KR20160040550A - 방송 신호 송/수신 처리 방법 및 장치 - Google Patents

방송 신호 송/수신 처리 방법 및 장치 Download PDF

Info

Publication number
KR20160040550A
KR20160040550A KR1020167002978A KR20167002978A KR20160040550A KR 20160040550 A KR20160040550 A KR 20160040550A KR 1020167002978 A KR1020167002978 A KR 1020167002978A KR 20167002978 A KR20167002978 A KR 20167002978A KR 20160040550 A KR20160040550 A KR 20160040550A
Authority
KR
South Korea
Prior art keywords
information
signaling
packet
link layer
data
Prior art date
Application number
KR1020167002978A
Other languages
English (en)
Other versions
KR101797503B1 (ko
Inventor
권우석
오세진
곽민성
문경수
이장원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20160040550A publication Critical patent/KR20160040550A/ko
Application granted granted Critical
Publication of KR101797503B1 publication Critical patent/KR101797503B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6112Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving terrestrial transmission, e.g. DVB-T
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/234309Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by transcoding between formats or standards, e.g. from MPEG-2 to MPEG-4 or from Quicktime to Realvideo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/235Processing of additional data, e.g. scrambling of additional data or processing content descriptors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/2362Generation or processing of Service Information [SI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2381Adapting the multiplex stream to a specific network, e.g. an Internet Protocol [IP] network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
    • H04N21/4345Extraction or processing of SI, e.g. extracting service information from an MPEG stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/435Processing of additional data, e.g. decrypting of additional data, reconstructing software from modules extracted from the transport stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
    • H04N21/4381Recovering the multiplex stream from a specific network, e.g. recovering MPEG packets from ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/488Data services, e.g. news ticker
    • H04N21/4882Data services, e.g. news ticker for displaying messages, e.g. warnings, reminders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/643Communication protocols
    • H04N21/64322IP
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/647Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/8126Monomedia components thereof involving additional data, e.g. news, sports, stocks, weather forecasts
    • H04N21/814Monomedia components thereof involving additional data, e.g. news, sports, stocks, weather forecasts comprising emergency warnings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/668Internet protocol [IP] address subnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

본 발명의 일 실시예에 따른, 방송 신호를 전송하는 방송 송신기는 방송 서비스를 위한 방송 데이터를 포함하는 제 1 Internet Protocol (IP) 패킷들을 생성하고, 상기 방송 서비스를 빠르게 획득하기 위하여 필요한 정보를 포함하는 서비스 획득 정보를 포함하는 제 2 IP 패킷을 생성하는 IP 패킷 생성기, 상기 제 1 IP 패킷들을 포함하는 제 1 링크 레이어 패킷들을 생성하는 링크 레이어 패킷 생성기, 및 상기 제 1 링크 레이어 패킷들과 상기 제 2 IP 패킷을 포함하는 방송 신호를 생성하는 방송 신호 생성기를 포함한다.

Description

방송 신호 송/수신 처리 방법 및 장치 {METHOD AND DEVICE FOR TRANSMITTING/RECEIVING BROADCAST SIGNAL}
본 발명은 미디어 신호를 전송/수신하는 방법 및 장치에 관한 것이다. 보다 상세하게는, 본 발명은 브로드밴드 (broadband)와 브로드캐스트 (broadcast) 가 결합된 방송 시스템에서, 브로드밴드와 브로드캐스트로 각각 전송되는 미디어에 대한 데이터를 처리하는 방법 및 장치에 관한 것이다.
디지털 방송 시스템에는 IP 기반의 방송 신호의 송수신이 확장되고 있다. 특히 유럽 방송 표준 중 DVB-NGH나, 북미 방송 표준 중 ATSC-MH 같은 모바일 디지털 방송에서 IP 기반의 방송 신호 송수신 환경의 중요성이 강조되고 있다. 또한, 차세대 방송 시스템 에서는 방송망과 인터넷 망을 연동하여 서비스 되는, 이른바, 하이브리드 방송 시스템이 구축될 전망이다.
하이브리드 방송 시스템에서는 기존의 방송망을 통하여 데이터가 전송되는 방식과 브로드밴드망을 통하여 데이터가 전송되는 방식이 공존하므로, 이들 데이터를 처리하는 방식이 기존의 방송 수신기와는 다르다는 문제점이 있다.
또한, IP 기반의 방송 시스템의 확장에 따라, 방송망을 통하여, 비상 경보 메시지를 전달할 수 있어야 하나, 아직 어떠한 방식으로 비상 경보 메시지를 전달할 것인지 명확히 정의되지 않았다.
또한, IP 기반의 방송 시스템의 확장에 따라, 많은 방송 서비스가 제공될 수 있으나, 시청자가 원하는 방송 서비스를 효율적으로 찾는 방안이 마련되지 않고 있다.
또한, 방송 시스템의 확장에 따라, 방송 신호에 포함되는 데이터의 처리 방식이 확장되거나, 변경될 수 있는데, 방송 시스템에서 이러한 데이터의 처리 방식의 확장 또는 변경에 어떻게 대처하여야 하는지에 대한 방안이 마련되지 않고 있다.
본 발명이 이루고자 하는 기술적 과제는, 전술한 문제점을 해결하기 위한 것으로, 하이브리드 방송 시스템에서는 기존의 방송망을 통하여 데이터가 전송되는 방식과 브로드밴드망을 통하여 데이터가 전송되는 방식이 공존하므로, 이들 데이터를 처리하는 적절한 방법 및 장치를 제공하는 것에 있다.
본 발명의 또 다른 목적은, 효율적으로 비상 경보 메시지를 방송 시스템을 통하여 전달하는 방법 및 장치를 제공하는 것에 있다.
본 발명의 또 다른 목적은, 효율적으로 시청자가 원하는 방송 서비스를 찾을 수 있는 방법 및 장치를 제공하는 것에 있다.
본 발명의 또 다른 목적은, 링크 레이어에서의 데이터 처리를 위하여, 초기화 과정을 수행하는 방안을 제공하는 것에 있다.
본 발명의 또 다른 목적은, 전송 세션 (session) 기반의 프로토콜이 방송 시스템에 적용되는 경우에 있어서, 효율적인 시그널링 방안을 제공하는 것에 있다.
전술한 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른, 방송 신호를 전송하는 방송 송신기는 방송 서비스를 위한 방송 데이터를 포함하는 제 1 Internet Protocol (IP) 패킷들을 생성하고, 상기 방송 서비스를 빠르게 획득하기 위하여 필요한 정보를 포함하는 서비스 획득 정보를 포함하는 제 2 IP 패킷을 생성하는 IP 패킷 생성기, 상기 제 1 IP 패킷들을 포함하는 제 1 링크 레이어 패킷들을 생성하는 링크 레이어 패킷 생성기, 및 상기 제 1 링크 레이어 패킷들과 상기 제 2 IP 패킷을 포함하는 방송 신호를 생성하는 방송 신호 생성기를 포함한다.
바람직하게는, 상기 서비스 획득 정보는, 방송 서비스를 설명하는 정보를 포함하는 서비스 레이어 시그널링의 전송을 위한 채널의 IP 주소를 식별하는 정보를 포함한다.
바람직하게는, 상기 서비스 획득 정보는, 상기 서비스 레이어 시그널링을 포함하는 데이터 파이프 (Data Pipe; DP) 를 식별하는 정보를 포함한다.
바람직하게는, 상기 제 2 IP 패킷은, 상기 제 2 IP 패킷이 포함하는 시그널링 데이터의 처리 방법을 식별하는데 사용되는 부가 정보를 포함하는 시그널링 정보 파트를 더 포함하고, 상기 시그널링 정보 파트는, 상기 제 2 IP 패킷을 통하여 전송되는 시그널링 데이터가 상기 서비스 획득 정보에 해당되는지 여부를 식별하는 시그널링 클래스 (class) 정보를 포함한다.
바람직하게는, 상기 링크 레이어 패킷 생성기는, 링크 레이어 시그널링 데이터를 포함하는 제 2 링크 레이어 패킷을 더 생성하는 것을 특징으로 한다.
바람직하게는, 상기 제 2 링크 레이어 패킷은, 상기 제 2 링크 레이어 패킷이 포함하는 시그널링 데이터의 처리 방법을 식별하는데 사용되는 부가 정보를 포함하는 시그널링 정보 파트를 더 포함하고, 상기 시그널링 정보 파트는, 상기 제 2 링크 레이어 패킷을 통하여 전송되는 시그널링 데이터가 상기 서비스 획득 정보에 해당되는지 여부를 식별하는 시그널링 클래스 (class) 정보를 포함한다.
바람직하게는, 상기 링크 레이어 시그널링 데이터는, 링크 레이어에서 상기 방송 데이터를 인캡슐레이션 (encapsulation) 하는 데 사용되는 인캡슐레이션 방식을 식별하는 인캡슐레이션 모드 정보, 상기 링크 레이어에서 처리되는 IP 패킷에 적용되는 헤더 압축 방식을 식별하는 헤더 압축 모드 정보, 상기 링크 레이어에서 처리되는 IP 패킷의 구조를 설명하는 패킷 재구성 모드 정보 및 시그널링 정보를 전송하는 경로를 식별하는 시그널링 경로 구성 정보 중 적어도 어느 하나 이상을 포함한다.
전술한 기술적 과제를 해결하기 위한, 본 발명의 일 실시예에 따른, 방송 신호를 수신 처리하는 방송 수신기는, 제 1 링크 레이어 패킷들과 제 2 Internet Protocol (IP) 패킷을 포함하는 방송 신호를 수신하는 수신부, 여기서 상기 제 2 IP 패킷은 방송 서비스를 빠르게 획득하기 위하여 필요한 정보를 포함하는 서비스 획득 정보를 포함하고, 상기 제 1 링크 레이어 패킷을 디캡슐레이션 (decapsulation) 하여, 상기 방송 서비스를 위한 방송 데이터를 포함하는 제 1 IP 패킷들을 획득하는 링크 레이어 처리부, 상기 제 2 IP 패킷을 디캡슐레이션하여, 상기 서비스 획득 정보를 획득하는 시그널링 처리부, 상기 서비스 획득 정보를 이용하여, 상기 제 1 IP 패킷들을 디캡슐레이션하여, 상기 방송 데이터를 획득하는 IP 패킷 처리부, 및 상기 방송 데이터를 이용하여 방송 콘텐츠를 재생 처리하는 프로세서를 포함한다.
바람직하게는, 상기 서비스 획득 정보는, 방송 서비스를 설명하는 정보를 포함하는 서비스 레이어 시그널링의 전송을 위한 채널의 IP 주소를 식별하는 정보를 포함한다.
바람직하게는, 상기 서비스 획득 정보는, 상기 서비스 레이어 시그널링을 포함하는 데이터 파이프 (Data Pipe; DP) 를 식별하는 정보를 포함한다.
바람직하게는, 상기 제 2 IP 패킷은, 상기 제 2 IP 패킷이 포함하는 시그널링 데이터의 처리 방법을 식별하는데 사용되는 부가 정보를 포함하는 시그널링 정보 파트를 더 포함하고, 상기 시그널링 정보 파트는, 상기 제 2 IP 패킷을 통하여 전송되는 시그널링 데이터가 상기 서비스 획득 정보에 해당되는지 여부를 식별하는 시그널링 클래스 (class) 정보를 포함한다.
바람직하게는, 상기 링크 레이어 패킷 생성기는, 링크 레이어 시그널링 데이터를 포함하는 제 2 링크 레이어 패킷을 더 생성하는 것을 특징으로 한다.
바람직하게는, 상기 제 2 링크 레이어 패킷은, 상기 제 2 링크 레이어 패킷이 포함하는 시그널링 데이터의 처리 방법을 식별하는데 사용되는 부가 정보를 포함하는 시그널링 정보 파트를 더 포함하고, 상기 시그널링 정보 파트는, 상기 제 2 링크 레이어 패킷을 통하여 전송되는 시그널링 데이터가 상기 서비스 획득 정보에 해당되는지 여부를 식별하는 시그널링 클래스 (class) 정보를 포함한다.
바람직하게는, 상기 링크 레이어 시그널링 데이터는, 링크 레이어에서 상기 방송 데이터를 인캡슐레이션 (encapsulation) 하는 데 사용되는 인캡슐레이션 방식을 식별하는 인캡슐레이션 모드 정보, 상기 링크 레이어에서 처리되는 IP 패킷에 적용되는 헤더 압축 방식을 식별하는 헤더 압축 모드 정보, 상기 링크 레이어에서 처리되는 IP 패킷의 구조를 설명하는 패킷 재구성 모드 정보 및 시그널링 정보를 전송하는 경로를 식별하는 시그널링 경로 구성 정보 중 적어도 어느 하나 이상을 포함한다.
본 발명에 따르면, 하이브리드 방송 시스템에서는 기존의 방송망을 통하여 전송되는 데이터와 브로드밴드망을 통하여 전송되는 데이터를 효율적으로 함께 처리할 수 있다는 효과가 있다.
본 발명에 따르면, 효율적으로 비상 경보 메시지를 방송 시스템을 통하여 전달할 수 있다.
본 발명에 따르면, 효율적으로 시청자가 원하는 방송 서비스를 찾을 수 있다.
본 발명에 따르면, IP layer, MPEG-2 TS layer 및 이에 상응하는 다른 protocol layer 등에 대해, 상위 layer의 변동에 독립적으로 동작 할 수 있는 link layer의 처리가 수행될 수 있는 효과가 있다.
본 발명에 따르면, 방송 컨텐츠를 전송할 physical layer의 변동에 영향을 받지 않고, 독립적으로 동작할 수 있는 link layer 에서의 데이터 처리가 가능하다는 효과가 있다.
본 발명에 따르면, Link layer를 구성하는 function block에 대한 조직화를 통해, 추후 확장이 쉬운 layer를 구성할 수 있다는 효과가 있다.
본 발명에 따르면, Link layer를 통해 여러 경로로 signaling 전송을 가능하여, 시그널링 전송에 효율성을 획득할 수 있는 효과가 있다.
본 발명에 따르면, Link layer의 control 기능을 통해 방송 시스템의 대역폭 및 방송 데이터에 대한 처리 시간 (processing time) 을 효율적 운용이 가능하다는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른, 차세대 방송 시스템의 위한 프로토콜 스텍 (Protocol Stack)을 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 링크 레이어 (link layer)의 인터페이스를 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따른 링크 레이어의 동작 모드 중, 노말(Normal) 모드의 동작 다이어그램을 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 링크 레이어의 동작 모드 중, 트랜스패런트(Transparent) 모드의 동작 다이어그램을 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 송신기 측의 링크 레이어 구조를 도시한 도면이다(노말 모드).
도 6은 본 발명의 일 실시예에 따른 수신기 측의 링크 레이어 구조를 도시한 도면이다(노말 모드).
도 7은 본 발명의 일 실시예에 따른, 링크 레이어 (Link layer)의 조직화의 타입에 따른 정의를 나타내는 도면이다.
도 8은 본 발명의 일 실시예에 따른, 논리적 data path가 Normal Data Pipe로만 구성된 경우에 있어서, 방송 신호의 처리를 나타낸 도면이다.
도 9는 본 발명의 일 실시예에 따른, 논리적 data path가 Normal Data Pipe 와 base data pipe을 포함하는 경우에 있어서, 방송 신호의 처리를 나타낸 도면이다.
도 10은 본 발명의 일 실시예에 따른, 논리적 data path가 Normal Data Pipe 와 Dedicated Channel 을 포함하는 경우에 있어서, 방송 신호의 처리를 나타낸 도면이다.
도 11은 본 발명의 일 실시예에 따른, 논리적 data path가 Normal Data Pipe, Base Data Pipe 와 Dedicated Channel 을 포함하는 경우에 있어서, 방송 신호의 처리를 나타낸 도면이다.
도 12는 본 발명의 일 실시예에 따른, 논리적 data path가 Normal Data Pipe, Base Data Pipe 와 Dedicated Channel 을 포함하는 경우에 있어서, 수신기의 링크 레이어 (Link layer)에서의 신호 및/또는 데이터에 대한 구체적인 처리 동작을 나타낸 도면이다.
도 13은 본 발명의 일 실시예에 따른 FIC (Fast Information Channel) 의 신택스 (syntax) 를 나타낸 도면이다.
도 14는 본 발명의 일 실시예에 따른, EAT (Emergency Alert Table) 의 신택스 (syntax)를 나타낸 도면이다.
도 15는 본 발명의 일 실시예에 따른, data pipe로 전송되는 패킷을 나타낸 도면이다.
도 16은 본 발명의 다른 실시예에 따른, 물리적 계층의 논리적 데이터 경로 (data path)가 dedicated channel, Base DP, 및 Normal Data DP 를 포함하는 경우에 있어서, 송신기의 각 프로토콜 스택에서의 신호 및/또는 데이터에 대한 구체적인 처리 동작을 나타낸 도면이다.
도 17은 본 발명의 다른 실시예에 따른, 물리적 계층의 논리적 데이터 경로 (data path)가 dedicated channel, Base DP, 및 Normal Data DP 를 포함하는 경우에 있어서, 수신기의 각 프로토콜 스택에서의 신호 및/또는 데이터에 대한 구체적인 처리 동작을 나타낸 도면이다.
도 18은 본 발명의 다른 실시예에 따른, FIC의 신택스 (syntax)를 나타낸 도면이다.
도 19는 본 발명의 일 실시예에 따른, signaling_Information_Part() 를 나타낸 도면이다.
도 20은 본 발명의 일 실시예에 따른, 링크 레이어에서의 송신기 및/또는 수신기의 동작 모드 control 의 과정을 나타낸 도면이다.
도 21은 본 발명의 일 실시예에 따른, flag의 값에 따른 링크 레이어 에서의 동작 및 physical layer로 전달되는 패킷의 형태를 나타낸 도면이다.
도 22은 본 발명의 일 실시예에 따른, mode control parameter를 시그널링하기 위한 디스크립터를 나타낸 도면이다.
도 23은 본 발명의 일 실시예에 따른, operation mode를 제어하는 송신기의 동작을 나타낸 도면이다.
도 24는 본 발명의 일 실시예에 따른, operation mode에 따른 방송 신호를 처리하는 수신기의 동작을 나타낸 도면이다.
도 25는 본 발명의 일 실시예에 따른, 인캡슐레이션 모드 (encapsulation mode) 를 식별하는 정보를 나타낸 도면이다.
도 26은 본 발명의 일 실시예에 따른, 헤더 컴프레션 모드 (Header Compression Mode) 를 식별하는 정보를 나타낸 도면이다.
도 27은 본 발명의 일 실시예에 따른, 패킷 리컨피규레이션 모드 (Packet Reconfiguration Mode) 를 식별하는 정보를 나타낸 도면이다.
도 28은 본 발명의 일 실시예에 따른, 컨택스트 트랜스미션 모드 (context transmission mode) 를 나타낸 도면이다.
도 29는 본 발명의 일 실시예에 따른, RoHC 가 헤더 압축 방식으로 적용되는 경우에 있어서, 초기화 정보를 나타낸 도면이다.
도 30은 본 발명의 일 실시예에 따른, 링크 레이어 시그널링 패스 컨피규레이션 (Link layer signaling path configuration) 을 식별하는 정보를 나타낸 도면이다.
도 31은 본 발명의 일 실시예에 따른, 시그널링 패스 구성에 대한 정보를 비트 맵핑 (bit mapping) 방식으로 나타낸 도면이다.
도 32는 본 발명의 일 실시예에 따른, 링크 레이어 초기화 과정을 나타낸 순서도이다.
도 33은 본 발명의 다른 실시예에 따른, 링크 레이어 초기화 과정을 나타낸 순서도이다.
도 34는 본 발명의 일 실시예에 따른, 초기화 파라미터를 전송하기 위한 형태의 시그널링 포맷을 나타낸 도면이다.
도 35는 본 발명의 다른 실시예에 따른, 초기화 파라미터를 전송하기 위한 형태의 시그널링 포맷을 나타낸 도면이다.
도 36은 본 발명의 다른 실시예에 따른, 초기화 파라미터를 전송하기 위한 형태의 시그널링 포맷을 나타낸 도면이다.
도 37은 본 발명의 일 실시예에 따른, 수신기를 나타낸 도면이다.
도 38은 본 발명의 일 실시예에 따른 방송 시스템을 나타낸 도면이다.
발명의 실시를 위한 최선의 형태
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당분야에 종사하는 기술자의 의도 또는 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 가지는 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.
본 명세서에서 ‘시그널링 (signaling)’ 이라 함은 방송 시스템, 인터넷 방송 시스템 및/또는 방송/인터넷 융합 시스템에서 제공되는 서비스 정보 (Service Information; SI)를 전송/수신하는 것을 나타낸다. 서비스 정보는 현재 존재하는 각 방송 시스템에서 제공되는 방송 서비스 정보 (예를 들면, ATSC-SI 및/또는 DVB-SI)를 포함한다.
본 명세서에서 ‘방송 신호’ 라 함은, 지상파 방송, 케이블 방송, 위성 방송, 및/또는 모바일 방송 이외에도, 인터넷 방송, 브로드밴드 방송, 통신 방송, 데이터 방송 및/또는 VOD (Video On Demand) 등의 양방향 방송에서 제공되는 신호 및/또는 데이터를 포함하는 개념으로 정의한다.
본 명세서에서 ‘PLP’ 라 함은, 물리적 계층에 속하는 데이터를 전송하는 일정한 유닛을 의미한다. 따라서, 본 명세서에서 ‘PLP’로 명명된 내용은, ‘데이터 유닛’ 또는 ‘데이터 파이프 (data pipe)’ 로 바꾸어 명명될 수도 있다.
디지털 방송 (DTV) 서비스에서 활용될 유력한 어플리케이션 (application) 중의 하나로, 방송 망과 인터넷 망과의 연동을 통한 하이브리드 방송 서비스를 꼽을 수 있다. 하이브리드 방송 서비스는 지상파 방송망을 통해서 전송되는 방송 A/V (Audio/Video) 컨텐츠와 연관된 인핸스먼트 데이터 (enhancement data) 혹은 방송 A/V 컨텐츠의 일부를 인터넷 망을 통하여 실시간으로 전송함으로써, 사용자로 하여금 다양한 컨텐츠를 경험할 수 있도록 한다.
도 1은 본 발명의 일 실시예에 따른, 차세대 방송 시스템의 위한 프로토콜 스텍 (Protocol Stack)을 나타낸 도면이다.
본 발명에 따른 방송 시스템은, IP (Internet Protocol) 중심 브로드캐스트 네트워크 (IP centric broadcast network)와 브로드밴드 (broadband) 가 결합된 하이브리드 방송 시스템에 해당될 수 있다.
본 발명에 따른 방송 시스템은, 기존의 MPEG-2 기반의 방송 시스템 과의 호환성을 유지하도록 설계될 수 있다.
본 발명에 따른 방송 시스템은, IP 중심 브로드캐스트 네트워크 (IP centric broadcast network), 브로드밴드 (broadband) 네트워크, 및/또는 이동통신 네트워크 (mobile communication network 또는 cellular network) 의 결합에 기반한 하이브리드 방송 시스템에 해당될 수 있다.
도면을 참조하면, 물리적 계층 (Physical layer) 은, ATSC 시스템 및/또는 DVB 시스템과 같은 방송 시스템에서 채용하는 물리적 프로토콜을 이용할 수 있다. 예를 들면, 본 발명에 따른 물리적 계층에서는, 송/수신기는 지상파 방송 신호을 송신/수신하고 방송 데이터를 포함하는 전송 프레임 (transport frame)를 적절한 형태로 변환할 수 있다.
암호화 (Encapsulation) 계층에서는, 물리적 계층으로부터 획득된 정보로부터, IP 데이터그램 (datagram) 을 획득하거나, 획득된 IP 데이터그램을 특정 프레임 (예를 들어, RS Frame, GSE-lite, GSE 혹은 신호 프레임 등)으로 변환한다. 여기서, 프레임은 IP 데이터 그램들의 집합을 포함할 수 있다. 예를 들면, 암호화 계층에서 송신기는, 물리적 계층으로부터 처리된 데이터를 전송 프레임에 포함시키거나, 수신기는, 물리적 계층으로부터 획득한 전송 프레임에서 MPEG-2 TS, IP 데이터 그램을 추출한다.
FIC(fast information channel)는 서비스 및/또는 콘텐츠에 접근할 수 있도록 하기 위한 정보 (예, 서비스 ID와 프레임 간의 매핑 정보 등)를 포함한다. FIC는 FAC (Fast Access Channel) 로 명명 될 수도 있다.
본 발명의 방송 시스템은 IP (Internet Protocol), UDP (User Datagram Protocol), TCP (Transmission Control Protocol), ALC/LCT (Asynchronous Layered Coding / Layered Coding Transport), RCP/RTCP (Rate Control Protocol / RTP Control Protocol), HTTP (Hypertext Transfer Protocol), FLUTE (File Delivery over Unidirectional Transport) 등의 프로토콜을 이용할 수 있다. 이들 프로토콜 간의 스택 (stack) 은 도면에 도시된 구조를 참조할 수 있다.
본 발명의 방송 시스템에서 데이터는 ISOBMFF (ISO base media file format) 형태로 전송될 수 있다. ESG (Electrical Service Guide), NRT (Non Real Time), A/V (Audio / Video) 및/또는 일반 데이터는 ISOBMFF의 형태로 전송될 수 있다.
브로드캐스트 네트워크에 의한 데이터의 전송은, linear content의 전송 및/또는 non-linear content의 전송을 포함할 수 있다.
RTP/RTCP 기반 A/V, Data(closed caption, emergency alert message 등) 전송은 linear content의 전송에 해당될 수 있다.
RTP payload는 NAL (Network Abstraction Layer) 이 포함된 RTP/AV stream 형태 및/또는 ISO based media file format 으로 encapsulation 된 형태로 전송될 수 있다. RTP payload의 전송은 linear content의 전송에 해당될 수 있다. ISO based media file format 으로 encapsulation 된 형태의 전송은 A/V 등에 대한 MPEG DASH media segment를 포함할 수 있다.
FLUTE 기반 ESG의 전송, non-timed data의 전송, NRT content의 전송은 non-linear content의 전송에 해당될 수 있다. 이들은 MIME type 의 파일 형태 및/또는 ISO based media file format 으로 encapsulation 된 형태로 전송될 수 있다. ISO based media file format 으로 encapsulation 된 형태의 전송은 A/V 등에 대한 MPEG DASH media segment를 포함할 수 있다.
브로드밴드 네트워크에 의한 전송은 컨텐츠에 대한 전송과 시그널링 데이터에 대한 전송으로 분리하여 생각할 수 있다.
컨텐츠의 전송은 Linear content (A/V, data(closed caption, emergency alert message 등) 의 전송과 non-linear content (ESG, non-timed data 등)의 전송, MPEG DASH 기반 Media segment(A/V, data) 전송을 포함한다.
시그널링 데이터의 전송은, 방송망에서 전송되는 signaling table (MPEG DASH 의 MPD 포함)을 포함하는 전송이 가능하다.
본 발명의 방송 시스템에서는 방송망을 통해 전송된 linear/non-linear 콘텐츠 간의 동기화, 혹은 방송망을 통해 전송되는 컨텐츠와 broadband 을 통해 전송된 콘텐츠 간의 동기화를 지원할 수 있다. 예를 들어, 하나의 UD 콘텐츠가 방송망과 broadband 을 통해 나눠서 동시에 전송되는 경우, 수신기는 전송 프로토콜에 의존적인 timeline 을 조정하고, 방송망의 컨텐츠와 브로드밴드의 컨텐츠를 동기화 후 하나의 UD 콘텐츠로 재구성할 수 있다.
본 발명의 방송 시스템의 Applications 계층은 양방향성 (Interactivity), 개인 맞춤화(Personalization), Second Screen, ACR (automatic content recognition) 등의 기술적 특징을 구현할 수 있다. 이러한 특징은, 예를 들면, 북미 방송 표준인 ATSC2.0 에서 ATSC3.0으로 확장에서 중요한 특징이다. 예를 들면, 양방향성의 특징을 위하여, HTML5 가 사용될 수 있다.
본 발명의 방송 시스템의 Presentation 계층에서는, 컴포넌트들 사이 또는 양방향 어플리케이션들 사이의 공간적, 시간적 관계를 식별하기 위하여 HTML 및/또는 HTML5가 사용될 수 있다.
본 발명에서 시그널링 (Signaling) 은 콘텐츠 및/또는 서비스의 효과적인 획득을 지원하기 위한 시그널링 정보를 포함한다. 시그널링 데이터는 바이너리 혹은 XML형태 등으로 표현할 수 있으며, 지상파 방송망 혹은 broadband 을 통하여 전달될 수 있다.
실시간 방송 A/V 콘텐츠 및/또는 Data 의 경우 ISO Base Media File Format 등으로 표현 될 수 있다. 이 경우, 방송 A/V 콘텐츠 및/또는 Data 는 지상파 방송망을 통하여 실시간으로 전달될 수 있으며, IP/UDP/FLUTE을 기반으로 비실시간으로 전달될 수 있다. 또는, 방송 A/V 콘텐츠 및/또는 Data를, 인터넷 망을 통하여 DASH (Dynamic Adaptive Streaming over HTTP) 등을 이용하여 실시간으로 콘텐츠를 스트리밍 받거나 요청하여 받을 수 있다. 본 발명의 일 실시예에 따른 방송 시스템은, 이렇게 전달받은 방송 A/V 콘텐츠 및/또는 Data 를 조합하여 Interactive 서비스, second screen 서비스 등 다양한 enhanced service 을 시청자에게 제공할 수 있다.
TS 및 IP 의 하이브리드 기반의 방송시스템에 있어서, TS 또는 IP 스트림 타입의 데이터를 전송하기 위하여 링크 레이어가 활용될 수 있다. 이 링크 레이어는 다양한 타입의 데이터를 피지컬 레이어(Physical layer)를 통해 전송하고자 할 때, 데이터를 피지컬 레이어가 지원하는 포맷으로 변환하여 피지컬 레이어에 전달하는 역할을 할 수 있다. 이를 통해 다양한 타입의 데이터가 동일한 피지컬 레이어를 통해 전송될 수 있다. 여기서 피지컬 레이어란 데이터에 인터리빙, 멀티플렉싱, 및/또는 모듈레이팅 등을 수행하여, MIMO/MISO 등의 방식으로 전송하는 단계를 의미할 수 있다.
링크 레이어는 피지컬 레이어의 구성이 변경되더라도 링크 레이어의 동작에 미치는 영향을 최소화하는 방향으로 설계되어야 한다. 즉, 다양한 피지컬 레이어에 호환될 수 있도록 링크 레이어의 동작을 정할 필요가 있다.
본 발명은 상위 레이어(Upper layer)와 하위 레이어(Lower layer)의 종류에 구애받지 않고, 독립적으로 동작할 수 있는 링크 레이어를 제안한다. 이를 통해 다양한 상위 레이어 및 하위 레이어를 지원될 수 있다. 여기서 상위 레이어란 TS 또는 IP 등의 데이터 스트림의 레이어를 의미할 수 있다. 여기서 하위 레이어란 피지컬 레이어를 의미할 수 있다. 또한, 본 발명은 링크 레이어가 지원 가능한 기능이 확장/추가/제거될 수 있는 수정 가능한 구조의 링크 레이어를 제안한다. 또한 본 발명은 무선 자원이 효율적으로 사용될 수 있도록 오버헤드 리덕션(overhead reduction) 기능을 링크 레이어 내에 구성하는 방법을 제안한다.
본 도면에서, Internet Protocol (IP), User Datagram Protocol (UDP), Transmission Control Protocol (TCP), ALC/LCT (Asynchronous Layered Coding / Layered Coding Transport), RCP/RTCP (Rate Control Protocol / RTP Control Protocol), HTTP (Hypertext Transfer Protocol), FLUTE (File Delivery over Unidirectional Transport) 등의 프로토콜 내지 레이어들은 전술한 바와 같다.
본 도면에서, 링크 레이어(t88010) 는 전술한 데이터 링크 파트(data link (encapsulation) part) 의 다른 실시예일 수 있다. 본 발명은 링크 레이어(t88010) 의 구조 및/또는 동작을 제안한다. 본 발명이 제안하는 링크 레이어(t88010)는 링크 레이어 및/또는 피지컬 레이어의 동작에 필요한 시그널링을 처리할 수 있다. 또한, 본 발명이 제안하는 링크 레이어(t88010)는 TS 및 IP 패킷등의 인캡슐레이션을 수행할 수 있고, 이 과정에서 오버헤드 리덕션 등을 수행할 수 있다.
본 발명이 제안하는 링크 레이어(t88010)는 데이터 링크 레이어, 인캡슐레이션 레이어, 레이어 2 등의 여러 용어로 불릴 수 있다. 실시예에 따라 링크 레이어에 새로운 명칭이 부여되어 활용될 수도 있다.
도 2는 본 발명의 일 실시예에 따른 링크 레이어 (link layer)의 인터페이스를 나타낸 도면이다.
도면을 참조하면, 송신기가 IP 패킷 및/또는 디지털 방송에서 사용되는 MPEG2-TS 패킷을 입력 신호로 사용하는 경우를 나타낸다. 송신기는 차세대 방송 시스템에서 사용될 수 있는 새로운 프로토콜에서의 패킷 구조를 지원할 수 도 있다. 링크 레이어의 인캡슐레이티드 (encapsulated) 데이터 및/또는 시그널링 정보는 물리적 레이어 (physical layer) 로 전송될 수 있다. 송신기는 (시그널링 데이터를 포함할 수 있는) 전송된 데이터를 방송 시스템에 의하여 지원되는 물리적 계층의 프로토콜에 따라 처리하고, 해당 데이터를 포함하는 신호를 전송할 수 있다.
한편, 수신기는 물리적 계층으로부터 수신한 데이터 및/또는 시그널링 정보를, 상위 레이어에서 처리될 수 있는 다른 데이터로 복원한다. 수신기는 패킷의 헤더를 읽을 수 있고, 물리적 레이어로부터 수신한 패킷이 시그널링 정보 (또는 시그널링 데이터) 또는 일반 데이터 (또는 컨텐츠 데이터)를 포함하는지 결정할 수 있다.
송신기부터 전달되는 시그널링 정보 (i.e., 시그널링 데이터)는, 상위 레이어 (upper layer) 로부터 수신되고, 수신기의 상위 레이어로 전송될 필요가 있는 제 1 시그널링 정보; 링크 레이어에서 생성되어, 수신기의 링크 레이어에서 데이터의 처리와 관련한 정보를 제공하는 정보인 제 2 시그널링 정보; 및/또는 상위 레이어 또는 링크 레이터에서 생성되어, 물리적 레이어에서 특정 데이터 (예를 들면, 서비스, 컨텐트, 및/또는 시그널링 데이터)를 빠르게 식별하기 위하여 전송되는 제 3 시그널링 정보를 포함할 수 있다.
도 3은 본 발명의 일 실시예에 따른 링크 레이어의 동작 모드 중, 노말(Normal) 모드의 동작 다이어그램을 도시한 도면이다.
본 발명이 제안하는 링크 레이어는 상위 레이어와 하위 레이어의 호환을 위하여, 다양한 동작 모드를 가질 수 있다. 본 발명은 링크 레이어의 노말 모드 및 트랜스패렌트 모드를 제안한다. 두 동작 모드는 링크 레이어 내에서 공존이 가능하며, 어떠한 모드가 사용될 것인지는 시그널링 또는 시스템 파라미터를 이용하여 지정될 수 있다. 실시예에 따라 두 모드 중 어느 하나의 모드만 구현될 수도 있다. 링크 레이어로 입력되는 IP 레이어, TS 레이어 등에 따라, 각각 다른 모드가 적용될 수 있다. 또한, IP 레이어의 스트림 별로, TS 레이어의 스트림 별로, 각각 다른 모드가 적용될 수 있다.
실시예에 따라, 새로운 동작 모드가 링크 레이어에 추가될 수 있다. 새로운 동작 모드는 상위 레이어와 하위 레이어의 구성에 근거하여 추가될 수 있다. 새로운 동작 모드는 상위 레이어와 하위 레이어의 구성에 근거하여 다른 인터페이스들을 포함할 수 있다. 새로운 동작 모드의 사용여부 역시 시그널링 또는 시스템 파라미터를 이용하여 지정될 수 있다.
노말 모드에서는, 데이터가 링크 레이어가 지원하는 기능을 모두 거쳐 처리된 후, 피지컬 레이어로 전달될 수 있다.
먼저, IP 레이어, MPEG-2 TS 레이어, 또는 다른 어떠한 특정 레이어(t89010)로부터 각 패킷이 링크 레이어로 전달될 수 있다. 즉, IP 패킷이 IP 레이어로부터 링크 레이어로 전달될 수 있다. 마찬가지로 MPEG-2 TS 패킷이 MPEG-2 TS 레이어로부터, 특정 패킷이 특정 프로토콜 레이어로부터 링크 레이어로 전달될 수 있다.
각 전달된 패킷들은 오버헤드 리덕션(t89020)을 거치거나 거치지 않은 후, 인캡슐레이션(t89030)을 거치게 될 수 있다.
첫번째로, IP 패킷의 경우, 오버헤드 리덕션(t89020)을 거치거나 거치지 않은 후, 인캡슐레이션(t89030)을 거치게 될 수 있다. 오버헤드 리덕션이 수행되는지 여부는 시그널링 또는 시스템 파라미터에 의해 지정될 수 있다. 실시예에 따라 각 IP 스트림 별로 오버헤드 리덕션이 수행되거나 수행되지 않을 수도 있다. 인캡슐레이션된 IP 패킷은 피지컬 레이어로 전달될 수 있다.
두번째로, MPEG-2 TS 패킷의 경우, 오버헤드 리덕션(t89020)을 거쳐 인캡슐레이션(t89030)을 거치게 될 수 있다. MPEG-2 TS 패킷의 경우도 실시예에 따라 오버헤드 리덕션 과정이 생략될 수 있다. 그러나, 일반적인 경우 TS 패킷은 맨 앞에 싱크 바이트(0x47) 등을 가지므로, 이러한 고정적인 오버헤드를 제거하는 것이 효율적일 수 있다. 인캡슐레이션된 TS 패킷은 피지컬 레이어로 전달될 수 있다.
세번째로, IP 또는 TS 패킷이 아닌 다른 패킷인 경우, 오버헤드 리덕션(t89020)을 거치거나 거치지 않은 후, 인캡슐레이션(t89030)을 거치게 될 수 있다. 오버헤드 리덕션이 수행되는지 여부는 해당 패킷의 특성에 따라 결정될 수 있다. 오버헤드 리덕션이 수행되는지 여부는 시그널링 또는 시스템 파라미터에 의해 지정될 수 있다. 인캡슐레이션된 패킷은 피지컬 레이어로 전달될 수 있다.
오버헤드 리덕션(t89020) 과정에서는, 입력된 패킷의 크기가 적절한 방법을 통해 감소될 수 있다. 오버헤드 리덕션 과정에서, 입력된 패킷으로부터 특정 정보가 추출되거나 생성될 수 있다. 이 특정 정보는 시그널링과 관련된 정보로서, 시그널링 영역을 통해 전송될 수 있다. 이 시그널링 정보는 수신기가 오버헤드 리덕션 과정에서 변경된 사항을 복구하여 원래의 패킷의 형태로 되돌릴 수 있게 한다. 이 시그널링 정보는 링크 레이어 시그널링(t89050)으로 전달될 수 있다.
링크 레이어 시그널링(t89050) 은 오버헤드 리덕션 과정에서 추출/생성된 시그널링 정보의 전송 및 관리를 수행할 수 있다. 피지컬 레이어는 시그널링을 위해 물리적/논리적으로 구분된 전송경로를 가질 수 있는데, 링크 레이어 시그널링(t89050)은 이 구분된 전송 경로들에 맞추어 시그널링 정보를 피지컬 레이어로 전달할 수도 있다. 여기서, 구분된 전송 경로에는 전술한 FIC 시그널링(t89060) 또는 EAS 시그널링(t89070) 등이 있을 수 있다. 따로 구분된 전송 경로로 전송되지 않는 시그널링 정보들은 인캡슐레이션(t89030)을 거쳐 피지컬 레이어로 전달될 수 있다.
링크 레이어 시그널링(t89050) 이 관리하는 시그널링 정보에는, 상위 레이어에서 전달받은 시그널링 정보, 링크 레이어에서 생성된 시그널링 정보 및/또는 시스템 파라미터 등이 있을 수 있다. 구체적으로, 상위 레이어에서 전달받아 결과적으로 수신기의 상위 레이어로 전달되어야 하는 시그널링 정보, 링크 레이어에서 생성되어 수신기의 링크 레이어의 동작에 활용되어야 하는 시그널링 정보, 상위 레이어 또는 링크 레이어에서 생성되어 수신기의 피지컬 레이어에서 빠른 디텍션을 위해 사용되는 시그널링 정보 등이 있을 수 있다.
인캡슐레이션(t89030)되어 피지컬 레이어로 전달된 데이터는 DP (Data Pipe)(t89040) 를 통해 전송될 수 있다. 여기서 DP 는 PLP (Physical Layer Pipe) 일 수 있다. 전술한 구분된 전송 경로로 전달되는 시그널링 정보들은 각각의 전송 경로로 전달될 수 있다. 예를 들어, FIC 시그널링은 피지컬 프레임 내에서 지정된 FIC 채널(t89080)을 통해 전송될 수 있다. 또한, EAS 시그널링은 피지컬 프레임 내의 지정된 EAC 채널(t89090)을 통해 전송될 수 있다. FIC 또는 EAC 등의 특정 채널이 존재한다는 정보는 피지컬 프레임의 프리앰블 영역에 시그널링되어 전송되거나, 특정 스크램블링 시퀀스를 사용하여 프리앰블을 스크램블링 함으로써 시그널링될 수 있다. 실시예에 따라 FIC 시그널링/EAS 시그널링 정보들은 지정된 특별 채널이 아닌, 일반 DP 영역, PLS 영역 또는 프리앰블을 통해 전송될 수도 있다.
수신기는 피지컬 레이어를 통해 데이터 및 시그널링 정보를 전달받을 수 있다. 수신기는 이를 상위 레이어에서 처리 가능한 형태로 복원하여 상위 레이어로 전달할 수 있다. 이러한 과정은 수신기의 링크 레이어에서 수행될 수 있다. 패킷의 헤더를 읽거나 하는 등의 방법으로, 수신기는 전송받은 패킷이 시그널링 정보에 관한 것인지 데이터에 관한 것인지 구분할 수 있다. 또한 수신기는, 오버헤드 리덕션이 송신측에서 수행되었을 경우, 오버헤드 리덕션을 통해 오버헤드가 줄어든 패킷을 원래의 패킷을 복구할 수 있다. 이 과정에서 전달받은 시그널링 정보가 활용될 수 있다.
도 4는 본 발명의 일 실시예에 따른 링크 레이어의 동작 모드 중, 트랜스패런트(Transparent) 모드의 동작 다이어그램을 도시한 도면이다.
트랜스패런트 모드에서는, 데이터가 링크 레이어가 지원하는 기능을 거치지 않거나 일부만을 거친 후, 피지컬 레이어로 전달될 수 있다. 즉, 트랜스패런트 모드에서는, 상위 레이어에서 전달된 패킷이 별도의 오버헤드 리덕션 및/또는 인캡슐레이션 과정을 거치지 않고 그대로 피지컬 레이어로 전달될 수 있다. 다른 패킷들의 경우는 필요에 따라 오버헤드 리덕션 및/또는 인캡슐레이션 과정을 거칠 수도 있다. 트랜스패런트 모드는 바이패스 모드(bypass mode)라고 불릴 수 있고, 다른 명칭이 부여될 수도 있다.
실시예에 따라, 패킷의 특성 및 시스템의 운용에 근거하여, 일부 패킷들은 노말 모드로, 일부 패킷들은 트랜스패런트 모드로 처리될 수 있다.
트랜스패런트 모드가 적용될 수 있는 패킷은 시스템에 잘 알려져 있는 타입의 패킷일 수 있다. 피지컬 레이어에서 해당 패킷에 대하여 처리할 수 있는 경우, 트랜스패런트 모드가 활용될 수 있다. 예를 들어, 잘 알려진 TS 또는 IP 패킷의 경우, 피지컬 레이어에서 별도의 오버헤드 리덕션 및 인풋 포맷팅 과정을 거칠 수 있으므로, 링크 레이어 단계에서는 트랜스패런트 모드가 활용될 수 있다. 트랜스패런트 모드가 적용되고, 피지컬 레이어에서 인풋 포맷팅 등을 통해 패킷을 가공하는 경우, 전술한 TS 헤더 컴프레션 등의 동작이 피지컬 레이어에서 수행될 수 있다. 반대로 노말 모드가 적용되는 경우, 가공된 링크 레이어 패킷은 피지컬 레이어에서 GS 패킷으로 취급되어 처리될 수 있다.
트랜스패런트 모드에서도, 시그널링의 전송을 지원할 필요가 있는 경우 링크 레이어 시그널링 모듈을 둘 수 있다. 링크 레이어 시그널링 모듈은 전술한 바와 같이 시그널링 정보의 전송 및 관리를 수행할 수 있다. 시그널링 정보는 인캡슐레이션되어 DP 를 통해 전송될 수 있고, 구분된 전송 경로를 가지는 FIC, EAS 시그널링 정보들은 각각 FIC 채널 EAC 채널을 통해 전송될 수 있다.
트랜스패런트 모드에서, 고정된 IP 주소 및 Port 번호를 사용하는 방법 등을 통해, 해당 정보가 시그널링 정보인지 여부가 표시될 수 있다. 이 경우, 해당 시그널링 정보를 필터링하여 링크 레이어 패킷을 구성한 후, 피지컬 레이어를 통해 전송할 수도 있다.
도 5는 본 발명의 일 실시예에 따른 송신기 측의 링크 레이어 구조를 도시한 도면이다(노말 모드).
본 실시예는 IP 패킷을 처리하는 것을 가정한 실시예이다. 송신기 측의 링크 레이어는 기능적인 관점에서 볼 때, 크게 시그널링 정보를 처리하는 링크 레이어 시그널링 부분, 오버헤드 리덕션 부분, 및/또는 인캡슐레이션 부분을 포함할 수 있다. 또한, 송신기 측의 링크 레이어는 링크 레이어 전체 동작에 대한 제어 및 스케쥴링을 위한 스케쥴러 및/또는 링크 레이어의 입/출력 부분 등을 포함할 수 있다.
먼저, 상위 레이어의 시그널링 정보 및/또는 시스템 파라미터(t91010)가 링크 레이어에 전달될 수 있다. 또한, IP 레이어(t91110)로부터 IP 패킷들을 포함하는 IP 스트림이 링크 레이어에 전달될 수 있다.
스케쥴러(t91020)는 전술한 바와 같이 링크 레이어에 포함된 여러 모듈들의 동작을 결정하고 제어하는 역할을 할 수 있다. 전달된 시그널링 정보 및/또는 시스템 파라미터(t91010) 는 스케쥴러(t91020)에 의해 필터링되거나 활용될 수 있다. 전달된 시그널링 정보 및/또는 시스템 파라미터(t91010) 중, 수신기에서 필요한 정보는 링크 레이어 시그널링 부분으로 전달될 수 있다. 또한 시그널링 정보 중 링크 레이어의 동작에 필요한 정보는 오버헤드 리덕션 컨트롤(t91120) 또는 인캡슐레이션 컨트롤(t91180)으로 전달될 수도 있다.
링크 레이어 시그널링 부분은, 피지컬 레이어에서 시그널링으로서 전송될 정보를 수집하고, 이를 전송에 적합한 형태로 변환/구성하는 역할을 수행할 수 있다. 링크 레이어 시그너널링 부분은 시그널링 매니저(t91030), 시그널링 포매터(t91040), 및/또는 채널을 위한 버퍼(t91050)을 포함할 수 있다.
시그널링 매니저(t91030)는 스케쥴러(t91020)으로부터 전달받은 시그널링 정보 및/또는 오버헤드 리덕션 부분으로부터 전달받은 시그널링 및/또는 컨텍스트(context) 정보를 입력받을 수 있다. 시그널링 매니저(t91030)는 전달받은 데이터들에 대하여, 각 시그널링 정보가 전송되어야할 경로를 결정할 수 있다. 각 시그널링 정보는 시그널링 매니저(t91030)에 의해 결정된 경로로 전달될 수 있다. 전술한 바와 같이 FIC, EAS 등의 구분된 채널로 전송될 시그널링 정보들은 시그널링 포매터(t91040)으로 전달될 수 있고, 그 밖의 시그널링 정보들은 인캡슐레이션 버퍼(t91070)으로 전달될 수 있다.
시그널링 포매터(t91040)는 별도로 구분된 채널을 통해 시그널링 정보가 전송될 수 있도록, 관련된 시그널링 정보를 각 구분된 채널에 맞는 형태로 포맷하는 역할을 할 수 있다. 전술한 바와 같이 피지컬 레이어에는 물리적/논리적으로 구분된 별도의 채널이 있을 수 있다. 이 구분된 채널들은 FIC 시그널링 정보나, EAS 관련 정보를 전송하는데 사용될 수 있다. FIC 또는 EAS 관련 정보는 시그널링 매니저(t91030)에 의해 분류되어 시그널링 포매터(t91040)로 입력될 수 있다. 시그널링 포매터(t91040)은 각 정보들을, 각자의 별도 채널에 맞게 포맷팅할 수 있다. FIC, EAS 이외에도, 피지컬 레이어가 특정 시그널링 정보를 별도의 구분된 채널을 통해 전송하는 것으로 설계된 경우에는, 그 특정 시그널링 정보를 위한 시그널링 포매터가 추가될 수 있다. 이러한 방식을 통하여, 링크 레이어가 다양한 피지컬 레이어에 대하여 호환가능해질 수 있다.
채널을 위한 버퍼(t91050)들은 시그널링 포매터(t91040)으로부터 전달받은 시그널링 정보들을, 지정된 별도의 채널(t91060)로 전달하는 역할을 할 수 있다. 별도의 채널들의 개수, 내용은 실시예에 따라 달라질 수 있다.
전술한 바와 같이, 시그널링 매니저(t91030)은 특정 채널로 전달되지 않는 시그널링 정보를 인캡슐레이션 버퍼(t91070)으로 전달할 수 있다. 인캡슐레이션 버퍼(t91070)는 특정 채널로 전달되지 않는 시그널링 정보를 전달받는 버퍼 역할을 할 수 있다.
시그널링 정보를 위한 인캡슐레이션(t91080)은 특정 채널로 전달되지 않는 시그널링 정보에 대하여 인캡슐레이션을 수행할 수 있다. 트랜스미션 버퍼(t91090)은 인캡슐레이션 된 시그널링 정보를, 시그널링 정보를 위한 DP(t91100) 로 전달하는 버퍼 역할을 할 수 있다. 여기서, 시그널링 정보를 위한 DP(t91100)은 전술한 PLS 영역을 의미할 수 있다.
오버헤드 리덕션 부분은 링크 레이어에 전달되는 패킷들의 오버헤드를 제거하여, 효율적인 전송이 가능하게 할 수 있다. 오버헤드 리덕션 부분은 링크 레이어에 입력되는 IP 스트림의 수만큼 구성될 수 있다.
오버헤드 리덕션 버퍼(t91130)는 상위 레이어로부터 전달된 IP 패킷을 입력받는 역할을 할 수 있다. 전달받은 IP 패킷은 오버헤드 리덕션 버퍼(t91130)를 통해 오버헤드 리덕션 부분으로 입력될 수 있다.
오버헤드 리덕션 컨트롤(t91120)은 오버헤드 리덕션 버퍼(t91130)로 입력되는 패킷 스트림에 대하여 오버헤드 리덕션을 수행할지 여부를 결정할 수 있다. 오버헤드 리덕션 컨트롤(t91120)은 패킷 스트림별로 오버헤드 리덕션 수행여부를 결정할 수 있다. 패킷 스트림에 오버헤드 리덕션이 수행되는 경우 RoHC 컴프레셔(t91140)으로 패킷들이 전달되어 오버헤드 리덕션이 수행될 수 있다. 패킷 스트림에 오버헤드 리덕션이 수행되지 않는 경우, 인캡슐레이션 부분으로 패킷들이 전달되어 오버헤드 리덕션 없이 인캡슐레이션이 진행될 수 있다. 패킷들의 오버헤드 리덕션 수행여부는 링크 레이어로 전달된 시그널링 정보들(t91010)에 의해 결정될 수 있다. 이 시그널링 정보들은 스케쥴러(t91020)에 의해 오버헤드 리덕션 컨트롤(t91180)으로 전달될 수 있다.
RoHC 컴프레셔(t91140) 은 패킷 스트림에 대하여 오버헤드 리덕션을 수행할 수 있다. RoHC 컴프레셔(t91140) 은 패킷들의 헤더를 압축하는 동작을 수행할 수 있다. 오버헤드 리덕션에는 다양한 방법들이 사용될 수 있다. 전술한, 본 발명이 제안한 방법들에 의하여 오버헤드 리덕션이 수행될 수 있다. 본 실시예는 IP 스트림을 가정했는 바, RoHC 컴프레셔라고 표현되었으나, 실시예에 따라 명칭은 변경될 수 있으며, 동작도 IP 스트림의 압축에 국한되지 아니하고, 모든 종류의 패킷들의 오버헤드 리덕션이 RoHC 컴프레셔(t91140)에 의해 수행될 수 있다.
패킷 스트림 컨피규레이션 블럭(t91150)은 헤더가 압축된 IP 패킷들 중에서, 시그널링 영역으로 전송될 정보와 패킷 스트림으로 전송될 정보를 분리할 수 있다. 패킷 스트림으로 전송될 정보란 DP 영역으로 전송될 정보를 의미할 수 있다. 시그널링 영역으로 전송될 정보는 시그널링 및/또는 컨텍스트 컨트롤(t91160)으로 전달될 수 있다. 패킷 스트림으로 전송될 정보는 인캡슐레이션 부분으로 전송될 수 있다.
시그널링 및/또는 컨텍스트 컨트롤(t91160)은 시그널링 및/또는 컨텍스트(context) 정보를 수집하고 이를 시그널링 매니저로 전달할 수 있다. 시그널링 및/또는 컨텍스트 정보를 시그널링 영역으로 전송하기 위함이다.
인캡슐레이션 부분은, 패킷들을 피지컬 레이어로 전달하기 적합한 형태로 인캡슐레이팅하는 동작을 수행할 수 있다. 인캡슐레이션 부분은 IP 스트림의 수만큼 구성될 수 있다.
인캡슐레이션 버퍼(t91170) 은 인캡슐레이션을 위해 패킷 스트림을 입력받는 역할을 할 수 있다. 오버헤드 리덕션이 수행된 경우 오버헤드 리덕션된 패킷들을, 오버헤드 리덕션이 수행되지 않은 경우 입력받은 IP 패킷 그대로를 입력받을 수 있다.
인캡슐레이션 컨트롤(t91180) 은 입력된 패킷 스트림에 대하여 인캡슐레이션을 수행할지 여부를 결정할 수 있다. 인캡슐레이션이 수행되는 경우 패킷 스트림은 세그멘테이션/컨케테네이션(t91190)으로 전달될 수 있다. 인캡슐레이션이 수행되지 않는 경우 패킷 스트림은 트랜스미션 버퍼(t91230)으로 전달될 수 있다. 패킷들의 인캡슐레이션의 수행여부는 링크 레이어로 전달된 시그널링 정보들(t91010)에 의해 결정될 수 있다. 이 시그널링 정보들은 스케쥴러(t91020)에 의해 인캡슐레이션 컨트롤(t91180)으로 전달될 수 있다.
세그멘테이션/컨케테네이션(t91190)에서는, 패킷들에 대하여 전술한 세그멘테이션 또는 컨케테네이션 작업이 수행될 수 있다. 즉, 입력된 IP 패킷이 링크 레이어의 출력인 링크 레이어 패킷보다 길 경우, 하나의 IP 패킷을 분할하여 여러 개의 세그멘트로 나누어 복수개의 링크 레이어 패킷 페이로드를 만들 수 있다. 또한, 입력된 IP 패킷이 링크 레이어의 출력인 링크 레이어 패킷보다 짧을 경우, 여러 개의 IP 패킷을 이어붙여 하나의 링크 레이어 패킷 페이로드를 만들 수 있다.
패킷 컨피규레이션 테이블(t91200)은, 세그멘테이션 및/또는 컨케테네이션된 링크 레이어 패킷의 구성 정보를 가질 수 있다. 패킷 컨피규레이션 테이블(t91200)의 정보는 송신기와 수신기가 같은 정보를 가질 수 있다. 패킷 컨피규레이션 테이블(t91200)의 정보가 송신기와 수신기에서 참조될 수 있다. 패킷 컨피규레이션 테이블(t91200)의 정보의 인덱스 값이 해당 링크 레이어 패킷의 헤더에 포함될 수 있다.
링크 레이어 헤더 정보 블락(t91210)은 인캡슐레이션 과정에서 발생하는 헤더 정보를 수집할 수 있다. 또한, 링크 레이어 헤더 정보 블락(t91210)은 패킷 컨피규레이션 테이블(t91200)이 가지는 정보를 수집할 수 있다. 링크 레이어 헤더 정보 블락(t91210)은 링크 레이어 패킷의 헤더 구조에 따라 헤더 정보를 구성할 수 있다.
헤더 어태치먼트(t91220)은 세그멘테이션 및/또는 컨케테네이션된 링크 레이어 패킷의 페이로드에 헤더를 추가할 수 있다. 트랜스미션 버퍼(t91230)은 링크 레이어 패킷을 피지컬 레이어의 DP(t91240) 로 전달하기 위한 버퍼 역할을 할 수 있다.
각 블락 내지 모듈 및 부분(part)들은 링크 레이어에서 하나의 모듈/프로토콜로서 구성될 수도 있고, 복수개의 모듈/프로토콜로 구성될 수도 있다.
도 6은 본 발명의 일 실시예에 따른 수신기 측의 링크 레이어 구조를 도시한 도면이다(노말 모드).
본 실시예는 IP 패킷을 처리하는 것을 가정한 실시예이다. 수신기 측의 링크 레이어는 기능적인 관점에서 볼 때, 크게 시그널링 정보를 처리하는 링크 레이어 시그널링 부분, 오버헤드 프로세싱 부분, 및/또는 디캡슐레이션 부분을 포함할 수 있다. 또한, 수신기 측의 링크 레이어는 링크 레이어 전체 동작에 대한 제어 및 스케쥴링을 위한 스케쥴러 및/또는 링크 레이어의 입/출력 부분 등을 포함할 수 있다.
먼저, 피지컬 레이어를 통해 전송받은 각 정보들이 링크 레이어에 전달될 수 있다. 링크 레이어는 각 정보들을 처리하여, 송신측에서 처리하기 전의 원래 상태로 되돌린 뒤, 상위 레이어에 전달할 수 있다. 이 실시예에서 상위 레이어는 IP 레이어일 수 있다.
피지컬 레이어에서 구분된 특정 채널(t92030)들을 통해 전달된 정보들이 링크 레이어 시그널링 부분으로 전달될 수 있다. 링크 레이어 시그널링 부분은 피지컬 레이어로부터 수신된 시그널링 정보를 판별하고, 링크 레이어의 각 부분들로 판별된 시그널링 정보들을 전달하는 역할을 수행할 수 있다.
채널을 위한 버퍼(t92040)은 특정 채널들을 통해 전송된 시그널링 정보들을 전달받는 버퍼 역할을 할 수 있다. 전술한 바와 같이 피지컬 레이어에 물리적/논리적으로 구분된 별도의 채널이 존재할 경우, 그 채널들을 통해 전송된 시그널링 정보들을 전달받을 수 있다. 별도의 채널들로부터 받은 정보들이 분할된 상태일 경우, 완전한 형태의 정보가 될 때까지 분할된 정보들을 저장해 놓을 수 있다.
시그널링 디코더/파서(t92050)는 특정 채널을 통해 수신된 시그널링 정보의 포맷을 확인하고, 링크 레이어에서 활용될 정보들을 추출해 낼 수 있다. 특정 채널을 통한 시그널링 정보가 인코딩되어 있는 경우에는 디코딩을 수행할 수 있다. 또한, 실시예에 따라 해당 시그널링 정보의 무결성 등을 확인할 수 있다.
시그널링 매니저(t92060)은 여러 경로를 통해 수신된 시그널링 정보들을 통합할 수 있다. 후술할 시그널링을 위한 DP(t92070)을 통해 수신된 시그널링 정보들 역시 시그널링 매니저(t92060)에서 통합될 수 있다. 시그널링 매니저(t92060)은 링크 레이어 내의 각 부분에 필요한 시그널링 정보를 전달할 수 있다. 예를 들어 오버헤드 프로세싱 부분에, 패킷의 리커버리를 위한 컨텍스트 정보등을 전달할 수 있다. 또한, 스케쥴러(t92020)에 제어를 위한 시그널링 정보들을 전달해 줄 수 있다.
시그널링을 위한 DP(t92070)를 통해, 별도의 특별 채널로 수신되지 않은 일반적인 시그널링 정보들이 수신될 수 있다. 여기서, 시그널링을 위한 DP 란 PLS 등을 의미할 수 있다. 리셉션 버퍼(t92080)은 시그널링을 위한 DP 로부터 수신된 시그널링 정보를 전달받는 버퍼 역할을 할 수 있다. 시그널링 정보의 디캡슐레이션(t92090)에서는 수신된 시그널링 정보가 디캡슐레이션될 수 있다. 디캡슐레이션 된 시그널링 정보는 디캡슐레이션 버퍼(t92100)을 거쳐 시그널링 매니저(t92060)으로 전달될 수 있다. 전술한 바와 같이, 시그널링 매니저(t92060)는 시그널링 정보를 취합하여 링크 레이어 내의 필요한 부분에 전달할 수 있다.
스케쥴러(t92020)은 링크 레이어에 포함된 여러 모듈들의 동작을 결정하고 제어하는 역할을 할 수 있다. 스케쥴러(t92020)은 리시버 정보(t92010) 및/또는 시그널링 매니저(t92060)으로부터 전달받은 정보를 이용하여, 링크 레이어의 각 부분을 제어할 수 있다. 또한, 스케쥴러(t92020)는 각 부분의 동작 모드등을 결정할 수 있다. 여기서, 리시버 정보(t92010) 는 수신기가 기 저장하고 있던 정보를 의미할 수 있다. 스케쥴러(t92020)는 채널 전환 등과 같이 사용자가 변경하는 정보 역시 이용하여 제어에 활용할 수 있다.
디캡슐레이션 부분은 피지컬 레이어의 DP(t92110)로부터 수신된 패킷을 필터링하고, 해당 패킷의 타입에 따라 패킷들을 분리해내는 역할을 수행할 수 있다. 디캡슐레이션 부분은 피지컬 레이어에서 동시에 디코딩할 수 있는 DP 의 수만큼 구성될 수 있다.
디캡슐레이션 버퍼(t92110)은 디캡슐레이션을 위해 피지컬 레이어로부터 패킷 스트림을 입력받는 버퍼 역할을 할 수 있다. 디캡슐레이션 컨트롤(t92130)은 입력된 패킷 스트림에 대하여 디캡슐레이션을 수행할 것인지 여부를 결정할 수 있다. 디캡슐레이션이 수행될 경우 패킷 스트림은 링크 레이어 헤더 파서(t92140)으로 전달될 수 있다. 디캡슐레이션이 수행되지 않을 경우 패킷 스트림은 아웃풋 버퍼(t92220)로 전달될 수 있다. 디캡슐레이션의 수행여부를 결정하는 데에는 스케쥴러(t92020)으로부터 전달받은 시그널링 정보가 활용될 수 있다.
링크 레이어 헤더 파서(t92140)은 전달받은 링크 레이어 패킷의 헤더를 확인할 수 있다. 헤더를 확인함으로써, 링크 레이어 패킷의 페이로드에 포함되어 있는 IP 패킷의 구성을 확인할 수 있다. 예를 들어 IP 패킷은 세그멘테이션 되어 있거나, 컨케테네이션 되어 있을 수 있다.
패킷 컨피규레이션 테이블(t92150)은 세그멘테이션 및/또는 컨케테네이션으로 구성되는 링크 레이어 패킷의 페이로드 정보를 포함할 수 있다. 패킷 컨피규레이션 테이블(t92150)의 정보는 송신기와 수신기가 같은 정보를 가질 수 있다. 패킷 컨피규레이션 테이블(t92150)의 정보가 송신기와 수신기에서 참조될 수 있다. 링크 레이어 패킷에 포함된 인덱스 정보를 바탕으로 재결합(reassembly)에 필요한 값이 찾아질 수 있다.
재결합 블록(reassembly) (t92160)은 세그멘테이션 및/또는 컨케테네이션으로 구성된 링크 레이어 패킷의 페이로드를 원래의 IP 스트림의 패킷들로 구성할 수 있다. 세그멘트들을 하나로 모아 하나의 IP 패킷으로 재구성하거나, 컨케테네이션된 패킷들을 분리하여 복수개의 IP 패킷 스트림으로 재구성할 수 있다. 재결합된 IP 패킷들은 오버헤드 프로세싱 부분으로 전달될 수 있다.
오버헤드 프로세싱 부분은, 송신기에서 수행된 오버헤드 리덕션의 역과정으로, 오버헤드 리덕션된 패킷들을 원래의 패킷으로 돌리는 동작을 수행할 수 있다. 이 동작을 오버헤드 프로세싱이라 부를 수 있다. 오버헤드 프로세싱 부분은 피지컬 레이어에서 동시에 디코딩할 수 있는 DP 의 수 만큼 구성될 수 있다.
패킷 리커버리 버퍼(t92170)는 오버헤드 프로세싱을 수행하기 위해 디캡슐레이션된 RoHC 패킷 내지 IP 패킷을 입력받는 버퍼 역할을 할 수 있다.
오버헤드 컨트롤(t92180)은 디캡슐레이션된 패킷들에 대해 패킷 리커버리 및/또는 디컴프레션을 수행할 것인지 여부를 결정할 수 있다. 패킷 리커버리 및/또는 디컴프레션이 수행되는 경우 패킷 스트림 리커버리(t92190)으로 패킷이 전달될 수 있다. 패킷 리커버리 및/또는 디컴프레션이 수행되지 않는 경우, 패킷들은 아웃풋 버퍼(t92220)으로 전달될 수 있다. 패킷 리커버리 및/또는 디컴프레션의 수행 여부는 스케쥴러(t92020)에 의해 전달된 시그널링 정보에 근거해 결정될 수 있다.
패킷 스트림 리커버리(t92190)은 송신기에서 분리된 패킷 스트림과, 패킷 스트림의 컨텍스트 정보를 통합하는 동작을 수행할 수 있다. 이는 RoHC 디컴프레셔(t92210)에서 처리 가능하도록, 패킷 스트림을 복구하는 과정일 수 있다. 이 과정에서 시그널링 및/또는 컨텍스트 컨트롤(t92200)로부터 시그널링 정보 및/또는 컨텍스트 정보를 전달받을 수 있다. 시그널링 및/또는 컨텍스트 컨트롤(t92200)은 송신기로부터 전달된 시그널링 정보를 판별하고, 해당 컨텍스트 ID 에 맞는 스트림으로 매핑될 수 있도록 패킷 스트림 리버커리(t92190)에 시그널링 정보를 전달할 수 있다.
RoHC 디컴프레셔(t92210)은 패킷 스트림의 패킷들의 헤더를 복구할 수 있다. 패킷 스트림의 패킷들은 헤더가 복구되어 원래의 IP 패킷들의 형태로 복구될 수 있다. 즉, RoHC 디컴프레셔(t92210)은 오버헤드 프로세싱을 수행할 수 있다.
아웃풋 버퍼(t92220)은 IP 레이어(t92230)로 출력 스트림을 전달하기에 앞서, 버퍼 역할을 할 수 있다.
본 발명이 제안하는 송신기와 수신기의 링크 레이어는, 전술한 바와 같은 블록 내지 모듈들을 포함 가능하다. 이를 통해, 링크 레이어가 상위 레이어와 하위 레이어에 관계없이 독립적으로 동작할 수 있고, 오버헤드 리덕션을 효율적으로 수행할 수 있으며, 상하위 레이어 등에 따라 지원 가능한 기능의 확정/추가/제거가 용이해질 수 있다.
도 7은 본 발명의 일 실시예에 따른, 링크 레이어 (Link layer)의 조직화의 타입에 따른 정의를 나타내는 도면이다.
링크 레이어 (link layer)가 실제 protocol layer로 구현될 때, 하나의 주파수 slot을 통해 방송 서비스를 송수신하기 할 수 있다. 여기에서 하나의 주파수 slot은, 주로 특정 대역폭을 가지는 방송 채널을 예로 들 수 있다. 전술한 바와 같이, 본 발명에 따르면, 방송 시스템 내에서 physical layer의 구성의 변경이 있는 경우, 또는 서로 다른 physical layer 구조를 가지는 여러 방송 system에서, 호환되는 link layer를 정의할 수 있다.
Physical layer는 link layer의 interface를 위해 논리적인 data path를 가질 수 있다. Link layer는 physical layer의 논리적 data path에 접속하여 해당 data path에 관련한 정보를 전송하게 된다. Link layer에서 interface 되는 physical layer의 data path로는 다음과 같은 형태가 고려될 수 있다.
방송 시스템에서, Data path의 형태로, Normal Data Pipe (Normal DP)가 존재할 수 있다. Normal Data Pipe는, 일반적인 data를 전송하기 위한 data pipe로 physical layer의 구성에 따라 하나 이상의 data pipe가 존재할 수 있다.
방송 시스템에서, Data path의 형태로, Base Data Pipe (Base DP) 가 존재할 수 있다. Base Data Pipe는 특정 목적을 위해 사용되는 data pipe로, signaling 정보 (본 발명에서 설명되는 시그널링 정보의 전부 또는 일부) 및/또는 해당 주파수 slot에서 공통되는 data가 전달될 수 있다. 경우에 따라, 효율적인 대역폭 관리를 위해, 일반적으로 normal data pipe로 전송되는 data 가 Base Data Pipe 로 전송될 수고 있다. Dedicated channel이 있는 경우 전송하고자 하는 정보의 크기가 해당 channel이 수용하는 능력을 벗어나는 경우, Base Data Pipe는 보완적인 역할을 할 수 있다. 즉, 해당 channel의 수용 능력을 벗어난 데이터는 Base Data Pipe로 전송 될 수 있다.
Base data pipe는 하나의 지정된 data pipe를 지속적으로 사용하는 것이 일반적이나, 효율적인 data pipe의 운용을 위해 physical layer signaling 또는 link layer signaling 등의 방법을 이용하여 여러 data pipe 중 하나 이상의 data pipe를, Base data pipe를 위하여 동적으로 선정할 수 있다.
방송 시스템에서, Data path의 형태로, Dedicated Channel 이 존재할 수 있다. Dedicated Channel은 physical layer에서 signaling 또는 이와 유사한 특정 목적을 위하여 사용되는 channel로, 주로 현재 주파수 slot 상에서 서비스 되고 있는 사항을 빠르게 획득하게 하는 FIC (Fast Information Channel), 및/또는 긴급 경보에 대한 알림을 사용자에게 즉각 전달 하기 위한 EAC (Emergency Alert Channel) 이 이에 포함될 수 있다.
논리적 data path는, normal data pipe를 전송하기 위하여 Physical layer에서 구현되는 것이 일반적이다. Base data pipe 및/또는 Dedicated Channel 을 위한 논리적 data path는, physical layer에서 구현되지 않을 수 도 있다.
link layer에서 전송하고자 하는 data를 전송하기 위한 구조를 도면과 같이 정의할 수 있다.
Organization Type 1 은, 논리적 data path가 Normal Data Pipe로만 구성된 경우를 나타낼 수 있다.
Organization Type 2 는, 논리적 data path가 Normal Data Pipe 및 Base Data Pipe를 포함하는 경우를 나타낼 수 있다.
Organization Type 3 은, 논리적 data path가 Normal Data Pipe 및 Dedicated Channel 을 포함하는 경우를 나타낼 수 있다.
Organization Type 4 는, 논리적 data path가 Normal Data Pipe, Base Data Pipe 및 Dedicated Channel 을 포함하는 경우를 나타낼 수 있다.
경우에 따라, 논리적 data path는 Base Data Pipe 및/또는 Dedicated Channel을 포함할 수 도 있다.
본 발명의 일 실시예에 따르면, 논리적 데이터 경로 (data path)의 구성에 따라 시그널링 (signaling) 정보의 전송 절차가 결정 될 수 있다. 특정 논리적 data path에 전송되는 signaling의 구체적인 정보는 본 발명에서 정의 하고 있는 link layer의 상위 layer의 protocol에 따라 결정 될 수 있다. 본 발명에서 기술하고 있는 절차에 관해서, 상위 layer를 통해 parsing 된 signaling 정보 또한 활용 될 수 있으며, 해당 signaling은 상위 layer로 부터는 IP packet의 형태로 전달되며, 다시 link layer packet 형태로 캡슐화 되어 전송 될 수 있다.
이러한 signaling 정보가 전송 되었을 때, 수신기에서는 protocol 구성에 따라 IP packet stream내에 포함되는 session 정보를 이용하여 구체적인 signaling 정보를 추출해 낼 수 있다. 상위 layer의 signaling 정보를 활용하는 경우에는, DB를 활용하거나, 공유 메모리를 활용 하는 등의 방법이 있을 수 있다. 예를 들어, IP 패킷 스트림에 포함된 세션 (session) 정보를 이용하여, 시그널링 정보를 추출한 경우, 추출된 시그널링 정보는 수신기 내의 DB (데이터 베이스), 버퍼, 및/또는 공유 메모리에 저장될 수 있다. 이후 방송 신호내의 데이터에 대한 처리 과정에서 해당 시그널링 정보가 필요한 경우, 위 저장 장치로부터 시그널링 정보를 획득할 수 있다.
도 8은 본 발명의 일 실시예에 따른, 논리적 data path가 Normal Data Pipe로만 구성된 경우에 있어서, 방송 신호의 처리를 나타낸 도면이다.
physical layer의 논리적 data path가 Normal Data Pipe로만 구성된 경우에 대해 link layer가 가지는 structure가 도면에 도시되어 있다. 전술한 바와 같이 link layer는 Link Layer Signaling 처리부, Overhead Reduction 처리부, Encapsulation (Decapsulation) 처리부를 포함할 수 있다. 각각의 functional module (하드웨어 또는 소프트웨어로 구현 가능) 로부터 출력되는 정보를 physical layer의 적절한 data path로 전달하는 것이 link layer 의 주요 기능 중 하나가 될 수 있다.
Link layer의 상위 layer에서 구성되는 IP stream은 전송하고자 하는 data rate에 따라 복수개의 packet stream이 전송 될 수 있으며, 해당 packet stream 별로 각각, overhead reduction 및 encapsulation 과정이 수행될 수 있다. Physical layer 에서는 하나의 frequency band 내에서, link layer가 접근할 수 있는 복수개의 논리적 data path인 DP (Data Pipe) 로 구성될 수 있고, 각각의 packet stream별로 link layer에서 처리된 packet stream이 전달될 수 있다. 전송되어야 할 packet stream 보다 DP의 개수가 작으면, data rate을 고려하여 일부 packet stream은 multiplexing 되어 DP에 입력될 수 있다.
Signaling 처리부에서는, 송신 시스템 정보, 관련 파라미터, 및/또는 상위 layer에서 전달되는 signaling 등을 확인하여 signaling으로 전송될 정보를 수집한다. Physical layer에서 normal DP만으로 구성되어 있으므로 해당 signaling은 packet의 형태로 전송 되어야 한다. 따라서, link layer packet 구성 시에 packet의 header등을 이용해 signaling 임을 표시할 수 있다. 이 경우, signaling을 포함하는 packet의 헤더는 본 패킷의 페이로드 (payload)에 시그널링 데이터가 포함되었는 여부를 식별하는 정보를 포함할 수 있다.
상위 layer에서 IP packet 형태로 전송되는 service signaling의 경우 일반적으로 다른 IP packet과 동일한 처리가 가능하다. 다만, link layer signaling의 구성을 위해 해당 IP packet의 정보를 읽어 낼 수 있다. 이를 위해 IP address의 filtering 방법을 이용하여 signaling이 포함된 packet을 찾아낼 수 있다. 예를 들어, IANA에서는 224.0.23.60 의 IP address를 ATSC service signaling으로 지정하고 있으므로, 해당 IP address를 가지는 IP packet을 확인하여 link layer signaling을 구성하기 위해 활동될 수 있다. 이 경우에도, 수신기에 해당 packet은 전달되어야 하므로, IP packet에 대한 처리는 그대로 이루어 진다. 수신기는 일정한 IP 주소로 전송되는 IP 패킷을 파싱하여, 링크 레이어에서의 시그널링을 위한 데이터를 획득할 수 있다.
복수의 방송 service가 하나의 frequency band를 통해 전송되는 경우, 수신기에서는 모든 DP를 decoding 할 필요가 없고, signaling 정보를 먼저 확인하여 필요한 service와 관련되는 DP만 decoding 하는 것이 효율적이다. 따라서, 수신기의 link layer 를 위한 동작과 관련하여, 다음과 같은 절차의 동작이 수행될 수 있다.
수신기는, 사용자가 수신하고자 하는 service를 선택 하거나 변경 하면, 해당 주파수로 tuning 하고, 해당 채널과 관련하여 DB (database) 등에 저장하고 있는 수신기의 정보를 읽어들인다.
수신기는, Link layer signaling 을 전송하는 DP에 관한 정보를 확인하여, 해당 DP를 decoding 하고, link layer signaling packet을 획득한다.
수신기는, Link layer signaling packet을 parsing 하여, 현재 채널로 전송되는 하나 이상의 DP 중 사용자가 선택한 service와 관련되는 데이터를 전송하는 DP에 관한 정보와 해당 DP의 packet stream에 대한 overhead reduction 정보를 획득한다. 수신기는, 사용자가 선택한 service와 관련되는 데이터를 전송하는 DP를 식별하는 정보를 링크 레이어 시그널링 패킷에서 획득하여, 이 정보를 바탕으로 해당 DP를 얻을 수 있다. 또한, 링크 레이어 시그널링 패킷은 해당 DP에 적용된 overhead reduction 를 알리는 정보를 포함하고 있고, 수신기는 이를 이용하여, overhead reduction이 적용된 DP를 복원할 수 있다.
수신기는, Physical layer 에서 신호 또는 데이터를 처리하는 Physical layer 프로세서로 수신하여야 할 DP 정보를 보내고, 해당 DP로부터 packet stream을 수신한다.
수신기는, Physical layer 프로세서에서 decoding 된 packet stream에 대해 encapsulation 및 header recovery 를 수행하고 IP packet stream형태로 수신기의 상위 layer로 전송한다.
이후, 수신기는 상위 레이어의 프로토콜에 따른 처리를 수행하여, 방송 서비스를 사용자에게 제공한다.
도 9는 본 발명의 일 실시예에 따른, 논리적 data path가 Normal Data Pipe 와 base data pipe을 포함하는 경우에 있어서, 방송 신호의 처리를 나타낸 도면이다.
physical layer의 논리적 data path가 Base Data Pipe, Normal Data Pipe로 구성된 경우에 대해 link layer가 가지는 structure가 도면에 도시되었다. 전술한 바와 같이 link layer는 Link Layer Signaling 부분, Overhead Reduction 부분, Encapsulation (Decapsulation) 부분을 포함할 수 있다. 이 경우, 링크 레이어에서의 신호 및/또는 데이터의 처리를 위한 링크 레이어 프로세서는 Link Layer Signaling 처리부, Overhead Reduction 처리부, Encapsulation (Decapsulation) 처리부를 포함할 수 있다.
각각의 functional module (하드웨어 및/또는 소프트웨어로 구현될 수 있음) 로부터 출력되는 정보를 physical layer의 적절한 data path로 전달하는 것이 link layer 의 주요 기능 중 하나라 할 수 있다.
Link layer의 상위 layer에서 구성되는 IP stream은 전송하고자 하는 data rate에 따라 복수개의 packet stream이 전송될 수 있으며, 해당 packet stream 별로 각각, overhead reduction 및 encapsulation 과정이 수행될 수 있다.
Physical layer에서는 하나의 frequency band 내에서, link layer가 접근할 수 있는 복수개의 논리적 data path인 DP가 포함될 수 있고, 각각의 packet stream별로 link layer에서 처리된 packet stream이 전달될 수 있다. 전송되어야 할 packet stream 보다 DP의 개수가 작으면, data rate을 고려하여 일부 packet stream은 multiplexing 되어 DP에 입력된다.
Signaling 처리부에서는 송신 시스템 정보, 관련 파라미터, 상위 layer signaling 등을 확인하여 signaling으로 전송될 정보를 수집한다. Physical layer 의 방송 신호에는 base DP 와 normal DP가 포함되어 있으므로, data rate를 고려하여 signaling은 base DP로 전송할 수 있으며, 시그널링 데이터는 base DP의 전송에 적합한 packet의 형태로 전송될 수 있다. 이때, link layer packet 구성 시에 packet의 header등 을 이용해 signaling 임을 표시할 수 있다. 예를 들어, 링크 레이어 패킷의 헤더는 본 패킷의 페이로드에 포함된 데이터가 시그널링 데이터임을 가리키는 정보를 포함할 수 있다.
Base DP와 같은 논리적 data path가 존재하는 physical layer 구조에서는, data rate을 고려 했을 때, signaling 정보와 같이, audio / video 컨텐츠가 아닌 data의 경우에는 Base DP로 전송하는 것이 효율적일 수 있다. 따라서, 상위 layer에서 IP packet 형태로 전송되는 service signaling의 경우 IP address filtering 등의 방법을 이용하여 base DP로 전달될 수 있다. 예를 들어, IANA에서는 224.0.23.60 의 IP address를 ATSC service signaling으로 지정 하고 있으므로, 해당 IP address를 가지는 IP packet stream의 경우에는 base DP 로 전달 할 수 있다.
해당 service signaling에 대한 IP packet stream이 여러 개가 존재 하는 경우에는 multiplexing 등의 방법을 이용하여 하나의 base DP로 전달할 수 있다. 단, 서로 다른 service signaling에 대한 packet의 구분은 source address 및/또는 port 등의 field로 구별할 수 있다. 이 경우에도, 해당 service signaling packet에 link layer signaling 의 구성에 필요한 정보를 읽어 낼 수 있다.
복수의 방송 service가 하나의 frequency band를 통해 전송되는 경우, 수신기는 모든 DP를 decoding 할 필요가 없고, signaling 정보를 먼저 확인하여, 해당 서비스에 관한 데이터 및/또는 신호를 전송하는 DP만 decoding 할 수 있다. 따라서, 수신기는 link layer에서의 데이터 및/또는 처리와 관련하여 다음과 같은, 동작을 수행할 수 있다.
수신기는, 사용자가, 수신하고자 하는 service를 선택하거나 변경하면, 해당 주파수로 tuning 하고, 해당 채널과 관련하여 DB 등에 저장된 수신기의 정보를 읽어 들인다. 여기서, DB 등에 저장된 정보는 base DP를 식별하는 정보가 포함될 수 있다.
수신기는, Base DP 를 decoding 하여, Base DP 에 포함된 link layer signaling packet을 획득한다.
수신기는, Link layer signaling packet을 parsing 하여, 현재 채널에 전송되고 있는 여러 DP 중 사용자가 선택한 service를 수신하기 위한 DP 정보와 해당 DP의 packet stream에 대한 overhead reduction 정보를 획득한다. 링크 레이어 시그널링 패킷은, 특정 서비스와 관련된 신호 및/또는 데이터를 전송하는 DP를 식별하는 정보, 및/또는 해당 DP로 전송되는 packet stream에 적용된 overhead reduction의 종류를 식별하는 정보가 포함될 수 있다. 수신기는 위 정보를 이용하여, 특정 서비스를 위한 하나 이상의 DP에 접근하거나, 해당 DP에 포함된 packet 을 복원할 수 있다.
수신기는, Physical layer의 프로토콜에 따른 신호 및/또는 데이터의 처리를 수행하는 physical layer 프로세서로, 해당 서비스를 위하여 수신하여야 하는 DP에 관한 정보를 보내고, 해당 DP로부터 packet stream을 수신한다.
수신기는, Physical layer에서 decoding 된 packet stream에 대해 decapsulation 및 header recovery를 수행하고 IP packet stream형태로 수신기의 상위 layer로 전송한다.
이후, 수신기는 상위 레이어의 프로토콜에 따른 처리를 수행하여, 방송 서비스를 사용자에게 제공한다.
전술한 Base DP 를 디코딩하여 링크 레이어 패킷을 획득하는 과정에서, Base DP 에 대한 정보 (예를 들면, Base DP 를 식별 정보, Base DP 의 위치 정보, 또는 Base DP 에 포함된 시그널링 정보) 는 이전 채널 스캔 (channel scan) 시 탐색되어 DB 에 저장되어 있을 수도 있고, 저장된 Base DP 를 수신기가 사용할 수 있다. 또는 수신기는, 수신기가 이전에 접근했던 DP 를 먼저 탐색하여 Base DP 를 획득할 수 있다.
전술한 링크 레이어 패킷을 파싱하여, 사용자가 선택한 서비스를 위한 DP 정보, 해당 서비스를 전송하는 DP 패킷 스트림에 대한 오버헤드 리덕션 정보를 획득하는 과정에서, 사용자에 의하여 선택된 서비스를 전송하는 DP 에 대한 정보가 상위 레이어 시그널링 (예를 들어, 링크 레이어 보다 상위 레이어, 또는 IP 레이어) 을 통해 전달되는 경우에는, 전술한 바와 같이, DB, 버퍼, 및/또는 공유 메모리에서 해당 정보를 획득하여, 디코딩이 필요한 DP 에 대한 정보로 사용할 수 있다.
링크 레이어 시그널링 (링크 레이어 시그널링 정보) 과 일반 데이터 (예를 들면, 방송 컨텐트 데이터) 가 동일한 DP 를 통하여 전송되는 경우나, 하나의 종류의 DP 만이 방송 시스템에서 사용되는 경우에는, DP 를 통하여 전송되는 일반 데이터는, 시그널링 정보가 디코딩되고, 파싱되는 동안, 해당 일반 데이터는 버퍼, 또는 메모리에 일시적으로 저장될 수 있다. 수신기는 시그널링 정보가 획득되면, 해당 시그널링 정보에 따라 획득하여야 하는 DP 를 추출하기 위한 명령을 시스템 내부 명령어 등의 방법으로 DP 를 추출 처리하는 장치에 전달할 수 있다.
도 10은 본 발명의 일 실시예에 따른, 논리적 data path가 Normal Data Pipe 와 Dedicated Channel 을 포함하는 경우에 있어서, 방송 신호의 처리를 나타낸 도면이다.
physical layer의 논리적 data path가 Dedicated Channel, Normal Data Pipe로 구성된 경우에 대해 link layer가 가지는 structure가 도면에 도시되었다. 전술한 바와 같이 link layer는 Link Layer Signaling 부분, Overhead Reduction 부분, Encapsulation (Decapsulation) 부분으로 구성할 수 있다. 관련하여, 수신기에 포함될 수 있는 링크 레이어 프로세서는, Link Layer Signaling 처리부, Overhead Reduction 처리부, 및/또는 Encapsulation (Decapsulation) 처리부를 포함할 수 있다. 각각의 functional module (하드웨어 및/또는 소프트웨어로 구현될 수 있음) 로부터 출력되는 정보를 physical layer의 적절한 data path로 전달하는 것이, link layer 의 주요 기능 중 하나라 할 수 있다.
Link layer의 상위 layer에서 구성되는 IP stream은 전송하고자 하는 data rate에 따라 복수개의 packet stream이 전송될 수 있으며, 해당 packet stream 별로 각각, overhead reduction 및 encapsulation 과정이 수행될 수 있다. Physical layer 에서는 하나의 frequency band 내에서, link layer가 접근할 수 있는 복수 개의 논리적 data path인 DP로 구성될 수 있고, 각각의 packet stream별로 link layer에서 처리된 packet stream이 전달 될 수 있다. 전송되어야 할 packet stream 보다 DP의 개수가 작으면, data rate을 고려하여 일부 packet stream은 multiplexing 되어 DP로 전송될 수 있다.
Signaling 처리부는 송신 시스템 정보, 관련 파라미터, 및/또는 상위 layer signaling 등을 확인하여 signaling으로 전송될 정보를 수집한다. Dedicate channel 같은 형태의 논리적 data path가 존재하는 physical layer 구조에서는, data rate을 고려했을 때, signaling 정보를 주로 dedicated channel로 전송하는 것이 효율적일 수 있다. 그러나, dedicated channel을 통하여 많은 data를 전송하는 것은, 그 만큼의 dedicated channel을 위한 대역폭이 점유되어야 하므로, dedicated channel의 data rate를 크게 설정하지 않는 것이 일반적이다. 또한 dedicated channel은 일반적으로 DP 보다 빨리 수신 및 decoding 되므로, 수신기에서 신속히 획득이 필요한 정보를 위주로, 시그널링 데이터를 전달하는 것이 좀 더 효율적일 수 있다. 경우에 따라, dedicated channel을 통하여, 충분한 시그널링 데이터가 전달되지 못하는 경우, normal DP를 통하여, 전술한 링크 레이어 시그널링 패킷과 같은 시그널링 데이터가 전송될 수 있고, dedicated channel을 통하여 전송되는 시그널링 데이터는, 해당 링크 레이어 시그널링 패킷을 식별하는 정보를 포함할 수 있다.
Dedicated channel은 필요에 따라 여러 개가 존재할 수 있으며, physical layer에 따라 channel을 enable/disable 할 수 있다.
상위 layer에서 IP packet 형태로 전송되는 service signaling의 경우 일반적으로 다른 IP packet과 동일한 처리가 가능하다. 다만, link layer signaling의 구성을 위해 해당 IP packet의 정보를 읽어 낼 수 있다. 이를 위해 IP address의 filtering 방법을 이용하여 signaling이 포함된 packet을 찾아낼 수 있다. 예를 들어 IANA에서는 224.0.23.60 의 IP address를 ATSC service signaling 으로 지정하고 있으므로, 수신기는, 해당 IP address를 가지는 IP packet을 확인하여 link layer signaling을 구성하기 위해 활용할 수 있다. 이 경우에도, 수신기에 해당 packet은 전달되어야 하므로, IP packet에 대한 처리는 그대로 이루어 질 수 있다.
Service signaling에 대한 IP packet stream이 여러 개가 존재하는 경우에는 multiplexing 등의 방법을 이용하여 audio/video data와 함께 하나의 DP에 전달할 수 있다. 단, service signaling 과 audio/video data에 대한 packet 은, IP address 및 port 등의 field의 값으로 서로 구분될 수 있다.
복수의 방송 service가 하나의 frequency band를 통해 전송되는 경우, 수신기는, 모든 DP를 decoding 할 필요가 없고, signaling 정보를 먼저 확인하여 필요한 service와 관련한 신호 및/또는 데이터를 전송하는 DP만 decoding 하는 것이 효율적일 수 있다. 따라서, 수신기는, link layer의 프로토콜에 따른 처리를, 다음과 같은 절차로 수행할 수 있다.
수신기는, 사용자가 수신하고자 하는 service를 선택 하거나 변경하면 해당 주파수로 tuning 하고 해당 채널과 관련하여 DB 등에 저장하고 있는 정보를 읽어 들인다. DB에 저장되어 있는 정보는, dedicated channel을 식별하는 정보, 및/또는 채널/서비스/프로그램을 획득하기 위한 시그널링 정보를 포함할 수 있다.
수신기는, Dedicated channel로 전송되는 data를 decoding 하여 해당 channel의 목적에 맞는 signaling 과 관련된 처리를 수행한다. 예를 들어, FIC를 전송하는 dedicated channel의 경우에는, service 및/또는 channel 등의 정보에 대한 저장 및 갱신 처리를 할 수 있고, EAC를 전송하는 dedicated channel의 경우에는, emergency alert 정보의 전달을 수행하는 등의 처리가 있을 수 있다.
수신기는, Dedicated channel 로 전송되는 정보를 이용하여 decoding 할 DP의 정보를 획득할 수 있다. 필요 시, link layer signaling 이 DP를 통해 전송되는 경우, signaling 정보를 먼저 획득하기 위하여 signaling이 전달되는 DP를 먼저 decoding 할 수 있고, 이를 dedicated channel로 전송할 수 있다. 또는 링크 레이어 시그널링을 위한 패킷은, normal DP를 통하여 전송될 수 있고, 이 경우, dedicated channel을 통하여 전송되는 시그널링 데이터는, 링크 레이어 시그널링을 위한 패킷을 포함하는 DP를 식별하는 정보를 포함할 수 있다.
수신기는, Link layer signaling 정보를 이용하여 현재 채널에 전송되고 있는 여러 DP 중 사용자가 선택한 service를 수신하기 위한 DP 정보와 해당 DP의 packet stream에 대한 overhead reduction 정보를 획득한다. 링크 레이어 시그널링 정보는, 특정 서비스와 관련된 신호 및/또는 데이터를 전송하는 DP를 식별하는 정보, 및/또는 해당 DP로 전송되는 packet stream에 적용된 overhead reduction의 종류를 식별하는 정보가 포함될 수 있다. 수신기는 위 정보를 이용하여, 특정 서비스를 위한 하나 이상의 DP에 접근하거나, 해당 DP에 포함된 packet 을 복원할 수 있다.
수신기는, Physical layer로 수신하여야 할 DP를 식별하는 정보를, physical layer에서의 신호 및/또는 데이터를 처리하는 physical layer 프로세서로 보내고, 해당 DP로부터 packet stream을 수신한다.
수신기는, Physical layer에서 decoding 된 packet stream에 대해 decapsulation 및 header recovery 를 수행하고 IP packet stream형태로 수신기의 상위 layer로 전송한다.
이후, 수신기는 상위 레이어의 프로토콜에 따른 처리를 수행하여, 방송 서비스를 사용자에게 제공한다.
도 11은 본 발명의 일 실시예에 따른, 논리적 data path가 Normal Data Pipe, Base Data Pipe 와 Dedicated Channel 을 포함하는 경우에 있어서, 방송 신호의 처리를 나타낸 도면이다.
physical layer의 논리적 data path가 Dedicated Channel, Base Data Pipe, 및 Normal Data Pipe로 을 포함하는 경우, link layer가 가지는 structure가 도면에 도시되었다. 전술한 바와 같이 link layer는 Link Layer Signaling 부분, Overhead Reduction 부분, Encapsulation (Decapsulation) 부분을 포함할 수 있다. 관련하여, 수신기에 포함될 수 있는 링크 레이어 프로세서는, Link Layer Signaling 처리부, Overhead Reduction 처리부, 및/또는 Encapsulation (Decapsulation) 처리부를 포함할 수 있다. 각각의 functional module (하드웨어 및/또는 소프트웨어로 구현될 수 있음) 로부터 출력되는 정보를 physical layer의 적절한 data path로 전달하는 것이, link layer 의 주요 기능 중 하나라 할 수 있다.
Link layer의 상위 layer에서 구성되는 IP stream은 전송하고자 하는 data rate에 따라 복수개의 packet stream이 전송될 수 있으며, 해당 packet stream 별로 각각, overhead reduction 및 encapsulation 과정이 수행될 수 있다. Physical layer 에서는 하나의 frequency band 내에서, link layer가 접근할 수 있는 복수 개의 논리적 data path인 DP로 구성될 수 있고, 각각의 packet stream별로 link layer에서 처리된 packet stream이 전달 될 수 있다. 전송되어야 할 packet stream 보다 DP의 개수가 작으면, data rate을 고려하여 일부 packet
Signaling 처리부는, 송신 시스템 정보, 관련 파라미터, 및/또는 상위 layer signaling 등을 확인하여 signaling으로 전송될 정보를 수집한다. Physical layer의 신호는 base DP와 normal DP를 포함하므로, data rate를 고려하여 signaling은 base DP로 전송하는 것이 효율적일 수 있다. 이 때, 시그널링 데이터는, base DP를 통한 전송에 적합한, packet의 형태로 전송되어야 한다. link layer packet 구성 시에 packet의 header등을 이용해 signaling 임을 표시할 수 있다. 즉, 시그널링 데이터를 포함하는 링크 레이어 시그널링 패킷의 헤더는, 해당 패킷의 페이로드에 시그널링 데이터가 포함되어 있음을 나타내는 정보를 포함할 수 있다.
Dedicate channel 및 base DP가 동시에 존재하는 physical layer 구조에서는, signaling 정보를 dedicated channel과 base DP로 나누어 전송할 수 있다. Dedicated channel의 data rate를 크게 설정하지 않는 것이 일반적이므로 signaling의 크기가 작으면서 신속하게 획득할 필요가 있는 시그널링 정보는 dedicated channel로 전송하고, data량이 큰 signaling의 경우에는 base DP로 전달 할 수 있다. Dedicated channel은 필요에 따라 여러 개가 존재할 수 있으며, physical layer에 따라 channel을 enable/disable 할 수 있다. 또한 base DP 는 normal DP와 별개의 구조를 가지도록 구성될 수 있다. 또는. normal DP 중 하나를 지정하여 base DP로 사용하는 것도 가능하다.
상위 layer에서 IP packet 형태로 전송되는 service signaling의 경우, IP address filtering 등의 방법을 이용하여 base DP로 시그널링 정보를 전달될 수 있다. 특정 IP address를 가지고, 시그널링 정보를 포함하는 IP packet stream은, base DP 로 전달 될 수 있다. 해당 service signaling에 대한 IP packet stream이 여러 개가 존재하는 경우에는 multiplexing 등의 방법을 이용하여 하나의 base DP에 전달할 수 있다. 단, 서로 다른 service signaling에 대한 packet의 구분은, source address 및/또는 port 등의 field 의 값으로 수행될 수 있다. 수신기는, 해당 service signaling packet에서 link layer signaling의 구성에 필요한 정보를 읽어 낼 수 있다.
복수의 방송 service가 하나의 frequency band를 통해 전송되는 경우, 수신기는, 모든 DP를 decoding 할 필요가 없고, signaling 정보를 먼저 확인하여 필요한 service와 관련한 신호 및/또는 데이터를 전송하는 DP만 decoding 하는 것이 효율적일 수 있다. 따라서, 수신기는, link layer의 프로토콜에 따른 처리를, 다음과 같은 절차로 수행할 수 있다.
수신기는, 사용자가 수신하고자 하는 service를 선택 하거나 변경하면 해당 주파수로 tuning 하고 해당 채널과 관련하여 DB 등에 저장하고 있는 정보를 읽어 들인다. DB에 저장되어 있는 정보는, dedicated channel을 식별하는 정보, base data pipe를 식별하는 정보 및/또는 채널/서비스/프로그램을 획득하기 위한 시그널링 정보를 포함할 수 있다.
수신기는, Dedicated channel로 전송되는 data를 decoding 하여 해당 channel의 목적에 맞는 signaling 과 관련된 처리를 수행한다. 예를 들어, FIC를 전송하는 dedicated channel의 경우에는, service 및/또는 channel 등의 정보에 대한 저장 및 갱신 처리를 할 수 있고, EAC를 전송하는 dedicated channel의 경우에는, emergency alert 정보의 전달을 수행하는 등의 처리가 있을 수 있다.
수신기는, Dedicated channel 로 전송되는 정보를 이용하여 base DP의 정보를 획득한다. Dedicated channel로 전송되는 정보는, base DP를 식별할 수 있는 정보 (예를 들면, base DP의 identifier 및/또는 base DP를 전송하는 IP 주고 등)를 포함할 수 있다. 필요 시, 수신기의 DB 내에 미리 저장되어 있는 시그널링 정보 및 관련 parameter를 dedicated channel에서 전송된 정보로 update 할 수 있다.
수신기는, Base DP를 decoding 하여 link layer signaling packet을 획득하고, 필요 시, dedicated channel로부터 수신된 signaling 정보와 결합할 수 있다. 수신기는, dedicate channel 또는 수신기의 기 저장된 시그널링 정보를 이용하여, base DP를 찾을 수 있다.
수신기는, Link layer signaling 정보를 이용하여 현재 채널에 전송되고 있는 여러 DP 중 사용자가 선택한 service를 수신하기 위한 DP 정보와 해당 DP의 packet stream에 대한 overhead reduction 정보를 획득한다. 링크 레이어 시그널링 정보는, 특정 서비스와 관련된 신호 및/또는 데이터를 전송하는 DP를 식별하는 정보, 및/또는 해당 DP로 전송되는 packet stream에 적용된 overhead reduction의 종류를 식별하는 정보가 포함될 수 있다. 수신기는 위 정보를 이용하여, 특정 서비스를 위한 하나 이상의 DP에 접근하거나, 해당 DP에 포함된 packet 을 복원할 수 있다.
수신기는, Physical layer로 수신하여야 할 DP를 식별하는 정보를, physical layer에서의 신호 및/또는 데이터를 처리하는 physical layer 프로세서로 보내고, 해당 DP로부터 packet stream을 수신한다.
수신기는, Physical layer에서 decoding 된 packet stream에 대해 decapsulation 및 header recovery 를 수행하고 IP packet stream형태로 수신기의 상위 layer로 전송한다.
이후, 수신기는 상위 레이어의 프로토콜에 따른 처리를 수행하여, 방송 서비스를 사용자에게 제공한다.
본 발명의 일 실시예에 따르면, 서비스 시그널링을 위한 정보가 하나 이상의 IP 패킷 스트림에 의하여 전송되는 경우, 해당 IP 패킷 스트림이 멀티플렉싱되어, 하나의 Base DP 로 전송될 수 있다. 수신기에서, 서로 다른 서비스 시그널링에 대한 패킷은 구분은 소스 주소 (source address) 및/또는 포트 (port) 등의 필드 (field)로 수행될 수 있다. 수신기는 서비스 시그널링 패킷에서 링크 레이어 시그널링을 획득/구성하기 위한 정보를 읽어 낼 수 있다.
Dedicated channel 로 전송되는 시그널링 정보를 처리하는 과정에서, 수신기는 dedicated channel 에 대한 버전 정보 또는 업데이트가 수행되었는지 여부를 식별하는 정보를 획득하고, dedicated channel 내의 시그널링 정보에 변화가 없다고 판단되는 경우, dedicated channel 로 전송되는 시그널링 정보에 대한 처리 (디코딩 또는 파싱) 를 생략할 수 있다. Dedicated channel이 업데이트 되지 않은 것으로 확인되는 경우, 수신기는, 수신기에 기 저장된 정보를 이용하여 Base DP 의 정보를 획득할 수 있다.
전술한 링크 레이어 패킷을 파싱하여, 사용자가 선택한 서비스를 위한 DP 정보, 해당 서비스를 전송하는 DP 패킷 스트림에 대한 오버헤드 리덕션 정보를 획득하는 과정에서, 사용자에 의하여 선택된 서비스를 전송하는 DP 에 대한 정보가 상위 레이어 시그널링 (예를 들어, 링크 레이어 보다 상위 레이어, 또는 IP 레이어) 을 통해 전달되는 경우에는, 전술한 바와 같이, DB, 버퍼, 및/또는 공유 메모리에서 해당 정보를 획득하여, 디코딩이 필요한 DP 에 대한 정보로 사용할 수 있다.
링크 레이어 시그널링 (링크 레이어 시그널링 정보) 과 일반 데이터 (예를 들면, 방송 컨텐트 데이터) 가 동일한 DP 를 통하여 전송되는 경우나, 하나의 종류의 DP 만이 방송 시스템에서 사용되는 경우에는, DP 를 통하여 전송되는 일반 데이터는, 시그널링 정보가 디코딩되고, 파싱되는 동안, 해당 일반 데이터는 버퍼, 또는 메모리에 일시적으로 저장될 수 있다. 수신기는 시그널링 정보가 획득되면, 해당 시그널링 정보에 따라 획득하여야 하는 DP 를 추출하기 위한 명령을 시스템 내부 명령어 등의 방법으로 DP 를 추출 처리하는 장치에 전달할 수 있다.
도 12는 본 발명의 일 실시예에 따른, 논리적 data path가 Normal Data Pipe, Base Data Pipe 와 Dedicated Channel 을 포함하는 경우에 있어서, 수신기의 링크 레이어 (Link layer)에서의 신호 및/또는 데이터에 대한 구체적인 처리 동작을 나타낸 도면이다.
본 실시예에서는 하나의 frequency band 내에서, 하나 이상의 방송사가 제공하는 하나 이상의 서비스가 전송되는 상황을 고려한다. 하나의 방송사는 하나 이상의 방송 service를 전송 하는데, 하나의 service는 하나 이상의 component를 포함하며, 사용자는 방송 service 단위로 컨텐츠를 수신하는 것을 고려한다. 또는 하나의 방송 서비스에 포함되는 하나 이상의 component의 일부를 사용자의 선택에 의하여, 다른 component로 대체할 수도 있다.
Dedicated channel 로 FIC (Fast Information Channel) 및/또는 EAC (Emergency Alert Channel)이 전송될 수 있다. Base DP와 Normal DP가 방송 신호 내에서 구분되어, 전송 또는 운용될 수 있다. FIC 및/또는 EAC 의 구성 정보는 Physical layer signaling 을 통해 전송되거나, 수신기가 알 수 있으며, link layer는 해당 channel의 특성에 맞추어 signaling을 formatting 하게 된다. Physical layer의 특정 channel로 data를 전달하는 것은 논리적인 관점에서 이루어지며 실제의 동작은 physical layer의 특성에 따를 수 있다.
FIC를 통해서는, 해당 주파수에서 전송하고 있는 각 방송사의 service 및 이를 수신하기 위한 경로에 대한 정보를 전송할 수 있다. 이를 위해 Link Layer Signaling 으로 다음과 같은 정보를 제공(시그널링)할 수 있다.
System Parameter ? Transmitter 관련 parameter, 및/또는 해당 channel에서 service를 제공하는 방송사 관련 parameter.
Link layer ? IP 헤더 압축 관련 Context 정보 및/또는 해당 context가 적용되는 DP의 id를 포함.
상위 layer ? IP address 및/또는 UDP port number, Service 및/또는 component 정보, Emergency alert 정보, IP layer에서 전달되는 packet stream에 대한 IP 주소와 DP 사이의 mapping 관계 정보.
복수의 방송 service가 하나의 frequency band를 통해 전송되는 경우, 수신기에서는 모든 DP를 decoding 할 필요가 없고, signaling 정보를 먼저 확인하여 필요한 service에 대한 DP 만 decoding 하는 것이 효율적일 수 있다. 방송 시스템 내에서, 송신기는 FIC를 통하여, 필요한 DP 만을 식별할 수 있는 정보를 전송하고, 수신기는, 이 FIC를 이용하여 특정 서비스를 위하여 접근하여야 하는 DP를 확인할 수 있다. 이 경우, 수신기의 link layer와 관련된 동작은 다음과 같을 수 있다.
수신기는, 사용자가 수신하고자 하는 service를 선택하거나 변경하면 해당 주파수로 tuning 하고 해당 채널과 관련하여 DB 등에 저장하고 있는 수신기의 정보를 읽어 들인다. 수신기의 DB 등에 저장되어 있는 정보는, 최초 channel scan시, FIC를 획득하여, 이에 포함된 정보를 이용하여 구성 될 수 있다.
수신기는, FIC를 수신하고, 기존에 저장되어 있던 DB를 update 하거나, 사용자가 선택한 service에 대한 component 및 각 component가 전달되는 DP에 대한 mapping 관계에 대한 정보를 FIC로부터 획득한다. 또한 signaling이 전송되는 base DP에 대한 정보를 FIC로부터 획득할 수 있다.
수신기는, FIC를 통해 전송되는 signaling 중 RoHC (Robust Header Compression) 관련한 초기화 정보가 있는 경우 이를 획득하고 header의 recovery를 준비한다.
수신기는, FIC를 통해 전달되는 정보를 바탕으로, Base DP 및/또는 사용자가 선택한 service가 전송되는 DP를 decoding 한다.
수신기는, Base DP에 포함된, 수신하고 있는 DP에 대한 overhead reduction 정보를 획득하고, 획득한 overhead 정보를 이용하여 normal DP 에서 수신되는 packet stream에 대해 decapsulation 및/또는 header recovery 를 수행하고 IP packet stream형태로 수신기의 상위 layer로 전송한다.
수신기는, 수신되는 service에 대해, 특정 address를 가지는 IP packet의 형태로 전송되는 service signaling을 base DP를 통해 수신할 수 있으며, 이 packet stream을 상위 layer로 전송할 수 있다.
수신기는, Emergency alert 이 발생한 경우, emergency alert message를 사용자에게 신속히 전달하기 위해서, signaling을 통해 CAP message가 포함되어 있는 signaling 정보를 수신하고 이를 parsing 하여 사용자 즉시 전달 하고, signaling을 통해 audio/video service를 수신할 수 있는 경로 정보를 확인할 수 있는 경우 해당 service가 수신되는 경로를 찾아 service data를 수신한다. 또한, broadband 등을 통해 전달되는 정보가 있는 경우 해당 URI (Uniform Resource Identifier) 정보 등을 이용하여 NRT service 및 부가 정보를 수신한다. Emergency alert 와 관련된 시그널링 정보에 대한 구체적인 내용은 후술한다.
수신기가, Emergency alert 을 처리하는 과정은 다음과 같다.
수신기는, Physical layer의 preamble 등을 통해 Emergency alert message가 전달되는 상황임을 인지한다. Physical layer의 preamble은 방송 신호에 포함되는 시그널링 신호로, physical layer 에서의 시그널링에 해당할 수 있다. Physical layer의 preamble은, 주로 방송 신호에 포함된 데이터, 방송 프레임, 데이터 파이프 및/또는 전송 파라미터를 획득하기 위한 정보를 포함할 수 있다.
수신기는, 수신기의 physical layer signaling을 통해 EAC (Emergency Alert Channel)의 configuration 을 확인하고 EAC를 decoding 하고 EAT를 획득한다. 여기서 EAC는 전술한 dedicated channel에 해당될 수도 있다.
수신기는, 수신된 EAT를 확인하여 CAP message를 추출하여 CAP parser로 전달한다.
수신기는, EAT 내에 emergency alert 과 관련한 service 정보가 존재하는 경우 해당 DP를 decoding 하여 service data를 수신한다. EAT는 emergency alert 과 관련한 service를 전송하는 DP를 식별하는 정보를 포함할 수 있다.
수신기는, EAT 또는 CAP message에 NRT service data와 관련한 정보가 있는 경우, broadband 를 통해 수신한다.
도 13은 본 발명의 일 실시예에 따른 FIC (Fast Information Channel) 의 신택스 (syntax) 를 나타낸 도면이다.
FIC 에 포함되는 정보는, FIT (Fast Information Table) 형태로 전송될 수 있다.
FIT에 포함되는 정보는 XML 형태 및/또는 section table 형태로 전송될 수 있다.
FIT는 table_id 정보, FIT_data_version 정보, num_broadcast 정보, broadcast_id 정보, delivery_system_id 정보, base_DP_id 정보, base_DP_version 정보, num_service 정보, service_id 정보, service_category 정보, service_hidden_flag 정보, SP_indicator 정보, num_component 정보, component_id 정보, DP_id 정보, context_id 정보, RoHC_init_descriptor, context_profile 정보, max_cid 정보, 및/또는 large_cid 정보를 포함할 수 있다.
table_id 정보는, 해당 테이블 섹션이 Fast Information Table 임을 나타낸다.
FIT_data_version 정보는, fast information table이 포함하는 syntax 및 semantics에 대한 버전 정보를 나타낼 수 있다. 이를 이용하여 수신기는 해당 Fast Information Table에 포함된 시그널링에 대한 처리여부 등을 결정할 수 있다. 수신기는 이 정보를 이용하여, 기 저장하고 있던 FIC 의 정보를 업데이트 할지를 결정할 수 있다.
num_broadcast 정보는, 해당 주파수 혹은 전송되는 transport frame을 통해 방송 서비스 및/또는 콘텐츠를 전송하는 방송국의 수를 나타낼 수 있다.
broadcast_id 정보는, 해당 주파수 혹은 전송되는 transport frame 을 통해 방송 서비스 및/또는 콘텐츠를 전송하는 방송국 고유의 구분자를 나타낼 수 있다. MPEG-2 TS 기반의 데이터를 전송하는 방송국의 경우 broadcast_id 는 MPEG-2 TS 의 transport_stream_id 와 같은 값을 가질 수 있다.
delivery_system_id 정보는, 전송되는 방송 네트워크 상에서 동일한 전송 파라미터를 적용하여 처리하는 방송 전송 시스템에 대한 식별자를 나타낼 수 있다.
base_DP_id 정보는, 방송 신호 내에서 base DP를 식별하는 정보이다. base DP는 broadcast_id에 해당하는 방송국의 PSI/SI (Program Specific Information / System Information) 및/또는 overhead reduction 등을 포함하는 서비스 시그널링을 전달하는 DP 를 지칭할 수 있다. 혹은 해당 방송국 내의 방송 서비스를 구성하는 component를 디코딩할 수 있는 대표 DP를 지칭할 수 있다.
base_DP_version 정보는, base DP를 통해 전송되는 데이터에 대한 버전 정보를 나타낼 수 있다. 예를 들어, base DP 을 통하여 PSI/SI 등 서비스 시그널링이 전달되는 경우 서비스 시그널링의 변화가 일어나는 경우, base_DP_version 정보의 값이 1 씩 증가할 수 있다.
num_service 정보는, 해당 주파수 혹은 transport frame 내에서 broadcast_id에 해당하는 방송국이 전송하는 방송 서비스의 개수를 나타낼 수 있다.
service_id 정보는, 방송 서비스를 구별할 수 있는 식별자로 사용될 수 있다.
service_category 정보는, 방송 서비스의 카테고리를 나타낼 수 있다. 해당 field가 가지는 값에 따라 다음과 같은 의미를 가질 수 있다. service_category 정보의 값이, 0x01 인 경우, Basic TV를, 0x02인 경우, Basic Radio를, 0x03 인 경우, RI service를, 0x08 인 경우, Service Guide를, 0x09 인 경우, Emergency Alerting임을 나타낼 수 있다.
service_hidden_flag 정보는, 해당 방송 서비스가 hidden 인지 여부를 나타낼 수 있다. 서비스가 hidden 인 경우 테스트 서비스 혹은 자체적으로 사용되는 서비스로, 방송 수신기에서는 이를 무시하거나 서비스 리스트에서 숨기는 등의 처리를 할 수 있다.
SP_indicator 정보는, Service protection이 해당 방송 서비스 내의 하나 이상의 component에 적용되는지 여부를 나타낼 수 있다.
num_component 정보는, 해당 방송 서비스를 구성하는 component의 개수를 나타낼 수 있다.
component_id 정보는, 방송 서비스 내의 해당 component를 구별하는 식별자로 사용될 수 있다.
DP_id 정보는, 해당 component가 전송되는 DP를 가리키는 식별자로 사용될 수 있다.
RoHC_init_descriptor는 Overhead Reduction 및/또는 header recovery 와 관련된 정보를 포함할 수 있다. RoHC_init_descriptor는 송신단에서 사용한 헤더 압축 방식을 식별하는 정보를 포함할 수 있다.
context_id 정보는, 뒤따르는 RoHC 관련 field가 어느 context에 해당하는지 표시해 줄 수 있다. context_id 정보는 CID (context identifier)에 해당될 수 있다.
context_profile 정보는, RoHC에서 헤더가 압축되는 protocol의 범위에 대해 표시해 준다. RoHC에서는 compressor와 decompressor가 동일한 profile을 가져야 stream에 대한 압축 및 복구가 가능하다.
max_cid 정보는, CID의 최대 값을 decompressor에 알려 주기 위해 사용된다.
large_cid 정보는, Boolean 값을 가지며, CID의 구성에 있어, short CID (0~15)를 사용 하는지 embedded CID (0~16383)를 사용하는지 알려준다. 이에 따라 CID를 표현하는 바이트의 크기도 함께 결정된다.
도 14는 본 발명의 일 실시예에 따른, EAT (Emergency Alert Table) 의 신택스 (syntax)를 나타낸 도면이다.
EAC를 통하여 비상 경보와 관련된 정보가 전송될 수 있다. EAC는 전술한 dedicated channel에 해당될 수 있다.
본 발명의 일 실시예에 따른 EAT는 EAT_protocol_version 정보, automatic_tuning_flag 정보, num_EAS_messages 정보, EAS_message_id 정보, EAS_IP_version_flag 정보, EAS_message_transfer_type 정보, EAS_message_encoding_type 정보, EAS_NRT_flag 정보, EAS_message_length 정보, EAS_message_byte 정보, IP_address 정보, UDP_port_num 정보, DP_id 정보, automatic_tuning_channel_number 정보, automatic_tuning_DP_id 정보, automatic_tuning_service_id 정보, 및/또는 EAS_NRT_service_id 정보를 포함한다.
EAT_protocol_version 정보는, 수신된 EAT가 가지는 protocol version을 나타낸다.
automatic_tuning_flag 정보는, 수신기가 자동으로 channel 전환을 수행할지 여부를 알려 준다.
num_EAS_messages 정보는, EAT에 포함되어 있는 message에 대한 개수를 알려준다.
EAS_message_id 정보는, 각각의 EAS message를 식별하는 정보이다.
EAS_IP_version_flag 정보는, EAS_IP_version_flag 정보의 값이 0 인 경우, IPv4 임을 나타내고, EAS_IP_version_flag 정보의 값이, 1 인 경우 IPv6 임을 나타낸다.
EAS_message_transfer_type 정보는, EAS message가 전달되는 형태를 나타낸다. EAS_message_transfer_type 정보의 값이, 000 인 경우, not specified 인 상태를 나타내고, EAS_message_transfer_type 정보의 값이, 001 인 경우, No Alert message (only AV content) 임을 나타내고, EAS_message_transfer_type 정보의 값이, 010 인 경우, 해당 EAT 내에 EAS message가 포함됨을 나타낸다. 이를 위해 length field와 해당 EAS message에 대한 field 가 추가된다. EAS_message_transfer_type 정보의 값이, 011 인 경우, data pipe를 통해 EAS message가 전송됨을 알려준다. EAS는 data pipe 내에서 IP datagram의 형태로 전송될 수 있다. 이를 위해 IP address와 UDP port 정보, 전송되는 physical layer의 DP 정보가 추가 될 수 있다.
EAS_message_encoding_type 정보는, Emergence Alert message의 encoding type에 대한 정보를 알려준다. 예를 들어, EAS_message_encoding_type 정보의 값이 000 인 경우, not specified 임을 나타내고, EAS_message_encoding_type 정보의 값이 001 인 경우, No Encoding 임을 나타내고, EAS_message_encoding_type 정보의 값이 010 인 경우, DEFLATE algorithm (RFC1951) 임을 나타내고, EAS_message_encoding_type 정보의 값 중 001 ~ 111 은 다른 인코딩 타입을 위하여 예약될 수 있다.
EAS_NRT_flag 정보는, 수신되는 message와 관련한, NRT contents 및/또는 NRT data 가 존재하는지 가리킨다. EAS_NRT_flag 정보의 값이 0 인 경우, NRT contents 및/또는 NRT data 가 수신한 Emergency message와 관련하여 존재하지 않음을 나타내고, EAS_NRT_flag 정보의 값이 1 인 경우 NRT contents 및/또는 NRT data 가 수신한 Emergency message와 관련하여 존재함을 나타낸다.
EAS_message_length 정보는, EAS message의 길이를 나타낸다.
EAS_message_byte 정보는, EAS message의 content를 포함한다.
IP_address 정보는, EAS message를 전송하는 IP 패킷의 IP 주소를 나타낸다.
UDP_port_num 정보는, EAS message를 전송하는 UDP 포트 넘버를 나타낸다.
DP_id 정보는, EAS message를 전송하는 data pipe를 식별한다.
automatic_tuning_channel_number 정보는, 전환 되어야할 channel의 번호에 대한 정보를 포함한다.
automatic_tuning_DP_id 정보는, 해당 content를 전송하는 Data pipe를 식별하는 정보이다.
automatic_tuning_service_id 정보는, 해당 content가 속하는 서비스를 식별하는 정보이다.
EAS_NRT_service_id 정보는, 수신되는 emergency alert message와 관련한 NRT contents 및 data가 전송되는 경우, 즉 EAS_NRT_flag 이 enable 상태인 경우에 해당하는 NRT service를 식별하는 정보이다.
도 15는 본 발명의 일 실시예에 따른, data pipe로 전송되는 패킷을 나타낸 도면이다.
본 발명의 일 실시예에 따르면, 링크 레이어에서의 패킷의 구조를 새롭게 정의하여, 링크 레이어의 상위 레이어 또는 링크 레이어의 하위 레이어의 프로토콜의 변화에 관계 없이 호환 가능한 링크 레이어 패킷을 생성할 수 있다.
본 발명의 일 실시예에 따른 링크 레이어 패킷은 normal DP 및/또는 base DP로 전송될 수 있다.
링크 레이어 패킷은 고정 헤더, 확장 헤더, 및/또는 페이로드를 포함할 수 있다.
고정 헤더는 크기가 고정되어 있는 헤더이며, 확장 헤더는 상위 레이어의 패킷의 구성에 따라 크기의 변경이 가능한 헤더이다. 페이로드는 상위 레이어의 데이터가 전송되는 영역이다.
패킷의 헤더 (고정 헤더 또는 확장 헤더) 는, 패킷의 페이로드의 종류를 표시하는 필드가 포함될 수 있다. 고정 헤더의 경우, 1 바이트 중 맨 앞의 3 비트 (packet type) 는, 상위 레이어의 패킷 타입을 식별하는 데이터가 포함될 수 있으며, 나머지 5 비트는 지시자 부분 (indicator part) 로 사용될 수 있다. 지시자 부분은 페이로드의 구성 방법, 및/또는 확정 헤더의 구성 정보를 식별하는 데이터가 포함될 수 있으며, 패킷 타입에 따라, 구성이 달라 질 수 있다.
도면에서 도시된 테이블에서는, 패킷 타입 (packet type) 의 값에 따른, 페이로드에 포함되는 상위 레이어의 패킷의 종류를 나타내고 있다.
시스템의 구성에 따라, DP를 통해서는 페이로드가 IP 패킷, 및/또는 RoHC 패킷이 전송될 수 있고, base DP를 통해서는 signaling packet이 전송될 수 있다. 따라서, 여러 종류의 패킷이 혼용되어 전달되는 경우에도, 패킷 타입의 값을 부여하여, 데이터 패킷과 시그널링 패킷을 구분할 수도 있다.
패킷 타입의 값이 000인 경우 IPv4의 IP 패킷이 페이로드에 포함됨을 나타낸다.
패킷 타입의 값이 001인 경우 IPv6의 IP 패킷이 페이로드에 포함됨을 나타낸다.
패킷 타입의 값이 010인 경우 compressed IP 패킷이 페이로드에 포함됨을 나타낸다. compressed IP 패킷에는 헤더 압축이 적용된 IP 패킷이 포함될 수 있다.
패킷 타입의 값이 110인 경우 시그널링 데이터를 포함하는 패킷이 페이로드에 포함됨을 나타낸다.
패킷 타입의 값이 111인 경우 framed packet type이 페이로드에 포함됨을 나타낼 수 있다.
도 16은 본 발명의 다른 실시예에 따른, 물리적 계층의 논리적 데이터 경로 (data path)가 dedicated channel, Base DP, 및 Normal Data DP 를 포함하는 경우에 있어서, 송신기의 각 프로토콜 스택에서의 신호 및/또는 데이터에 대한 구체적인 처리 동작을 나타낸 도면이다.
하나의 frequency band 내에서, 하나 이상의 방송사가 방송 서비스를 제공할 수 있다. 방송사는 여러 방송 서비스를 전송 하는데, 하나의 방송 서비스는 하나 이상의 컴포넌트 (component)를 포함할 수 있다. 사용자는 서비스 단위로 방송 컨텐츠를 수신할 수 있다.
방송 시스템에서는 IP hybrid 방송을 지원 하기 위해 세션 (session) 기반의 전송 protocol이 사용될 수 있고, 해당 protocol의 전송 구조에 따라, 각각의 signaling path로 전달 되는 signaling의 내용이 결정 될 수 있다.
전술한 바와 같이, Dedicated channel로 FIC(Fast Information Channel) 및/또는 EAC(Emergency Alert Channel)와 관련된 데이터가 송/수신될 수 있다. 방송 시스템 내에서는 Base DP와 Normal DP가 구별되어 사용될 수 있다.
FIC 및/또는 EAC의 구성 정보는 물리적 레이어 시그널링 (Physical layer signaling; 또는 전송 파라미터; transmission parameter)에 포함될 수 있다. 링크 레이어는 해당 channel의 특성에 맞추어 signaling을 포맷팅 (formatting) 할 수 있다. 물리적 레이어의 특정 channel로 data를 전달 하는 것은 논리적인 관점에서 이루어질 수 있으며, 실제의 동작은 physical layer의 특성에 따를 수 있다.
FIC는 해당 주파수에서 전송하고 있는 각 방송사의 service 및 이를 수신하기 위한 경로에 대한 정보를 포함할 수 있다. FIC는 서비스를 획득하기 위한 정보를 포함할 수 있고, 서비스 획득 정보로 명명될 수 있다.
FIC 및/또는 EAC는 링크 레이어 시그널링에 포함될 수 있다.
링크 레이어 시그널링은 다음과 같은 정보를 포함할 수 있다.
System Parameter - Transmitter관련 parameter, 해당 channel에서 service를 제공하는 방송사 관련 parameter
Link layer ? IP 헤더 압축 관련 Context 정보 및 해당 context가 적용 되는 DP 식별자 (identifier; id)
상위 layer ? IP address 및 UDP port number, Service 및 component 정보, Emergency alert 정보, IP layer에서 전달되는 packet stream 및 signaling 에 대한 IP address, UDP port number, Session ID, DP 사이의 mapping 관계
전술한 바와 같이, 하나 이상의 방송 서비스가 하나의 frequency band를 통해 전송되는 경우, 수신기에서는 모든 DP를 decoding 할 필요가 없고, signaling 정보를 먼저 확인하여 필요한 service와 관련된 DP만 decoding 하는 것이 효율적이다.
이 경우, 도면을 참조하면, 방송 시스템에서는 FIC 및/또는 base DP를 이용하여 DP 와 서비스를 맵핑시키는 정보를 제공하거나, 획득할 수 있다.
도면에 나타난 송신기에서의 방송 신호 또는 방송 데이터의 처리 과정을 살펴보면, 하나 이상의 방송사 (broadcast #1 내지 #N)는 컴포넌트 시그널링 및/또는 하나 이상의 방송 서비스를 위한 데이터를 하나 이상의 세션으로 전송하도록 처리할 수 있다. 하나의 방송 서비스는 하나 이상의 세션을 통하여 전송될 수 있다. 방송 서비스는 방송 서비스에 포함되는 하나 이상의 컴포넌트 및/또는 방송 서비스를 위한 시그널링 정보를 포함할 수 있다. 컴포넌트 시그널링은, 수신기에서 방송 서비스에 포함되는 컴포넌트를 획득하기 위하여 사용하는 정보를 포함할 수 있다. 서비스 시그널링, 컴포넌트 시그널링 및/또는 하나 이상의 방송 서비스를 위한 데이터는 IP 레이어에서의 처리를 통하여 링크 레이어로 전달될 수 있다.
링크 레이어에서 송신기는, IP 패킷에 대하여 오버헤드 리덕션이 필요한 경우, 오버헤드 리덕션을 수행하고, 관련 정보를 링크 레이어 시그널링으로 생성한다. 링크 레이어 시그널링은 전술한 정보 이외에, 방송 시스템을 설명하는 시스템 파라미터를 포함할 수 있다. 송신기는 링크 레이어 처리 단계에서, IP 패킷을 처리하여, 하나 이상의 DP 의 형태로 물리적 레이어에서 전송할 수 있다.
송신기는 링크 레이어 시그널링을 FIC 및/또는 EAC의 형태 또는 구성으로, 수신기로 전송할 수 있다. 한편, 송신기는 링크 레이어 시그널링을 링크 레이어의 인캡슐레이션 (encapsulation) 과정을 거쳐, Base DP 로 전송할 수도 있다.
도 17은 본 발명의 다른 실시예에 따른, 물리적 계층의 논리적 데이터 경로 (data path)가 dedicated channel, Base DP, 및 Normal Data DP 를 포함하는 경우에 있어서, 수신기의 각 프로토콜 스택에서의 신호 및/또는 데이터에 대한 구체적인 처리 동작을 나타낸 도면이다.
수신기는, 사용자가 수신하고자 하는 service를 선택 하거나, 변경하면, 해당 주파수로 tuning 한다. 수신기는, 해당 채널과 관련하여 DB 등에 저장하고 있는 정보를 읽어 들인다. 여기서, 수신기의 DB 등에 저장되어 있는 정보는 최초 channel scan시 FIC 및/또는 EAC를 획득하여, 이에 포함된 정보에 해당될 수 있다. 또는 수신기는, 이 명세서에 전술한 바에 따라 전송되는 정보를 추출할 수 있다.
수신기는, FIC 및/또는 EAC를 수신하고, 접근하고자 하는 channel의 정보를 수신 한 이후, DB에 기존에 저장되어 있던 정보를 update 할 수 있다. 수신기는, 사용자가 선택한 service에 대한 component 및 각 component가 전달되는 DP에 대한 mapping 관계에 대한 정보를 획득하거나 이러한 정보를 획득하는데 필요한 signaling이 전송되는 base DP 및/또는 normal DP에 대한 정보를 획득할 수 있다. 한편, 수신기는 FIC의 version 정보나 dedicated channel에 대한 별도의 update 필요 여부를 식별하는 정보를 이용하여, 해당 정보의 변경이 없다고 판단 되는 경우에는, 수신하는 FIC 및/또는 EAC에 대한 decoding 또는 parsing 절차를 생략할 수 있다.
수신기는, FIC를 통해 전달되는 정보를 바탕으로, base DP 및/또는 시그널링 정보가 전송되는 DP 를 decoding 하여, 링크 레이어 시그널링 정보를 포함하는 link layer signaling packet을 획득할 수 있다. 수신기는, 경우에 따라, 수신한 링크 레이어 시그널링 정보를, dedicated channel로부터 수신되어 있는 signaling 정보와 결합 (예를 들면, 도면에서, receiver information)하여 사용할 수 있다.
수신기는, FIC 및/또는 link layer signaling 정보를 이용하여 현재 채널에 전송되고 있는 여러 DP 중 사용자가 선택한 service를 수신하기 위한 DP 정보와, 해당 DP의 packet stream에 대한 overhead reduction 정보를 획득할 수 있다.
선택된 service를 수신하기 위한 DP 에 대한 정보가 상위 layer signaling을 통해 전달 되는 경우에는 앞서 기술한 바와 같이, 수신기는, DB 및/또는 공유 메모리에 저장된 시그널링 정보를 획득하여, 해당 시그널링 정보가 가리키는, decoding 할 DP 에 대한 정보를 획득할 수 있다.
링크 레이어 시그널링 정보와 일반 데이터 (예를 들면, 방송 컨텐트에 포함되는 데이터) 가 동일한 DP를 통해 전송되거나, 이들의 전송을 위하여 하나의 DP 만 운용되고 있는 경우에는, 수신기는 DP 를 통해 전송되는 일반 데이터를, 시그널링 정보가 decoding 및/또는 parsing 되는 동안 임시적으로 buffer 등의 장치에 저장할 수 있다.
수신기는, Base DP 및/또는 시그널링 정보가 전달되는 DP를 획득하고, 이들로부터 수신할 DP에 대한 overhead reduction 정보를 획득하고, 획득한 overhead 정보를 이용하여 normal DP 에서 수신되는 packet stream에 대해 decapsulation 및/또는 header recovery 를 수행하고 IP packet stream형태로 처리하여, 수신기의 상위 layer로 전달할 수 있다.
도 18은 본 발명의 다른 실시예에 따른, FIC의 신택스 (syntax)를 나타낸 도면이다.
본 도면에서 설명되는 FIC에 포함되는 정보는, 전술한 FIC에 포함되어 설명되어진 다른 정보들과 선택적으로 결합되어, FIC를 구성할 수 있다.
수신기는 FIC에 포함되는 정보를 이용하여, 채널에 대한 정보를 신속히 획득할 수 있다. 수신기는 FIC에 포함되는 정보를 이용하여, bootstrap 관련 정보를 획득할 수 있다. FIC는 빠른 채널 스캔 (scan) 및/또는 빠른 서비스 획득을 위한 정보를 포함할 수 있다. FIC는 다른 명칭으로 명명될 수 있으며, 일 예로, 서비스 리스트 테이블 (service list table) 또는 서비스 획득 정보 (service acquisition information) 등으로 명명될 수 있다. FIC는 방송 시스템에서 따라, IP 레이어에서, IP 패킷 내에 포함되어 전송될 수 있다. 이 경우, FIC를 전송하는 IP 주소 및/또는 UDP 포트 번호는 특정한 값으로 고정될 수 있고, 수신기는, 별도의 처리 과정이 없이도, 해당 IP 주소 및/또는 UDP 포트 번호로 전송되는 IP 패킷은 FIC를 포함하고 있음을 알 수 있다.
FIC는 FIC_protocol_version 정보, transport_stream_id 정보, num_partitions 정보, partition_id 정보, partition_protocol_version 정보, num_services 정보, service_id 정보, service_data_version 정보, service_channel_number 정보, service_category 정보, service_status 정보, service_distribution 정보, sp_indicator 정보, IP_version_flag 정보, SSC_source_IP_address_flag 정보, SSC_source_IP_address 정보, SSC_destination_IP_address 정보, SSC_destination_UDP_port 정보, SSC_TSI 정보, SSC_DP_ID 정보, num_partition_level_descriptors 정보, partition_level_descriptor() 정보, num_FIC_level_descriptors 정보, 및/또는 FIC_level_descriptor() 정보를 포함할 수 있다.
FIC_protocol_version 정보는 FIC의 구조의 버전을 나타낸다.
transport_stream_id 정보는 방송 스트림을 식별한다. transport_stream_id 정보는 방송사를 식별하는 정보로 사용될 수 있다.
num_partitions 정보는 방송 스트림 내에서 파티션 (partition) 의 개수를 나타낸다. 방송 스트림은 하나 이상의 파티션으로 나뉘어져 전송될 수 있다. 각각의 파티션은 하나 이상의 데이터 파이프 (DP) 를 포함할 수 있다. 각각의 파티션에 포함되는 데이터 파이프는 하나의 방송사에 의하여 사용되는 것에 해당될 수 있다. 이 경우, partition은 각 방송사에 할당된 데이터 전송 유닛으로 정의될 수 있다.
partition_id 정보는 파티션을 식별한다. partition_id 정보는 방송사를 식별할 수 있다.
partition_protocol_version 정보는 파티션의 구조에 대한 버전을 나타낸다.
num_services 정보는 파티션에 포함되는 서비스의 개수를 나타낸다. 서비스는 하나 이상의 컴포넌트를 포함할 수 있다.
service_id 정보는 서비스를 식별한다.
service_data_version 정보는 서비스를 위한 시그널링 테이블 (시그널링 정보)에 변경이 있거나, FIC에 의하여 시그널링되는 서비스를 위한 서비스 엔트리 (entry) 에 변경이 있는 경우, 이 변경을 나타낸다. service_data_version 정보는 위와 같은 변경이 있을 때 마다, 그 값이 증가할 수 있다.
service_channel_number 정보는 서비스의 채널 번호를 나타낸다.
service_category 정보는 서비스의 카테고리를 나타낸다. 서비스의 카테고리는 A/V 콘텐츠, 오디오 콘텐츠, ESG (Electronic Service Guide), 및/또는 CoD (Content on Demand) 를 포함한다.
service_status 정보는 서비스의 상태를 나타낸다. 서비스의 상태는 액티브 또는 서스펜디드 (suspended), 히든 (hidden) 또는 shown 상태를 포함할 수 있다. 서비스의 상태는 인액티브 (inactive) 상태가 있을 수 있다. 인액티브 상태는, 현재는 방송 콘텐츠가 제공되고 있지 않으나, 추후에 방송 서비스가 제공될 수 있고, 따라서, 시청자가 수신기에서 채널 탐색 시, 수신기는 해당 서비스에 대한 스캔 결과를 시청자에게 보여주지 않을 수 있다.
service_distribution 정보는 서비스를 위한 데이터의 분배 상태를 나타낸다. 예를 들면, service_distribution 정보는 서비스의 전체 데이터가 하나의 파티션에 포함되어 있음을 나타내거나, 서비스의 일부 데이터가 현재 파티션에 포함되어 있지 않으나, 이 파티션 내의 데이터만으로 콘텐츠가 표출가능 (presentable) 함을 나타내거나, 콘텐츠의 표출을 위하여 다른 파티션이 필요함을 나타내거나, 콘텐츠의 표출을 위하여 다른 방송 스트림이 필요함을 나타낼 수 있다.
sp_indicator 정보는 서비스 보호 (service protection)이 적용되었는지를 식별한다. sp_indicator 정보는, 예를 들면, 의미있는 표출을 위하여 필요한 하나 이상의 컴포넌트가 보호 (protection, 예를 들면, 컴포넌트가 암호화된 상태) 되고 있는지를 식별할 수 있다.
IP_version_flag 정보는 SSC_source_IP_address 정보 및/또는 SSC_destination_IP_address 정보가 나타내는 IP 주소가 IPv4 주소인지, IPv6 주소인지를 식별한다.
SSC_source_IP_address_flag 정보는 SSC_source_IP_address 정보가 존재하는지 여부를 식별한다.
SSC_source_IP_address 정보는 서비스를 위한 시그널링 정보를 전송하는 IP 데이터그램의 소스 IP 주소 (Source IP address) 를 나타낸다. 서비스를 위한 시그널링 정보는 서비스 레이어 시그널링으로 명명될 수 있다. 서비스 레이어 시그널링은 방송 서비스를 설명하는 정보를 포함한다. 예를 들면, 서비스 레이어 시그널링은 방송 서비스를 구성하는 컴포넌트를 전송하는 데이터 유닛 (세션, DP, 또는 패킷) 을 식별하는 정보를 포함할 수 있다.
SSC_destination_IP_address 정보는 서비스를 위한 시그널링 정보를 전송하는 IP 데이터그램 (또는 채널) 의 데스티네이션 IP 주소 (destination IP address) 를 나타낸다.
SSC_destination_UDP_port 정보는 서비스를 위한 시그널링 정보를 전송하는 UDP/IP 스트림을 위한 데스티네이션 UDP 포트 번호를 나타낸다.
SSC_TSI 정보는 서비스를 위한 시그널링 정보 (또는 시그널링 테이블)을 전송하는 LCT 채널 (또는 세션)의 트랜스포트 세션 식별자 (Transport Session Identifier; TSI) 를 나타낸다.
SSC_DP_ID 정보는 서비스를 위한 시그널링 정보 (또는 시그널링 테이블)을 포함하는 데이터 파이프 (DP) 를 식별하는 식별자이다. 시그널링 정보를 포함하는 DP 는, 방송 전송 과정에서 가장 robust 한 DP 로 할당될 수 있다.
num_partition_level_descriptors 정보는 파티션을 위한 파티션 레벨의 디스크립터의 개수를 식별한다.
partition_level_descriptor() 정보는 파티션을 위한 추가 정보를 제공하는 0 또는 그 이상의 디스크립터를 포함한다.
num_FIC_level_descriptors 정보는 FIC를 위한 FIC 레벨의 디스크립터의 개수를 나타낸다.
FIC_level_descriptor() 정보는 FIC를 위한 추가 정보를 제공하는 0 또는 그 이상의 디스크립터를 포함한다.
도 19는 본 발명의 일 실시예에 따른, signaling_Information_Part() 를 나타낸 도면이다.
방송 시스템은, 전술한 DP 를 통하여 전송되는 패킷의 구조에서, 시그널링 정보를 전송하기 위한 패킷의 경우, extended header 부분에 부가적인 정보를 추가할 수 있다. 이러한 부가적인 정보를 이하에서는 Signaling_Information_Part() 라 명명하기로 한다.
Signaling_Information_Part() 는 수신된 시그널링 정보에 대한 처리 모듈 (module, 또는 프로세서)을 결정 하기 위해 사용되는 정보를 포함할 수 있다. 시스템의 구성 단계에서, 방송 시스템은, Signaling_Information_Part()에 할당된 byte 내에서, 정보를 나타내는 field의 개수 및 각각의 필드에 할당되는 bit 수에 대한 조정이 가능하다. Signaling 정보가 multiplexing 되어 전송되는 경우, 수신기는 Signaling_Information_Part()에 포함되는 정보를, 해당 signaling 정보의 처리여부에 대한 결정과, 각각의 signaling 정보를 어떤 signaling 처리 module로 전달 되어야 할지 결정하는 데 사용 될 수 있다.
Signaling_Information_Part()은 Signaling_Class 정보, Information_Type 정보, 및/또는 Signaling Format 정보를 포함할 수 있다.
Signaling_Class 정보는, 전송되고 있는 signaling 정보가 어떤 종류의 정보인지 표시할 수 있다. 시그널링 정보는 FIC, EAC, 링크 레이어 시그널링 정보, 서비스 시그널링 정보, 및/또는 상위 레이어 시그널링 정보에 해당될 수 있다. Signaling_Class 정보의 field의 비트 수 구성, 각 값이 나타내는 시그널링 정보의 종류에 대한 맵핑 (mapping) 은 시스템의 설계에 따라 결정될 수 있다.
Information_Type 정보는, signaling class 정보에 의하여 식별되는 시그널링 정보의 구체적인 사항에 대해 표시하는 데 사용 할 수 있다. Information_Type 정보가 가지는 값에 따라 의미하는 바는 Signaling_Class 정보가 나타내는 시그널링 정보의 종류에 따라 별도로 정의 될 수 있다.
Signaling Format 정보는, payload에 구성되어 있는 signaling 정보의 형태 (또는 포맷)을 나타낸다. Signaling Format 정보는 도면에 도시된 다른 종류의 시그널링 정보의 포맷을 식별할 수 있고, 추가로 새로 지정 되는 시그널링 정보의 format 을 식별할 수 있다.
도면에 도시된 (a)와 (b)의 Signaling_Information_Part()는 일 실시예이고, 방송 시스템의 특성에 따라 각각의 field에 할당되는 bit 수는 조정 될 수 있다.
도면의 (a) 와 같은 Signaling_Information_Part()는 signaling class 정보 및/또는 signaling format 정보를 포함할 수 있다. 이러한 Signaling_Information_Part()는 signaling 정보에 대한 type 지정이 필요치 않거나, signaling 정보 내에서 information type을 판단할 수 있는 경우에 대해 사용될 수 있다. 또는, 하나의 signaling format 만을 사용하거나, signaling 을 위한 별도의 protocol이 존재하여, 항상 signaling format 이 동일한 경우에는 signaling field 없이 구성 4비트 signaling class field만 사용하고 나머지는 추후 사용을 위해 reserved field로 남겨 두거나, 8비트의 signaling class를 사용하여 다양한 종류의 signaling을 지원할 수 있도록 설정할 수 있다.
도면의 (b) 와 같은 Signaling_Information_Part()는, signaling class 가 지정되어 있는 경우, signaling class 내에서 좀더 구체적인 정보의 종류 또는 특성에 대해 알려주기 위해 information type 정보가 추가 되며, signaling format 정보도 포함할 수 있다. Signaling class 정보와 information type 정보를 통해 signaling 정보의 decapsulation 또는 해당 signaling에 대한 처리 과정을 결정하는데 사용될 수 있다. Link layer signaling을 위한 구체적인 구조 또는 처리에 대한 설명은 전술된 내용 또는 후술될 내용으로 대체한다.
도 20은 본 발명의 일 실시예에 따른, 링크 레이어에서의 송신기 및/또는 수신기의 동작 모드 control 의 과정을 나타낸 도면이다.
Link Layer의 송신기 또는 수신기의 동작 mode 를 결정해 주는 것은, 방송 시스템을 더 효율적으로 사용하고, 방송 시스템에 대한 유연한 설계를 가능하게 하는 방법이 될 수 있다. 본 발명에서 제안하는 link layer mode를 control 하는 방안에 따르면, System 대역폭 및 processing time에 대한 효율적 운용을 위한 link layer의 mode를 동적으로 전환할 수 있는 효과가 있다. 또한, 본 발명의 link layer mode를 control 하는 방안에 따르면, Physical layer의 변경으로 인해 특정 mode에 대한 지원이 필요하거나 그 반대로 특정 모드에 대한 필요성이 없어진 경우 이에 대한 대처가 쉽다. 또한, link layer mode를 control 하는 방안에 따르면, 방송 서비스를 제공하는 Broadcaster 에서 해당 서비스에 대한 전송 방법을 지정하고자 하는 경우에도, 해당 방송사의 요구를 방송 시스템에서 손쉽게 수용할 수 있는 효과가 있다.
Link layer의 동작 mode를 control 하기 위한 방안은, link layer 내부에서만 동작하도록 구성하거나, 링크 레이어 내부에서의 데이터 구조의 변화를 통하여 수행될 수 있다. 이 경우, network layer 및/또는 physical layer에서, 별도의 기능에 대한 추가 구현이 없이도, 각 layer의 독립적인 동작을 수행하는 것이 가능하다. 본 발명에서 제안하는 link layer의 mode는, physical layer의 구조에 맞추기 위해 시스템을 변형하지 않고, signaling 또는 system 내부 parameter로 control이 가능하다. 특정 mode의 경우에는 해당 입력에 대한 처리가 physical layer에서 지원하는 경우에 한해 동작될 수도 있다.
도면은 송신기 및/또는 수신기가, IP 레이어, 링크 레이어, 및 physical 레이어에서 신호 및/또는 데이터를 처리하는 흐름을 나타낸 도면이다.
Link layer에 mode control을 위한 functional block (하드웨어 및/또는 소프트웨어로 구현 가능) 이 추가되고, packet의 처리 유무를 결정하기 위한 parameter 및/또는 signaling 정보를 관리하는 역할을 할 수 있다. Mode control functional block이 가지고 있는 정보를 이용하여, link layer에서는 packet stream의 처리 과정에 해당 function을 수행할지 여부를 판단할 수 있다.
송신기에서의 동작을 먼저 살펴본다.
송신기는, IP stream이 link layer로 입력되면, mode control parameter (j16005) 를 이용하여 overhead reduction (j16020)을 수행할지 여부를 결정한다 (j16010). mode control parameter는 송신기에서 서비스 제공자에 의하여 생성될 수 있다. mode control parameter에 관한 상세한 내용은 후술한다.
overhead reduction (j16020)을 수행되는 경우, overhead reduction 에 대한 정보를 생성하여, 링크 레이어 시그널링 (j16060) 정보에 포함시킨다. 링크 레이어 시그널링 (j16060) 정보는 mode control parameter의 일부 또는 전부를 포함할 수 도 있다. 링크 레이어 시그널링 (j16060) 정보는 링크 레이어 시그널링 패킷의 형태로 전달될 수 있다. 링크 레이어 시그널링 패킷은 DP 에 맵핑되어 수신기로 전달될 수도 있으나, DP 에 맵핑되지 않고, 방송 신호의 일정 영역을 통하여, 링크 레이어 시그널링 패킷의 형태로 수신기로 전달될 수 있다.
Overhead reduction (j16020)을 거친 packet stream은 encapsulation (j16030) 되어 physical layer의 DP로 입력된다 (j16040). Overhead reduction을 거치지 않는 경우에는 다시 encapsulation을 수행할지 여부를 결정한다 (j16050).
Encapsulation (j16030)을 거친 packet stream은 physical layer의 DP (j16040) 로 입력된다. 이때, physical layer에서는 general packet (link layer packet) 에 대한 처리를 위한 동작을 수행한다. Overhead reduction 및 encapsulation을 거치지 않는 경우에는 IP packet이 직접 physical layer로 전달된다. 이때, physical layer에서는 IP packet 에 대한 처리를 위한 동작을 수행한다. IP packet이 직접 전송되는 경우에는 physical layer에서 IP packet 입력을 지원하는 경우에 한해 동작 되도록 parameter를 부여할 수 있다. 즉, mode control parameter 의 값을 조절하여, physical layer에서 IP 패킷에 대한 처리를 지원하지 않는 경우는, IP 패킷을 직접 physical layer로 전송하는 과정이 동작하지 않도록 설정될 수 있다.
송신기는 이러한 과정을 거친 방송 신호를 수신기로 전송한다.
수신기의 동작을 살펴본다.
수신기에서, 사용자의 조작 등에 의한 채널 변경 등의 이유로 특정 DP가 선택되어 해당 DP에서 packet stream이 수신되면 (j16110), packet stream의 header 및/또는 signaling 정보를 이용하여, 송신 시 어떤 mode로 packet 이 생성 되었는지 확인 할 수 있다 (j16120). 해당 DP에 대해 송신 시 동작 mode가 확인되면, link layer의 수신 동작 과정에 의해 decapsulation (j16130) 및 overhead reduction (j16140) 과정을 거쳐 상위 layer로 IP packet 이 전달된다. overhead reduction (j16140) 과정은 overhead recovery 과정을 포함할 수 있다.
도 21은 본 발명의 일 실시예에 따른, flag의 값에 따른 링크 레이어 에서의 동작 및 physical layer로 전달되는 패킷의 형태를 나타낸 도면이다.
Link Layer의 동작 mode를 결정하기 위해 전술한 signaling 방법을 이용할 수 있다. 이와 관련한 signaling 정보가, 수신기에 직접적으로 전송될 수 있다. 이 경우, 전술한 시그널링 데이터 또는 링크 레이어 시그널링 패킷에 후술할 mode control 과 관련된 정보가 포함될 수 있다.
한편, 수신기의 복잡도를 고려해, Link Layer의 동작 mode를 간접적으로 수신기에 알려 주는 방법이 있을 수 있다.
Operation mode의 control 에 대해 다음과 같은 두 가지 flag를 고려할 수 있다.
- HCF (Header Compression Flag): 해당 link layer에서 header compression에 대한 적용 여부를 결정하는 flag로 Enable, Disable을 의미하는 값을 부여할 수 있다.
- EF (Encapsulation Flag): 해당 link layer에서 encapsulation에 대한 적용 여부를 결정하는 flag로, Enable, Disable을 의미하는 값을 부여할 수 있다. 단, header compression 기법에 따라 반드시 encapsulation이 수반되어야 하는 경우에는 EF를 HCF에 종속시켜 정의 할 수 있다.
각 flag에 mapping 되는 값은 Enable 및 Disable을 표현을 포함할 수 있는 범위 내에서 system 구성에 따라 부여될 수 있으며, 각 flag 에 할당되는 비트수도 변경이 가능하다. 일 실시예로, enable 값을 1, disable 값을 0으로 mapping 할 수 있다.
도면에 도시된 바와 같이, HCF, EF의 값에 따라 link layer에 포함되는 header compression 및 encapsulation 동작 여부와 이로 인해 physical layer로 전달되는 packet format에 대해 나타낸 것이다. 즉, 본 발명의 일 실시예에 따르면, 수신기는 HCF 및 EF 에 대한 정보로, physical layer 로 입력되는 패킷의 형태가 무엇인지 알 수 있다.
도 22은 본 발명의 일 실시예에 따른, mode control parameter를 시그널링하기 위한 디스크립터를 나타낸 도면이다.
link layer 에서의 모드 control 에 대한 정보인 flag 들은, signaling 정보로서, descriptor의 형태로 송신기에서 생성되고, 수신기로 전달될 수 있다. 모드 control 에 대한 정보인 flag를 포함하는 signaling은 headend 단에서 transmitter로 operation mode를 control 하기 위한 목적으로 사용될 수 있으며, 수신기로 전달되는 signaling에, 모드 control 에 대한 정보인 flag가 포함될지는 optional로 선택할 수 있다.
모드 control 에 대한 정보인, flag를 포함하는 signaling이 수신기로 전송되는 경우, 수신기에서는 직접적으로 해당 DP에 대한 operation mode를 선택하여 packet decapsulation 동작을 수행할 수 있다. 모드 control 에 대한 정보인 flag 를 포함하는 Signaling이 수신기로 전송되지 않는 경우에는, 수신기는, 수신기로 전달되는 physical layer signaling 또는 packet header의 field 정보를 이용하여 어떤 mode로 전송 되었는지 판단이 가능하다.
본 발명의 일 실시예에 따른 링크 레이어 모드 컨트롤 디스크립터는, DP_id 정보, HCF 정보, 및/또는 EF 정보를 포함할 수 있다. 링크 레이어 모드 컨트롤 디스크립터는 전술한, FIC, 링크 레이어 시그널링 패킷, dedicated channel을 통한 시그널링, PSI/SI, 및/또는 physical layer에서의 전송 파라미터에 포함될 수 있다.
DP_id 정보는, 링크 레이어에서의 모드가 적용된 DP 를 식별한다.
HCF 정보는, DP_id 정보에 의하여 식별된 DP 에, 에서 header compression 이 적용되었는지 식별한다.
EF 정보는, DP_id 정보에 의하여 식별된 DP 에, encapsulation 이 수행되었는지 여부를 식별한다.
도 23은 본 발명의 일 실시예에 따른, operation mode를 제어하는 송신기의 동작을 나타낸 도면이다.
도면에 도시되지는 않았으나, 링크 레이어의 처리 과정 이전에, 송신기는 상위 레이어 (예를 들면, IP 레이어) 에서의 처리를 수행할 수 있다. 송신기는 방송 서비스를 위한 방송 데이터를 포함하는 IP 패킷을 생성할 수 있다.
송신기는 시스템 파라미터를 파싱하거나, 생성한다 (JS19010). 여기서 시스템 파라미터는 전술한 시그널링 데이터, 시그널링 정보에 해당될 수 있다.
송신기는 Link layer 에서의 방송 데이터 처리과정에서, mode control 관련 parameter 또는 signaling 정보를 수신하거나, 설정하여, 동작 모드 control과 관련한 flag 값을 설정한다 (JS19020). 송신기에서 이 동작은, header compression 동작 또는 encapsulation 동작이 수행된 이후 실행될 수 도 있다. 즉, 송신기는 header compression 또는 encapsulation 동작을 수행하고, 이 동작과 관련한 정보를 생성할 수 있다.
송신기는 방송 신호를 통하여 전송이 필요한 상위 레이어의 패킷을 획득한다 (JS19030). 여기서, 상위 레이어의 패킷은 IP 패킷에 해당될 수 있다.
송신기는 상위 레이어의 패킷에 Header compression에 대한 적용 여부를 결정하기 위해 HCF를 check 한다 (JS19040).
송신기는 HCF가 enable인 경우, 상위 레이어 패킷에 header compression을 적용한다 (JS19050). header compression 이 수행된 이후, 송신기가 HCF 를 생성할 수도 있다. HCF는 수신기에게 header compression의 적용여부를 시그널링하기 위하여 사용될 수 있다.
송신기는 header compression이 적용된 상위 레이어 패킷에 대하여, encapsulation을 수행하여 링크 레이어 패킷을 생성한다 (JS19060). Encapsulation 과정이 수행된 이후, 송신기가 EF 를 생성할 수도 있다. EF는 수신기에게 상위 레이어 패킷에 encapsulation 이 적용되었는지 여부를 시그널링하기 위하여 사용될 수 있다.
송신기는 링크 레이어 패킷을 physical layer 처리부로 전달한다 (JS19070). 이후 physical layer 처리부는, 링크 레이어 패킷을 포함하는 방송 신호를 생성하고, 이를 수신기로 송신한다.
송신기는 HCF가 disable인 경우에는 encapsulation에 대한 적용여부를 결정하기 위해 EF를 check 한다 (JS19080).
송신기는 EF가 enable인 경우 상위 레이어의 패킷에 대한 encapsulation을 수행한다 (JS19090). 송신기는 EF가 disable인 경우에는 해당 packet stream에 대한 별도의 처리를 하지 않는다. 송신기는 Link layer에서 처리가 완료된 packet stream (링크 레이어 패킷)을 physical layer로 전달한다 (JS19070). Header compression, encapsulation, 및/또는 링크 레이어 패킷의 생성은, 송신기 내의 link layer packet generator (i.e. link layer processor)에 의하여 수행될 수 있다.
한편, 송신기는 service signaling channel (SCC) data를 생성할 수 있다. service signaling channel data는 service signaling data encoder에 의하여 생성될 수 있다. service signaling data encoder는 link layer processor에 포함될 수도 있고, link layer processor 와 별개로 존재할 수 있다. service signaling channel data는 전술한 FIC 및/또는 EAT를 포함할 수 있다. service signaling channel data는 전술한 dedicated channel로 전송될 수 있다.
도 24는 본 발명의 일 실시예에 따른, operation mode에 따른 방송 신호를 처리하는 수신기의 동작을 나타낸 도면이다.
수신기는 Link layer에서의 동작 mode 관련 정보를 packet stream과 함께 수신할 수 있다.
수신기는 signaling 정보 및/또는 channel 정보를 수신한다 (JS20010). 여기서, 시그널링 정보 및/또는 채널 정보에 대한 설명은 전술한 내용으로 대체한다.
수신기는, 시그널링 정보 및/또는 채널 정보에 따라 수신 처리를 위한 DP를 선택한다 (JS20020).
수신기는 선택된 DP에 대하여 physical layer의 decoding을 수행하고, 링크 레이어의 packet stream을 입력 받는다 (JS20030).
수신기는 수신된 signaling에 link layer mode control 관련 signaling이 포함되어 있는지 확인한다 (JS20040).
수신기는 Link layer mode 관련 정보를 수신한 경우, EF를 check 한다 (JS20050).
수신기는 EF가 enable 되어 있는 경우 링크 레이어의 패킷에 대하여 decapsulation 과정을 수행한다 (JS20060).
수신기는 Packet을 decapsulation 한 이후 HCF를 check 하고, HCF가 enable 되어 있는 경우 header decompression 과정을 수행한다 (JS20080).
수신기는 header decompression이 수행된 패킷을 상위 레이어 (예를 들면, IP layer)로 전달한다 (JS20090). 수신기는, 전술한 과정에서, HCF 및 EF가 disable인 경우에는 처리된 packet stream은 IP packet으로 인식하고, 해당 packet을 IP layer로 전달한다.
수신기는 Link layer mode 관련 정보를 수신하지 않았거나, 해당 system에서는 link layer mode 관련 정보를 수신기로 전송하지 않은 경우에는 다음과 같이 동작한다.
수신기는 signaling 정보 및/또는 channel 정보를 수신하고 (JS20010), 해당 정보에 따라 수신 처리를 위한 DP를 선택한다 (JS20020). 수신기는 선택된 DP에 대하여 physical layer의 decoding을 수행하고, packet stream을 획득한다 (JS20030).
수신기는 수신된 signaling에 link layer mode control 관련 signaling이 포함되어 있는지 확인한다 (JS20040).
수신기는 Link layer mode 관련 signaling을 수신하지 않았으므로, physical layer signaling 등을 이용하여 전달된 packet의 format을 확인한다 (JS20100). 여기서, physical layer signaling 정보는 DP의 페이로드에 포함된 패킷의 종류를 식별하는 정보를 포함할 수 있다. 수신기는 Physical layer로부터 전달된 packet이 IP packet인 경우, link layer에서 별도의 처리 없이, IP layer로 전달한다.
수신기는 Physical layer로부터 전달된 packet이 link layer에서 encapsulation을 거친 packet의 경우, 해당 패킷에 대하여 decapsulation 과정을 수행한다 (JS20110).
수신기는 Decapsulation 과정에서 link layer packet의 header 등의 정보를 이용하여 payload를 구성하는 packet의 형태를 확인하고 (JS20120), payload가 IP packet인 경우 IP layer 처리부로 해당 패킷을 전달 한다.
수신기는 Link layer packet의 payload가 compressed IP인 경우 해당 packet은 decompression 과정을 수행한다. (JS20130).
수신기는 IP 패킷을 IP 레이어 처리부로 전달한다 (JS20140).
도 25는 본 발명의 일 실시예에 따른, 인캡슐레이션 모드 (encapsulation mode) 를 식별하는 정보를 나타낸 도면이다.
방송 시스템에서, 링크 레이어에서의 처리가 하나 이상의 모드 (mode)로 동작하는 경우에는, 링크 레이어에서의 처리가 어떤 모드 (mode)로 동작할지에 대해 결정 하는 과정 (송신기 및/또는 수신기에서) 이 필요할 수 있다. 송신기와 수신기 사이에 전송 링크 (link)가 수립되는 과정에서. 송신기 및/또는 수신기는 link layer의 구성 정보를 확인할 수 있다. 이러한 경우는 수신기가 최초로 셋업 (setup) 되거나, 서비스 (service)에 대한 스캔 (scan) 과정을 수행하는 경우이거나, mobile 수신기가 송신기의 전송 반경 내에 새로 진입 하는 경우 등에 해당될 수 있다. 이러한 과정은, initialization 과정 또는 bootstrapping 과정으로 지칭될 수 있다. 이러한 과정은, 시스템에 따라 별도의 절차로 구성되지 않고, 해당 시스템이 지원하고 있는 절차의 일부 과정으로 구성되는 것도 가능하다. 본 명세서에서는, 이 과정을 초기화 (initialization) 과정으로 부르기로 한다.
초기화 과정에서 필요한 파라미터 (parameter)는 해당 link layer가 지원하는 function과 각각의 function이 가지고 있는 동작 mode의 종류에 따라 결정될 수 있다. link layer를 구성하는 각 function과 그에 따른 동작 mode를 결정 할 수 있는 parameter에 대해 이하에서 설명된다.
도면은 encapsulation mode를 식별하는 파라미터를 나타낸다.
Link layer 또는 상위 레이터 (예를 들면, IP 레이어) 에서 packet을 encapsulation 하는 과정을 설정하는 것이 가능한 경우 아래와 같은 encapsulation mode에 각각 index를 부여 하고 해당하는 index에 적절한 field 값을 배치할 수 있다. 도면은 각각의 encapsulation mode에 맵핑 (mapping) 된 field value에 대한 실시 예를 나타낸 것이다. 해당 실시 예에서는 2비트의 field 값을 부여하는 것으로 가정 하였으나, 실제 구현 시, 지원 가능한 encapsulation mode가 많은 경우에는 시스템이 허용하는 범위 내에서 확장이 가능하다.
본 실시예에서는, encapsulation mode를 나타내는 정보의 field가 ‘00’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서의 encapsulation이 수행되지 않고, 데이터가 바이패스 (bypass) 된 것임을 나타낼 수 있다. encapsulation mode를 나타내는 정보의 field가 ‘01’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서 제 1 의 encapsulation 방식으로 데이터가 처리되었음을 나타낼 수 있다. encapsulation mode를 나타내는 정보의 field가 ‘10’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서 제 2 의 encapsulation 방식으로 데이터가 처리되었음을 나타낼 수 있다. encapsulation mode를 나타내는 정보의 field가 ‘11’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서 제 3 의 encapsulation 방식으로 데이터가 처리되었음을 나타낼 수 있다.
도 26은 본 발명의 일 실시예에 따른, 헤더 컴프레션 모드 (Header Compression Mode) 를 식별하는 정보를 나타낸 도면이다.
Link layer에서의 처리는 IP packet의 header compression의 function을 포함할 수 있다. link layer에서 IP header compression scheme을 몇 가지 지원 할 수 있는 경우, 송신 측은, 어떠한 scheme을 사용할 지에 대한 결정을 할 수 있다.
Header compression mode의 결정은 일반적으로 encapsulation function 을 수반하게 되므로, encapsulation mode가 disable 된 경우에는 header compression mode 또한 disable 될 수 있다. 도면은 각각의 header compression mode에 mapping 된 field value에 대한 실시 예를 나타낸다. 해당 실시 예에서는 3비트의 field 값을 부여하는 것으로 가정하였으나, 실제 구현 시, 지원 가능한 header compression mode에 따라 시스템이 허용하는 범위 내에서 확장 또는 축소가 가능하다.
본 실시예에서는, header compression mode를 나타내는 정보의 field가 ‘000’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서는 데이터에 대한 헤더 압축 처리가 되지 않음을 나타낼 수 있다. header compression mode를 나타내는 정보의 field가 ‘001’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서 데이터에 대한 헤더 압축 처리는 RoHC 방식이 사용됨을 알 수 있다. header compression mode를 나타내는 정보의 field가 ‘010’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서 데이터에 대한 헤더 압축 처리는 제 2 방식의 헤더 압축이 사용됨을 알 수 있다. header compression mode를 나타내는 정보의 field가 ‘011’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서 데이터에 대한 헤더 압축 처리는 제 3 방식의 헤더 압축이 사용됨을 알 수 있다. header compression mode를 나타내는 정보의 field가 ‘100’ 내지 ‘111’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서 데이터에 대한 새로운 헤더 압축 처리 방식을 식별하기 위한 영역으로 예약될 수 있다.
도 27은 본 발명의 일 실시예에 따른, 패킷 리컨피규레이션 모드 (Packet Reconfiguration Mode) 를 식별하는 정보를 나타낸 도면이다.
방송 시스템과 같은 단방향 link에, Header compression 기법을 적용하기 위해서, 방송 시스템 (송신기 및/또는 수신기) 은 context 정보를 신속히 획득할 필요가 있다. 방송 시스템은, header compression 과정을 거친 packet stream에 대해 일부 압축된 packet의 재구성 및/또는 context 정보 추출을 통해 out-of-band 로 전송/수신할 수 있다. 본 발명에서는, 패킷을 재구성하거나, 패킷의 구조를 알 수 있는 정보를 추가하는 등의 처리를 수행하는 모드를 Packet Reconfiguration Mode로 지칭할 수 있다.
Packet Reconfiguration Mode는 몇 가지 방안을 존재할 수 있으며, 방송 시스템에서는 link layer 의 초기화 과정에서 해당 방안에 대해 지정하는 것이 가능하다. 도면은 packet reconfiguration mode에 mapping 된 index 및 field value에 대한 실시 예에 대해 나타낸 것이다. 해당 실시 예에서는 2비트의 field 값을 부여하는 것으로 가정 하였으나, 실제 구현 시, 지원 가능한 packet reconfiguration mode에 따라 시스템이 허용하는 범위 내에서 확장 또는 축소가 가능하다.
본 실시예에서는, packet reconfiguration mode를 나타내는 정보의 field가 ‘00’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서는 데이터를 전송하는 패킷에 대한 packet reconfiguration 가 되지 않음을 나타낼 수 있다. packet reconfiguration mode를 나타내는 정보의 field가 ‘01’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서는 데이터를 전송하는 패킷에 대하여, 제 1 방식의 reconfiguration이 수행됨을 나타낸다. packet reconfiguration mode를 나타내는 정보의 field가 ‘10’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서는 데이터를 전송하는 패킷에 대하여, 제 2 방식의 reconfiguration이 수행됨을 나타낸다. packet reconfiguration mode를 나타내는 정보의 field가 ‘11’ 으로 셋팅된 경우, 해당 정보는, 링크 레이어에서는 데이터를 전송하는 패킷에 대하여, 제 3 방식의 reconfiguration이 수행됨을 나타낸다.
도 28은 본 발명의 일 실시예에 따른, 컨택스트 트랜스미션 모드 (context transmission mode) 를 나타낸 도면이다.
전술한 context 정보에 대한 전송 방안은 하나 이상의 전송 모드를 포함할 수 있다. 즉, 방송 시스템은 전술한 정보를 여러 가지 방법으로 전송할 수 있다. 방송 시스템에서, System 및/또는 논리적 physical layer의 전송 경로에 따라, context transmission mode가 결정 될 수 있으며, 이에 대한 방안을 식별하는 정보를 시그널링할 수 있다. 도면은 context transmission mode에 mapping 된 index 및 field value에 대한 실시 예에 대해 나타낸 것이다. 해당 실시 예에서는 3비트의 field 값을 부여하는 것으로 가정 하였으나, 실제 구현 시, 지원 가능한 context transmission mode에 따라 시스템이 허용하는 범위 내에서 확장 또는 축소가 가능하다.
본 실시예에서는, context transmission mode를 나타내는 정보의 field가 ‘000’ 으로 셋팅된 경우, 해당 정보는, context 정보가 제 1 전송 모드로 전송됨을 나타낼 수 있다. context transmission mode를 나타내는 정보의 field가 ‘001’ 으로 셋팅된 경우, 해당 정보는, context 정보가 제 2 전송 모드로 전송됨을 나타낼 수 있다. context transmission mode를 나타내는 정보의 field가 ‘010’ 으로 셋팅된 경우, 해당 정보는, context 정보가 제 3 전송 모드로 전송됨을 나타낼 수 있다. context transmission mode를 나타내는 정보의 field가 ‘011’ 으로 셋팅된 경우, 해당 정보는, context 정보가 제 4 전송 모드로 전송됨을 나타낼 수 있다. context transmission mode를 나타내는 정보의 field가 ‘100’ 으로 셋팅된 경우, 해당 정보는, context 정보가 제 5 전송 모드로 전송됨을 나타낼 수 있다. context transmission mode를 나타내는 정보의 field가 ‘101’ 내지 ‘111’ 으로 셋팅된 경우, 해당 정보는, context 정보가 새로운 전송 모드로 전송되는 것을 식별하기 위하여 예약될 수 있다.
도 29는 본 발명의 일 실시예에 따른, RoHC 가 헤더 압축 방식으로 적용되는 경우에 있어서, 초기화 정보를 나타낸 도면이다.
본 발명에서는 RoHC가 헤더 압축에 사용되는 것을 예로 들었으나, 다른 방식의 헤더 압축 방식이 사용되는 경우에도, 유사한 초기화 정보가 방송 시스템에서 사용될 수 있다.
방송 시스템에서는, Header compression mode 에 따라 해당하는 compression scheme에 맞는 초기화 정보에 대한 전송이 필요할 수 있다. 본 실시예에서는, header compression mode가 RoHC로 설정 된 경우에 대한 초기화 파라미터 (initialization parameter)에 대해 기술한다. RoHC를 위한 초기화 정보는 compressor와 decompressor 사이의 link인 RoHC channel 의 구성에 대한 정보를 전달하는 데 사용될 수 있다.
하나의 RoHC channel 내에는 하나 이상의 context 정보를 가질 수 있는데, 해당 RoHC channel 내의 모든 context에 적용되는 공통되는 정보를 초기화 정보에 포함시켜 송/수신할 수 있다. RoHC가 적용되어, 관련 정보가 전송되는 경로를 RoHC channel 으로 명명될 수 있고, 일반적으로 RoHC channel 은 link로 mapping 될 수 있다. 또한, RoHC channel은 일반적으로 하나의 DP 를 통해 전송될 수 있는데, 이러한 경우 전술한 DP 에 관련한 정보를 이용하여, RoHC channel 을 표시할 수 있다.
초기화 정보는, link_id 정보, max_cid 정보, large_cids 정보, num_profiles 정보, profiles() 정보, num_IP_stream 정보 및/또는 IP_address() 정보를 포함할 수 있다.
link_id 정보는, 해당 정보가 적용되는 link (RoHC channel)의 식별자를 나타낸다. Link 또는 RoHC channel이 하나의 DP 를 통하여 전송되는 경우, link_id 정보는, DP_id 로 대체할 수 있다.
max_cid 정보는, CID의 최대 값을 나타낸다. max_cid 정보는, CID의 최대 값을 decompressor에 알려주기 위하여 사용될 수 있다.
large_cids 정보는, Boolean 값을 가지며, CID의 구성에 있어, short CID (0~15)를 사용 하는지 embedded CID (0~16383)를 사용하는지를 식별한다. 이에 따라 CID를 표현하는 바이트의 크기도 함께 결정될 수 있다.
num_profiles 정보는, 식별된 RoHC channel 에서 지원하는 profile의 개수를 나타낸다.
profiels() 정보는, RoHC에서 헤더가 압축되는 protocol의 범위를 표시한다. RoHC에서는 compressor와 decompressor가 동일한 profile을 가져야 stream에 대한 압축 및 복구가 가능하므로, 수신기는 profiles() 정보에서, 송신측에서 사용된 RoHC의 파라미터를 획득할 수 있다.
num_IP_stream 정보는, channel (예를 들면, RoHC Channel) 을 통해 전송되는 IP stream의 개수를 나타낸다.
IP_address 정보는, IP stream의 주소를 표시한다. IP_address 정보는, RoHC compressor (송신기) 에 입력되는, filtered 된 IP stream의 destination address를 표시할 수 있다.
도 30은 본 발명의 일 실시예에 따른, 링크 레이어 시그널링 패스 컨피규레이션 (Link layer signaling path configuration) 을 식별하는 정보를 나타낸 도면이다.
방송 시스템에서는 Signaling 정보가 전달되는 경로 (path) 는, 변동이 일어나지 않도록 설계되는 것이 일반적이다. 그러나, system의 변동이 있거나, 서로 다른 표준 간의 교체가 이루어 지는 동안에는, IP packet의 형태가 아닌 link layer signaling 정보가 전달되는 physical layer의 구성에 대한 정보가 시그널링될 필요가 있다. 또한, 이동 수신기의 경우, 서로 다른 구성을 가지는 송신기들이 커버하는 영역 사이에서 이동 수신기의 이동이 이루어 지는 경우, 링크 레이어 시그널링 정보가 전송되는 경로가 달라질 수 있으므로, 링크 레이어 시그널링 패스 정보를 전달해야 하는 경우가 발생할 수 있다. 도면은 링크 레이어 시그널링 정보가 송/수신되는 경로인 시그널링 패스를 식별하는 정보를 나타낸 도면이다. 해당 정보에 대하여는, physical layer에서 구성하고 있는 signaling 전달 경로에 따라, index 의 확장 또는 축소가 있을 수 있다. Link layer에서의 configuration과는 별도로 해당 channel의 운용은 physical layer의 절차를 따를 수 있다.
도면은 시그널링 패스 (signaling path) 구성에 대한 정보를 해당하는 field 값으로 할당 한 실시 예를 나타낸 것이다. 본 실시 예에 대해서 여러 가지 signaling path를 지원하는 경우 index 값이 작은 순서대로, 중요도가 높은 시그널링 패스를 맵핑할 수 있다. index 값에 따라 우선하는 priority를 가지는 signaling path도 함께 식별될 수 있다.
또는, 방송 시스템은 시그널링 패스 구성에 대한 정보가 나타내는 시그널링 패스 보다 우선 순위가 높은 시그널링 패스를 모두 사용할 수 있다. 예를 들면, signaling path configuration index 값이 3인 경우 해당하는 field value는 '011'이 되고, 이 경우, priority가 1, 2, 3 인 Dedicated data path, Specific signaling channel (FIC), Specific signaling channel (EAC)가 모두 사용되고 있음을 표시할 수 있다.
위 방식의 시그널링으로, 시그널링 정보를 전송하는 데이터의 양을 줄일 수 있는 효과가 있다.
도 31은 본 발명의 일 실시예에 따른, 시그널링 패스 구성에 대한 정보를 비트 맵핑 (bit mapping) 방식으로 나타낸 도면이다.
전술한 시그널링 패스 구성에 대한 정보를 비트 맵핑 방식으로도 정의하여 송/수신할 수 있다. 본 실시 에에 대해서, 시그널링 패스 구성에 대한 정보에 4비트를 할당하는 것을 고려하고 있으며, 각각의 비트 b1, b2, b3, b4에 해당하는 signaling path를 mapping 하고, 각 위치의 비트 값이 0이면 해당 path는 disable, 1 이면 enable이 된 것으로 표시할 수 있다. 예를 들어 4비트의 signaling path configuration field 값이 '1100' 인 경우, 방송 시스템은 link layer에서 Dedicated data pipe와 Specific signaling channel (FIC) 를 사용하고 있음을 나타낼 수 있다.
도 32는 본 발명의 일 실시예에 따른, 링크 레이어 초기화 과정을 나타낸 순서도이다.
수신기에 전원이 인가 되거나, 이동 수신기가 새로운 송신기의 전송 영역에 진입한 경우, 수신기는 전체 또는 일부 시스템 구성에 대한 초기화 과정을 수행할 수 있다. 이 경우 link layer의 초기화 과정도 함께 진행하는 것이 가능하다. 전술한 초기화 파라미터 (initialization parameter)를 이용하여, 수신기에서 link layer의 초기 셋업 (set up)은 도면과 같이 진행될 수 있다.
수신기는 링크 레이어의 초기화 과정에 진입한다 (JS32010).
수신기는 Link layer의 초기화 과정에 진입하게 되면, 인캡슐레이션 모드 (encapsulation mode)를 결정한다 (JS32020). 수신기는 이 과정에서 전술한 초기화 파라미터를 이용하여 인캡슐레이션 모드를 결정할 수 있다.
수신기는 인캡슐레이션이 enable 되었는지 판단한다 (JS32030). 수신기는 이 과정에서 전술한 초기화 파라미터를 이용하여 인캡슐레이션이 enable 되었는지 판단할 수 있다.
Header compression 기법은 encapsulation 에 이어서 적용되는 것을 고려하는 것이 일반적이므로, encapsulation mode가 disable로 결정이 되면, 수신기는 header compression mode 를 disable 로 처리할 수 있다 (JS32080). 이러한 경우에는, 수신기에서 더 이상의 초기화 과정이 진행될 필요가 없으므로, 수신기는 곧 바로 data를 다른 레이어로 전송하거나 또는 데이터에 대한 처리 절차로 전환할 수 있다.
수신기는 Encapsulation mode가 enable 된 경우에는 header compression mode를 결정한다 (JS32040). 수신기는 Header compression mode의 결정 시, 앞서 기술한 initialization parameter를 이용하여 패킷에 적용된 header compression 기법을 판단할 수 있다.
수신기는 header compression 이 enable 된 상태인지 판단한다 (JS32050). Header compression 이 disable 된 상태이면, 수신기는 곧 바로 data를 전송하거나 데이터에 대한 처리 절차로 전환할 수 있다.
수신기는 Header compression 이 enable 된 상태이면, 해당하는 header compression 기법에 대해, packet stream reconfiguration mode 및/또는 context transmission mode를 식별한다 (JS32060, JS32070). 수신기는 이 과정에서 전술한 정보를 이용하여, 각각의 모드를 결정할 수 있다.
이후 수신기는 데이터를 다른 처리 절차를 위하여 전달하거나, 데이터에 대한 처리 절차를 수행할 수 있다.
도 33은 본 발명의 다른 실시예에 따른, 링크 레이어 초기화 과정을 나타낸 순서도이다.
수신기는 링크 레이어의 초기화 과정에 진입한다 (JS33010).
수신기는 링크 레이어 시그널링 경로 구성 (link layer signaling path configuration) 을 파악한다 (JS33020). 수신기는 전술한 정보를 이용하여, 링크 레이어 시그널링 정보가 전송되는 경로를 파악할 수 있다.
수신기는 인캡슐레이션 모드 (encapsulation mode)를 결정한다 (JS33030). 수신기는 이 과정에서 전술한 초기화 파라미터를 이용하여 인캡슐레이션 모드를 결정할 수 있다.
수신기는 인캡슐레이션이 enable 되었는지 판단한다 (JS33040). 수신기는 이 과정에서 전술한 초기화 파라미터를 이용하여 인캡슐레이션이 enable 되었는지 판단할 수 있다.
Header compression 기법은 encapsulation 에 이어서 적용되는 것을 고려하는 것이 일반적이므로, encapsulation mode가 disable로 결정이 되면, 수신기는 header compression mode 를 disable 로 처리할 수 있다 (JS34100). 이러한 경우에는, 수신기에서 더 이상의 초기화 과정이 진행될 필요가 없으므로, 수신기는 곧 바로 data를 다른 레이어로 전송하거나 또는 데이터에 대한 처리 절차로 전환할 수 있다.
수신기는 Encapsulation mode가 enable 된 경우에는 header compression mode를 결정한다 (JS33050). 수신기는 Header compression mode의 결정 시, 앞서 기술한 initialization parameter를 이용하여 패킷에 적용된 header compression 기법을 판단할 수 있다.
수신기는 header compression 이 enable 된 상태인지 판단한다 (JS33060). Header compression 이 disable 된 상태이면, 수신기는 곧 바로 data를 전송하거나 데이터에 대한 처리 절차로 전환할 수 있다.
수신기는 Header compression 이 enable 된 상태이면, 해당하는 header compression 기법에 대해, packet stream reconfiguration mode 및/또는 context transmission mode를 식별한다 (JS33070, JS32080). 수신기는 이 과정에서 전술한 정보를 이용하여, 각각의 모드를 결정할 수 있다.
수신기는 header compression initialization 을 수행한다 (JS33090). 수신기는 header compression initialization 을 수행하는 과정에서, 전술한 정보를 이용할 수 있다. 이후 수신기는 데이터를 다른 처리 절차를 위하여 전달하거나, 데이터에 대한 처리 절차를 수행할 수 있다.
도 34는 본 발명의 일 실시예에 따른, 초기화 파라미터를 전송하기 위한 형태의 시그널링 포맷을 나타낸 도면이다.
전술한 initialization parameter를 실제 수신기에 전달하기 위해, 방송 시스템은 해당 정보를 descriptor 형태로 구성하여, 송/수신할 수 있다. 시스템에 구성되어 있는 link layer에서 운용되는 link가 여러 개 존재하는 경우에는 각 link를 구별할 수 있는 link_id 정보를 부여하고, link_id 정보에 따라 서로 다른 parameter를 적용하는 것이 가능하다. 예를 들어, 링크 레이어에 전달되는 data의 종류가 IP 인 경우, 해당 IP stream에서 IP 주소가 변경되지 않는 경우에는, 구성 정보에 상위 layer에서 전달되는 IP 주소를 지정 하는 것이 가능하다.
본 발명의 일 실시예에 따른, 초기화 파라미터를 전송하기 위한 링크 레이어 초기화 디스크립터는, descriptor_tag 정보, descriptor_length 정보, num_link 정보, link_id 정보, encapsulation_mode 정보, header_compression_mode 정보, packet_reconfiguration_mode 정보, context_transmission_mode 정보, max_cid 정보, large_cids 정보, num_profiles 정보, 및/또는 profiles() 정보를 포함할 수 있다. 각각의 정보에 대한 설명은 전술한 유사 또는 동일한 명칭을 가지는 정보에 대한 설명으로 대체한다.
도 35는 본 발명의 다른 실시예에 따른, 초기화 파라미터를 전송하기 위한 형태의 시그널링 포맷을 나타낸 도면이다.
도면은 전술한 initialization parameter를 실제 수신기에 전달하기 위해, 다른 형태의 descriptor 를 도시하고 있다. 본 실시예에서는, 전술한 header compression의 초기 구성 정보를 제외하고 있다. 각각의 링크 레이어의 데이터 처리에, 별도의 header compression 초기화 과정이 수행되거나, 각각의 링크 레이어의 패킷 마다 별도의 header compression parameter를 가지는 경우, 본 실시예에 같은 형태의 descriptor를 송/수신할 수 있다.
본 발명의 다른 실시예에 따른, 초기화 파라미터를 전송하기 위한 링크 레이어 초기화 디스크립터는, descriptor_tag 정보, descriptor_length 정보, num_link 정보, link_id 정보, encapsulation_mode 정보, header_compression_mode 정보, packet_reconfiguration_mode 정보, 및/또는 context_transmission_mode 정보를 포함할 수 있다. 각각의 정보에 대한 설명은 전술한 유사 또는 동일한 명칭을 가지는 정보에 대한 설명으로 대체한다.
도 36은 본 발명의 다른 실시예에 따른, 초기화 파라미터를 전송하기 위한 형태의 시그널링 포맷을 나타낸 도면이다.
도면은 전술한 initialization parameter를 실제 수신기에 전달하기 위해, 다른 형태의 descriptor 를 도시하고 있다. 본 실시예에서는, 초기화 파라미터의 전송을 위한 descriptor는 header compression의 초기 구성정보를 포함하지 않고, signaling 전달 경로에 대한 configuration 정보를 포함하는 형태이다.
signaling 전달 경로에 대한 configuration parameter는 전술한 바와 같이, 4비트의 bit mapping 방식이 사용될 수 있다. 방송 신호를 처리하는 방송 시스템 (송신기 또는 수신기)에 변경이 있는 경우, 링크 레이어 시그널링을 전송하는 방식이나 그 내용이 달라 질 수 있다. 이 경우, 본 실시예와 같은 형태로 초기화 파라미터를 전달하면, 링크 레이어 시그널링에 변경이 있는 경우를 대처할 수 있다.
본 발명의 다른 실시예에 따른, 초기화 파라미터를 전송하기 위한 링크 레이어 초기화 디스크립터는, descriptor_tag 정보, descriptor_length 정보, num_link 정보, signaling_path_configuration 정보, dedicated_DP_id 정보, link_id 정보, encapsulation_mode 정보, header_compression_mode 정보, packet_reconfiguration_mode 정보, 및/또는 context_transmission_mode 정보를 포함할 수 있다.
dedicated_DP_id 정보는 링크 레이어 시그널링 정보가 dedicated DP 를 통하여 전송되는 경우, 해당 DP 를 식별하는 정보이다. Signaling path configuration에서, dedicated DP가 signaling 정보를 전송하는 path로 결정 되는 경우에는, 해당 DP_id를 지정하여, DP_id 정보를 초기화 파라미터의 전송을 위한 descriptor에 포함시켜 전송할 수도 있다.
Descriptor에 포함되는 다른 각각의 정보에 대한 설명은 전술한 유사 또는 동일한 명칭을 가지는 정보에 대한 설명으로 대체한다.
도 37은 본 발명의 일 실시예에 따른, 수신기를 나타낸 도면이다.
본 발명의 일 실시예에 따른 수신기는, 튜너 (JS21010), ADC (JS21020), 복조기 (JS21030), 채널 동기 및 등화부 (channel synchronizer & equalizer; JS21040), 채널 디코더 (JS21050), L1 시그널링 파서 (JS21060), 시그널링 제어부 (JS21070), 베이스밴드 제어부 (JS21080), 링크 레이어 인터페이스 (JS21090), L2 시그널링 파서 (JS21100), 패킷 헤더 리커버리 (JS21110), IP 패킷 필터 (JS21120), 커먼 프로토콜 스택 처리부 (JS21130), SSC 프로세싱 버퍼 및 파서 (JS21140), 서비스 맵 데이터베이스 (JS21150), 서비스 가이드 프로세서 (JS21160), 서비스 가이드 데이터 베이스 (JS21170), AV 서비스 제어부 (JS21180), 디멀티플렉서 (JS21190), 비디오 디코더 (JS21200), 비디오 렌더러 (JS21210), 오디오 디코더 (JS21220), 오디오 렌더러 (JS21230), 네트워크 스위치 (JS21240), IP 패킷 필터 (JS21250), TCP/IP 스택 프로세서 (JS21260), 데이터 서비스 제어부 (JS21270), 및/또는 시스템 프로세서 (JS21280)를 포함할 수 있다.
튜너 (JS21010)는 방송 신호를 수신한다.
ADC (JS21020)는 방송 신호가 아날로그 신호인 경우, 이를 디지털 신호로 변환한다.
복조기 (JS21030)는 방송 신호에 대하여 복조를 수행한다.
채널 동기 및 등화부 (channel synchronizer & equalizer; JS21040)는 채널 동기화 및/또는 등화를 수행한다.
채널 디코더 (JS21050)는 방송 신호 내의 채널을 디코딩한다.
L1 시그널링 파서 (JS21060)는 방송 신호로부터, L1 시그널링 정보를 파싱한다. L1 시그널링 정보는 physical layer 시그널링 정보에 해당될 수 있다. L1 시그널링 정보는 전송 파라미터를 포함할 수 있다.
시그널링 제어부 (JS21070)는 시그널링 정보를 처리하거나, 방송 수신기에서 해당 시그널링 정보를 필요로 하는 장치로 해당 시그널링 정보를 전달한다.
베이스밴드 제어부 (JS21080)는 베이스 밴드에서의 방송 신호의 처리를 제어한다. 베이스밴드 제어부 (JS21080)는 L1 시그널링 정보를 이용하여, 방송 신호에 대한 physical layer 에서의 처리를 수행할 수 있다. 베이스밴드 제어부 (JS21080)와 다른 장치들간의 연결관계가 표시되어 있지 않은 경우에도, 베이스밴드 제어부는 처리된 방송 신호 또는 방송 데이터를 수신기 내부의 다른 장치로 전달할 수 있다.
링크 레이어 인터페이스 (JS21090)는 링크 레이어 패킷에 access 하고, 링크 레이어 패킷을 획득한다.
L2 시그널링 파서 (JS21100)는 L2 시그널링 정보를 파싱한다. L2 시그널링 정보는, 전술한 링크 레이어 시그널링 패킷에 포함된 정보에 해당될 수 있다.
패킷 헤더 리커버리 (JS21110)는 링크 레이어 보다 상위 레이어의 패킷 (예를 들면, IP 패킷)에 header compression 이 적용된 경우, 이에 대한 header decompression을 수행한다. 여기서, 전술한, header compression의 적용 여부를 식별하는 정보를 이용하여, 패킷 헤더 리커버리 (JS21110)는 상위 레이어의 패킷의 헤더를 복원할 수 있다.
IP 패킷 필터 (JS21120)는 특정 IP 주소 및/또는 UDP 넘버로 전송되는 IP 패킷을 필터링한다. 특정 IP 주소 및/또는 UDP 넘버로 전송되는 IP 패킷에는, 전술한 dedicated channel을 통하여 전송되는 시그널링 정보가 포함될 수 있다. 특정 IP 주소 및/또는 UDP 넘버로 전송되는 IP 패킷에는, 전술한, FIC, FIT, EAT, 및/또는 EAM (emergency alert message) 가 포함될 수 있다.
커먼 프로토콜 스택 처리부 (JS21130)는 각 계층 (layer) 의 프로토콜에 따른 데이터의 처리를 수행한다. 예를 들면, 커먼 프로토콜 스택 처리부 (JS21130)는 IP 패킷에 대하여, IP 레이어 및/또는 IP 레이어 보다 상위 레이어의 프로토콜에 따라, 해당 IP 패킷을 디코딩 또는 파싱한다.
SSC 프로세싱 버퍼 및 파서 (JS21140)는 SSC (service signaling channel) 로 전달되는 시그널링 정보를 저장하거나 파싱한다. 특정 IP 패킷은 SSC로 지정될 수 있는데, 이 SSC는 서비스를 획득하기 위한 정보, 서비스에 포함되는 컨텐츠에 대한 속성 정보, DVB-SI 정보 및/또는 PSI/PSIP 정보를 포함할 수 있다.
서비스 맵 데이터베이스 (JS21150)는 서비스 맵 테이블을 저장한다. 서비스 맵 테이블은 방송 서비스에 대한 속성 정보를 포함한다. 서비스 맵 테이블은 SSC에 포함되어 전송될 수 있다.
서비스 가이드 프로세서 (JS21160)는 서비스 가이드를 파싱하거나 디코딩한다.
서비스 가이드 데이터 베이스 (JS21170)는 서비스 가이드를 저장한다.
AV 서비스 제어부 (JS21180)는 방송 AV 데이터를 획득하기 위한 전반적인 제어를 수행한다.
디멀티플렉서 (JS21190)는 방송 데이터를 비디오 데이터와 오디오 데이터로 분리한다.
비디오 디코더 (JS21200)는 비디오 데이터를 디코딩한다.
비디오 렌더러 (JS21210)는 디코딩된 비디오 데이터를 이용하여, 사용자에게 제공되는 비디오를 생성한다.
오디오 디코더 (JS21220)는 오디오 데이터를 디코딩한다.
오디오 렌더러 (JS21230)는 디코딩된 오디오 데이터를 이용하여, 사용자에게 제공되는 오디오를 생성한다.
네트워크 스위치 (JS21240)는 방송 네트워크 이외에 다른 네트워크와의 인터페이스를 제어한다. 예를 들면, 네트워크 스위치 (JS21240)는 IP 네트워크에 접속하여, IP 패킷을 직접 수신할 수 있다.
IP 패킷 필터 (JS21250)는 특정 IP 주소 및/또는 UDP 넘버를 가지는 IP 패킷을 필터링한다.
TCP/IP 스택 프로세서 (JS21260)는 TCP/IP 의 프로토콜에 따라, IP 패킷을 decapsulation 한다.
데이터 서비스 제어부 (JS21270)는 데이터 서비스의 처리를 제어한다.
시스템 프로세서 (JS21280)는 수신기 전반에 대한 제어를 수행한다.
도 38은 본 발명의 일 실시예에 따른 방송 시스템을 나타낸 도면이다.
본 발명의 일 실시예에 따른 방송 시스템은 방송 송신기 (J38010) 및/또는 방송 수신기 (J38110) 을 포함할 수 있다.
방송 송신기 (J38010) 는 IP 패킷 생성기 (J38020), 링크 레이어 패킷 생성기 (J38030), 방송 신호 생성기 (J38040) 및/또는 시그널링 인코더 (J38050) 을 포함한다.
IP 패킷 생성기 (J38020) 는 IP 패킷을 생성 처리한다. 예를 들면, IP 패킷 생성기 (J38020) 는 방송 서비스를 위한 방송 데이터를 포함하는 제 1 Internet Protocol (IP) 패킷들을 생성하고, 상기 방송 서비스를 빠르게 획득하기 위하여 필요한 정보를 포함하는 서비스 획득 정보를 포함하는 제 2 IP 패킷을 생성한다.
링크 레이어 패킷 생성기 (J38030) 는 링크 레이어 패킷을 생성 처리한다. 예를 들면, 링크 레이어 패킷 생성기 (J38030) 는 제 1 IP 패킷들을 포함하는 제 1 링크 레이어 패킷들을 생성할 수 있다.
IP 패킷 생성기와 링크 레이어 패킷 생성기는 하나의 장치를 통하여 구현될 수도 있다.
방송 신호 생성기 (J38040) 는 물리적 레이어를 통하여 방송 데이터를 전송하기 위한 방송 신호를 생성한다. 방송 신호 생성기 (J38040) 는 제 1 링크 레이어 패킷들과 제 2 IP 패킷을 포함하는 방송 신호를 생성한다.
시그널링 인코더 (J38050) 는 시그널링 정보를 생성한다. 시그널링 인코더 (J38050) 는 전술한 시그널링 정보의 전부 또는 일부를 생성할 수 있다. 시그널링 인코더 (J38050) 는 IP 레이어를 통하여 전달될 필요가 있는 시그널링 정보는 IP 패킷 생성기로 전달하고, 링크 레이어를 통하여 전달될 필요가 있는 시그널링 정보는 링크 레이어 패킷 생성기로 전달할 수 있다.
방송 수신기 (J38110)는 수신부 (J38120), 링크 레이어 처리부 (J38130), IP 레이어 처리부 (J38140), 시그널링 처리부 (J38150) 및/또는 프로세서 (J38160) 를 포함할 수 있다.
수신부 (J38120)는 방송 신호를 수신한다. 수신부 (J38120)는 제 1 링크 레이어 패킷들과 제 2 Internet Protocol (IP) 패킷을 포함하는 방송 신호를 수신할 수 있다. 여기서 제 2 IP 패킷은 방송 서비스를 빠르게 획득하기 위하여 필요한 정보를 포함하는 서비스 획득 정보를 포함할 수 있다. 수신부 (J38120)는 튜너 및/또는 네트워크 인터페이스를 포함할 수 있다. 네트워크 인터페이스는 방송 네트워크의 성질에 따라, 각각의 형태의 방송 신호를 수신할 수 있다. 예를 들면, 네트워크 인터페이스는 IP 네트워크 상에서 전송되는 방송 신호를 수신할 수 있다.
링크 레이어 처리부 (J38130) 는 링크 레이어에서의 데이터를 처리한다. 링크 레이어 처리부 (J38130) 는 제 1 링크 레이어 패킷을 디캡슐레이션 (decapsulation) 하여, 방송 서비스를 위한 방송 데이터를 포함하는 제 1 IP 패킷들을 획득할 수 있다.
IP 레이어 처리부 (J38140) 는 IP 레이어에서의 데이터를 처리한다. IP 레이어 처리부 (J38140) 는 서비스 획득 정보를 이용하여, 제 1 IP 패킷들을 디캡슐레이션하여, 방송 데이터를 획득할 수 있다.
시그널링 처리부 (J38150)는 시그널링 정보를 파싱한다. 시그널링 처리부 (J38150)는 물리적 레이어, 링크 레이어, 및/또는 IP 레이어를 통하여 전송되는 시그널링 정보를 파싱할 수 있다. 시그널링 처리부 (J38150) 는 시그널링 정보를 획득하여, 이 시그널링 정보를 필요로하는 수신기의 장치 및/또는 모듈에 전달할 수 있다. 시그널링 처리부 (J38150)는 제 2 IP 패킷을 디캡슐레이션하여, 서비스 획득 정보를 획득할 수 있다.
프로세서 (J38160) 는 방송 데이터를 처리한다. 프로세서 (J38160) 는 방송 데이터에서 오디오 및/또는 비디오를 디코딩할 수 있다. 프로세서 (J38160) 는 전술한 링크 레이어 처리부 (J38130), IP 레이어 처리부 (J38140) 및/또는 시그널링 처리부 (J38150)를 포함할 수 있다. 프로세서 (J38160) 는 방송 데이터를 이용하여 방송 콘텐츠를 재생 처리한다.
모듈, 처리부, 디바이스 또는 유닛은 메모리(또는 저장 유닛)에 저장된 연속된 수행과정들을 실행하는 프로세서들일 수 있다. 전술한 실시예에 기술된 각 단계들은 하드웨어/프로세서들에 의해 수행될 수 있다. 전술한 실시예에 기술된 각 모듈/블록/유닛들은 하드웨어/프로세서로서 동작할 수 있다. 또한, 본 발명이 제시하는 방법들은 코드로서 실행될 수 있다. 이 코드는 프로세서가 읽을 수 있는 저장매체에 쓰여질 수 있고, 따라서 장치(apparatus)가 제공하는 프로세서에 의해 읽혀질 수 있다.
본 발명에 따른 방법 발명은 모두 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다.
상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
발명의 실시를 위한 형태
발명의 실시를 위한 형태는 전술한 바와 같이, 발명의 실시를 위한 최선의 형태로 상술되었다.
본 발명은 방송 산업 전반에서 이용 가능하다.

Claims (14)

  1. 방송 신호를 전송하는 방송 송신기에 있어서,
    방송 서비스를 위한 방송 데이터를 포함하는 제 1 Internet Protocol (IP) 패킷들을 생성하고, 상기 방송 서비스를 빠르게 획득하기 위하여 필요한 정보를 포함하는 서비스 획득 정보를 포함하는 제 2 IP 패킷을 생성하는 IP 패킷 생성기;
    상기 제 1 IP 패킷들을 포함하는 제 1 링크 레이어 패킷들을 생성하는 링크 레이어 패킷 생성기; 및
    상기 제 1 링크 레이어 패킷들과 상기 제 2 IP 패킷을 포함하는 방송 신호를 생성하는 방송 신호 생성기;
    를 포함하는 방송 신호를 전송하는 방송 송신기.
  2. 제 1 항에 있어서, 상기 서비스 획득 정보는,
    방송 서비스를 설명하는 정보를 포함하는 서비스 레이어 시그널링의 전송을 위한 채널의 IP 주소를 식별하는 정보를 포함하는 것을 특징으로 하는 방송 신호를 전송하는 방송 송신기.
  3. 제 1 항에 있어서, 상기 서비스 획득 정보는,
    상기 서비스 레이어 시그널링을 포함하는 데이터 파이프 (Data Pipe; DP) 를 식별하는 정보를 포함하는 것을 특징으로 하는 방송 신호를 전송하는 방송 송신기.
  4. 제 1 항에 있어서,
    상기 제 2 IP 패킷은,
    상기 제 2 IP 패킷이 포함하는 시그널링 데이터의 처리 방법을 식별하는데 사용되는 부가 정보를 포함하는 시그널링 정보 파트를 더 포함하고,
    상기 시그널링 정보 파트는,
    상기 제 2 IP 패킷을 통하여 전송되는 시그널링 데이터가 상기 서비스 획득 정보에 해당되는지 여부를 식별하는 시그널링 클래스 (class) 정보를 포함하는 것을 특징으로 하는 방송 신호를 전송하는 방송 송신기.
  5. 제 1 항에 있어서, 상기 링크 레이어 패킷 생성기는,
    링크 레이어 시그널링 데이터를 포함하는 제 2 링크 레이어 패킷을 더 생성하는 것을 특징으로 하는 방송 신호를 전송하는 방송 송신기.
  6. 제 5 항에 있어서,
    상기 제 2 링크 레이어 패킷은,
    상기 제 2 링크 레이어 패킷이 포함하는 시그널링 데이터의 처리 방법을 식별하는데 사용되는 부가 정보를 포함하는 시그널링 정보 파트를 더 포함하고,
    상기 시그널링 정보 파트는,
    상기 제 2 링크 레이어 패킷을 통하여 전송되는 시그널링 데이터가 상기 서비스 획득 정보에 해당되는지 여부를 식별하는 시그널링 클래스 (class) 정보를 포함하는 것을 특징으로 하는 방송 신호를 전송하는 방송 송신기.
  7. 제 5 항에 있어서, 상기 링크 레이어 시그널링 데이터는,
    링크 레이어에서 상기 방송 데이터를 인캡슐레이션 (encapsulation) 하는 데 사용되는 인캡슐레이션 방식을 식별하는 인캡슐레이션 모드 정보, 상기 링크 레이어에서 처리되는 IP 패킷에 적용되는 헤더 압축 방식을 식별하는 헤더 압축 모드 정보, 상기 링크 레이어에서 처리되는 IP 패킷의 구조를 설명하는 패킷 재구성 모드 정보 및 시그널링 정보를 전송하는 경로를 식별하는 시그널링 경로 구성 정보 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 방송 신호를 전송하는 방송 송신기.
  8. 방송 신호를 수신 처리하는 방송 수신기에 있어서,
    제 1 링크 레이어 패킷들과 제 2 Internet Protocol (IP) 패킷을 포함하는 방송 신호를 수신하는 수신부,
    여기서 상기 제 2 IP 패킷은 방송 서비스를 빠르게 획득하기 위하여 필요한 정보를 포함하는 서비스 획득 정보를 포함하고;
    상기 제 1 링크 레이어 패킷을 디캡슐레이션 (decapsulation) 하여, 상기 방송 서비스를 위한 방송 데이터를 포함하는 제 1 IP 패킷들을 획득하는 링크 레이어 처리부;
    상기 제 2 IP 패킷을 디캡슐레이션하여, 상기 서비스 획득 정보를 획득하는 시그널링 처리부;
    상기 서비스 획득 정보를 이용하여, 상기 제 1 IP 패킷들을 디캡슐레이션하여, 상기 방송 데이터를 획득하는 IP 패킷 처리부; 및
    상기 방송 데이터를 이용하여 방송 콘텐츠를 재생 처리하는 프로세서;
    를 포함하는 방송 신호를 수신 처리하는 방송 수신기.
  9. 제 8 항에 있어서, 상기 서비스 획득 정보는,
    방송 서비스를 설명하는 정보를 포함하는 서비스 레이어 시그널링의 전송을 위한 채널의 IP 주소를 식별하는 정보를 포함하는 것을 특징으로 하는 방송 신호를 수신 처리하는 방송 수신기.
  10. 제 8 항에 있어서, 상기 서비스 획득 정보는,
    상기 서비스 레이어 시그널링을 포함하는 데이터 파이프 (Data Pipe; DP) 를 식별하는 정보를 포함하는 것을 특징으로 하는 방송 신호를 수신 처리하는 방송 수신기.
  11. 제 8 항에 있어서,
    상기 제 2 IP 패킷은,
    상기 제 2 IP 패킷이 포함하는 시그널링 데이터의 처리 방법을 식별하는데 사용되는 부가 정보를 포함하는 시그널링 정보 파트를 더 포함하고,
    상기 시그널링 정보 파트는,
    상기 제 2 IP 패킷을 통하여 전송되는 시그널링 데이터가 상기 서비스 획득 정보에 해당되는지 여부를 식별하는 시그널링 클래스 (class) 정보를 포함하는 것을 특징으로 하는 방송 신호를 수신 처리하는 방송 수신기.
  12. 제 8 항에 있어서, 상기 링크 레이어 패킷 생성기는,
    링크 레이어 시그널링 데이터를 포함하는 제 2 링크 레이어 패킷을 더 생성하는 것을 특징으로 하는 방송 신호를 수신 처리하는 방송 수신기.
  13. 제 12 항에 있어서,
    상기 제 2 링크 레이어 패킷은,
    상기 제 2 링크 레이어 패킷이 포함하는 시그널링 데이터의 처리 방법을 식별하는데 사용되는 부가 정보를 포함하는 시그널링 정보 파트를 더 포함하고,
    상기 시그널링 정보 파트는,
    상기 제 2 링크 레이어 패킷을 통하여 전송되는 시그널링 데이터가 상기 서비스 획득 정보에 해당되는지 여부를 식별하는 시그널링 클래스 (class) 정보를 포함하는 것을 특징으로 하는 방송 신호를 수신 처리하는 방송 수신기.
  14. 제 12 항에 있어서, 상기 링크 레이어 시그널링 데이터는,
    링크 레이어에서 상기 방송 데이터를 인캡슐레이션 (encapsulation) 하는 데 사용되는 인캡슐레이션 방식을 식별하는 인캡슐레이션 모드 정보, 상기 링크 레이어에서 처리되는 IP 패킷에 적용되는 헤더 압축 방식을 식별하는 헤더 압축 모드 정보, 상기 링크 레이어에서 처리되는 IP 패킷의 구조를 설명하는 패킷 재구성 모드 정보 및 시그널링 정보를 전송하는 경로를 식별하는 시그널링 경로 구성 정보 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 방송 신호를 수신 처리하는 방송 수신기.
KR1020167002978A 2014-06-26 2015-06-25 방송 신호 송/수신 처리 방법 및 장치 KR101797503B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462017798P 2014-06-26 2014-06-26
US62/017,798 2014-06-26
US201462054358P 2014-09-23 2014-09-23
US62/054,358 2014-09-23
PCT/KR2015/006506 WO2015199468A1 (ko) 2014-06-26 2015-06-25 방송 신호 송/수신 처리 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20160040550A true KR20160040550A (ko) 2016-04-14
KR101797503B1 KR101797503B1 (ko) 2017-11-15

Family

ID=54938465

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167002978A KR101797503B1 (ko) 2014-06-26 2015-06-25 방송 신호 송/수신 처리 방법 및 장치

Country Status (5)

Country Link
US (4) US9998572B2 (ko)
EP (1) EP3046304B1 (ko)
KR (1) KR101797503B1 (ko)
CN (1) CN105723682B (ko)
WO (1) WO2015199468A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3046304B1 (en) 2014-06-26 2019-04-10 LG Electronics Inc. Devices for transmitting/receiving broadcast signal
MX369226B (es) 2014-10-21 2019-11-01 Sony Corp Aparato de recepcion, metodo de recepcion, aparato de transmision, y metodo de transmision.
JP6259114B2 (ja) * 2015-01-21 2018-01-10 エルジー エレクトロニクス インコーポレイティド 放送信号送信装置、放送信号受信装置、放送信号送信方法、及び放送信号受信方法
CN107211032A (zh) * 2015-02-11 2017-09-26 Vid拓展公司 用于http动态自适应流媒体(dash)中的一般化http头的***和方法
CA2945611C (en) 2015-03-04 2023-05-09 Sony Corporation Reception apparatus, reception method, transmission apparatus, and transmission method
KR102245605B1 (ko) 2015-07-01 2021-04-28 삼성전자주식회사 링크 계층 프로토콜을 지원하는 멀티미디어 시스템에서 신호 송/수신 장치 및 방법
TW201725878A (zh) * 2015-09-14 2017-07-16 Sony Corp 受訊裝置、送訊裝置及資料處理方法
US10637594B2 (en) * 2016-07-08 2020-04-28 Sony Semiconductor Solutions Corporation Reception device, transmission device, and data processing method
US11277501B2 (en) * 2017-11-09 2022-03-15 Lg Electronics Inc. Broadcast signal transmission device, broadcast signal transmission method, broadcast signal reception device, and broadcast signal reception method
US10848345B2 (en) * 2018-12-31 2020-11-24 Hughes Network Systems, Llc Multi-protocol encapsulation traffic acceleration and optimization
CN112312587A (zh) * 2019-07-30 2021-02-02 夏普株式会社 用户设备及其执行的方法和基站及其执行的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070079275A (ko) * 2006-02-01 2007-08-06 삼성전자주식회사 디지털 멀티미디어 방송 시스템에서의 데이터 송수신 방법및 그에 따른 시스템
US20080130561A1 (en) * 2006-12-04 2008-06-05 Samsung Electronics Co., Ltd. System and method for wireless communication
US7912057B2 (en) 2007-01-12 2011-03-22 Wi-Lan Inc. Convergence sublayer for use in a wireless broadcasting system
KR101486372B1 (ko) * 2007-07-25 2015-01-26 엘지전자 주식회사 디지털 방송 시스템 및 데이터 처리 방법
US20100296450A1 (en) * 2008-01-04 2010-11-25 Antonella Faniuolo Transmission methods, network equipment, user equipment and telecommunication system
US8248910B2 (en) * 2008-01-29 2012-08-21 Nokia Corporation Physical layer and data link layer signalling in digital video broadcast preamble symbols
CN101729371B (zh) * 2008-10-31 2012-01-25 华为技术有限公司 一种业务传输的方法、及用于业务传输的装置
US8503551B2 (en) * 2009-02-13 2013-08-06 Lg Electronics Inc. Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
US9009775B2 (en) * 2010-02-23 2015-04-14 Lg Electronics Inc. Broadcasting signal transmission device, broadcasting signal reception device, and method for transmitting/receiving broadcasting signal using same
EP2566156A4 (en) * 2010-04-28 2015-04-29 Lg Electronics Inc BROADCAST TRANSMITTER, BROADCAST RECEIVER AND METHOD FOR SENDING AND RECEIVING BROADCAST SIGNALS WITH DEVICES FOR TRANSMITTING AND RECEIVING BROADCAST SIGNALS
EP2601767B1 (en) * 2010-08-03 2018-10-31 Samsung Electronics Co., Ltd Method and base station of communicating packet data units over the gb-interface of a mobile network
WO2012036429A2 (ko) * 2010-09-14 2012-03-22 엘지전자 주식회사 방송 신호 송신 장치, 방송 신호 수신 장치, 및 방송 신호 송/수신 장치에서 방송 신호 송수신 방법
KR101874433B1 (ko) 2011-06-16 2018-07-06 삼성전자주식회사 디지털 방송 시스템에서 방송 서비스 수신을 위한 시그널링 정보를 송수신하는 방법 및 장치
KR101448663B1 (ko) 2012-03-02 2014-10-08 엘지전자 주식회사 모바일 방송을 통하여 긴급 경보 서비스를 제공하는 장치 및 방법
WO2013162305A1 (en) * 2012-04-25 2013-10-31 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving signaling information in a digital broadcasting system
BR112015013761B1 (pt) * 2012-12-20 2022-12-06 Lantiq Israel Ltd Dispositivo de fonte, método para transmitir datagramas de um dispositivo de fonte para um dispositivo de destino e estrutura de pacote agregado
KR101294695B1 (ko) * 2013-01-16 2013-08-09 (주)에이투유정보통신 근거리 무선 통신 접속 장치, 근거리 무선 통신 접속 장치를 발견하기 위한 휴대형 단말기, 및 근거리 무선 통신 시스템
US9924207B2 (en) * 2013-10-28 2018-03-20 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
EP3046304B1 (en) * 2014-06-26 2019-04-10 LG Electronics Inc. Devices for transmitting/receiving broadcast signal

Also Published As

Publication number Publication date
CN105723682A (zh) 2016-06-29
KR101797503B1 (ko) 2017-11-15
EP3046304A1 (en) 2016-07-20
EP3046304B1 (en) 2019-04-10
US9998572B2 (en) 2018-06-12
US20180270334A1 (en) 2018-09-20
US10582029B2 (en) 2020-03-03
US20190327349A1 (en) 2019-10-24
US20160198023A1 (en) 2016-07-07
CN105723682B (zh) 2019-08-23
US10389855B2 (en) 2019-08-20
EP3046304A4 (en) 2017-04-19
US20200169622A1 (en) 2020-05-28
WO2015199468A1 (ko) 2015-12-30
US11032400B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
US10582029B2 (en) Method and device for transmitting/receiving broadcast signal
KR101764635B1 (ko) 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법
KR101823481B1 (ko) 방송 신호를 송신 및 수신하기 위한 장치 및 방법
KR101764637B1 (ko) 방송 신호 송신 방법, 방송 신호 송신 장치, 방송 신호 수신 방법 및 방송 신호 수신 장치
US10623691B2 (en) Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, method for transmitting broadcast signal and method for receiving broadcast signal
US10856021B2 (en) Broadcast signal transmission apparatus, broadcast signal reception apparatus, broadcast signal transmission method, and broadcast signal reception method
KR101823482B1 (ko) 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법
CA2920067C (en) Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, method for transmitting broadcast signal and method for receiving broadcast signal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant