KR20150124810A - High strength steel sheet and method of manufacturing the same - Google Patents

High strength steel sheet and method of manufacturing the same Download PDF

Info

Publication number
KR20150124810A
KR20150124810A KR1020140051850A KR20140051850A KR20150124810A KR 20150124810 A KR20150124810 A KR 20150124810A KR 1020140051850 A KR1020140051850 A KR 1020140051850A KR 20140051850 A KR20140051850 A KR 20140051850A KR 20150124810 A KR20150124810 A KR 20150124810A
Authority
KR
South Korea
Prior art keywords
steel sheet
less
content
weight
manufacturing
Prior art date
Application number
KR1020140051850A
Other languages
Korean (ko)
Inventor
윤동현
강동훈
강의구
김규태
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020140051850A priority Critical patent/KR20150124810A/en
Publication of KR20150124810A publication Critical patent/KR20150124810A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Disclosed are a high-strength steel sheet having excellent resistance to hydrogen-induced cracking and a manufacturing method thereof. The method for manufacturing a high-strength steel sheet according to the present invention comprises the steps of: (a) reheating, at temperatures of 1150-1190°C, a slab plate composed of 0.09-0.115 wt% of carbon (C), 0.3-0.4 wt% of silicon (Si), 1.1-1.2 wt% of manganese (Mn), 0.01 wt% or less of phosphorus (P), 0.001 wt% or less of sulfur (S), 0.02-0.05 wt% of aluminum (Al), 0.1-0.3 wt% of nickel (Ni), 0.1-0.2 wt% of copper (Cu), 0.1-0.2 wt% of chromium (Cr), 0.04-0.05 wt% of niobium (Nb), 0.025-0.035 wt% of vanadium (V), 0.001-0.004 wt% of calcium (Ca), 0.004 wt% or less of nitrogen (N) and the remainder consisting of iron (Fe) and inevitable impurities; (b) hot-rolling the reheated plate at finish rolling temperature of 930-970°C; (c) cooling the hot-rolled plate; and (d) normalizing the cooled plate at temperatures of 880-900°C.

Description

고강도 강판 및 그 제조 방법 {HIGH STRENGTH STEEL SHEET AND METHOD OF MANUFACTURING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength steel sheet,

본 발명은 주로 라인파이프 소재로 사용되는 고강도 강판 제조 방법에 관한 것으로, 보다 상세하게는 합금성분 및 공정 제어를 통하여 내 수소유기균열성이 우수한 고강도 강판 및 그 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a high strength steel sheet mainly used as a line pipe material, and more particularly, to a high strength steel sheet having excellent hydrogen-organic cracking resistance through alloy components and process control, and a manufacturing method thereof.

황화수소(H2S)를 포함하는 원유나 천연가스의 수송에 사용되는 라인 파이프는 강도, 인성, 용접성 외에도 수소유기균열(HIC, hydrogen induced cracking) 등에 기인하는 부식에 대한 저항성을 가질 것이 필요하다. Line pipes used to transport crude oil or natural gas containing hydrogen sulfide (H 2 S) are required to have resistance to corrosion caused by hydrogen induced cracking (HIC) in addition to strength, toughness and weldability.

최근 원유나 천연가스 채취 환경이 극지방, 심해 등으로 확대됨에 따라 황화수소 등을 다량 함유한 원유가 생산되고 있다. 따라서, 황화수소 등이 포함된 원유를 채취 혹은 수송하기 위해 사용되는 라인파이프 강판은 높은 강도와 함께, HIC에 대한 저항이 우수하여야 하는 조건이 요구된다.
Recently, the crude oil and natural gas sampling environment has expanded to polar regions and deep sea, and crude oil containing a large amount of hydrogen sulfide has been produced. Therefore, the line pipe steel sheet used for collecting or transporting crude oil containing hydrogen sulfide and the like is required to have high strength and good resistance to HIC.

본 발명에 관련된 배경기술로는 대한민국 공개특허공보 10-2009-0071224(2009.07.01. 공개)가 있으며, 상기 문헌에는 냉간변형 하에서 내수소유기균열 특성이 우수한 열연강판 및 그 제조방법이 개시되어 있다.A related art related to the present invention is Korean Patent Laid-Open Publication No. 10-2009-0071224 (published on Jul. 1, 2009), which discloses a hot-rolled steel sheet having excellent hydrogen- .

본 발명의 목적은 내 수소유기균열 특성이 우수하며, 후열처리 후 인장강도 490MPa 이상의 고강도를 나타낼 수 있는 고강도 강판 및 그 제조 방법을 제공하는 것이다.
It is an object of the present invention to provide a high strength steel sheet having excellent resistance to hydrogen-induced organic cracking and exhibiting a high strength of 490 MPa or more after tensile strength after heat treatment, and a method for producing the same.

상기 목적을 달성하기 위한 본 발명의 실시예에 따른 고강도 강판 제조 방법은 (a) 중량%로, 탄소(C) : 0.09~0.115%, 실리콘(Si) : 0.3~0.4%, 망간(Mn) : 1.1~1.2%, 인(P) : 0.01% 이하, 황(S) : 0.001% 이하, 알루미늄(Al) : 0.02~0.05%, 니켈(Ni) : 0.1~0.3%, 구리(Cu) : 0.1~0.2%, 크롬(Cr) : 0.1~0.2%, 니오븀(Nb) : 0.04~0.05%, 바나듐(V) : 0.025~0.035%, 칼슘(Ca) : 0.001~0.004%, 질소(N) : 0.004% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 1150~1190℃의 온도에서 재가열하는 단계; (b) 상기 재가열된 판재를 압연종료온도 930~970℃ 조건으로 열간압연하는 단계; (c) 상기 열간압연된 판재를 냉각하는 단계; 및 (d) 상기 냉각된 판재를 880~900℃에서 노말라이징하는 단계;를 포함하는 것을 특징으로 한다. In order to accomplish the above object, the present invention provides a method of manufacturing a high strength steel sheet, comprising: (a) 0.09 to 0.115% carbon, 0.3 to 0.4% silicon, manganese (Mn) (Al): 0.02 to 0.05%, nickel (Ni): 0.1 to 0.3%, copper (Cu): 0.1 to 0.1% (N): 0.04 to 0.05%, vanadium (V): 0.025 to 0.035%, calcium (Ca): 0.001 to 0.004%, nitrogen (N): 0.004% And reheating the slab plate made of the remaining iron (Fe) and unavoidable impurities at a temperature of 1150 to 1190 캜; (b) hot rolling the reheated plate to a rolling finish temperature of 930 to 970 占 폚; (c) cooling the hot rolled plate; And (d) normalizing the cooled plate material at 880 to 900 ° C.

상기 냉각은 20℃/sec 이상의 평균냉각속도로 수행되는 것이 바람직하다. The cooling is preferably carried out at an average cooling rate of at least 20 [deg.] C / sec.

또한, 상기 노말라이징은 1.4 x T +10분 ~ 1.6 x T +10분 (여기서 T는 강판 두께이며, 강판 두께 단위는 : mm임)동안 수행되는 것이 바람직하다.
Also, the normalizing is preferably performed during 1.4 x T +10 min to 1.6 x T +10 min (where T is the steel sheet thickness and the steel sheet thickness unit is mm).

상기 목적을 달성하기 위한 본 발명의 실시예에 따른 고강도 강판은 중량%로, 탄소(C) : 0.09~0.115%, 실리콘(Si) : 0.3~0.4%, 망간(Mn) : 1.1~1.2%, 인(P) : 0.01% 이하, 황(S) : 0.001% 이하, 알루미늄(Al) : 0.02~0.05%, 니켈(Ni) : 0.1~0.3%, 구리(Cu) : 0.1~0.2%, 크롬(Cr) : 0.1~0.2%, 니오븀(Nb) : 0.04~0.05%, 바나듐(V) : 0.025~0.035%, 칼슘(Ca) : 0.001~0.004%, 질소(N) : 0.004% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물로 이루어지고, HIC(Hydrogen Induced Cracking) - CLR(Crack Length Ratio) 5% 이하를 나타내는 것을 특징으로 한다. In order to achieve the above object, a high strength steel sheet according to an embodiment of the present invention includes 0.09 to 0.115% of carbon (C), 0.3 to 0.4% of silicon (Si), 1.1 to 1.2% of manganese (Mn) (P): not more than 0.01%, sulfur (S): not more than 0.001%, aluminum (Al): 0.02 to 0.05%, nickel (Ni): 0.1 to 0.3%, copper (Cu) (Cr): 0.1 to 0.2%, niobium (Nb): 0.04 to 0.05%, vanadium (V): 0.025 to 0.035%, calcium (Ca): 0.001 to 0.004%, nitrogen (N) Fe) and other unavoidable impurities, and has a HIC (Hydrogen Induced Cracking) - CLR (Crack Length Ratio) of 5% or less.

이때, 상기 강판은 후열처리 후 490MPa 이상의 인장강도를 나타낼 수 있다.
At this time, the steel sheet may exhibit a tensile strength of 490 MPa or more after the post heat treatment.

본 발명에 따른 고강도 강판 제조 방법에 의하면, 수소유기균열의 주요원인이 되는 펄라이트 밴드 형성을 최소화하도록 탄소 및 망간 함량을 낮게 설계하고, 아울러 수소유기균열을 조장하는 MnS 개재물과 같은 비금속개재물 형성을 최소화하기 위하여 인, 황, 칼슘 함량을 조절하한 결과 우수한 내수소유기균열 특성을 발휘할 수 있었다. According to the method for manufacturing a high strength steel sheet according to the present invention, the carbon and manganese content is designed to be low so as to minimize pearlite band formation which is a main cause of hydrogen organic cracking, and minimization of formation of nonmetallic inclusions such as MnS inclusions promoting hydrogen organic cracking As a result of controlling phosphorus, sulfur and calcium contents, excellent hydrogen - organic cracking properties could be exhibited.

아울러, 본 발명에 따른 고강도 강판 제조 방법에 의하면, 탄소 및 망간 저감에 따른 강도 확보를 위하여, 니오븀, 구리, 니켈, 크롬의 함량을 조절한 결과, 후열처리 후 490MPa 이상의 인장강도를 확보할 수 있었다. In addition, according to the method of manufacturing a high-strength steel sheet according to the present invention, the content of niobium, copper, nickel, and chromium is controlled in order to secure strength according to reduction of carbon and manganese. As a result, tensile strength of 490 MPa or more can be ensured after post- .

따라서, 본 발명에 따른 고강도 강판은 우수한 내수소유기균열 특성 및 고강도 특성을 통하여, 천연가스나 원유 채취, 수송 등을 위한 라인파이프용 소재로 활용할 수 있다. Therefore, the high-strength steel sheet according to the present invention can be utilized as a material for a line pipe for natural gas, crude oil picking and transportation through excellent hydrogen-organic cracking property and high strength property.

도 1은 본 발명의 실시예에 따른 고강도 강판 제조 방법을 나타낸 순서도이다.
도 2는 실시예 1 및 비교예 1에 따른 시편의 HIC 테스트 후, Scan -UT 결과를 나타낸 것이다.
1 is a flowchart showing a method of manufacturing a high-strength steel sheet according to an embodiment of the present invention.
Fig. 2 shows Scan-UT results after HIC test of the specimen according to Example 1 and Comparative Example 1. Fig.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and the manner of achieving them, will be apparent from and elucidated with reference to the embodiments described hereinafter in conjunction with the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 강판 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.Hereinafter, a steel sheet according to a preferred embodiment of the present invention and a method of manufacturing the same will be described in detail with reference to the accompanying drawings.

고강도 강판High strength steel plate

본 발명에 따른 강판은 중량%로, 탄소(C) : 0.09~0.115%, 실리콘(Si) : 0.3~0.4%, 망간(Mn) : 1.1~1.2%, 인(P) : 0.01% 이하, 황(S) : 0.001% 이하, 알루미늄(Al) : 0.02~0.05%, 니켈(Ni) : 0.1~0.3%, 구리(Cu) : 0.1~0.2%, 크롬(Cr) : 0.1~0.2%, 니오븀(Nb) : 0.04~0.05%, 바나듐(V) : 0.025~0.035%, 칼슘(Ca) : 0.001~0.004%, 질소(N) : 0.004% 이하를 포함한다.The steel sheet according to the present invention contains 0.09 to 0.115% of carbon (C), 0.3 to 0.4% of silicon (Si), 1.1 to 1.2% of manganese (Mn), 0.01% (Al), 0.1 to 0.3% of nickel (Ni), 0.1 to 0.2% of copper (Cu), 0.1 to 0.2% of chromium (Cr) (N): 0.04 to 0.05%, vanadium (V): 0.025 to 0.035%, calcium (Ca): 0.001 to 0.004%, and nitrogen (N): 0.004% or less.

나머지는 철(Fe)과 제강 과정 등에서 불가피하게 포함되는 불순물로 이루어진다. 본 발명에서는 노말라이징 후 조대한 TiN 형성으로 인하여 저온충격특성이 저하되는 것을 방지하고자 티타늄 성분을 의도적으로 포함하지는 않는다. The remainder is composed of iron (Fe) and impurities inevitably included in the steelmaking process. In the present invention, titanium is not intentionally included in order to prevent deterioration of low-temperature impact properties due to formation of coarse TiN after normalizing.

이하, 본 발명에 따른 강판에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다.Hereinafter, the role and content of each component included in the steel sheet according to the present invention will be described.

탄소(C)Carbon (C)

본 발명에서 탄소(C)는 강도를 확보하기 위해 첨가된다.In the present invention, carbon (C) is added to secure strength.

탄소(C)는 강판 전체 중량의 0.09 ~ 0.115 중량%의 함량비로 첨가하는 것이 바람직하다. 탄소(C)의 함량이 0.09 중량% 미만으로 첨가될 경우에는 강도 확보에 어려움이 따를 수 있다. 반대로, 탄소(C)의 함량이 0.115 중량%를 초과할 경우에는 강의 강도는 증가하나 저온 충격인성 및 용접성이 저하되는 문제점이 있다.
The carbon (C) is preferably added in a content ratio of 0.09 to 0.115% by weight based on the total weight of the steel sheet. When the content of carbon (C) is less than 0.09% by weight, it may be difficult to secure strength. On the contrary, when the content of carbon (C) exceeds 0.115% by weight, the strength of the steel is increased but the impact resistance and weldability at low temperatures are deteriorated.

실리콘(Si)Silicon (Si)

본 발명에서 실리콘(Si)은 제강공정에서 강재 중의 산소를 제거하기 위한 탈산제로 첨가된다. 또한, 실리콘(Si)은 고용강화 효과도 갖는다.In the present invention, silicon (Si) is added as a deoxidizer to remove oxygen in the steel in the steelmaking process. Silicon (Si) also has a solid solution strengthening effect.

실리콘(Si)은 강판 전체 중량의 0.3 ~ 0.4 중량%의 함량비로 첨가하는 것이 바람직하다. 실리콘(Si)의 함량이 0.3 중량% 미만일 경우에는 실리콘 첨가 효과를 제대로 발휘할 수 없다. 반대로, 실리콘(Si)의 함량이 0.4 중량%를 초과할 경우에는 인성 및 용접성이 저하되고, 강 중 산화개재물이 증가하여 저온인성 및 수소유기균열 저항성을 저하시킬 수 있다.
Silicon (Si) is preferably added in a content ratio of 0.3 to 0.4% by weight of the total weight of the steel sheet. When the content of silicon (Si) is less than 0.3% by weight, the effect of adding silicon can not be exhibited properly. On the contrary, when the content of silicon (Si) exceeds 0.4% by weight, the toughness and weldability are lowered, and oxide inclusions in the steel are increased, which may lower the low temperature toughness and the hydrogen organic cracking resistance.

망간(Mn)Manganese (Mn)

망간(Mn)은 강의 강도 및 인성을 증가시키고 강의 소입성을 증가시키는 원소로서, 망간(Mn)의 첨가는 탄소(C)의 첨가보다도 강도 상승 시, 연성의 저하가 적다. Manganese (Mn) is an element which increases the strength and toughness of steel and increases the ingotability of steel. Addition of manganese (Mn) causes less deterioration of ductility when the strength is higher than that of carbon (C).

망간(Mn)은 강판 전체 중량의 1.1 ~ 1.2 중량%의 함량비로 첨가하는 것이 바람직하다. 망간(Mn)의 함량이 1.1 중량% 미만일 경우에는 탄소(C) 함량이 높아도 강도를 확보하는 데 어려움이 따를 수 있다. 반대로, 망간(Mn)의 함량이 1.2 중량%를 초과할 경우에는 MnS계 비금속개재물의 양이 증가하는 데 기인하여 용접 시 크랙 발생 등의 결함을 유발할 수 있다.
Manganese (Mn) is preferably added in a content ratio of 1.1 to 1.2% by weight based on the total weight of the steel sheet. If the content of manganese (Mn) is less than 1.1% by weight, it may be difficult to secure strength even if the content of carbon (C) is high. On the contrary, when the content of manganese (Mn) exceeds 1.2% by weight, the amount of the MnS-based nonmetal inclusions increases, which may cause defects such as cracking during welding.

인(P), 황(S)Phosphorus (P), sulfur (S)

인(P)은 강 중에 포함되어 용접성 및 인성을 저하시키고 응고시 슬라브 중심부 및 오스테나이트 결정립계에 편석되는 문제점이 있으므로, 가능한 한 낮게 제어하는 것이 바람직하다. 따라서, 본 발명에서는 인(P)의 함량을 강판 전체 중량의 0.01 중량% 이하로 제한하였다.Phosphorus (P) is contained in the steel to decrease the weldability and toughness, and it has a problem that it is segregated at the center of the slab and at the austenite grain boundary at the time of solidification, and therefore, it is preferable to control as low as possible. Therefore, in the present invention, the content of phosphorus (P) is limited to 0.01% by weight or less based on the total weight of the steel sheet.

황(S)은 MnS를 형성하여 저온 충격인성을 저하시킨다. 따라서, 본 발명에서는 황(S)의 함량을 강판 전체 중량의 0.001 중량% 이하로 제한하였다.
Sulfur (S) forms MnS, which lowers impact toughness at low temperatures. Therefore, in the present invention, the content of sulfur (S) is limited to 0.001% by weight or less based on the total weight of the steel sheet.

알루미늄(Al)Aluminum (Al)

알루미늄(Al)은 강 중의 산소를 제거하기 위한 탈산제 역할을 한다.Aluminum (Al) acts as a deoxidizer to remove oxygen in the steel.

상기 알루미늄은 강판 전체 중량의 0.02 ~ 0.05 중량%의 함량비로 첨가하는 것이 바람직하다. 알루미늄의 함량이 강판 전체 중량의 0.02 중량% 미만으로 첨가될 경우에는 상기의 탈산 효과를 제대로 발휘할 수 없다. 반대로, 알루미늄의 함량이 강판 전체 중량의 0.05 중량%를 초과할 경우에는 슬라브 표면 품질 저하 등의 문제점을 야기한다.
The aluminum is preferably added at a content ratio of 0.02 to 0.05% by weight based on the total weight of the steel sheet. When the content of aluminum is less than 0.02 wt% of the total weight of the steel sheet, the deoxidizing effect described above can not be exhibited properly. On the contrary, when the content of aluminum exceeds 0.05% by weight of the total weight of the steel sheet, the slab surface quality deteriorates.

니켈(Ni)Nickel (Ni)

니켈(Ni)은 결정립을 미세화하고 오스테나이트 및 페라이트에 고용되어 기지를 강화시킨다. 특히, 니켈(Ni)은 저온 충격인성을 향상시키는데 효과적인 원소이다.Nickel (Ni) fine grains and solidify in the austenite and ferrite to strengthen the matrix. In particular, nickel (Ni) is an effective element for improving the low-temperature impact toughness.

니켈(Ni)은 강판 전체 중량의 0.1 ~ 0.3 중량%의 함량비로 첨가하는 것이 바람직하다. 니켈(Ni)의 함량이 0.1 중량% 미만일 경우에는 니켈 첨가 효과를 제대로 발휘할 수 없다. 반대로, 니켈(Ni)의 함량이 0.3 중량%를 초과하여 다량 첨가될 경우에는 적열취성을 유발하는 문제가 있다.
Nickel (Ni) is preferably added in a content ratio of 0.1 to 0.3% by weight based on the total weight of the steel sheet. If the content of nickel (Ni) is less than 0.1% by weight, the effect of adding nickel can not be exhibited properly. On the contrary, when the content of nickel (Ni) is more than 0.3 wt% and added in a large amount, there arises a problem of inducing a hot brittleness.

구리(Cu)Copper (Cu)

구리(Cu)는 강의 강도 상승 및 인성 개선에 유효한 원소이다. 또한, 구리(Cu)는 실리콘(Si) 및 망간(Mn)과 함께 일정한 함량 조절을 통해 강의 고용강화 효과에 기여한다. Copper (Cu) is an element effective for increasing the strength of steel and improving toughness. Copper (Cu), together with silicon (Si) and manganese (Mn), also contributes to the strengthening effect of the steel through controlled amount of content.

구리(Cu)는 강판 전체 중량의 0.1 ~ 0.2 중량%로 첨가하는 것이 바람직하다. 구리(Cu)의 함량이 0.1 중량% 미만일 경우에는 구리의 첨가 효과를 제대로 발휘할 수 없다. 반대로, 구리(Cu)의 함량이 0.2 중량%를 초과할 경우에는 열간압연시 표면에 균열을 유발시켜 표면품질을 저하시키는 문제점이 있다.
Copper (Cu) is preferably added in an amount of 0.1 to 0.2% by weight based on the total weight of the steel sheet. If the content of copper (Cu) is less than 0.1% by weight, the effect of adding copper can not be exhibited properly. On the contrary, when the content of copper (Cu) is more than 0.2% by weight, cracks are generated on the surface during hot rolling, thereby deteriorating the surface quality.

크롬(Cr)Chromium (Cr)

크롬(Cr)은 강도를 확보하기 위해 첨가되는 유효한 원소이다. Chromium (Cr) is an effective element added to secure strength.

크롬(Cr)은 강판 전체 중량의 0.1 ~ 0.2 중량%의 함량비로 첨가하는 것이 바람직하다. 크롬의 함량이 0.1 중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 크롬의 함량이 0.2 중량%를 초과할 경우에는 용접성이나 열영향부(HAZ) 인성을 저하시키는 문제점이 있다.
Cr (Cr) is preferably added at a content ratio of 0.1 to 0.2% by weight based on the total weight of the steel sheet. When the content of chromium is less than 0.1% by weight, the effect of the addition is insufficient. On the contrary, when the content of chromium exceeds 0.2% by weight, there is a problem that the weldability and the toughness of the heat affected zone (HAZ) are lowered.

니오븀(Nb)Niobium (Nb)

니오븀(Nb)은 고온에서 탄소(C) 및 질소(N)와 결합하여 탄화물 또는 질화물을 형성한다. 니오븀계 탄화물 또는 질화물은 압연 시 결정립 성장을 억제하여 결정립을 미세화시킴으로써 강의 강도와 저온인성을 향상시킨다.Niobium (Nb) combines with carbon (C) and nitrogen (N) at high temperatures to form carbides or nitrides. Niobium-based carbides or nitrides improve grain strength and low-temperature toughness by suppressing grain growth during rolling and making crystal grains finer.

니오븀(Nb)은 강판 전체 중량의 0.04 ~ 0.05 중량%의 함량비로 첨가하는 것이 바람직하다. 니오븀(Nb)의 함량이 0.04 중량% 미만일 경우에는 니오븀 첨가 효과를 제대로 발휘할 수 없다. 반대로, 니오븀(Nb)의 함량이 0.05 중량%를 초과할 경우에는 니오븀을 포함한 조대한 2차상들이 생성되어 수소유기균열 발생의 기점으로 작용하는 문제점이 있다.
Niobium (Nb) is preferably added in a content ratio of 0.04 to 0.05% by weight based on the total weight of the steel sheet. When the content of niobium (Nb) is less than 0.04% by weight, the effect of adding niobium can not be exhibited properly. On the contrary, when the content of niobium (Nb) exceeds 0.05% by weight, coarse secondary phases including niobium are generated and act as a starting point of hydrogen organic cracking.

바나듐(V)Vanadium (V)

바나듐(V)은 결정립계에 피닝(pinning)으로 작용하여 강도 향상에 기여하는 원소이다.Vanadium (V) acts as a pinning to the grain boundaries and contributes to the improvement of strength.

바나듐(V)은 강판 전체 중량의 0.025 ~ 0.035 중량%의 함량비로 첨가하는 것이 바람직하다. 바나듐(V)의 함량이 0.025 중량% 미만일 경우에는 상기의 효과를 제대로 발휘하는 데 어려움이 따를 수 있다. 반대로, 바나듐(V)의 함량이 0.035 중량%를 초과할 경우에는 조대한 바나듐 석출물이 형성되어 저온 충격인성이 저하되는 문제점이 있다.
Vanadium (V) is preferably added in an amount of 0.025 to 0.035% by weight of the total weight of the steel sheet. If the content of vanadium (V) is less than 0.025% by weight, it may be difficult to exhibit the above effects properly. On the contrary, when the content of vanadium (V) exceeds 0.035% by weight, a coarse vanadium precipitate is formed and low temperature impact toughness is deteriorated.

칼슘(Ca)Calcium (Ca)

칼슘(Ca)은 CaS 개재물을 형성시킴으로써 MnS 개재물의 생성을 방해함으로써, 전기저항 용접성을 향상시키기 위한 목적으로 첨가된다. 즉, 칼슘(Ca)은 망간(Mn)에 비하여 황과의 친화도가 높으므로 칼슘의 첨가시 CaS 개재물이 생성되고 MnS 개재물의 생성은 감소한다. 이러한 MnS는 열간압연 중에 연신되어 전기저항 용접(ERW)시 후크 결함 등을 유발함으로 전기저항 용접성이 향상될 수 있다.Calcium (Ca) is added for the purpose of improving electrical resistance weldability by inhibiting the formation of MnS inclusions by forming CaS inclusions. That is, calcium (Ca) has a higher affinity with sulfur than manganese (Mn), so CaS inclusions are formed and CaS inclusions are reduced when calcium is added. Such MnS is stretched during hot rolling to cause hook defects and the like in electrical resistance welding (ERW), so that electrical resistance weldability can be improved.

칼슘(Ca)은 강판 전체 중량의 0.001 ~ 0.004 중량%의 함량비로 첨가하는 것이 바람직하며, [Ca]/[S] 비율이 2 이상 되도록 첨가되는 것이 보다 바람직하다. 칼슘의 함량이 0.001 중량% 미만일 경우에는 상기의 효과를 제대로 발휘할 수 없다. 반대로, 칼슘(Ca)의 함량이 0.004 중량%를 초과할 경우에는 CaO 개재물의 생성이 과도해져 연주성을 떨어뜨리는 문제점이 있다.
Ca is preferably added at a content ratio of 0.001 to 0.004% by weight of the total weight of the steel sheet, more preferably at a ratio of [Ca] / [S] of 2 or more. If the content of calcium is less than 0.001% by weight, the above effects can not be exhibited properly. On the contrary, when the content of calcium (Ca) exceeds 0.004% by weight, generation of CaO inclusions becomes excessive, and performance is deteriorated.

질소(N)Nitrogen (N)

질소(N)는 니오븀(Nb), 바나듐(V) 등과 결합하여 탄질화물을 형성함으로써 결정립을 미세화하는데 기여한다. 그러나 질소가 강 내 다량 함유되어 있을 경우, 고용 질소가 증가하여 강의 충격특성 및 연신율을 떨어뜨리고 용접부 인성을 크게 저해된다. 이에 본 발명에서는 질소의 함량을 강판 전체 중량의 0.004 중량% 이하로 제한하였다.
Nitrogen (N) contributes to refining the crystal grains by forming carbonitride by bonding with niobium (Nb), vanadium (V) and the like. However, when nitrogen is contained in a large amount in the steel, the amount of solute nitrogen is increased, which deteriorates the impact characteristics and elongation of the steel and greatly deteriorates the toughness of the welded part. Therefore, in the present invention, the content of nitrogen is limited to 0.004 wt% or less of the total weight of the steel sheet.

본 발명에 따른 강판은, 바람직하게는 후술하는 강판 제조 방법을 통하여, 후열처리(대략 620℃에서 3~12시간정도 유지) 후 490MPa 이상의 인장강도를 나타낼 수 있다. 아울러, 본 발명에 따른 강판은 HIC(Hydrogen Induced Cracking)-CLR(Crack Length Ratio) 5% 이하의 우수한 내수소유기균열 특성을 나타낼 수 있다. The steel sheet according to the present invention preferably exhibits a tensile strength of 490 MPa or more after a post-heat treatment (holding at about 620 캜 for about 3 to 12 hours) through a steel sheet producing method described later. In addition, the steel sheet according to the present invention can exhibit an excellent hydrogen-induced organic cracking property with a HIC (Crack Length Ratio) of less than 5% of Hydrogen Induced Cracking (CLC).

고강도 강판 제조 방법High strength steel plate manufacturing method

도 1은 본 발명의 실시예에 따른 강판 제조 방법을 개략적으로 나타낸 순서도이다.1 is a flowchart schematically showing a method of manufacturing a steel sheet according to an embodiment of the present invention.

도 1을 참조하면, 도시된 강판 제조 방법은 슬라브 재가열 단계(S110), 열간압연 단계(S120), 냉각 단계(S130) 및 노말라이징 단계(S140)를 포함한다.
Referring to FIG. 1, the steel sheet manufacturing method includes a slab reheating step (S110), a hot rolling step (S120), a cooling step (S130), and a normalizing step (S140).

슬라브 재가열Reheating slabs

슬라브 재가열 단계(S110)에서는 전술한 합금 성분을 갖는 반제품 상태의 강재를 1150 ~ 1190℃로 재가열한다. 슬라브 재가열시, 확산에 의하여 슬라브 내에 존재하는 망간(Mn)과 인(P) 편석부가 완화된다. 또한, 슬라브 재가열을 통하여 니오븀(Nb)을 충분히 고용시킬 수 있다. In the slab reheating step S110, the semi-finished steel material having the above-described alloy component is reheated to 1150 to 1190 占 폚. During the reheating of the slab, diffusion of manganese (Mn) and phosphorus (P) segregation present in the slab is relaxed. In addition, niobium (Nb) can be sufficiently solved through slab reheating.

슬라브 재가열 온도가 1150℃ 미만일 경우에는 편석이 충분히 확산되지 못하여 저온인성 및 수소유기균열 저항성을 해치게 된다. 반대로, 재가열 온도가 1190℃를 초과할 경우에는 오스테나이트의 결정립 크기가 증가하므로 저온인성이 나빠지는 문제점이 있다.If the slab reheating temperature is lower than 1150 ° C, the segregation can not be sufficiently diffused and the low temperature toughness and the hydrogen organic cracking resistance are deteriorated. On the other hand, when the reheating temperature exceeds 1190 占 폚, the grain size of the austenite is increased, and the low temperature toughness is deteriorated.

열간 압연Hot rolling

열간압연 단계(S130)에서는 가열로에서 재가열된 슬라브 판재를 압연한다. In the hot rolling step (S130), the reheated slab plate is rolled in the furnace.

열간압연은 압연종료온도 930~970℃ 조건으로 수행되는 것이 바람직하다. 압연종료온도가 930℃ 미만일 경우에는 이상역 압연에 따른 인성 열화 및 항복비가 높아질 수 있다. 반대로, 압연종료온도가 970℃를 초과할 경우에는 재결정 및 결정립 조대화로 인하여 강도 및 인성 확보가 어렵다.
The hot rolling is preferably performed under the condition of the rolling finishing temperature of 930 to 970 캜. If the rolling finish temperature is less than 930 ° C, the toughness deterioration and yield ratio due to abnormal reverse rolling may be increased. On the other hand, when the rolling finish temperature exceeds 970 占 폚, it is difficult to secure strength and toughness due to recrystallization and crystal grain coarsening.

냉각Cooling

냉각 단계(S130)에서는 균일하고 미세한 조직을 갖는 강판을 제조하기 위하여, 열간압연된 강판을 대략 400~550℃까지 냉각한다. In the cooling step (S130), the hot-rolled steel sheet is cooled to about 400 to 550 DEG C to produce a steel sheet having a uniform and fine structure.

냉각은 공냉 방식, 수냉 방식 모두 가능하나, 20℃/sec 이상의 평균냉각속도가 적용되는 수냉 방식으로 수행되는 것이 바람직하다. 평균냉각속도가 20℃/sec 이상일 경우, 펄라이트 밴드 형성이 억제되어, 내수소유기균열 특성이 보다 향상될 수 있다.
The cooling can be both air-cooling and water-cooling, but it is preferably performed by a water-cooling method in which an average cooling rate of 20 ° C / sec or more is applied. When the average cooling rate is 20 DEG C / sec or more, pearlite band formation is suppressed and the hydrogen-induced organic cracking property can be further improved.

노말라이징Normalizing

노말라이징 단계(S140)에서는 오스테나이트로 상변태가 일어나고 이때 재결정에 의하여 오스테나이트 결정립이 미세화되므로 노멀라이징 처리에 의한 결정립미세화에 의해 저온인성이 향상된다. In the normalizing step (S140), austenite phase transformation takes place. At this time, since the austenite grains are refined by recrystallization, the low temperature toughness is improved by grain refinement by the normalizing treatment.

노멀라이징 처리 시 강판의 모든 부위에서 오스테나이트 변태가 일어날 수 있도록 880 ~ 900℃의 온도범위에서 실시하는 것이 바람직하다. 노멀라이징을 880℃미만의 온도에서 실시하면 결정립 미세화의 효과를 충분히 보기 힘들다. 반대로, 노멀라이징을 900℃를 초과하는 온도에서 실시하면 오스테나이트 변태 후 오스테나이트 결정립이 성장하므로 오히려 저온인성을 저해할 수 있다.It is preferable to carry out the heat treatment in the temperature range of 880 to 900 ° C so that austenite transformation can take place in all portions of the steel sheet during the normalizing treatment. When the normalizing is carried out at a temperature lower than 880 DEG C, the effect of grain refinement is hardly observed. Conversely, if the normalizing is performed at a temperature exceeding 900 캜, the austenite grains grow after the austenite transformation, and the low-temperature toughness may be deteriorated.

노멀라이징 시 강판의 중심부까지 오스테나이트 변태가 완전히 일어날 수 있는 시간이 필요하며 그 시간은 강판의 두께에 따라 변화하므로 노멀라이징 시간은 1.4 x T + 10분 ~ 1.6 x T + 10분(단, 여기서 T는 강판의 두께이며, 단위(mm)는 생략하고 대입함)인 것이 바람직하다. 상기 기준 시간보다 적은 시간으로 노말라이징을 실시할 경우 조직의 균질화가 어렵고, 반대로, 상기 기준 시간을 초과하여 노말라이징을 실시할 경우는 더 이상의 효과는 얻을 수 없고 생산성을 해칠 수 있다.During normalization, the time required for complete austenite transformation to the center of the steel sheet is required and the time varies depending on the thickness of the steel sheet, so the normalizing time is 1.4 x T + 10 min to 1.6 x T + 10 min Thickness of the steel sheet, and the unit (mm) is omitted and substituted). If normalizing is performed with a time shorter than the reference time, it is difficult to homogenize the tissue. Conversely, when normalizing exceeds the reference time, further effects can not be obtained and productivity may be deteriorated.

노말라이징 이후에는 예를 들어 상온까지 공냉하거나, 400~550℃까지 20℃/sec 이상의 냉각속도로 수냉한 후 상온까지 공냉하는 등의 냉각 과정이 수행될 수 있다.
After the normalizing process, for example, a cooling process such as air cooling to room temperature, water cooling to 400 to 550 ° C at a cooling rate of 20 ° C / sec or more, and air cooling to room temperature can be performed.

실시예Example

이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to preferred embodiments of the present invention. It is to be understood, however, that the same is by way of illustration and example only and is not to be construed in a limiting sense.

여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
The contents not described here are sufficiently technically inferior to those skilled in the art, and a description thereof will be omitted.

1. 시편 제조1. Specimen Manufacturing

표 1에 기재된 합금 조성 및 나머지 철(Fe)과 불가피한 불순물로 이루어진 실시예 1 및 비교예 1에 따른 두께 250mm의 강 슬라브 시편을 1170℃에서 2시간동안 재가열한 후, 950℃ 압연종료온도 조건으로 열간압연하고, 20℃/sec의 냉각속도로 500℃까지 수냉한 후 상온까지 공냉하였다. 이후, 각 시편을 890℃에서 360분동안 노말라이징한 후, 20℃/sec의 냉각속도로 500℃까지 수냉한 후 상온까지 공냉하였다.A steel slab specimen of 250 mm in thickness according to Example 1 and Comparative Example 1 consisting of the alloy composition shown in Table 1 and the balance of iron (Fe) and unavoidable impurities was reheated at 1170 ° C for 2 hours and then heated at 950 ° C Hot-rolled, water-cooled to 500 ° C at a cooling rate of 20 ° C / sec, and then air-cooled to room temperature. Thereafter, each specimen was normalized at 890 ° C for 360 minutes, cooled to 500 ° C at a cooling rate of 20 ° C / sec, and then cooled to room temperature.

[표 1] (단위 : 중량%) [Table 1] (unit:% by weight)

Figure pat00001

Figure pat00001

2. 기계적 물성 평가2. Evaluation of mechanical properties

표 2는 실시예 1 및 비교예 1의 인장강도(620℃에서 6시간 후열처리 후) HIC 테스트 결과를 나타낸 것이다. 또한, 도 2는 실시예 1 및 비교예 1에 따른 시편의 HIC 테스트 후, Scan -UT 결과를 나타낸 것이다. Table 2 shows the tensile strength (after heat treatment after 6 hours at 620 占 폚) HIC test results of Example 1 and Comparative Example 1. Fig. 2 shows Scan-UT results after HIC test of the specimen according to Example 1 and Comparative Example 1. Fig.

[표 2]  [Table 2]

Figure pat00002
Figure pat00002

표 2 및 도 2를 참조하면, 본 발명에서 제시한 합금 조성을 만족하는 실시예1에 따른 시편의 경우, 수소유기균열 특성이 현저히 우수한 것을 볼 수 있다. Referring to Table 2 and FIG. 2, in the case of the specimen according to Example 1 satisfying the alloy composition proposed in the present invention, the hydrogen-organic cracking property is remarkably excellent.

또한, 표 2를 참조하면, 실시예 1에 따른 시편의 경우, 상기의 우수한 내수수유기균열 특성과 함께 후열처리 이후 490MPa 이상의 인장강도를 나타내는 것을 볼 수 있다.
In addition, referring to Table 2, it can be seen that the specimen according to Example 1 exhibits the above-mentioned excellent water softening cracking characteristics and a tensile strength of 490 MPa or more after the post heat treatment.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. Such changes and modifications are intended to fall within the scope of the present invention unless they depart from the scope of the present invention. Accordingly, the scope of the present invention should be determined by the following claims.

S110 : 슬라브 재가열 단계
S120 : 열간압연 단계
S130 : 냉각 단계
S130 : 냉각 단계
S110: Slab reheating step
S120: Hot rolling step
S130: cooling step
S130: cooling step

Claims (5)

(a) 중량%로, 탄소(C) : 0.09~0.115%, 실리콘(Si) : 0.3~0.4%, 망간(Mn) : 1.1~1.2%, 인(P) : 0.01% 이하, 황(S) : 0.001% 이하, 알루미늄(Al) : 0.02~0.05%, 니켈(Ni) : 0.1~0.3%, 구리(Cu) : 0.1~0.2%, 크롬(Cr) : 0.1~0.2%, 니오븀(Nb) : 0.04~0.05%, 바나듐(V) : 0.025~0.035%, 칼슘(Ca) : 0.001~0.004%, 질소(N) : 0.004% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 1150~1190℃의 온도에서 재가열하는 단계;
(b) 상기 재가열된 판재를 압연종료온도 930~970℃ 조건으로 열간압연하는 단계;
(c) 상기 열간압연된 판재를 냉각하는 단계; 및
(d) 상기 냉각된 판재를 880~900℃에서 노말라이징하는 단계;를 포함하는 것을 특징으로 하는 고강도 강판 제조 방법.
(S): 0.3 to 0.4%, manganese (Mn): 1.1 to 1.2%, phosphorus (P): 0.01% or less, sulfur (S) : 0.001% or less, aluminum (Al): 0.02 to 0.05%, nickel (Ni): 0.1 to 0.3%, copper (Cu): 0.1 to 0.2%, chromium (Cr) (Fe) and unavoidable impurities, in the range of 0.050 to 0.090%, 0.04 to 0.05%, 0.025 to 0.035% vanadium (V), 0.001 to 0.004% ≪ / RTI >
(b) hot rolling the reheated plate to a rolling finish temperature of 930 to 970 占 폚;
(c) cooling the hot rolled plate; And
(d) normalizing the cooled plate at a temperature of 880 to 900 ° C.
제1항에 있어서,
상기 냉각은 20℃/sec 이상의 평균냉각속도로 수행되는 것을 특징으로 하는 고강도 강판 제조 방법.
The method according to claim 1,
Wherein the cooling is performed at an average cooling rate of 20 DEG C / sec or more.
제1항에 있어서,
상기 노말라이징은 1.4 x T +10분 ~ 1.6 x T +10분 (여기서 T는 강판 두께이며, 강판 두께 단위는 : mm임)동안 수행되는 것을 특징으로 하는 고강도 강판 제조 방법.
The method according to claim 1,
Wherein the normalizing is performed for 1.4 x T +10 min to 1.6 x T +10 min (where T is the steel sheet thickness and the steel sheet thickness unit is mm).
중량%로, 탄소(C) : 0.09~0.115%, 실리콘(Si) : 0.3~0.4%, 망간(Mn) : 1.1~1.2%, 인(P) : 0.01% 이하, 황(S) : 0.001% 이하, 알루미늄(Al) : 0.02~0.05%, 니켈(Ni) : 0.1~0.3%, 구리(Cu) : 0.1~0.2%, 크롬(Cr) : 0.1~0.2%, 니오븀(Nb) : 0.04~0.05%, 바나듐(V) : 0.025~0.035%, 칼슘(Ca) : 0.001~0.004%, 질소(N) : 0.004% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물로 이루어지고,
HIC(Hydrogen Induced Cracking) - CLR(Crack Length Ratio) 5% 이하를 나타내는 것을 특징으로 하는 고강도 강판.
(P): 0.01% or less, sulfur (S): 0.001% or less, carbon (C): 0.09 to 0.115%, silicon (Si): 0.3 to 0.4%, manganese (Ni): 0.1 to 0.3%, copper (Cu): 0.1 to 0.2%, chromium (Cr): 0.1 to 0.2%, niobium (Nb): 0.04 to 0.05 0.001 to 0.004% of calcium (Ca), 0.004% or less of nitrogen (N), and the balance of iron (Fe) and other unavoidable impurities,
HIC (Hydrogen Induced Cracking) - Crack Length Ratio (CLR) of 5% or less.
제4항에 있어서,
상기 강판은 후열처리 후 490MPa 이상의 인장강도를 나타내는 것을 특징으로 하는 고강도 강판.
5. The method of claim 4,
Wherein the steel sheet has a tensile strength of 490 MPa or more after the post-heat treatment.
KR1020140051850A 2014-04-29 2014-04-29 High strength steel sheet and method of manufacturing the same KR20150124810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140051850A KR20150124810A (en) 2014-04-29 2014-04-29 High strength steel sheet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140051850A KR20150124810A (en) 2014-04-29 2014-04-29 High strength steel sheet and method of manufacturing the same

Publications (1)

Publication Number Publication Date
KR20150124810A true KR20150124810A (en) 2015-11-06

Family

ID=54601088

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140051850A KR20150124810A (en) 2014-04-29 2014-04-29 High strength steel sheet and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR20150124810A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017105109A1 (en) * 2015-12-15 2017-06-22 주식회사 포스코 High-strength steel material having excellent low-temperature strain aging impact properties and method for manufacturing same
WO2017105107A1 (en) * 2015-12-15 2017-06-22 주식회사 포스코 High-strength steel material having excellent low-temperature strain aging impact properties and welding heat-affected zone impact properties and method for manufacturing same
WO2019107700A1 (en) * 2017-12-01 2019-06-06 주식회사 포스코 High strength steel material having excellent hydrogen-induced cracking resistance and low-temperature impact toughness and manufacturing method therefor
KR20200065140A (en) * 2018-11-29 2020-06-09 주식회사 포스코 Steel plate having excellent hic resistance and manufacturing method for thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368593B (en) * 2015-12-15 2020-10-02 株式会社Posco High-strength steel material having excellent low-temperature strain aging impact characteristics and method for producing same
WO2017105107A1 (en) * 2015-12-15 2017-06-22 주식회사 포스코 High-strength steel material having excellent low-temperature strain aging impact properties and welding heat-affected zone impact properties and method for manufacturing same
CN108368593A (en) * 2015-12-15 2018-08-03 株式会社Posco High strength steel and its manufacturing method with excellent low temperature strain-aging impact characteristics
CN108368594A (en) * 2015-12-15 2018-08-03 株式会社Posco High strength steel and its manufacturing method with excellent low temperature strain-aging impact characteristics and welding heat affected zone impact characteristics
EP3392366A4 (en) * 2015-12-15 2019-02-27 Posco High-strength steel material having excellent low-temperature strain aging impact properties and welding heat-affected zone impact properties and method for manufacturing same
EP3392367A4 (en) * 2015-12-15 2019-02-27 Posco High-strength steel material having excellent low-temperature strain aging impact properties and method for manufacturing same
WO2017105109A1 (en) * 2015-12-15 2017-06-22 주식회사 포스코 High-strength steel material having excellent low-temperature strain aging impact properties and method for manufacturing same
US11136653B2 (en) 2015-12-15 2021-10-05 Posco High-strength steel material having excellent low-temperature strain aging impact properties and welding heat-affected zone impact properties and method for manufacturing same
CN108368594B (en) * 2015-12-15 2020-12-25 株式会社Posco High-strength steel material having excellent low-temperature strain aging impact characteristics and weld heat-affected zone impact characteristics, and method for producing same
WO2019107700A1 (en) * 2017-12-01 2019-06-06 주식회사 포스코 High strength steel material having excellent hydrogen-induced cracking resistance and low-temperature impact toughness and manufacturing method therefor
CN111492083A (en) * 2017-12-01 2020-08-04 株式会社Posco High-strength steel material having excellent hydrogen-induced cracking resistance and low-temperature impact toughness, and method for producing same
KR20190065040A (en) * 2017-12-01 2019-06-11 주식회사 포스코 Steel material having exellent hydrogen induced crack resistance and low temperature impact toughness and method of manufacturing the same
KR20200065140A (en) * 2018-11-29 2020-06-09 주식회사 포스코 Steel plate having excellent hic resistance and manufacturing method for thereof
EP3889307A4 (en) * 2018-11-29 2021-10-06 Posco Steel material having excellent hydrogen induced cracking resistance, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP7161536B2 (en) Steel plate for pressure vessel excellent in tensile strength and low-temperature impact toughness and method for producing the same
CN110088334B (en) Thick steel plate having excellent low-temperature impact toughness and method for manufacturing same
JP2013515861A (en) High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof
KR101477375B1 (en) Steel sheet and manufacturing method of the same
CN108474089B (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same
KR20150124810A (en) High strength steel sheet and method of manufacturing the same
KR20150101734A (en) Steel for pressure vessel and method of manufacturing the steel
KR20140056760A (en) Steel for pressure vessel and method of manufacturing the same
KR101290426B1 (en) High strength hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet
KR20140118313A (en) Hot-rolled steel and method of manufacturing the same
KR101412432B1 (en) Method of manufacturing steel
KR101412295B1 (en) High strength steel and method for manufacturing the same
KR101546132B1 (en) Extremely thick steel sheet and method of manufacturing the same
KR20160063556A (en) Steel and method of manufacturing the steel
KR101615029B1 (en) Steel sheet and method of manufacturing the same
KR101400662B1 (en) Steel for pressure vessel and method of manufacturing the same
KR101435258B1 (en) Method for manufacturing of steel plate
KR101443445B1 (en) Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same
KR20120097159A (en) High strength steel sheet and method of manufacturing the high strength steel sheet
KR20150112517A (en) Steel sheet for line pipe and method of manufacturing the same
KR101467048B1 (en) Thick steel sheet and method of manufacturing the same
KR20140072246A (en) Steel sheet and method of manufacturing the same
KR20150002955A (en) Steel sheet and manufacturing method of the same
KR20130110643A (en) Steel and method of manufacturing the same
KR20150049658A (en) Shape steel and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application