440843호Korean Patent No. 1440843 일본공개특허 제1998-134843호Japanese Laid-Open Patent No. 1998-134843

본 발명은 상기 종래 기술의 문제점을 고려하여, 층상구조의 열화현상을 개선하기 위해 MnO6 층간사이에 H2O를 삽입 후 탈리시키는 과정을 통해 층간사이의 간격을 넓혀 줌으로써 나트륨 이온의 확산을 보다 원활하게 하였다.In order to improve the deterioration of the layered structure, in order to improve the deterioration of the layered structure, H 2 O is inserted between the MnO 6 layers and then is desorbed, thereby increasing the distance between the layers. Smoothly.

추가적으로 형태를 flower형태로 제어하여 나트륨 이온의 전도성을 증가시킨다.In addition, the form is controlled in the form of a flower to increase the conductivity of sodium ions.

본 발명자들은 flower 형태를 갖는 층상형 망간계 산화물 제조를 통해 수명특성 및 출력특성이 우수한 전극재료의 제조를 통해 전기화학적 특성을 향상시킬 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.
The present inventors have completed the present invention in consideration of the fact that electrochemical characteristics can be improved through the production of an electrode material having excellent lifetime characteristics and output characteristics through the production of a layered manganese based oxide having a flower shape.

본 발명은 상기한 문제점을 해결하기 위한 것으로, 층상형 구조를 갖는 망간계 산화물을 포함하는 나트륨 이차전지용 층상형 망간계 양극활물질을 제공한다.The present invention provides a layered manganese-based cathode active material for a sodium secondary battery comprising a manganese-based oxide having a layered structure.

상기 망간계 산화물은 NaxMnO2(0.23≤X≤0.4)이 사용될 수 있다.The manganese-based oxide may be Na x MnO 2 (0.23? X? 0.4).

상기 나트륨 이차전지용 층상형 망간계 양극활물질은 Flower 형태로 제조될 수 있다.The layered manganese-based cathode active material for the sodium secondary battery can be produced in the form of a flower.

상기 층상형 구조의 층간 거리는 4.8 ~ 6.0 A이 바람직하다.The interlayer distance of the layered structure is preferably 4.8 to 6.0 A.

또한, 본 발명은 망간 전구체를 용매와 혼합하여 수열합성하는 단계(S1); 상기 S1 단계에서 얻어진 망간계 산화물을 세척하고 진공 하에서 건조하는 단계(S2): 및 상기 건조 후 얻어진 수득물을 열처리 하는 단계(S3);를 포함하는 나트륨 이차전지용 층상형 망간계 양극활물질 제조방법을 제공한다.In addition, the present invention provides a process for producing a manganese precursor, comprising: (S1) mixing hydrothermal synthesis by mixing a manganese precursor with a solvent; A method for producing a layered manganese-based cathode active material for a sodium secondary battery, comprising: (a) a step (S2) of washing the manganese-based oxide obtained in the step (S1) and drying in vacuum; and a step (S3) of heat-treating the obtained product to provide.

상기 층상형 망간계 양극활물질은 Flower 형태로 제조될 수 있다.The layered manganese-based cathode active material may be produced in the form of a flower.

상기 망간 전구체는 Na0 .27MnO2이 사용될 수 있다.The Mn precursor may be a Na 0 .27 MnO 2.

상기 수열합성은 마이크로파를 이용한 수열합성이 사용될 수 있다.The hydrothermal synthesis may be hydrothermal synthesis using microwaves.

상기 용매는 증류수가 사용될 수 있다.Distilled water may be used as the solvent.

상기 망간 전구체는 상기 용매에 2 ~ 15% 부피비로 혼합되는 것이 바람직하다.The manganese precursor is mixed in the solvent in a volume ratio of 2 to 15%.

상기 건조는 50 ~ 100℃에서 6 ~ 48시간 동안 이루어지는 것이 바람직하다.The drying is preferably performed at 50 to 100 ° C for 6 to 48 hours.

상기 열처리는 150 ~ 300℃에서 3 ~ 12시간 동안 이루어지는 것이 바람직하다.The heat treatment is preferably performed at 150 to 300 DEG C for 3 to 12 hours.

또한, 본 발명은 상기 제조방법으로 제조된 나트륨 이차전지용 층상형 망간계 양극활물질을 제공한다.The present invention also provides a layered manganese-based cathode active material for a sodium secondary battery produced by the above process.

또한, 본 발명은 상기 나트륨 이차전지용 층상형 망간계 양극활물질을 포함하는 나트륨 이차전지를 제공한다.
The present invention also provides a sodium secondary battery comprising the layered manganese-based cathode active material for a sodium secondary battery.

본 발명의 나트륨 이차전지용 층상형 망간계 양극활물질은 Flower 구조의 망간계 산화물을 포함함으로써, 나트륨 이차전지의 높은 용량과 우수한 수명 특성 및 높은 율속 특성을 제공할 수 있다.
The layered manganese-based cathode active material for a sodium secondary battery of the present invention includes a manganese-based oxide of a flower structure, thereby providing a high capacity, excellent lifetime characteristics and high rate-limiting characteristics of a sodium secondary battery.

도 1은 제조예 1에서 제조한 flower 형태의 층상형 망간계 산화물의 X선 회절 분석 그래프이다.
도 2는 제조예 1에서 제조한 flower 형태의 층상형 망간계 산화물의 주사전자현미경 분석 사진이다.
도 3은 flower형태의 층상형 망간계 산화물 형태, 결정성 및 격자간의 거리를 분석하기 위하여 투과전자현미경 분석한 사진이다.
도 4는 제조예 1에서 제조한 flower형태의 층상형 망간계 산화물을 양극소재로 사용해 제조된 반쪽 전지를 1.5 ~ 4.3V에서 C/10으로 충방전을 실시하여 측정한 결과이다.
도 5는 제조예 1에서 제조한 flower형태의 층상형 망간계 산화물을 나트륨 이온 전지의 양극소재에 적용하여 종지전압을 2V, 1.5V, 1V로 각각 다르게 하여 C/10로 충방전 결과를 100 사이클 반복한 결과이다.
도 6은 제조예 1에서 제조한 flower형태의 층상형 망간계 산화물을 양극소재로 사용해 제조된 반쪽 전지를 1.5 ~ 4.3V에서 다양한 전류 밀도로 충방전을 실시하여 측정한 결과이다.
1 is an X-ray diffraction analysis graph of a layered manganese-based oxide of the flower type prepared in Production Example 1. FIG.
2 is a scanning electron microscope (SEM) image of the layered manganese-based oxide of the flower type prepared in Production Example 1. Fig.
FIG. 3 is a transmission electron microscopic image of a layered manganese oxide type of flower, crystallinity, and distance between lattices.
FIG. 4 is a result of measurement of a half-cell manufactured using the layered manganese-based oxide of the flower form prepared in Preparation Example 1 as a cathode material by charging / discharging at 1.5 to 4.3 V with C / 10.
FIG. 5 is a graph showing the results of charging / discharging with a C / 10 voltage of 100 V in a case where the layered manganese oxide prepared in Preparation Example 1 was applied to a cathode material of a sodium ion battery, Repeated results.
FIG. 6 is a result of measurement of a half-cell manufactured using the layered manganese oxide of the flower form prepared in Preparation Example 1 as a cathode material by charging and discharging at a current density of 1.5 to 4.3 V at various current densities.

이하, 본 발명을 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 구성 또는 기능에 대한 상세한 설명은 생략할 수 있다.Hereinafter, the present invention will be described in detail. In the following description of the present invention, a detailed description of known configurations and functions will be omitted.

본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다. The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary meanings and should be construed in accordance with the technical meanings and concepts of the present invention.

본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 바람직한 실시예이며, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있다.
The embodiments described in the present specification and the configurations shown in the drawings are preferred embodiments of the present invention and are not intended to represent all of the technical ideas of the present invention and thus various equivalents and modifications Can be.

본 발명의 나트륨 이차전지의 양극활물질은, 층상형 구조를 갖는 망간계 산화물을 포함한다. 이와 같은 층상형 구조를 갖는 망간계 산화물은 이론용량이 250 mAh/g 정도로 우수한 용량 특성을 취할 수 있다.The positive electrode active material of the sodium secondary battery of the present invention includes a manganese-based oxide having a layered structure. The manganese-based oxide having such a layered structure can have an excellent capacity characteristic such as a theoretical capacity of about 250 mAh / g.

상기 망간계 산화물은 NaxMnO2 (0.23≤X≤0.4)이 사용될 수 있다.The manganese-based oxide may be Na x MnO 2 (0.23? X? 0.4).

또한, 상기 나트륨 이차전지용 층상형 망간계 양극활물질은 다공성의 Flower 형태로 제조될 수 있다. 여기서 flower 형태로 제어 양극활물질은 나트륨 이온의 삽입 및 탈리되는 결정면과 전해액의 접촉면적을 넓힘으로써 나트륨 이온의 전도성이 증가되어 출력특성을 향상시킨다. In addition, the layered manganese-based cathode active material for a sodium secondary battery can be produced in the form of a porous flower. Here, the controlled cathode active material in the form of a flower increases the conductivity of the sodium ion by enhancing the contact area of the electrolyte with the intercalation and desorption of the sodium ion, thereby improving the output characteristic.

본 발명의 층상형 구조를 갖는 망간계 산화물을 포함하는 나트륨 이차전지의 양극활물질은 아래의 단계를 포함하는 제조방법에 의해 제조될 수 있다.The cathode active material of the sodium secondary battery comprising the manganese-based oxide having the layered structure of the present invention can be produced by a manufacturing method including the following steps.

(S1) 망간 전구체를 용매와 혼합하여 수열합성하는 단계(S1) a step of hydrothermal synthesis by mixing a manganese precursor with a solvent

(S2) 상기 S1 단계에서 얻어진 망간계 산화물을 세척하고 진공 하에서 건조하는 단계(S2) washing the manganese-based oxide obtained in the step S1 and drying under vacuum

(S3) 상기 건조 후 얻어진 수득물을 열처리 하는 단계
(S3) heat-treating the obtained product after drying

이하, 본 발명의 나트륨 이차전지의 양극활물질의 제조방법을 단계별로 상세히 설명한다.
Hereinafter, a method for producing the positive electrode active material of the sodium secondary battery of the present invention will be described step by step.

먼저, 망간 전구체를 용매와 혼합하여 수열합성(S1) 단계First, the manganese precursor is mixed with a solvent and subjected to hydrothermal synthesis (S1)

상기 수열합성은 마이크로파를 이용한 수열합성이 사용될 수 있다.The hydrothermal synthesis may be hydrothermal synthesis using microwaves.

여기서 마이크로파를 이용한 합성 온도는 180 ~ 240℃에서 3 ~ 12시간이 바람직하며, 상기 합성 온도가 상기 범위의 상한을 초과하는 경우 용기의 변형 또는 입자의 조대화 혹은 결정구조의 변화를 초래하는 문제가 있고, 하한에 미달하는 경우 결정성이 매우 낮거나 합성이 되지 않는 문제가 있어 바람직하지 못하다. 상기 수열합성은 더욱 바람직하게는 220℃에서 6시간 동안 이루어질 수 있다.Here, the synthesis temperature using microwaves is preferably from 180 to 240 ° C for 3 to 12 hours, and when the synthesis temperature exceeds the upper limit of the above range, there is a problem that deformation of the container, coarsening of the particles, And when it is below the lower limit, crystallinity is very low or synthesis is not possible, which is not preferable. The hydrothermal synthesis may more preferably be carried out at 220 DEG C for 6 hours.

상기 용매는 증류수가 사용될 수 있다.Distilled water may be used as the solvent.

여기서 증류수의 양으로 압력을 조절할 수 있다. Here, the pressure can be controlled by the amount of distilled water.

상기 증류수의 양은 상기 수열합성을 위해 설치되는 수열합성 용기의 20 ~ 60%의 부피비로 혼합되는 것이 바람직하며, 더욱 바람직하게는 40%의 부피비로 혼합할 수 있다.The amount of the distilled water is preferably 20 to 60% by volume of the hydrothermal synthesis vessel for the hydrothermal synthesis, more preferably 40% by volume.

용매의 양이 상기 범위의 상한을 초과 또는 하한에 미달하는 경우 용기의 압력조절이 되지 않아 다공성 구조를 제조하기 어려운 문제가 있다.
When the amount of the solvent is less than the upper limit or lower than the upper limit of the above range, the pressure of the container is not controlled and it is difficult to produce the porous structure.

상기 망간 전구체는 상기 용매에 2 ~ 15% 부피비로 혼합되는 것이 바람직하다. 망간 전구체의 혼합비가 상기 범위의 상한을 초과하는 경우 입자의 조대화가 발생되는 문제가 있고, 하한에 미달하는 경우 다공성 구조 형성에 제한을 받게 되는 문제가 있어 바람직하지 못하다.
The manganese precursor is mixed in the solvent in a volume ratio of 2 to 15%. When the mixing ratio of the manganese precursor exceeds the upper limit of the above range, there is a problem of coarsening of the particles, and when the lower limit is not reached, there is a problem that the formation of the porous structure is restricted, which is not preferable.

상기 S1 단계에서 얻어진 망간계 산화물을 세척하고 진공 하에서 건조하는 단계(S2)The step (S2) of washing the manganese-based oxide obtained in the step S1 and drying the manganese-

여기서, 세척은 증류수로 하는 것이 바람직하며 다만, 이에 한정되진 않으며, 통상적으로 세척에 사용되는 용매는 적용 가능하다. Here, the washing is preferably performed using distilled water, but is not limited thereto, and a solvent usually used for washing is applicable.

상기 건조는 50 ~ 100 ℃에서 6 ~ 48시간동안 이루어지는 것이 바람직하다.The drying is preferably performed at 50 to 100 ° C for 6 to 48 hours.

여기서 건조는 세척 후 남아있는 입자 표면의 수분을 제거하는 것으로, 상기 범위의 하한에 미달하는 경우 세척과정 이후에 남아있는 표면의 물이 건조가 되지 않는 문제점이 있으며, 상한을 초과하는 경우 상변화가 발생하는 문제가 있다. Drying removes moisture on the remaining particle surface after washing. If the water content is below the lower limit of the above range, water remaining on the surface after the washing process is not dried. If the upper limit is exceeded, There is a problem that arises.

상기 건조 후 얻어진 수득물을 열처리 하는 단계(S3)A step (S3) of heat-treating the obtained product after drying;

층상형 구조를 갖는 망간계 산화물을 포함하는 나트륨 이차전이용 양극활물질은 구조붕괴로 인한 열화로 수명에 나쁜 영향을 미친다. The sodium secondary transferable positive electrode active material containing a manganese oxide having a layered structure has a bad influence on the life due to deterioration due to the structural collapse.

층상구조의 열화현상을 개선하기 위해 MnO6 층간 사이에 H2O를 삽입한 후 열처리를 통한 탈리시키는 과정을 통해 층간 사이의 간격을 넓혀 줌으로써 나트륨 이온의 확산을 보다 원활하게 할 수 있으며, 연속적인 충전 및 방전이 가능하다.In order to improve the deterioration of the layered structure, H 2 O is interposed between the MnO 6 layers, and then desorption is carried out by heat treatment, so that the diffusion of sodium ions can be more smoothly performed by increasing the interval between the layers, Charging and discharging are possible.

상기 열처리 온도는 150 ~ 300 ℃ 가 바람직하며, 열처리 시간은 3 ~ 12시간이 바람직하다. The heat treatment temperature is preferably 150 to 300 ° C, and the heat treatment time is preferably 3 to 12 hours.

상기 열처리 온도가 상기 범위의 상한을 초과하는 경우 결정구조가 바뀌는 문제가 있고, 하한에 미달하는 경우 MnO6 층간 사이의 물이 완전히 제거되지 않아 전기화학 반응에 나쁜 영향을 미치는 문제가 있어 바람직하지 못하다. When the annealing temperature exceeds the upper limit of the above range, there is a problem that the crystal structure is changed. When the annealing temperature is lower than the lower limit, the water between the MnO 6 layers is not completely removed and the electrochemical reaction is adversely affected. .

또한, 상기 열처리 시간이 상기 범위의 상한을 초과하는 경우 입자의 조대화가 진행 또는 다공성 구조가 붕괴되는 문제가 있고, 하한에 미달하는 경우 MnO6 층간 사이의 물이 완전히 제거되지 않아 전기화학 반응에 나쁜 영향을 미치는 문제가 있어 바람직하지 못하다.
When the heat treatment time exceeds the upper limit of the above range, there is a problem that the coarsening of the particles proceeds or the porous structure collapses. When the lower limit is not reached, water between the MnO 6 layers is not completely removed, It is not desirable because there are problems that have bad influence.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하기로 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명한 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

제조예Manufacturing example 1:  One: flowerflower 형태의 Form 층상형Layered 망간계 산화물을 제조 Manufacture of manganese oxide

먼저, 망간 전구체(Na0 .27MnO2)를 40 ml 증류수에 넣고 혼합하여 마이크로파를 이용한 수열합성 법을 진행 하였다. 이때 용매는 증류수를 단독으로 사용하며, Na0.27MnO2의 농도는 용매 대비 부피비로 6%를 넣어 진행하였다.First, the manganese precursor (Na 0 .27 MnO 2) was performed with the hydrothermal synthesis method using a microwave and placed and mixed in a 40 ml of distilled water. At this time, distilled water alone was used as a solvent, and the concentration of Na 0.27 MnO 2 was 6% by volume as a solvent.

그 후, 상기 제조된 flower형태의 층상형 망간계 산화물을 증류수로 세척하고 60 ℃ 진공오븐에서 24시간 건조 하였다. Then, the flower-shaped layered manganese-based oxide prepared above was washed with distilled water and dried in a vacuum oven at 60 캜 for 24 hours.

상기 제조된 flower형태의 층상형 망간계 산화물은 MnO6층간사이에 존재하는 H2O를 제거하기 위해 170 ℃에서 5시간 동안 하소하여 본원발명의 flower형태의 층상형 망간계 산화물을 완성하였다.
The layered manganese oxide of the flower type was calcined at 170 ° C for 5 hours in order to remove H 2 O present between the MnO 6 layers to complete the layered manganese oxide of the present invention.

실험예Experimental Example 1: X선  1: X-ray 회절diffraction 분석 analysis

제조예 1에서 제조한 flower형태의 층상형 망간계 산화물을 분석하기 위하여, X선 회절 분석을 하여 도 1에 나타냈다.In order to analyze the flower-shaped layered manganese-based oxide prepared in Production Example 1, X-ray diffraction analysis was performed and it is shown in Fig.

도 1에서 볼 수 있는 바와 같이, 제조한 flower형태의 층상형 망간계 산화물의 피크(peak)확인 하였다. MnO6 층간사이에 H2O가 존재할 때 (001)과 (002)는 각각 7.2 A과 3.6 A에서 피크가 확인되며 전지구성 전지구성 시 방해요소인 H2O를 제거하였을 때 (001)과 (002)는 각각 5.6 A과 2.8 A로 피크가 이동하였다. 상기 결과로부터, H2O를 제거하였을 때 MnO6 층간사이의 거리가 감소하였지만 나트륨 이온의 확산에 문제없는 넓은 층간 간격을 나타내고 있다.
As can be seen from Fig. 1, the peaks of the layered manganese-based oxides of the flower type produced were confirmed. When H 2 O exists between MnO 6 layers, (001) and (002) show peaks at 7.2 A and 3.6 A, respectively, and when H 2 O, 002) peaked at 5.6 A and 2.8 A, respectively. From the above results, it can be seen that when the H 2 O is removed, the distance between the MnO 6 layers is reduced, but the interlayer spacing is large enough to prevent diffusion of sodium ions.

실험예Experimental Example 2: 주사전자현미경분석 2: Scanning electron microscope analysis

제조예 1에서 제조한 flower형태의 층상형 망간계 산화물 형태 및 표면을 분석하기 위하여 주사전자현미경 분석을 하여 도 2에 나타냈다. 상기 결과로부터, 본원발명의 flower형태의 층상형 망간계 산화물 형성을 확인할 수 있다.
FIG. 2 is a scanning electron microscope (SEM) image for analyzing the morphology and surface of the layered manganese oxide prepared in Preparation Example 1. From the above results, it can be confirmed that the layered manganese-based oxide of the present invention of the present invention is formed.

실험예Experimental Example 3: 투과전자현미경분석 3: Transmission electron microscopy analysis

제조예 1에서 제조한 flower형태의 층상형 망간계 산화물 형태, 결정성 및 격자간의 거리를 분석하기 위하여 투과전자현미경 분석을 하여 도 3에 나타냈다.FIG. 3 shows a transmission electron microscope analysis of the flower-shaped layered manganese-based oxide forms, crystallinity, and lattice distances produced in Production Example 1.

flower형태의 층상형 망간계 산화물의 H2O를 제거하였을 때 MnO6 층간사이 거리는 5.55 A로 X선 회절 분석과 동일한 결과를 나타내고 있고 평면(MnO6)층은 다결정 형태로 무작위 배열을 하고 있는 것을 확인하였다.When the H 2 O of the layered manganese oxide in the form of a flower was removed, the distance between the MnO 6 layers was 5.55 A, which was the same as that of the X-ray diffraction analysis, and the plane (MnO 6 ) layer was randomly arranged in a polycrystalline form Respectively.

상기 결과로부터, 본원발명의 flower형태의 층상형 망간계 산화물 형성 및 격자간의 거리를 확인하였고 이를 통해 나트륨전지에 이용되었을 때 나트륨의 확산경로를 예측할 수 있다.
From the above results, the formation of the layered manganese oxide in the form of a flower of the present invention and the distance between the lattices were confirmed, and the diffusion path of sodium when used in a sodium cell can be predicted.

실험예Experimental Example 4:  4: 충방전Charging and discharging 곡선 및 미분용량 곡선 분석  Curve and differential capacity curve analysis

제조예 1에서 제조한 flower형태의 층상형 망간계 산화물을 양극소재로 사용해 제조된 반쪽 전지를 1.5 ~ 4.3V에서 C/10으로 충방전을 실시하여, 그 충방전 특성의 측정 결과를 도 4에 나타내었다. 도 4에서 나타난 바와 같이, 충방전이 진행되는 동안 결정구조의 변화가 없이 가역적인 산화/환원 반응을 보이고 있다.
A half-cell manufactured using the layered manganese oxide of the flower form prepared in Production Example 1 as a cathode material was charged / discharged at 1.5 to 4.3 V with C / 10, and the measurement result of the charge- Respectively. As shown in FIG. 4, there is a reversible oxidation / reduction reaction without changing the crystal structure during charging / discharging.

비교예Comparative Example 1: 나트륨 이차전지의 수명특성 분석 1: Analysis of life characteristics of sodium secondary battery

도 5를 참조하면, flower형태의 층상형 망간계 산화물을 나트륨 이온 전지의 양극소재에 적용하여 종지전압을 2V, 1.5V, 1V로 각각 다르게 하여 C/10로 충방전 결과를 100 사이클 반복한 결과를 나타내었다. 종지전압을 다르게 한 결과 2V, 1.5V, 1V의 경우 100 사이클 이후의 유지율은 88%, 76%, 70%로 각각 나타났다. Referring to FIG. 5, a layered manganese oxide oxide in a flower form was applied to a cathode material of a sodium ion battery, and the charge / discharge cycle was repeated 100 times with C / 10 by setting the end voltages to 2V, 1.5V, Respectively. As a result, the retention rates after 100 cycles of 2V, 1.5V and 1V were 88%, 76% and 70%, respectively.

이러한 결과는 수명특성이 향상된 것을 확인할 수 있을 뿐만 아니라 종지전압을 다르게 하여 나트륨의 삽입/탈리되는 양을 비교하였을 때 나트륨 조성에 따른 구조변화 정도를 예측할 수 있다.
These results show that the lifetime characteristics are improved and the degree of the structural change according to the sodium composition can be predicted by comparing the amount of sodium insertion / desorption by changing the terminal voltage.

실험예Experimental Example 5: 나트륨 이차전지의  5: Sodium secondary battery 율속특성Rate characteristics 분석  analysis

제조예 1에서 제조한 flower형태의 층상형 망간계 산화물을 양극소재로 사용해 제조된 반쪽 전지를 1.5 ~ 4.3V에서 다양한 전류 밀도로 (0.1C, 0.2C, 0.5C, 1C, 3C, 5C) 충방전을 실시하여, 그 충방전 특성의 측정 결과를 도 6에 나타내었다. 도 6에서 볼 수 있는 바와 같이, 본원발명의 flower형태의 층상형 망간계 산화물은 높은 전류밀도인 5C에서 65 mAh/g 정도로 유지하는 높은 출력특성을 보이고 있다. A half cell prepared using the layered manganese oxide of the flower form prepared in Preparation Example 1 as a cathode material was charged at 1.5 to 4.3 V at various current densities (0.1 C, 0.2 C, 0.5 C, 1 C, 3 C, 5 C) Discharge is carried out, and the results of the measurement of the charge-discharge characteristics are shown in Fig. As can be seen from FIG. 6, the layered manganese-based oxide of the present invention of the present invention exhibits a high output characteristic which is maintained at about 65 mAh / g at a high current density of 5 C.

상기 결과로부터, 본원발명의 flower형태의 층상형 망간계 산화물은 H2O의 삽입/탈리를 이용하여 MnO6 층간거리를 넓힘으로써 나트륨 이온의 확산이 용이하여 수명특성에 큰 장점을 보이고 있으며 형태를 flower로 제어함으로써 나트륨 이온의 삽입/탈리되는 결정면과 전해액의 접촉면적을 넓힘으로써 출력특성이 향상되었다.
From the above results, it can be seen that the layered manganese-based oxide of the present invention has a great advantage in the lifetime characteristics by facilitating diffusion of sodium ions by increasing the distance between MnO 6 layers by using H 2 O insertion / The output characteristics were improved by increasing the contact area between the crystal surface where the sodium ion was inserted / desorbed and the electrolyte by controlling with a flower.

이상과 같이, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. As described above, preferred embodiments of the present invention have been disclosed in the present specification and drawings, and although specific terms have been used, they have been used only in a general sense to easily describe the technical contents of the present invention and to facilitate understanding of the invention , And are not intended to limit the scope of the present invention.

여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.It is to be understood by those skilled in the art that other modifications based on the technical idea of the present invention are possible in addition to the embodiments disclosed herein.

Claims (16)

층상형 구조를 갖는 망간계 산화물을 포함하는 나트륨 이차전지용 층상형 망간계 양극활물질.
A layered manganese-based cathode active material for a sodium secondary battery comprising a manganese-based oxide having a layered structure.
제1항에 있어서,
상기 망간계 산화물은 NaxMnO2(0.23≤X≤0.4)인 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질.
The method according to claim 1,
Wherein the manganese-based oxide is Na x MnO 2 (0.23? X? 0.4).
제1항에 있어서,
다공성의 Flower 형태로 제조된 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질.
The method according to claim 1,
A layered manganese-based cathode active material for a sodium secondary battery, which is produced in the form of a porous flower.
제1항에 있어서,
상기 층상형 구조의 층간 거리는 4.8 ~ 6.0 A인 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질.
The method according to claim 1,
Wherein the interlayer distance of the layered structure is 4.8 to 6.0 A. 5. The layered manganese-based cathode active material for a sodium secondary battery according to claim 1,
망간 전구체를 용매와 혼합하여 수열합성하는 단계(S1);
상기 S1 단계에서 얻어진 망간계 산화물을 세척하고 진공 하에서 건조하는 단계(S2): 및
상기 건조 후 얻어진 수득물을 열처리 하는 단계(S3);를 포함하는 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질 제조방법.
A step (S1) of hydrothermally synthesizing a manganese precursor with a solvent;
(S2) washing the manganese-based oxide obtained in the step S1 and drying it under vacuum: and
And a step (S3) of heat-treating the obtained product after the drying.
제5항에 있어서,
상기 층상형 망간계 양극활물질은 다공성의 Flower 형태로 제조된 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질.
6. The method of claim 5,
Wherein the layered manganese-based cathode active material is produced in the form of a porous flower.
제5항에 있어서,
상기 망간 전구체는 Na0 .27MnO2인 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질 제조방법.
6. The method of claim 5,
Wherein the manganese precursor is sodium secondary battery manufacturing method layered manganese-based positive active material, characterized in that Na 0 .27 MnO 2.
제5항에 있어서,
상기 수열합성은 마이크로파를 이용한 수열합성인 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질 제조방법.
6. The method of claim 5,
Wherein the hydrothermal synthesis is hydrothermal synthesis using a microwave. ≪ RTI ID = 0.0 > 11. < / RTI >
제8항에 있어서,
상기 마이크로파를 이용한 수열합성은 180 ~ 240℃에서 3 ~ 12시간 동안 이루어지는 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질 제조방법.
9. The method of claim 8,
Wherein the hydrothermal synthesis using the microwave is performed at 180 to 240 ° C for 3 to 12 hours. The method for producing a layered manganese-based cathode active material for a sodium secondary battery according to claim 1,
제5항에 있어서,
상기 용매는 증류수인 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질 제조방법.
6. The method of claim 5,
Wherein the solvent is distilled water. The method for producing a layered manganese-based cathode active material for a sodium secondary battery according to claim 1, wherein the solvent is distilled water.
제9항에 있어서,
상기 증류수는 20 ~ 60 % 부피비로 혼합되는 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질 제조방법.
10. The method of claim 9,
Wherein the distilled water is mixed in a volume ratio of 20 to 60%. The method for producing a layered manganese-based cathode active material for a sodium secondary battery according to claim 1,
제5항에 있어서,
상기 망간 전구체는 상기 용매에 2 ~ 15% 부피비로 혼합되는 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질 제조방법.
6. The method of claim 5,
Wherein the manganese precursor is mixed with the solvent in a volume ratio of 2 to 15% by volume.
제5항에 있어서,
상기 건조는 50 ~ 100℃에서 6 ~ 48시간 동안 이루어지는 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질 제조방법.
6. The method of claim 5,
Wherein the drying is performed at 50 to 100 ° C for 6 to 48 hours. The method for manufacturing a layered manganese-based cathode active material for a sodium secondary battery according to claim 1,
제5항에 있어서,
상기 열처리는 150 ~ 300℃에서 3 ~ 12시간 동안 이루어지는 것을 특징으로 하는 나트륨 이차전지용 층상형 망간계 양극활물질 제조방법.
6. The method of claim 5,
Wherein the heat treatment is performed at 150 to 300 ° C for 3 to 12 hours. The method for manufacturing a layered manganese-based cathode active material for a sodium secondary battery according to claim 1,
제5항 내지 제14항 중 어느 한 항의 제조방법으로 제조된 나트륨 이차전지용 층상형 망간계 양극활물질.
A layered manganese-based cathode active material for a sodium secondary battery produced by the method of any one of claims 5 to 14.
제1항 내지 제4항 중 어느 한 항의 층상형 망간계 양극활물질을 포함하는 나트륨 이차전지.A sodium secondary battery comprising the layered manganese-based cathode active material according to any one of claims 1 to 4.
KR1020140170618A 2014-12-02 2014-12-02 Manganese-based Cathode Active Material for Sodium Secondary Batteries and A Sodium Secondary Battery Comprising The same KR20160066638A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140170618A KR20160066638A (en) 2014-12-02 2014-12-02 Manganese-based Cathode Active Material for Sodium Secondary Batteries and A Sodium Secondary Battery Comprising The same
PCT/KR2015/010490 WO2016088997A1 (en) 2014-12-02 2015-10-05 Manganese-based cathode active material for sodium secondary battery, and sodium secondary battery containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140170618A KR20160066638A (en) 2014-12-02 2014-12-02 Manganese-based Cathode Active Material for Sodium Secondary Batteries and A Sodium Secondary Battery Comprising The same

Publications (1)

Publication Number Publication Date
KR20160066638A true KR20160066638A (en) 2016-06-13

Family

ID=56091910

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140170618A KR20160066638A (en) 2014-12-02 2014-12-02 Manganese-based Cathode Active Material for Sodium Secondary Batteries and A Sodium Secondary Battery Comprising The same

Country Status (2)

Country Link
KR (1) KR20160066638A (en)
WO (1) WO2016088997A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022831A1 (en) * 2018-07-27 2020-01-30 동국대학교 산학협력단 Cathode active material, cathode comprising same, and secondary battery
KR20200083825A (en) 2018-12-31 2020-07-09 동국대학교 산학협력단 Cathode active material having zinc in sodium atomic layer, preparation method thereof and the sodium secondary battery comprising the same
KR20210118684A (en) 2020-03-23 2021-10-01 한양대학교 산학협력단 Sodium metal oxide-coated cathode active material and the sodium secondary battery comprising the same
KR20230111724A (en) 2022-01-19 2023-07-26 한양대학교 산학협력단 Positive active material having heteroatom for sodium secondary battery and the sodium secondary battery comprising the same
KR20230111725A (en) 2022-01-19 2023-07-26 한양대학교 산학협력단 Positive active material for sodium secondary battery and the sodium secondary battery comprising the same
KR20230152277A (en) 2022-04-27 2023-11-03 울산과학기술원 Sodium secondary battery having improved capacity and cyclability

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346329B (en) * 2018-10-15 2020-02-18 吉首大学 Water system sodium ion hybrid capacitor and preparation method thereof
CN110342588A (en) * 2019-07-23 2019-10-18 上海应用技术大学 A kind of ternary cathode material of lithium ion battery and preparation method thereof
CN114447300B (en) * 2022-01-18 2023-03-10 中国科学技术大学 Preparation method of sodium ion battery positive electrode material with tunnel phase and lamellar phase composite structure, prepared material and application thereof
CN115367804B (en) * 2022-09-23 2024-04-16 东莞理工学院 Preparation method of air-stable manganese-based sodium ion battery positive electrode material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134843A (en) 1996-10-31 1998-05-22 Mitsubishi Heavy Ind Ltd Sodium secondary battery
KR101440843B1 (en) 2013-02-28 2014-09-23 한국과학기술원 Metal oxide coated molybdenum sulfide electrode material for sodium rechargeable batteries and fabrication method for preparing the same, and sodium rechargeable batteries using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748406B1 (en) * 2009-08-07 2017-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method for positive electrode active material
JP5829091B2 (en) * 2011-10-12 2015-12-09 学校法人東京理科大学 Sodium secondary battery electrode mixture, sodium secondary battery electrode and sodium secondary battery
KR20140109601A (en) * 2013-03-06 2014-09-16 한국과학기술원 3-D Nanostructured Multi Component Metal Carbonate Precursor for Rechargeable Batteries and Fabrication Method for Preparing the Same, and Rechargeable Batteries Using the Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134843A (en) 1996-10-31 1998-05-22 Mitsubishi Heavy Ind Ltd Sodium secondary battery
KR101440843B1 (en) 2013-02-28 2014-09-23 한국과학기술원 Metal oxide coated molybdenum sulfide electrode material for sodium rechargeable batteries and fabrication method for preparing the same, and sodium rechargeable batteries using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022831A1 (en) * 2018-07-27 2020-01-30 동국대학교 산학협력단 Cathode active material, cathode comprising same, and secondary battery
US11888157B2 (en) 2018-07-27 2024-01-30 Korea University Research And Business Foundation Cathode active material, cathode comprising same, and secondary battery
KR20200083825A (en) 2018-12-31 2020-07-09 동국대학교 산학협력단 Cathode active material having zinc in sodium atomic layer, preparation method thereof and the sodium secondary battery comprising the same
KR20210118684A (en) 2020-03-23 2021-10-01 한양대학교 산학협력단 Sodium metal oxide-coated cathode active material and the sodium secondary battery comprising the same
KR20230111724A (en) 2022-01-19 2023-07-26 한양대학교 산학협력단 Positive active material having heteroatom for sodium secondary battery and the sodium secondary battery comprising the same
KR20230111725A (en) 2022-01-19 2023-07-26 한양대학교 산학협력단 Positive active material for sodium secondary battery and the sodium secondary battery comprising the same
KR20230152277A (en) 2022-04-27 2023-11-03 울산과학기술원 Sodium secondary battery having improved capacity and cyclability

Also Published As

Publication number Publication date
WO2016088997A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
KR20160066638A (en) Manganese-based Cathode Active Material for Sodium Secondary Batteries and A Sodium Secondary Battery Comprising The same
US11183692B2 (en) Production of a layered lithium-manganese-nickel-cobalt oxide material
Kang et al. Copper substituted P2-type Na 0.67 Cu x Mn 1− x O 2: a stable high-power sodium-ion battery cathode
Lu et al. Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route
Shi et al. Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries
KR101875950B1 (en) Manufacturing method for anode active material of lithium secondary battery comprising carbon composite nano particle with silicon porosity, anode active material of lithium secondary battery manufactured by the same, and lithium secondary battery comprising the same
KR101411226B1 (en) Lithium manganese oxide positive active material for lithium ion secondary battery and lithium ion secondary battery including the same
KR101810386B1 (en) Reduced graphene oxide and core-shell nanoparticle composite, and hybrid capacitor comprising the same
Li et al. Effects of fluorine substitution on the electrochemical performance of layered Li-excess nickel manganese oxides cathode materials for lithium-ion batteries
KR20160127887A (en) Preparation method for surface treated lithium Cobalt oxide and using for lithium secondary battery
Ye et al. Ni-induced stepwise capacity increase in Ni-poor Li-rich cathode materials for high performance lithium ion batteries
CN109638278B (en) Sodium ion battery positive electrode material, preparation method thereof and sodium ion battery
Chen et al. Atomically ordered and epitaxially grown surface structure in core-shell NCA/NiAl2O4 enabling high voltage cyclic stability for cathode application
Xu et al. Understanding the electrochemical superiority of 0.6 Li [Li1/3Mn2/3] O2-0.4 Li [Ni1/3Co1/3Mn1/3] O2 nanofibers as cathode material for lithium ion batteries
Zhang Synthesis and Characterization of LiNi0. 7-x Mgx Co0. 3 O2 (0... 4; x... 4; 0.1) Cathode Materials for Lithium-Ion Batteries Prepared by a Sol-Gel Method
KR101295974B1 (en) Method for preparing lithium manganese oxide positive active material for lithium ion secondary battery, positive active material prepared thereby, and lithium ion secondary battery including the same
US20160072128A1 (en) Manganese hexacyanomanganate as a high-capacity positive electrode for rechargeable batteries
KR20170116095A (en) Coated sulfur particles electrode and method
Xu et al. Synthesis of sodium manganese oxides with tailored multi-morphologies and their application in lithium/sodium ion batteries
US10640391B2 (en) LTO coated LRMO cathode and synthesis
CN110729481A (en) Lithium ion battery negative active material MnxFe1-xC2O4Synthetic method and application
Zhang et al. Synthesis and Characterization of LiNi 1/3 Co 1/3 Mn 1/3 O 2− x Cl x as Cathode Materials for Lithium Ion Batteries at 55° C
KR20160123406A (en) Positive active material for lithium secondary battery and manufacturing method thereof
KR20200036324A (en) Method for preparing cathode active material for potassium ion secondary battery, positive electrode prepared thereby and potassium ion secondary battery containing the same
Ge et al. Advanced charge performance of pristine Li4Ti5O12 spinel for power lithium-ion battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
E801 Decision on dismissal of amendment
E902 Notification of reason for refusal