KR20160043862A - Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same - Google Patents

Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same Download PDF

Info

Publication number
KR20160043862A
KR20160043862A KR1020140138605A KR20140138605A KR20160043862A KR 20160043862 A KR20160043862 A KR 20160043862A KR 1020140138605 A KR1020140138605 A KR 1020140138605A KR 20140138605 A KR20140138605 A KR 20140138605A KR 20160043862 A KR20160043862 A KR 20160043862A
Authority
KR
South Korea
Prior art keywords
active material
lithium
secondary battery
lithium secondary
positive electrode
Prior art date
Application number
KR1020140138605A
Other languages
Korean (ko)
Inventor
고형신
최승우
목덕균
김재범
Original Assignee
주식회사 포스코이에스엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코이에스엠 filed Critical 주식회사 포스코이에스엠
Priority to KR1020140138605A priority Critical patent/KR20160043862A/en
Publication of KR20160043862A publication Critical patent/KR20160043862A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a manufacturing method of a positive electrode active material for a lithium secondary battery, and to a positive electrode active material for a lithium secondary battery manufactured thereby. More specifically, the manufacturing method of a positive electrode active material for a lithium secondary battery can manufacture a particle of which crystallinity is high enough, wherein the inside of a secondary particle is porous, by wet-blending a positive electrode active material precursor manufactured by a co-precipitation reaction with a lithium compound and then spray-drying the same. The manufacturing method includes the following steps: manufacturing a co-precipitation compound by co-precipitating a metallic salt aqueous solution, a chelating agent, and an alkaline aqueous solution; manufacturing an active material precursor by drying or thermally processing the co-precipitation compound; and manufacturing slurry by blending the active material precursor with lithium salts and then putting the same into a solvent; pulverizing the slurry; and spray-drying the pulverized slurry.

Description

리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질{MANUFACURING METHOD OF CATHODE ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE BATTERY, AND CATHODE ACTIVE MATERIAL MADE BY THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery, and a positive electrode active material for a lithium secondary battery,

본 발명은 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 공침 반응에 의하여 제조된 양극활물질 전구체를 리튬 화합물과 습식 혼합 후 분무 건조함으로써 충분히 결정성이 높은 것으로 하면서도 이차 입자 내가 다공질인 입자를 제조할 수 있는 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것이다.
The present invention relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery produced by the method and more particularly to a cathode active material precursor prepared by coprecipitation reaction by wet mixing with a lithium compound, The present invention also relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery produced by the method.

리튬 이차 전지는, 에너지 밀도 및 출력 밀도 등이 우수하고, 소형, 경량화에 유효하기 때문에, 노트북 컴퓨터, 휴대전화 및 핸디 비디오 카메라 등의 휴대 기기의 전원으로서 그 수요는 급격한 성장을 나타내고 있다. 리튬 이차 전지는 또, 전기 자동차나 전력의 로드 레벨링 등의 전원으로서도 주목되고 있으며, 최근에는 하이브리드 전기 자동차용 전원으로서의 수요가 급속히 확대되고 있다. 특히 전기 자동차 용도에 있어서는, 저비용, 안전성, 수명 (특히 고온하), 부하 특성이 우수한 것이 필요하여, 재료면에서의 개량이 요망되고 있다.
Lithium secondary batteries are excellent in energy density and output density, and are effective in reducing the size and weight. Therefore, the demand for lithium secondary batteries as a power source for portable devices such as notebook computers, cell phones, and handy video cameras is rapidly growing. Lithium secondary batteries are also attracting attention as electric power sources such as electric vehicles and load leveling of electric power, and recently, demand as a power source for hybrid electric vehicles is rapidly expanding. Particularly, in the use of electric vehicles, it is required to have a low cost, a safety, a long lifetime (especially at a high temperature), and an excellent load characteristic.

리튬 이차 전지를 구성하는 재료 중, 정극 활물질 재료로는, 리튬 이온을 탈리·삽입 가능한 기능을 갖는 물질을 사용할 수 있다. 이들 정극 활물질 재료는 여러 가지가 있으며, 각각 특징을 가지고 있다. 또, 성능 개선을 향한 공통 과제로서 부하 특성 향상을 들 수 있어, 재료 면에서의 개량이 강하게 요망되고 있다.Of the materials constituting the lithium secondary battery, as the positive electrode active material, a material having a function capable of separating and inserting lithium ions can be used. These positive electrode active material materials are various and each has characteristics. In addition, as a common problem for improving the performance, improvement of the load characteristics can be cited, and improvements in terms of materials are strongly desired.

또한, 저비용, 안전성, 수명 (특히 고온하) 도 우수한, 성능 밸런스가 양호한 재료가 요구되고 있다Further, there is a demand for a material which is low in cost, safe, excellent in life (particularly at high temperature) and good in performance balance

현재, 리튬 이차 전지용의 정극 활물질 재료로는, 스피넬 구조를 갖는 리튬망간계 복합 산화물, 층상 리튬 니켈계 복합 산화물, 층상 리튬 코발트계 복합 산화물 등이 실용화되고 있다. 이들 리튬 함유 복합 산화물을 사용한 리튬 이차 전지는, 모두 특성면에서 이점과 결점을 갖는다. 즉, 스피넬 구조를 갖는 리튬망간계 복합 산화물은, 저렴하고 합성이 비교적 용이하고, 전지로 했을 때의 안전성이 우수한 한편, 용량이 낮고, 고온 특성(사이클, 보존) 이 열등하다. 층상 리튬 니켈계 복합 산화물은, 용량이 높고, 고온 특성이 우수한 반면, 합성이 어렵고, 전지로 했을 때의 안전성이 떨어지고, 보관에도 주의를 요하는 등의 결점을 안고 있다. 층상 리튬 코발트계 복합 산화물은, 합성이 용이하고 전지 성능 밸런스가 우수하기 때문에, 휴대 기기용 전원으로서 널리 사용되고 있지만, 안전성이 불충분한 점이나 고비용인 점이 큰 결점으로 되어 있다.At present, as a positive electrode active material for a lithium secondary battery, a lithium manganese composite oxide having a spinel structure, a layered lithium nickel composite oxide, a layered lithium cobalt composite oxide and the like are put to practical use. The lithium secondary batteries using these lithium-containing complex oxides all have advantages and disadvantages in terms of properties. That is, the lithium manganese-based complex oxide having a spinel structure is inexpensive and relatively easy to synthesize, has excellent safety when used as a battery, has a low capacity and is inferior in high-temperature characteristics (cycle, storage). The layered lithium-nickel composite oxide is disadvantageous in that it has a high capacity and high temperature characteristics, but is difficult to synthesize, has poor safety when used as a battery, and requires care in storage. Although the layered lithium-cobalt composite oxide is widely used as a power source for portable devices because of its ease of synthesis and excellent battery performance balance, it has a drawback of being insufficient in safety and costly.

층상 리튬 코발트계 복합 산화물에 있어서, 저비용화, 고전압화, 및 안전성의 정도는, 조성비에 따라 변화되기 때문에, 추가적인 저비용화, 보다 높은 상한 전압을 설정한 사용, 보다 높은 안전성의 요구에 대해서는, 니켈의 함량을 높이거나, 코발트 비율을 저감시키거나 하는 등, 한정된 조성 범위의 것을 선택하여 사용할 필요가 있다. In the layered lithium-cobalt composite oxide, since the cost, the degree of safety, and the degree of safety vary depending on the composition ratio, the requirement for further low cost, higher use of the upper limit voltage, It is necessary to select and use a composition having a limited composition range, such as increasing the content of cobalt or decreasing the cobalt ratio.

그러나, 이와 같은 조성 범위의 리튬니켈망간코발트계 복합 산화물을 정극 재료로서 사용한 리튬 이차 전지는, 레이트·출력 특성과 같은 부하 특성이나 저온 출력 특성이 저하되기 때문에, 실용화에 있어서는 추가적인 개량이 필요했다.
However, the lithium secondary battery using the lithium nickel manganese cobalt composite oxide having such a composition range as the positive electrode material has a problem that the load characteristics such as the rate and output characteristics and the low-temperature output characteristics are lowered, and further improvement is required in practical use.

미국 특허 제5393622호 공보U.S. Patent No. 5393622

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 레이트·출력 특성과 같은 부하 특성 향상이라는 과제를 해결하기 위해서 충분히 결정성이 높은 것으로 하면서도 이차 입자 내부가 다공질인 입자를 얻을 수 있는 새로운 제조 방법을 제공하는 것을 목적으로 한다. Disclosure of the Invention In order to solve the problems of the conventional art as described above, the present invention has been made to solve the above-mentioned problems of improving load characteristics such as rate and output characteristics, and to provide a new manufacturing method And to provide the above objects.

본 발명은 또한 본 발명의 제조 방법에 의하여 제조되는 활물질 및 이를 포함하는 전지를 제공하는 것을 목적으로 한다.
It is another object of the present invention to provide an active material produced by the production method of the present invention and a battery including the same.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

금속염 수용액, 킬레이팅제, 및 염기성 수용액을 공침시켜 공침 화합물을 제조하는 단계;A metal salt aqueous solution, a chelating agent, and a basic aqueous solution to prepare a coprecipitation compound;

상기 공침 화합물을 건조 또는 열처리하여 활물질 전구체를 제조하는 단계;Drying or heat-treating the coprecipitated compound to prepare an active material precursor;

상기 활물질 전구체를 리튬염과 혼합하여 용매에 넣고 슬러리를 제조하는 단계; Mixing the active material precursor with a lithium salt and putting the active material precursor in a solvent to prepare a slurry;

상기 슬러리를 분쇄하는 단계; 및 Crushing the slurry; And

상기 분쇄된 슬러리를 분무건조하는 단계; 를 포함하는 아래 화학식 1로 표시되는 리튬 이차 전지용 양극활물질의 제조 방법을 제공한다. Spray drying the pulverized slurry; Wherein the positive active material is represented by the following general formula (1).

[화학식 1] LiaNixCoyMnzM1 -x-y- zO2 Qδ [Chemical Formula 1] Li a Ni x Co y Mn z M z O 2 1 -xy- Q δ

(상기 화학식 1에서, 상기 M은 Mg, Al, B, Ca, Na, K, Sr, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 원소이고, 상기 Q는 할로겐 원소 또는 S이고, 0.95≤a≤1.2, 0.05≤x≤0.9, 0.01≤y≤0.5, 0.005≤z≤0.5, 0.8≤x+y+z≤1.05, 0≤δ≤0.1이다)(Wherein M is at least one element selected from the group consisting of Mg, Al, B, Ca, Na, K, Sr, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, And Q is a halogen element or S, 0.95? A? 1.2, 0.05? X? 0.9, 0.01? Y? 0.5, 0.005? Z? 0.5, 0.8? x + y + z? 1.05, 0??? 0.1)

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 금속염 수용액은 니켈, 코발트, 망간, 및 선택적으로 금속(M)(여기서, M은 Mg, Al, B, Ca, Na, K, Sr, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 원소이다)을 포함하는 금속염을 함유하고, 상기 금속염 수용액은 농도가 1 M 내지 3 M인 것을 특징으로 한다. In the method for producing a positive electrode active material for a lithium secondary battery according to the present invention, the metal salt aqueous solution may be at least one selected from the group consisting of nickel, cobalt, manganese and optionally a metal (M), wherein M is Mg, Al, B, Ca, , And at least one element selected from the group consisting of Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, and combinations thereof. , And the metal salt aqueous solution has a concentration of 1 M to 3 M.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 킬레이팅제는 암모니아 수용액, 황산 암모늄 수용액, 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 한다. In the method for producing a cathode active material for a lithium secondary battery according to the present invention, the chelating agent is any one selected from the group consisting of an aqueous ammonia solution, an aqueous ammonium sulfate solution, and a mixture thereof.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 킬레이팅제와 금속염 수용액의 몰 비는 0.2 내지 0.5 : 1인 것을 특징으로 한다. In the method for producing a cathode active material for a lithium secondary battery according to the present invention, the molar ratio of the chelating agent to the aqueous metal salt solution is 0.2 to 0.5: 1.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 염기성 수용액은 NaOH, KOH, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 한다. In the method for producing a cathode active material for a lithium secondary battery according to the present invention, the basic aqueous solution is any one selected from the group consisting of NaOH, KOH, and combinations thereof.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 리튬염은 리튬 나이트레이트, 리튬 아세테이트, 리튬 카보네이트, 리튬 하이드록사이드, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 한다. In the method for producing a positive electrode active material for a lithium secondary battery according to the present invention, the lithium salt is any one selected from the group consisting of lithium nitrate, lithium acetate, lithium carbonate, lithium hydroxide, and combinations thereof do.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 전구체와 리튬염 혼합 슬러리를 0.3㎛ 미만의 평균입자 직경을 갖는 입자를 함유할 때까지 분쇄하는 것을 특징으로 한다. In the method for producing a cathode active material for a lithium secondary battery according to the present invention, the precursor and the lithium salt mixed slurry are pulverized until they contain particles having an average particle diameter of less than 0.3 mu m.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 활물질 전구체와 리튬염의 혼합물의 소성은 700 내지 1100℃에서 이루어지는 것을 특징으로 한다. In the method for producing a cathode active material for a lithium secondary battery according to the present invention, the mixture of the precursor of the active material and the lithium salt is calcined at 700 to 1100 ° C.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 분무 건조시 분위기 온도가 120~200℃ 이고, 분무 압력이 1.5~3 bar, 고액비 5:5~3:7 (중량비)인 것을 특징으로 한다. In the method for producing a cathode active material for a lithium secondary battery according to the present invention, it is preferable that the spray drying has an atmosphere temperature of 120 to 200 ° C, a spray pressure of 1.5 to 3 bar, and a solid ratio of 5: 5 to 3: 7 .

본 발명은 또한, 본 발명에 의하여 리튬 이차 전지용 양극 활물질을 제공한다. The present invention also provides a cathode active material for a lithium secondary battery according to the present invention.

본 발명에 의한 리튬 이차 전지용 양극 활물질의 비표면적은 1.0㎡/g 이상인 것을 특징으로 한다. The positive electrode active material for a lithium secondary battery according to the present invention has a specific surface area of 1.0 m 2 / g or more.

본 발명은 또한, 리튬을 흡장ㆍ방출할 수 있는 음극, 리튬염을 함유하는 비수전해질 및 본 발명에 의하여 제조된 리튬 이차 전지용 양극 활물질을 포함한 양극을 구비한 것을 특징으로 하는 리튬 이차전지를 제공한다.
The present invention also provides a lithium secondary battery comprising a negative electrode including a negative electrode capable of intercalating and deintercalating lithium, a nonaqueous electrolyte containing a lithium salt, and a positive electrode active material for a lithium secondary battery produced by the present invention .

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법은 공침 반응에 의하여 제조된 양극활물질 전구체를 리튬 화합물과 습식 혼합 후 분무 건조함으로써 충분히 결정성이 높으면서도 이차 입자 내부가 다공질인 입자를 제조할 수 있고, 이에 따라 레이트·출력 특성과 같은 부하 특성이나 저온 출력 특성이 크게 개선되는 효과를 나타낸다.
The method for producing a cathode active material for a lithium secondary battery according to the present invention can produce particles having a sufficiently high crystallinity and porous inside the secondary particles by wet mixing the precursor of the cathode active material prepared by the coprecipitation reaction with a lithium compound, , Thereby exhibiting the effect of greatly improving the load characteristics such as the rate and output characteristics and the low-temperature output characteristics.

도 1은 본 발명의 일 실시예 및 비교예에서 제조된 활물질의 SEM 사진을 측정한 결과이다.
도 2는 본 발명의 일 실시예 및 비교예에서 제조된 활물질 단면의 SEM 사진을 측정한 결과이다.
도 3 내지 도 5 는 본 발명의 일 실시예 및 비교예에서 제조된 활물질을 포함하는 전지의 전지 특성을 측정한 결과이다.
FIG. 1 is a SEM photograph of the active material prepared in one embodiment of the present invention and a comparative example.
FIG. 2 shows SEM photographs of cross-sections of the active material prepared in Example and Comparative Example of the present invention.
FIGS. 3 to 5 are the results of measuring the battery characteristics of the battery including the active material of the present invention and the comparative example.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 더욱 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<실시예> <Examples>

공침 반응기(용량 50L, 회전모터의 출력 1.0kW)에 증류수 14리터를 넣은 뒤 질소가스를 반응기에 5리터/분의 속도로 공급함으로써, 용존 산소를 제거하고 반응기의 온도를 50 ℃로 유지시키면서 600 rpm으로 교반하였다.14 liters of distilled water was placed in a coprecipitation reactor (capacity 50 L, output of a rotary motor 1.0 kW), nitrogen gas was supplied to the reactor at a rate of 5 liters / min to remove dissolved oxygen, and the temperature of the reactor lt; / RTI &gt;

여기에, 황산니켈, 황산코발트, 및 황산망간을 60 : 20 : 20 몰 비로 혼합한 2M 농도의 금속 수용액을 0.9 리터/시간으로, 14M 농도의 암모니아 용액을 0.09 리터/시간으로 반응기에 연속적으로 투입하였다. 또한, pH 조정을 위해 4M 농도의 NaOH 수용액을 공급하여 반응기 내의 pH를 11.3으로 유지되도록 하였다.Subsequently, a metal aqueous solution of 2M in concentration of nickel sulfate, cobalt sulfate and manganese sulfate in a molar ratio of 60:20:20 was continuously fed into the reactor at a rate of 0.9 liter / hour and 0.09 liter / hr of a 14M ammonia solution Respectively. In order to adjust the pH, a 4M aqueous solution of NaOH was added to maintain the pH in the reactor at 11.3.

이어서, 반응기의 임펠러 속도를 600 rpm으로 조절하여 공침 반응을 수행하였다. 이때 유량을 조절하여 용액의 반응기 내의 평균 체류 시간은 18 시간 정도가 되도록 하였으며, 반응이 정상상태에 도달한 후에 상기 반응물에 대해 정상상태 지속시간을 주어 좀 더 밀도가 높은 공침 화합물을 얻도록 하였다.Then, the coprecipitation reaction was performed by controlling the impeller speed of the reactor to 600 rpm. At this time, the flow rate was adjusted so that the average residence time of the solution in the reactor was about 18 hours. After the reaction reached a steady state, a steady state duration was given to the reactant to obtain a more dense coprecipitated compound.

상기 얻어진 공침 화합물을 여과하고, 물로 세척한 다음, 110 ℃의 온풍 건조기에서 15 시간 동안 건조시켜, 활물질 전구체(Ni0 .6Co0 .2Mn0 .2(OH)2)를 얻었다.Filtering the obtained co-precipitated compound, washed with water and then dried in a hot air drier at 110 ℃ for 15 hours, the active material precursor to obtain a (Ni 0 .6 Co 0 .2 Mn 0 .2 (OH) 2).

상기 얻어진 활물질 전구체와 수산화리튬(LiOH)을 용매로서 증류수에 고체/액체 비율이 3:7이 되도록 넣어주었다. 교반기에서 400rpm으로 10분간 교반 후 습식분쇄 장치(상표명:Netzsch ,Mincer)에서 3800rpm으로 1시간 30분간 분쇄시켜 분쇄된 입자의 입경(D50)이 0.3㎛이하, 점도는 500cp이하가 되도록 하였다. 습식분쇄장치에는 0.65mm의 직경의 Zirconia bead를 사용하였다.The obtained precursor of the active material and lithium hydroxide (LiOH) were added as a solvent to distilled water so that the solid / liquid ratio was 3: 7. After stirring for 10 minutes at 400 rpm in an agitator, the mixture was pulverized at 3800 rpm for 1 hour and 30 minutes in a wet grinding apparatus (trade name: Netzsch, Mincer) to have a particle diameter (D50) of 0.3 μm or less and a viscosity of 500 cp or less. Zirconia beads with a diameter of 0.65 mm were used for the wet grinding apparatus.

분쇄를 완료한 혼합슬러리를 Lab용 분무 건조장치(아인시스템, Input temp.: 270~300℃, Output temp. : 100- 120℃)에서 공압식 Atomizer 타입의 분무장치에 4.0 bar의 압력으로 액적을 발생시켜 구형의 양극활물질 입자(6~7㎛, Tap 1.0~1.3g/ml, 함수율 1%이하)를 생성하였다.The pulverized mixed slurry was sprayed at a pressure of 4.0 bar in a pneumatic atomizer-type atomizing device in a spray drying apparatus for Lab (AIN system, input temp .: 270 to 300 ° C, output temp .: 100 to 120 ° C) (6 to 7 탆, Tap 1.0 to 1.3 g / ml, water content of 1% or less).

이후 상기 양극활물질 입자를 도가니에 일정량을 담아 2.5℃/min의 속도로 850℃의 온도로 승온 후, 10 시간 동안 유지하고, Air 5L/min의 분위기에서 소성하였다.
Then, the cathode active material particles were heated to a temperature of 850 ° C at a rate of 2.5 ° C / min, held for 10 hours, and then fired in an atmosphere of 5 L / min of air.

<비교예> <Comparative Example>

공침으로 얻어진 활물질 전구체(Ni0 .6Co0 .2Mn0 .2(OH)2)를 수산화리튬(LiOH)과 혼합한 후 도가니에 일정량을 담아 2.5℃/min의 속도로 850℃의 온도로 승온 후, 10시간 동안 유지하고, Air 5L/min의 분위기에서 소성하였다.
Active material precursor obtained by co-precipitation (Ni 0 .6 Co 0 .2 Mn 0 .2 (OH) 2) to a temperature of lithium hydroxide (LiOH) and a mixture of a predetermined amount and then packed into a crucible 850 ℃ at a rate of 2.5 ℃ / min After elevated temperature, it was maintained for 10 hours and fired in an air atmosphere of 5 L / min.

<< 실험예Experimental Example > 활물질 > Active material SEMSEM 사진 측정  Photo measurement

상기 실시예 및 비교예에서 제조된 양극활물질 입자에 대해 SEM 사진을 측정하고 그 결과를 도 1 에 나타내었다. SEM photographs of the cathode active material particles prepared in the above Examples and Comparative Examples were measured and the results are shown in Fig.

본 발명의 실시예 및 비교예에서 제조된 활물질 입자는 구형이고 입자 크기가 유사한 것을 알 수 있다.
The active material particles prepared in Examples and Comparative Examples of the present invention are spherical and have a similar particle size.

<< 실험예Experimental Example > 활물질 입자 특성 측정> Measurement of active material particle characteristics

상기 실시예 및 비교예에서 제조된 활물질 입자에 대한 입자 특성을 측정한 결과를 아래 표 1에 나타내었다. The particle characteristics of the active material particles prepared in the above Examples and Comparative Examples were measured and the results are shown in Table 1 below.

실시예 Example 비교예 Comparative Example D50D50 [㎛] [Mu m]
6.96.9 7.47.4
TapTap [g/ [g / mlml ]]
1.521.52 2.342.34
R-R- LiLi [ [ ppmppm ]]
55815581 44624462
BETBET [m [m 22 /g]/ g]
1.1991.199 0.2630.263

상기 표 1에서 본 발명의 실시예에 의하여 제조된 양극활물질의 경우 BET 표면적이 비교예에 비하여 400% 이상 크게 증가하는 것을 확인할 수 있다.
In Table 1, it can be seen that the BET surface area of the cathode active material prepared according to the embodiment of the present invention is significantly increased by 400% or more as compared with the comparative example.

<< 실험예Experimental Example > 활물질 단면 특성 측정> Measurement of cross-sectional properties of active material

상기 실시예 및 비교예에서 제조된 활물질 입자를 FIB 로 절단한 후 단면을 SEM 으로 측정하고 그 결과를 도 2에 나타내었다. The active material particles prepared in the above Examples and Comparative Examples were cut with FIB, and their cross sections were measured by SEM. The results are shown in Fig.

도 2에서 본 발명의 실시예에 의하여 제조된 활물질의 경우 내부에도 공극이 많아 비표면적이 크게 증가하였음을 확인할 수 있다.
2, the specific surface area of the active material prepared according to the embodiment of the present invention is greatly increased due to the presence of voids in the interior.

<제조예>전지 제조 &Lt; Preparation Example >

상기 실시예, 비교예에서 제조된 각각의 양극 활물질, 도전제로 아세틸렌블랙, 및 바인더로 폴리비닐리덴 플루오라이드(PVdF)를 92 : 4: 4 의 중량비가 되도록 혼합하여 양극용 슬러리를 제조하였다. 상기 양극용 슬러리를 20㎛ 두께의 알루미늄 호일에 균일하게 도포하고, 110℃에서 건조한 후 롤프레스에 의해 압연하였다.The positive electrode slurry was prepared by mixing each of the positive electrode active materials prepared in the above Examples and Comparative Examples, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 92: 4: 4. The slurry for the positive electrode was uniformly coated on an aluminum foil having a thickness of 20 탆, dried at 110 캜 and rolled by a roll press.

상기 압연하여 얻은 형성물을 16п 로 절취하고, 120℃에서 24시간 감압 건조하여 양극을 제조하였다.The rolled formed product was cut into 16 parts and dried under reduced pressure at 120 DEG C for 24 hours to prepare a positive electrode.

음극으로는 리튬 메탈을 1.1t를 사용했으며, 세퍼레이터로는 두께가 25㎛인 다공성 폴리에틸렌막(Celgard 2300®, 셀가르드 엘엘씨 제)을 사용하고, 에틸렌 카보네이트와 디메틸 카보네이트가 1 : 1의 부피비로 혼합된 혼합용매에 1M의 LiPF6 용액을 첨가한 용액을 전해액으로 하여 코인셀(R2016) 구조의 테스트 셀을 제조하였다.
As a separator, a porous polyethylene membrane (Celgard 2300®, manufactured by Celgard EL) having a thickness of 25 μm was used, and ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 A test cell having a coin cell (R2016) structure was prepared using a solution obtained by adding 1 M of LiPF 6 solution to a mixed mixed solvent as an electrolyte solution.

<< 실험예Experimental Example 3> 전지 특성 측정 - 초기  3> Battery characteristics measurement - Initial 충방전Charging and discharging 특성 characteristic

상기 실시예, 비교예의 양극활물질로 제조된 테스트셀의 전기화학적 특성을 평가하기 위하여 전기화학분석장치(TOSCAT 3100, Toyo 사 제품)을 이용하였으며 전지의 초기충방전 특성을 측정하여 그 결과를 도 3 및 아래 표 2 에 도시하였다.
An electrochemical analyzer (TOSCAT 3100 manufactured by Toyo Co., Ltd.) was used to evaluate the electrochemical characteristics of the test cell made of the cathode active materials of the examples and comparative examples. The initial charge-discharge characteristics of the battery were measured, And Table 2 below.

Figure pat00001
Figure pat00001

상기 표 2 및 도 3에서 보는 바와 같이 본 발명의 실시예에 의하여 제조된 양극활물질을 포함하는 전지가 초기 충방전 효율이 비교예에 비하여 크게 개선되는 것을 확인할 수 있다.
As shown in Table 2 and FIG. 3, it can be seen that the initial charge-discharge efficiency of the battery including the cathode active material prepared according to the embodiment of the present invention is greatly improved as compared with the comparative example.

<< 실험예Experimental Example 4> 전지 특성 측정 -  4> Measurement of battery characteristics - 율특성Rate characteristic 측정  Measure

상기 실시예, 비교예의 양극활물질로 제조된 테스트셀의 율특성을 측정하여 그 결과를 도 4 및 아래 표 3 에 도시하였다.The rate characteristics of the test cells made of the cathode active materials of the examples and comparative examples were measured and the results are shown in FIG. 4 and Table 3 below.

Figure pat00002
Figure pat00002

상기 표 3 및 도 4에서 보는 바와 같이 본 발명의 실시예에 의하여 제조된 양극활물질을 포함하는 전지의 율특성이 비교예에 비하여 크게 개선되는 것을 확인할 수 있다.
As shown in Table 3 and FIG. 4, the rate characteristics of the battery including the cathode active material prepared according to the embodiment of the present invention are significantly improved as compared with the comparative example.

<< 실험예Experimental Example 5> 전지 특성 측정 - 수명 특성 측정 5> Measurement of battery characteristics - Measurement of life characteristics

상기 실시예, 비교예의 양극활물질로 제조된 테스트셀의 수명 특성을 측정하여 그 결과를 도 5 및 아래 표 4 에 도시하였다.
The life characteristics of test cells made of the cathode active materials of the examples and comparative examples were measured, and the results are shown in FIG. 5 and Table 4 below.

Figure pat00003
Figure pat00003

상기 표 4 및 도 5에서 보는 바와 같이 본 발명의 실시예에 의하여 제조된 양극활물질을 포함하는 전지의 수명특성이 비교예와 유사하다는 것을 알 수 있다. As shown in Table 4 and FIG. 5, it can be seen that the life characteristics of the battery including the cathode active material manufactured according to the embodiment of the present invention are similar to those of the comparative example.

Claims (12)

금속염 수용액, 킬레이팅제, 및 염기성 수용액을 공침시켜 공침 화합물을 제조하는 단계;
상기 공침 화합물을 건조 또는 열처리하여 활물질 전구체를 제조하는 단계;
상기 활물질 전구체를 리튬염과 혼합하여 용매에 넣고 슬러리를 제조하는 단계;
상기 슬러리를 분쇄하는 단계; 및
상기 분쇄된 슬러리를 분무건조하는 단계; 를 포함하는 아래 화학식 1로 표시되는 리튬 이차 전지용 양극활물질의 제조 방법.
[화학식 1] LiaNixCoyMnzM1 -x-y- zO2 Qδ
(상기 화학식 1에서, 상기 M은 Mg, Al, B, Ca, Na, K, Sr, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 원소이고, 상기 Q는 할로겐 원소 또는 S이고, 0.95≤a≤1.2, 0.05≤x≤0.9, 0.01≤y≤0.5, 0.005≤z≤0.5, 0.8≤x+y+z≤1.05, 0≤δ≤0.1이다)
A metal salt aqueous solution, a chelating agent, and a basic aqueous solution to prepare a coprecipitation compound;
Drying or heat-treating the coprecipitated compound to prepare an active material precursor;
Mixing the active material precursor with a lithium salt and putting the active material precursor in a solvent to prepare a slurry;
Crushing the slurry; And
Spray drying the pulverized slurry; (1) &lt; / RTI &gt; wherein R &lt; 1 &gt;
[Chemical Formula 1] Li a Ni x Co y Mn z M z O 2 1 -xy- Q δ
(Wherein M is at least one element selected from the group consisting of Mg, Al, B, Ca, Na, K, Sr, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Wherein Q is a halogen element or S, 0.95? A? 1.2, 0.05? X? 0.9, 0.01? Y? 0.5, 0.005? Z? 0.5, 0.8? x + y + z? 1.05, 0??? 0.1)
제 1 항에 있어서,
상기 금속염 수용액은 니켈, 코발트, 망간, 및 선택적으로 금속(M)(여기서, M은 Mg, Al, B, Ca, Na, K, Sr, Cr, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 원소이다)을 포함하는 금속염을 함유하고, 상기 금속염 수용액은 농도가 1 M 내지 3 M인 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
The aqueous metal salt solution may be at least one selected from the group consisting of nickel, cobalt, manganese and optionally a metal (M), wherein M is at least one element selected from the group consisting of Mg, Al, B, Ca, Na, K, Sr, Cr, V, Ti, Fe, Zr, Wherein the metal salt solution is one of an element selected from the group consisting of Y, Nb, Ga, Sn, Mo, W, and combinations thereof, and the metal salt aqueous solution has a concentration of 1 M to 3 M (Method for producing positive electrode active material for lithium secondary battery).
제 1 항에 있어서,
상기 킬레이팅제는 암모니아 수용액, 황산 암모늄 수용액, 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
Wherein the chelating agent is any one selected from the group consisting of an aqueous ammonia solution, an aqueous ammonium sulfate solution, and mixtures thereof.
제 1 항에 있어서,
상기 킬레이팅제와 금속염 수용액의 몰 비는 0.2 내지 0.5 : 1인 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
Wherein the molar ratio of the chelating agent to the aqueous metal salt solution is 0.2 to 0.5: 1.
제 1 항에 있어서,
상기 염기성 수용액은 NaOH, KOH, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
Wherein the basic aqueous solution is any one selected from the group consisting of NaOH, KOH, and combinations thereof.
제 1 항에 있어서,
상기 리튬염은 리튬 나이트레이트, 리튬 아세테이트, 리튬 카보네이트, 리튬 하이드록사이드, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
Wherein the lithium salt is any one selected from the group consisting of lithium nitrate, lithium acetate, lithium carbonate, lithium hydroxide, and combinations thereof.
제 1 항에 있어서,
상기 활물질 전구체와 리튬염 혼합 슬러리를 약 0.3㎛ 미만의 평균입자 직경을 갖는 입자를 함유할 때까지 분쇄하는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
Wherein the active material precursor and the lithium salt mixed slurry are pulverized until they contain particles having an average particle diameter of less than about 0.3 占 퐉.
제 1 항에 있어서,
상기 활물질 전구체와 리튬염의 혼합물의 소성은 700 내지 1100℃에서 이루어지는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
Wherein the calcination of the mixture of the active material precursor and the lithium salt is performed at 700 to 1100 ° C.
제 1 항에 있어서,
상기 분무 건조시 분위기 온도가 120~200℃ 이고, 분무 압력이 1.5~3 bar, 고액비가 5:5 내지 3:7 인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질의 제조 방법.
The method according to claim 1,
Wherein the spray drying has an atmospheric temperature of 120 to 200 占 폚, a spraying pressure of 1.5 to 3 bar and a solid ratio of 5: 5 to 3: 7.
제 1 항 내지 제 9 항 중 어느 하나의 제조 방법에 의하여 제조된 리튬 이차 전지용 양극 활물질.
10. A cathode active material for a lithium secondary battery produced by the method of any one of claims 1 to 9.
제 10 항에 있어서,
상기 리튬 이차 전지용 양극 활물질의 비표면적은 1.0㎡/g 이상인 것인 리튬 이차 전지용 양극 활물질.
11. The method of claim 10,
Wherein a specific surface area of the positive electrode active material for a lithium secondary battery is 1.0 m2 / g or more.
리튬을 흡장ㆍ방출할 수 있는 음극, 리튬염을 함유하는 비수전해질 및 제 10 항에 기재된 리튬 이차 전지용 양극 활물질을 포함한 양극을 구비한 것을 특징으로 하는 리튬 이차전지.A lithium secondary battery comprising a negative electrode including a negative electrode capable of intercalating and deintercalating lithium, a nonaqueous electrolyte containing a lithium salt, and a positive electrode active material for a lithium secondary battery according to claim 10.
KR1020140138605A 2014-10-14 2014-10-14 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same KR20160043862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140138605A KR20160043862A (en) 2014-10-14 2014-10-14 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140138605A KR20160043862A (en) 2014-10-14 2014-10-14 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160068698A Division KR20160075404A (en) 2016-06-02 2016-06-02 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Publications (1)

Publication Number Publication Date
KR20160043862A true KR20160043862A (en) 2016-04-22

Family

ID=55918373

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140138605A KR20160043862A (en) 2014-10-14 2014-10-14 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Country Status (1)

Country Link
KR (1) KR20160043862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021080374A1 (en) * 2019-10-23 2021-04-29 주식회사 엘지화학 Method for preparing positive electrode active material precursor and positive electrode active material precursor
KR20230083152A (en) 2021-12-02 2023-06-09 주식회사 탑머티리얼 Positive active material, method for preparing the same and rechargeable lithium battery comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021080374A1 (en) * 2019-10-23 2021-04-29 주식회사 엘지화학 Method for preparing positive electrode active material precursor and positive electrode active material precursor
KR20210048434A (en) * 2019-10-23 2021-05-03 주식회사 엘지화학 Manufacturing method of positive electrode active material precursor, and positive electrode active material precursor
KR20230083152A (en) 2021-12-02 2023-06-09 주식회사 탑머티리얼 Positive active material, method for preparing the same and rechargeable lithium battery comprising the same

Similar Documents

Publication Publication Date Title
KR101613862B1 (en) Method for manufacturing over-lithiated layered lithium metal composite oxide
US10468677B2 (en) Spinel-type lithium-manganese-containing complex oxide
KR101577179B1 (en) Cathod active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
KR101821741B1 (en) Lithium metal complex oxide and rechargeable batteries including the same
KR20160075404A (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
CA2913121C (en) Manufacturing method of lithium-titanium composite doped with different metal, and lithium-titanium composite doped with different metal made by same
KR20150073970A (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
KR20160083638A (en) Cathode active material for lithium secondary and lithium secondary batteries comprising the same
JP6178037B1 (en) Spinel-type lithium nickel manganese-containing composite oxide
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP5813277B1 (en) Spinel-type lithium cobalt manganese-containing composite oxide
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
CN115863625A (en) Layered sodium ion medium-high entropy composite oxide positive electrode material
JPWO2018169004A1 (en) Nickel-manganese composite oxide and method for producing the same
KR101338371B1 (en) Manufacturing method of lithium nickel cobalt aluminium composite oxide, lithium nickel cobalt aluminium composite oxide made by the same, lithium secondary battery comprising the same
JP7159697B2 (en) Method for producing positive electrode active material for lithium ion secondary battery, and method for producing lithium ion secondary battery
KR20160043862A (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
CN111867978A (en) Lithium titanium composite oxide containing aluminum-coated primary particles and method for preparing same
KR20160076037A (en) Process for the production of lithium complex oxide and lithium complex oxide made by the same, and lithium ion batteries comprising the same
WO2018168470A1 (en) Spinel type lithium nickel manganese-containing composite oxide
KR20150059820A (en) Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same
KR20050047291A (en) Cathode material for lithium secondary battery and method for preparing the same
JPWO2016175310A1 (en) Method for producing 5V-class spinel type lithium manganese-containing composite oxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
A107 Divisional application of patent