KR20150102750A - Electrostatic Levitation Crystal Growth Apparatus For Solution And Electrostatic Levitation Crystal Growing Method Of The Same - Google Patents

Electrostatic Levitation Crystal Growth Apparatus For Solution And Electrostatic Levitation Crystal Growing Method Of The Same Download PDF

Info

Publication number
KR20150102750A
KR20150102750A KR1020150079633A KR20150079633A KR20150102750A KR 20150102750 A KR20150102750 A KR 20150102750A KR 1020150079633 A KR1020150079633 A KR 1020150079633A KR 20150079633 A KR20150079633 A KR 20150079633A KR 20150102750 A KR20150102750 A KR 20150102750A
Authority
KR
South Korea
Prior art keywords
solution
droplet
lower electrode
needle
electrostatic
Prior art date
Application number
KR1020150079633A
Other languages
Korean (ko)
Other versions
KR102029007B1 (en
Inventor
이근우
이수형
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to KR1020150079633A priority Critical patent/KR102029007B1/en
Publication of KR20150102750A publication Critical patent/KR20150102750A/en
Application granted granted Critical
Publication of KR102029007B1 publication Critical patent/KR102029007B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/02Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention provides an electrostatic levitation crystal growth device and a method of growing the electrostatic levitation crystal. The electrostatic levitation crystal growth device includes: an upper electrode; a lower electrode disposed to be vertically spaced apart from the upper electrode; a power supply unit for applying a vertical electrostatic field between the upper electrode and the lower electrode; and a droplet dispenser to form solution droplets by dispensing a solution between the upper electrode and the lower electrode. The solution droplets are maintained in the charged state and electrostatically levitated by the vertical electrostatic field against the gravity. The solution droplet may evaporate in the levitated state under the electrostatic field, and the solute dissolved in the solution grows as a crystal.

Description

용액을 위한 정전기 부양 결정 성장 장치 및 그 성장 방법{Electrostatic Levitation Crystal Growth Apparatus For Solution And Electrostatic Levitation Crystal Growing Method Of The Same}TECHNICAL FIELD [0001] The present invention relates to an electrostatic levitation crystal growth apparatus and an electrostatic levitation crystal growth apparatus,

본 발명은 결정 성장 장치에 관한 것으로, 더 구체적으로 정전기 부양 결정 성장 장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal growth apparatus, and more particularly, to an electrostatic floating crystal growth apparatus.

본 발명은 2013년도 미래창조과학부의 재원으로 신기술융합형성장동력사업(2013K000307)의 지원을 받아 수행되었다.The present invention was funded by the Future Creation Science Department in 2013 and supported by the New Technology Fusion Growth Driving Project (2013K000307).

단결정이란 원자들이 주기적으로 배열된 고체를 의미한다. 수 나노미터의 결정의 시드를 결정 핵(crystal nucleus)이라 부른다. 이 결정핵이 성장하여 마이크로미터 이상의 크기를 가진 벌크로 성장하는 것을 결정 성장이라 부른다. A single crystal is a solid in which atoms are periodically arranged. The seed of a crystal of several nanometers is called a crystal nucleus. It is called crystal growth that the crystal nucleus grows and grows into a bulk having a size of more than a micrometer.

단결정 성장은 소재 산업과 물질 연구를 위해 핵심적이다. 예를 들어, 레이저 발진을 위한 물질은 KDP 결정을 요구한다. 또한, 단백질 합성을 위해서는 단백질의 정확한 구조분석을 위한 단백질 결정이 요구된다. KDP 결정은 비선형 광학 물질이고, 광학적 기능을 위하여 고순도의 무결점 단결정을 요구한다. 또한, 단백질 단결정은 신물질 개발을 위하여 고순도의 무결점 단결정을 요구한다. 그러나, 이러한 단결정들은 통상적으로 수백 마이크로미터 내지 수 미터의 크기를 요구한다. Monocrystalline growth is essential for material industry and material research. For example, materials for laser oscillation require KDP crystals. In addition, protein synthesis requires protein crystals for accurate structural analysis of proteins. The KDP crystal is a nonlinear optical material and requires a high-purity, single-crystal, pure crystal for its optical function. In addition, protein monocrystals require high-purity, zero-defect single crystals for the development of new materials. However, these single crystals typically require a size of several hundred micrometers to several meters.

용해(dissolution)는 용질이 용액에 녹는 현상을 의미한다. 용액(solution)은 용질(solute)과 용매(slovent)의 혼합물이다. 용액은 용매와 용질로 나눌 수 있다. 용해도(solubility)는 용질이 용매에 포화상태까지 녹을 수 있는 한도를 말하는데, 보통 용매 100g당 녹을 수 있는 용질의 양(g)을 의미한다. 용해도는 온도, 용매와 용질의 종류 등에 영향을 받는다. 대부분의 경우 온도가 높아질수록 고체의 용해도는 보통 증가한다. 용액의 증기압(Vapor Pressure)은 증기가 고체 또는 액체와 동적 평형 상태에 있을 때 증기의 압력을 의미한다. Dissolution means that the solute is dissolved in the solution. The solution is a mixture of solute and solvent (slovent). The solution can be divided into solvent and solute. Solubility refers to the extent to which a solute can dissolve in a solvent to saturation, usually the amount of solute (g) that can be dissolved per 100 g of solvent. The solubility is affected by the temperature, the type of solvent and solute. In most cases, the higher the temperature, the higher the solubility of the solids usually increases. The vapor pressure of the solution means the pressure of the vapor when the vapor is in dynamic equilibrium with the solid or liquid.

용액에서 용매가 증발하면, 용액은 용해도 이상의 포화용액 또는 과포화 용액이 된다. 용해도 이상의 용액에서 용액의 온도가 감소하거나 용매가 증발하면, 용질은 석출된다. 석출(precipitation)은 결정형 고체가 녹은 용액에서 결정이 만들어지는 것이다. 포화용액을 만들때 용매는 주로 물이 사용된다. 수용액 결정 성장법은 통상적으로 용액으로 채워진 수조에 단결정 시드를 매달아 결정을 성장시키는 방법이다. 수용액 결정 성장법은 많은 시간을 요한다. When the solvent in the solution evaporates, the solution becomes a saturated or supersaturated solution of solubility or greater. When the temperature of the solution decreases in a solution having a solubility or higher, or when the solvent evaporates, the solute precipitates. Precipitation is the formation of crystals in a solution of a crystalline solid. When making a saturated solution, water is mainly used as a solvent. In the aqueous solution crystal growth method, a crystal is grown by hanging a single crystal seed to a water tank filled with a solution. The aqueous solution crystal growth method requires a lot of time.

수용액 결정 성장법은 큰 사이즈의 단결정을 형성할 수 있다. 그러나, 수용액 결정 성장법은 많은 시간과 순도 높은 시드 단결정(seed crystal)을 요한다. The aqueous solution crystal growth method can form a single crystal of a large size. However, the aqueous solution crystal growth method requires a seed crystal with high time and high purity.

한편, 용기에 수납된 용액은 용매의 증발을 통하여 용질을 석출할 수 있다. 석출된 용질은 단결정 상태로 얻어지기 어렵다. 용기와 용액의 상호 작용은 단결정 형성을 방해하기 때문이다. On the other hand, the solution stored in the container can precipitate the solute through evaporation of the solvent. The precipitated solute is difficult to obtain in a single crystal state. This is because the interaction between the vessel and the solution interferes with the formation of single crystals.

단결정(single crystal)을 성장시키기 위하여 결정에 유입되는 불순물 유입의 억제가 요구된다. 불순물 유입의 억제를 달성한 경우에도, 수용액을 담아두는 용기는 불순물로 작용할 수 있다. 이에 따라, 용기는 단결정성장을 방해하여 다결정을 발생시킬 수 있다.In order to grow a single crystal, it is required to suppress the inflow of impurities introduced into the crystal. Even when the suppression of impurity inflow is achieved, the container holding the aqueous solution can act as an impurity. Accordingly, the container can generate polycrystals by interfering with the growth of the single crystal.

결정 성장 속도 또는 결정 핵의 생성은 수용액의 과포화 정도에 의존할 수 있다. 용기가 있는 경우, 상기 용기가 불순물로 작용하여, 상기 용기의 벽은 과포화 상태의 형성을 어렵게 할 수 있다.The rate of crystal growth or the formation of crystal nuclei may depend on the degree of supersaturation of the aqueous solution. In the case of a container, the container acts as an impurity, and the wall of the container can make it difficult to form a supersaturated state.

따라서, 용매를 수납하는 수납 용기를 사용하지 않는 비접촉식 결정 성장 방법이 요구된다. 비접촉식 결정 성장 방법은 수용액을 공중에 부양시키고 부양된 방울을 제공한다. 이 부양된 방울은 불순물 역활을 하는 용기와 용매의 상호 작용을 원천적으로 제거한다. Therefore, there is a need for a non-contact type crystal growth method that does not use a storage container for containing a solvent. The noncontact crystal growth method floats the aqueous solution in the air and provides a floated droplet. This floating droplet essentially eliminates the interaction between the container and the solvent acting as impurities.

본 발명의 일 실시예에 따른 결정 성장 방법은 정전기 부양된 용액으로부터 증발을 통하여 단결정을 성장시키는 것이다. 정전기 부양 기술은 용액에 진동 에너지와 같은 외부 충력을 억제할 수 있다. 정전기 부양 기술을 이용한 증발법으로 과포화 상태를 제공하여 결정형성 및 성장을 유도할 수 있다.A crystal growth method according to an embodiment of the present invention is to grow a single crystal through evaporation from an electrostatic floating solution. Electrostatic lifting techniques can suppress external stress, such as vibrational energy, in a solution. Crystallization and growth can be induced by providing a supersaturated state by an evaporation method using electrostatic lifting technology.

본 발명의 일 실시예에 따른 정전기 부양 결정 성장 장치는 상부 전극; 상기 상부 전극과 수직으로 이격되어 배치된 하부 전극; 상기 상부 전극과 상기 하부 전극 사이에 수직 정전기장을 인가하는 전원부; 및 상기 상부 전극과 상기 하부 전극 사이에 용액을 방출하여 용액 방울(solution droplet)을 형성하는 방울 디스펜서(droplet dispenser)를 포함한다. 상기 용액 방울은 하전 상태(charged state)로 유지되고 중력에 반하여 상기 수직 정전기장에 의하여 정전기 부양된다. 상기 용액 방울은 상기 정전기 부양된 상태에서 증발하고, 상기 용액에 용해된 용질은 결정으로 성장한다.An apparatus for growing electrostatic free crystals according to an embodiment of the present invention includes an upper electrode; A lower electrode disposed perpendicularly to the upper electrode; A power supply unit for applying a vertical electrostatic field between the upper electrode and the lower electrode; And a droplet dispenser for discharging a solution between the upper electrode and the lower electrode to form a solution droplet. The solution droplets are maintained in a charged state and are electrostatically levitated by the vertical electrostatic field against gravity. The solution droplets evaporate in the electrostatic levitation state, and the solute dissolved in the solution grows into crystals.

본 발명의 일 실시예에 있어서, 상기 용액 방울은 상기 방울 디스펜서와 접촉 대전을 통하여 상기 하부 전극의 전하 형태로 대전될 수 있다.In an embodiment of the present invention, the droplet may be charged in the form of a charge of the lower electrode through contact charging with the droplet dispenser.

본 발명의 일 실시예에 있어서, 상기 용액 방울은 공기의 대기압에서 정전기 부양될 수 있다.In one embodiment of the present invention, the droplets of the solution may be electrostatically levitated at atmospheric pressure of air.

본 발명의 일 실시예에 있어서, 상기 방울 디스펜서는 예비 용액 방울을 분출하는 노즐부를 포함할 수 있다. 상기 노즐부는 도전성 재질을 포함하고, 상기 도전성 재질은 상기 하부 전극의 전위로 유지되고, 상기 도전성 재질은 상기 예비 용액 방울을 양의 전하로 대전시킬 수 있다.In one embodiment of the present invention, the droplet dispenser may include a nozzle portion for ejecting a droplet of the preliminary solution. The nozzle unit may include a conductive material, the conductive material may be held at a potential of the lower electrode, and the conductive material may charge the preliminary solution droplet with a positive charge.

본 발명의 일 실시예에 있어서, 상기 하부 전극은 접지되고, 상기 상부 전극은 음의 전압으로 유지될 수 있다.In one embodiment of the present invention, the lower electrode may be grounded, and the upper electrode may be maintained at a negative voltage.

본 발명의 일 실시예에 있어서, 상기 방울 디스펜서는 예비 용액 방울을 분출하는 노즐부를 포함할 수 있다. 상기 노즐부는 유체 통로를 제공하고 상기 용액을 방출하여 상기 예비 용액 방울을 형성하는 니들(needle); 및 상기 니들을 감싸고 상기 니들의 일단이 통과하도록 벌어지는 구멍을 가지는 상부 커버를 포함하는 방울 절단부를 포함할 수 있다. 상기 니들이 상기 상부 커버 위로 돌출된 상태에서 상기 예비 용액 방울을 방출한 경우, 상기 방울 절단부는 상기 방출된 예비 용액 방울을 절단하여 용액 방울을 생성할 수 있다.In one embodiment of the present invention, the droplet dispenser may include a nozzle portion for ejecting a droplet of the preliminary solution. The nozzle portion having a needle for providing a fluid passage and releasing the solution to form the preliminary solution droplet; And a top cover surrounding the needle and having an opening that flares through one end of the needle. When the preliminary solution droplet is discharged in a state where the needle protrudes onto the upper cover, the droplet cutting portion may cut the discharged preliminary solution droplet to generate a droplet of the solution.

본 발명의 일 실시예에 있어서, 상기 방울 절단부의 상부 커버는 원뿔 형상이고, 상기 상부 커버는 상기 상부 커버의 정점에서 반경 방향으로 복수의 슬릿을 포함할 수 있다.In one embodiment of the present invention, the top cover of the droplet cutting portion is conical in shape, and the top cover may include a plurality of slits in the radial direction at the apex of the top cover.

본 발명의 일 실시예에 있어서, 상기 노즐부는 발수성 또는 소수성 재질이거나, 발수성 또는 소수성로 코팅 처리될 수 있다.In one embodiment of the present invention, the nozzle portion may be a water repellent or hydrophobic material, or may be water repellent or hydrophobic.

본 발명의 일 실시예에 있어서, 상기 상부 커버는 신축성 또는 탄성 재질일 수 있다. In one embodiment of the present invention, the upper cover may be an elastic or elastic material.

본 발명의 일 실시예에 있어서, 상기 방울 디스펜서는 상기 니들에 수직 운동을 제공하는 니들 선형 운동 제공부; 및 상기 방울 절단부의 수직 운동을 제공하는 방울 절단 선형 운동 제공부를 포함할 수 있다.In one embodiment of the present invention, the drop dispenser includes a needle linear motion imparting unit for providing vertical motion to the needle; And a droplet cutting linear motion providing unit for providing vertical motion of the droplet cutting unit.

본 발명의 일 실시예에 있어서, 상기 방울 디스펜서의 노즐부의 일단은 상기 하부 전극의 중심에 형성된 관통홀을 통하여 상기 하부 전극과 상기 상부 전극 사이에 위치할 수 있다.In one embodiment of the present invention, one end of the nozzle portion of the droplet dispenser may be positioned between the lower electrode and the upper electrode through a through hole formed in the center of the lower electrode.

본 발명의 일 실시예에 있어서, 정전기 부양 결정 성장 장치는 상기 하부 전극의 중심축에 수직한 평면에 제1 보조 전기장을 인가하고 상기 용액 방울을 중심으로 서로 대향하여 배치되고 된 한 쌍의 제1 보조 전극들; 상기 하부 전극의 중심축에 수직한 평면에 제2 보조 전기장을 인가하고 상기 용액 방울을 중심으로 서로 대향하여 배치되는 한 쌍의 제2 보조 전극들; 상기 제1 보조 전극들 사이에 제1 보조 전압을 인가하는 제1 보조 전원; 및 상기 제2 보조 전극들 사이에 제2 보조 전압을 인가하는 제2 보조 전원을 더 포함할 수 있다. 상기 제1 보조 전기장은 상기 제2 보조 전기장에 수직할 수 있다.In one embodiment of the present invention, the electrostatic-lifting-crystal growing apparatus includes a pair of first and second electrodes, which apply a first sub-electric field to a plane perpendicular to the center axis of the lower electrode, Auxiliary electrodes; A pair of second auxiliary electrodes arranged to face each other with a second auxiliary electric field applied to a plane perpendicular to the central axis of the lower electrode and centering on the solution drops; A first auxiliary power supply for applying a first auxiliary voltage between the first auxiliary electrodes; And a second auxiliary power source for applying a second auxiliary voltage between the second auxiliary electrodes. The first sub-electric field may be perpendicular to the second sub-electric field.

본 발명의 일 실시예에 있어서, 정전기 부양 결정 성장 장치는 상기 부양된 용액 방울에 광을 조사하는 수직 위치 측정용 광원; 상기 위치 측정용 광원에 대향하게 배치되고 상기 부양된 용액 방울의 위치를 검출하는 수직 위치 검출부; 상기 부양된 용액 방울에 접촉하여 결정 형성을 유도하는 결정 유도 탐침; 상기 부양된 용액 방울 감싸고 밀폐된 공간을 제공하는 밀폐부; 상기 밀폐부 내부의 대기의 온도를 조절하는 온도 조절부; 및 상기 밀폐부 내부의 대기의 습도를 조절하는 습도 조절부; 중에서 적어도 하나를 더 포함할 수 있다.In one embodiment of the present invention, an electrostatic frost crystal growth apparatus includes a light source for vertical position measurement for irradiating light on the floated solution droplets; A vertical position detecting unit arranged to face the position measuring light source and detecting the position of the floated solution droplet; A crystal induction probe for contacting the floating solution droplet to induce crystal formation; An enclosure enclosing the floated solution droplet and providing a closed space; A temperature regulator for regulating the temperature of the atmosphere inside the closed portion; And a humidity controller for controlling the humidity of the atmosphere inside the enclosure; As shown in FIG.

본 발명의 일 실시예에 있어서, 상기 결정은 AH2PO4 (A=K, NH4, Cs), ABCl3 (A=Cs, K, Rb; B= Co, Cu, Zn, Cd, Mn), LiASO4 (A= Cs, K), CuS04 ·5H2O, K3Fe(CN)6, DKDP, KDCO3, NiSO4 ·6H2O, NaKC4H4O6 (Potassium sodium tartrate, Rochelle Salt), (NH2CH2COOH)3·H2SO4 (Triglycine sulfate ;TGS), KD2PO4 (Deuterated potassium dihydrogen phosphate; DKDP), NaCl, 단백질 결정, 또는 KH2PO4(potassium dihydrogen phosphate;KDP)일 수 있다.In one embodiment of the present invention, the crystal is selected from the group consisting of AH 2 PO 4 (A = K, NH 4, Cs), ABCl 3 (A = Cs, K, Rb; B = Co, Cu, Zn, LiASO 4 (A = Cs, K ), CuS0 4 · 5H 2 O, K 3 Fe (CN) 6, DKDP, KDCO 3, NiSO 4 · 6H 2 O, NaKC 4 H 4 O 6 (Potassium sodium tartrate, Rochelle Salt ), (NH 2 CH 2 COOH ) 3 · H 2 SO 4 (Triglycine sulfate; TGS), KD 2 PO 4 (Deuterated potassium dihydrogen phosphate; DKDP), NaCl, protein crystals, or KH 2 PO 4 (potassium dihydrogen phosphate ; KDP).

본 발명의 일 실시예에 따른 정전기 부양 결정 성장 방법은 중력에 반하여 상부 전극과 하부 전극 사이에 수직 정전기장을 인가하는 단계; 상기 상부 전극과 상기 하부 전극 사이에 용액 방울을 부양하는 단계; 상기 용액 방울의 용매를 증발시키어 과포화 용액을 형성하는 단계; 상기 과포화 용액에서 결정 핵을 생성시키는 단계; 및 상기 결정 핵을 성장시키어 결정을 생성하는 단계를 포함한다.According to an embodiment of the present invention, there is provided a method of growing an electrostatic floating crystal, comprising: applying a vertical electrostatic field between an upper electrode and a lower electrode against gravity; Floating a solution droplet between the upper electrode and the lower electrode; Evaporating the solvent of the droplet to form a supersaturated solution; Generating crystal nuclei in the supersaturated solution; And growing the crystal nucleus to produce crystals.

본 발명의 일 실시예에 있어서, 상기 상부 전극과 상기 하부 전극 사이에 용액 방울을 부양하는 단계는: 니들 및 상기 니들을 감싸는 용액 절단부를 상기 하부 전극의 중심에 형성된 관통홀을 통하여 상승시키는 단계; 상기 니들에 상기 상부 전극의 전위보다 높은 직류 전위를 인가하는 단계; 상기 상승된 니들의 일단으로 용액을 토출하여 예비 용액 방울을 형성하는 단계; 상기 예비 용액 방울을 양의 전하로 대전시키는 단계; 상기 니들을 하강시키거나 상기 용액 절단부를 상승시켜 상기 예비 용액 방울을 절단하는 단계; 및 상기 니들 및 니들을 감싸는 상기 용액 절단부를 하강시키는 단계를 포함할 수 있다.According to an embodiment of the present invention, the step of lifting the droplet between the upper electrode and the lower electrode includes: a step of lifting the needle and the solution cutting portion surrounding the needle through the through hole formed in the center of the lower electrode; Applying a DC potential higher than the potential of the upper electrode to the needle; Discharging the solution to one end of the raised needle to form a preliminary solution droplet; Charging the preliminary solution droplet with a positive charge; Dropping the needle or raising the solution cut section to cut the preliminary solution droplet; And lowering the solution cuts surrounding the needles and needles.

본 발명의 일 실시예에 있어서, 상기 상부 전극과 상기 하부 전극 사이에 용액 방울을 부양하는 단계는: 니들을 상기 하부 전극의 중심에 형성된 관통홀을 통하여 상승시키는 단계; 상기 니들에 상기 상부 전극의 전위보다 높은 직류 전위를 인가하는 단계; 상기 상승된 니들의 일단으로 용액을 토출하여 예비 용액 방울을 형성하는 단계; 상기 예비 용액 방울을 양의 전하로 대전시키는 단계; 상기 수직 정전기장의 세기를 증가시키는 단계; 및 상기 니들을 하강시키는 단계를 포함할 수 있다.According to an embodiment of the present invention, the step of lifting the droplet between the upper electrode and the lower electrode includes: moving the needle through the through hole formed in the center of the lower electrode; Applying a DC potential higher than the potential of the upper electrode to the needle; Discharging the solution to one end of the raised needle to form a preliminary solution droplet; Charging the preliminary solution droplet with a positive charge; Increasing the intensity of the vertical electrostatic field; And lowering the needle.

본 발명의 일 실시예에 있어서, 상기 상부 전극과 상기 하부 전극 사이에 용액 방울을 부양하는 단계는: 니들을 상기 하부 전극의 중심에 형성된 관통홀을 통하여 상승시키는 단계; 상기 상승된 니들의 일단으로 용액을 토출하여 예비 용액 방울을 형성하는 단계; 상기 예비 용액 방울을 양의 전하로 대전시키는 단계; 및 상기 니들을 하강시키는 단계를 포함할 수 있다.According to an embodiment of the present invention, the step of lifting the droplet between the upper electrode and the lower electrode includes: moving the needle through the through hole formed in the center of the lower electrode; Discharging the solution to one end of the raised needle to form a preliminary solution droplet; Charging the preliminary solution droplet with a positive charge; And lowering the needle.

본 발명의 일 실시예에 있어서, 상기 결정은 AH2PO4 (A=K, NH4, Cs), ABCl3 (A=Cs, K, Rb; B= Co, Cu, Zn, Cd, Mn), LiASO4 (A= Cs, K), CuS04 ·5H2O, K3Fe(CN)6, DKDP, KDCO3, NiSO4 ·6H2O, NaKC4H4O6 (Potassium sodium tartrate, Rochelle Salt), (NH2CH2COOH)3·H2SO4 (Triglycine sulfate ;TGS), KD2PO4 (Deuterated potassium dihydrogen phosphate; DKDP), NaCl, 단백질 결정, 또는 KH2PO4(potassium dihydrogen phosphate;KDP)일 수 있다.In one embodiment of the present invention, the crystal is selected from the group consisting of AH 2 PO 4 (A = K, NH 4, Cs), ABCl 3 (A = Cs, K, Rb; B = Co, Cu, Zn, LiASO 4 (A = Cs, K ), CuS0 4 · 5H 2 O, K 3 Fe (CN) 6, DKDP, KDCO 3, NiSO 4 · 6H 2 O, NaKC 4 H 4 O 6 (Potassium sodium tartrate, Rochelle Salt ), (NH 2 CH 2 COOH ) 3 · H 2 SO 4 (Triglycine sulfate; TGS), KD 2 PO 4 (Deuterated potassium dihydrogen phosphate; DKDP), NaCl, protein crystals, or KH 2 PO 4 (potassium dihydrogen phosphate ; KDP).

본 발명의 일 실시예에 따른 결정 성장 장치는 정전기 부양을 이용하여 수백 마이크로미터 이상의 고순도 유전체 단결정 또는 단백질 단결정을 성장시킬 수 있다. 상기 결정 성장 방법은 공중에 부양된 수용액은 비접촉식으로 용기를 포함하지 않는다. 상기 결정 성장 방법은 증발에 의해 시드 결정을 사용하지 않고 결정을 형성할 수 있다. A crystal growth apparatus according to an embodiment of the present invention can grow a high-purity dielectric single crystal or protein single crystal of several hundreds of micrometers or more using an electrostatic levitation. In the crystal growth method, the aqueous solution floated in air does not include the vessel in a non-contact manner. The crystal growth method can form crystals without using seed crystals by evaporation.

본 발명의 일 실시예에 따른 결정 성장 장치는 용기(crucible)을 사용하지 않는다. 따라서, 상기 결정 성장 방법은 이질의 핵성장 자리(heterogeneous nucleation site)를 배제할 수 있다. 또한, 온도 및 습도 조절은 빠른 결정성장을 제공할 수 있다. A crystal growth apparatus according to an embodiment of the present invention does not use a crucible. Therefore, the crystal growth method can exclude a heterogeneous nucleation site. In addition, temperature and humidity control can provide fast crystal growth.

본 발명의 일 실시예에 따른 결정 성장 장치는 순수한 결정 성장 메커니즘 연구 수단을 제공할 수 있다.A crystal growth apparatus according to an embodiment of the present invention can provide a means for studying a pure crystal growth mechanism.

본 발명의 일 실시예에 따른 결정 성장 장치는 용액에 과냉각/과포화 상태 를 제공할 수 있다. 이에 따라, 결정 성장 장치는 준안정적 상태의 물질 연구 수단을 제공할 수 있다. 수용액에서 증발을 통한 결정 형성은 결정의 씨앗인 결정 핵(nucleation) 형성과, 상기 형성된 결정 핵의 성장으로 구분될 수 있다. 단결정 성장은 낮은 핵생성율과 높은 결정성장율을 요구한다. 핵생성율과 결정성장 속도는 과냉각 정도 또는 과포화 정도에 의존할 수 있다. 상기 결정 성장 장치는 온도 및 습도 조절을 통하여 과냉각 또는 과포화 정도를 조절할 수 있다.A crystal growth apparatus according to an embodiment of the present invention may provide a solution in a supercooled / supersaturated state. Accordingly, the crystal growth apparatus can provide a metastable state material researching means. Formation of crystals through evaporation in an aqueous solution can be divided into nucleation formation, which is a seed of crystals, and growth of the formed crystal nucleus. Monocrystalline growth requires low nucleation rates and high crystal growth rates. The nucleation rate and crystal growth rate may depend on the degree of supercooling or degree of supersaturation. The crystal growth apparatus can control the degree of supercooling or supersaturation through temperature and humidity control.

도 1은 본 발명의 일 실시예에 따른 정전기 부양 결정 성장 장치를 설명하는 단면도이다.
도 2는 도 1의 정전 부양 결정 성장 장치의 평면도이다.
도 3a은 도 1의 방울 디스펜서의 노즐부를 나타내는 사시도이다.
도 3b는 도 3a의 노즐붕의 단면도이다.
도 4는 도 1의 정전기 부양 장치의 동작을 설명하는 단면도이다.
도 5는 방울 디스펜서를 설명하는 사시도이다.
도 6은 본 발명의 다른 실시예에 따른 정전기 부양 결정 성장 장치를 설명하는 도면이다.
도 7은 본 발명의 일 실시예에 따른 정전기 부양 결정 성장 방법으로 성장된 KDP 결정을 나타내는 사진이다.
도 8은 본 발명의 일 실시예에 따른 정전기 부양 결정 성장 방법으로 성장된 NaCl 결정을 나타내는 사진이다.
도 9는 KDP 수용액의 형상 변화를 나타내는 사진들이다.
도 10은 시간에 따른 KDP 수용액의 농도 변화를 나타내는 그래프이다.
1 is a cross-sectional view illustrating an apparatus for growing electrostatic free crystals according to an embodiment of the present invention.
2 is a plan view of the electrostatic floating crystal growing apparatus of FIG.
FIG. 3A is a perspective view showing a nozzle portion of the drop dispenser of FIG. 1; FIG.
Figure 3b is a cross-sectional view of the nozzle baffle of Figure 3a.
4 is a cross-sectional view illustrating the operation of the electrostatic lifting apparatus of FIG.
5 is a perspective view illustrating the droplet dispenser.
6 is a view illustrating an electrostatic floating crystal growing apparatus according to another embodiment of the present invention.
7 is a photograph showing KDP crystals grown by the electrostatic floating crystal growth method according to an embodiment of the present invention.
8 is a photograph showing NaCl crystals grown by the electrostatic floating crystal growth method according to an embodiment of the present invention.
9 is a photograph showing the shape change of the KDP aqueous solution.
10 is a graph showing the concentration change of KDP aqueous solution with time.

부양기법은 음파 부양(acoustic levitation), 초음파 부양(ultrasonic levitation), 자기 부양(magnetic levition), 전기역학 부양(electro-dynamic levitation), 정전기 부양(electrostatic levitation) 등이 있다.Floating techniques include acoustic levitation, ultrasonic levitation, magnetic levitation, electro-dynamic levitation, and electrostatic levitation.

수용액에서 결정 성장는 부양기법에 따라 임계적으로 의존할 수 있다. Crystal growth in aqueous solutions can be critically dependent on floatation techniques.

음파 부양(acoustic levitation)은 수용액을 쉽게 부양하는 장점을 가진다. 그러나, 부양 상태에서, 음파 또는 초음파는 시료에 음압(sound pressure)을 인가하기 때문에 시료의 내부 요동을 발생시킬 수 있다. 내부 요동은 과포화 상태와 같은 준정전(quasi-static) 상태를 파손시켜 다결정화를 유도할 수 있다. 또한, 상기 음압(sound pressure)는 시료의 모양을 변화시킬 수 있으면, 시료으 온도를 주변부보다 높게 만들 수 있다. 따라서, 음파 부양 장치는 단결정 성장에는 부적합할 수 있다.Acoustic levitation has the advantage of easily flooding the aqueous solution. However, in a floating state, sound waves or ultrasonic waves may cause internal fluctuation of a sample because sound pressure is applied to the sample. Internal shaking can lead to polycrystallization by breaking quasi-static conditions such as supersaturation. In addition, the sound pressure can make the temperature of the sample higher than the peripheral portion if the shape of the sample can be changed. Thus, a sonic flotation device may be unsuitable for single crystal growth.

자기 부양(magetic levitation)은 자성이 있는 물질만 부양시키는 단점을 가진다. Magnetic levitation (magetic levitation) has the disadvantage of supporting only magnetic materials.

미국 공개 특허 US2009/0076294A1을 참조하면, 전기역학 부양(electrodynamic levitation)을 이용한 부양 방법이 개시되었다. 상기 전기역학 부양 장치는 용액 방울을 부양하기 위하여 전기자기장(elecromagnetic field)을 이용한다. 그러나, 상기 전기역학 부양에서는, 부양할 수 있는 용액 방울이 수십 내지 수백 마이크로미터이므로, 생성되는 결정의 지름은 밀리미터 이하의 매우 작은 크기이다. 상기 전기역학 부양은 수 밀리미터의 직경을 가지는 단결정 성장을 제공하기 어렵다.With reference to US patent application US2009 / 0076294A1, a floatation method using electrodynamic levitation has been disclosed. The electro-dynamic lifting device uses an elecromagnetic field to float the droplets of the solution. However, in the above electrodynamic levitation, since the droplet of droplet that can be floated is tens to hundreds of micrometers, the diameter of the generated crystal is very small, which is smaller than millimeter. The electrokinetic levitation is difficult to provide single crystal growth with a diameter of several millimeters.

음파 또는 시변 전기장은 부양된 시료의 내부에 영향을 줄 수 있다. 따라서, 단결정 성장을 위하여 외부 요동이 없는 비접촉식 결정 성장 방법이 요구된다. 또한, 수 밀리미터의 직경을 가지는 단결정 성장을 제공할 수 있는 새로운 결정 성장 방법이 요구된다. 현재까지, 부양된 용액을 이용하여 수 밀리미터의 직경을 가지는 단결정 성장은 지금 까지 보고되지 않았다. A sound wave or a time-varying electric field can affect the interior of the flooded sample. Therefore, there is a need for a noncontact crystal growth method that does not have external fluctuations for single crystal growth. There is also a need for a new crystal growth method that can provide single crystal growth with a diameter of a few millimeters. Until now, single crystal growth with a diameter of a few millimeters using a floated solution has not been reported so far.

정전기 부양 장치는 대전된 용액 방울을 중력에 반하여 부양할 수 있다. 따라서, 상기 정전기 부양 장치는 결정 성장을 위하여 수납 용기를 제거할 수 있다. 정전기 부양된 용액 방울은 그 표면에만 전하를 가질 수 있다. 따라서, 상기 정전기 부양 장치는 외부 요동을 최소화하면서 안정적으로 용액 방울을 부양할 수 있다.The electrostatic lifting device can float charged droplets against gravity. Therefore, the electrostatic lifting apparatus can remove the storage container for crystal growth. Electrostatic levitation droplets may have charge only on their surface. Therefore, the electrostatic lifting device can float the droplets stably while minimizing the external fluctuation.

본 발명의 일 실시예에 따른 결정 성장 방법은 정전기 부양된 용액으로부터 증발을 통하여 단결정 상태의 용질을 제공할 수 있다. 정전기 부양 기술은 용액의 진동 에너지와 같은 외부 충력을 억제할 수 있다.A crystal growth method according to an embodiment of the present invention can provide a monocrystal solute through evaporation from an electrostatic floating solution. The electrostatic levitation technique can suppress external charge such as the vibration energy of the solution.

본 발명의 일 실시예에 따른 정전기 부양 장치에서, 방울 디스펜서의 노즐부는 수 밀리미터 이상의 크기를 가진 대전된 예비 용액 방울을 분출할 수 있다. 그러나, 상기 예비 용액 방울은 점성을 가진다. 따라서, 큰 점성을 가진 상기 예비 용액 방울이 상기 노즐부로부터 분리되는 것이 어렵다. 용액 절단부는 상기 노즐부로부터 상기 예비 용액 방울을 분리할 수 있다. 이에 따라, 수 밀리미터 이상의 크기를 가진 용액 방울은 정전기 부양될 수 있다.In the electrostatic flotation apparatus according to an embodiment of the present invention, the nozzle portion of the droplet dispenser may eject a charged preliminary solution droplet having a size of several millimeters or more. However, the preliminary solution droplet has a viscosity. Therefore, it is difficult for the preliminary solution droplet having a large viscosity to be separated from the nozzle portion. The solution cutoff portion can separate the preliminary solution droplet from the nozzle portion. Accordingly, a droplet having a size of several millimeters or more can be electrostatically levitated.

본 발명의 일 실시예에 따른 정전기 부양 장치는 음압(sound pressure)을 부양된 용액 방울에 인가하지 않는다. 그러나, 음파 부양(acoustic levitation) 또는 초음파 부양(ultrasonic levitation)은 음압을 부양된 용액 방울에 인가한다. 따라서, 상기 정전기 부양 장치는 부양된 용액 방울의 내부에 영향을 주지 않을 수 있다. 상기 정전기 부양 장치는 부양된 용액 방울 내에서 안정적인 결정 성장을 위한 환경을 제공할 수 있다. 또한, 상기 정진기 부양된 용액 방울의 용매가 증발함에 따라, 상기 부양된 용액 방울은 과포화 상태를 형성할 수 있다. 따라서, 상기 과포화 상태의 용액 방울은 안정적으로 결정을 성장시킬 수 있다.The electrostatic lifting device according to one embodiment of the present invention does not apply sound pressure to the suspended solution drops. However, acoustic levitation or ultrasonic levitation applies a negative pressure to the suspended solution drops. Thus, the electrostatic lifting device may not affect the inside of the flooded solution droplet. The electrostatic lifting device can provide an environment for stable crystal growth in the suspended solution drops. In addition, as the solvent of the float solution floating in the stirrer evaporates, the floating solution droplet may form a supersaturated state. Therefore, the solution droplets in the supersaturated state can stably grow crystals.

음파 부양(Acoustic levitation) 또는 초음파 부양(ultrasonic levitation)의 경우, 음압에 의해 시료의 형상이 변형될 수 있다. 따라서, 변형된 형상의 부피 측정은 어렵다. 따라서, 부양된 용액 방울의 밀도 변화 또는 부양된 용액 방울의 농도 변화의 측정은 어렵다.In the case of acoustic levitation or ultrasonic levitation, the shape of the sample may be deformed by the negative pressure. Therefore, it is difficult to measure the volume of the deformed shape. Therefore, it is difficult to measure the density change of the floated solution droplet or the concentration change of the floated solution droplet.

한편, 본 발명의 일 실시예에 따른 정전기 부양 장치는 부양된 용액 방울을 일정한 모양(구형)으로 유지시킬 수 있다. 따라서, 우리는 부양된 용액 방울의 부피를 정확히 측정할 수 있다.Meanwhile, the electrostatic lifting apparatus according to an embodiment of the present invention can maintain the floating droplets of the solution in a predetermined shape (spherical). Therefore, we can accurately measure the volume of suspended solution drops.

본 발명의 일 실시예에 따른 정전기 부양 장치는 부양된 용액 방울의 점도 및 표면장력의 측정을 제공할 수 있다.An electrostatic lifting device according to an embodiment of the present invention can provide a measure of the viscosity and surface tension of a floated solution droplet.

본 발명의 일 실시예에 따른 정전기 부양 장치는 바이오 분야, 콜로이드 분야, 물리 분야, 화학 분야 등 다양한 분야의 시료에 적용될 수 있다.The electrostatic lifting apparatus according to an embodiment of the present invention can be applied to various fields such as bio-field, colloid field, physical field, and chemical field.

본 발명의 일 실시예에 따른 정전기 부양 장치는 수 백 마이크로미터 이상의 크기를 가진 고순도의 단결정을 생산할 수 있다.The electrostatic lifting apparatus according to an embodiment of the present invention can produce a high-purity single crystal having a size of several hundreds of micrometers or more.

본 발명의 일 실시예에 따른 정전기 부양 장치는 수 밀리미터 이상의 큰 시료를 부양한다. 따라서, 상기 시료의 결정화 메커니즘 또는 결정화 단계는 실시간으로 관찰될 수 있다.An electrostatic lifting apparatus according to an embodiment of the present invention supports a large sample of several millimeters or more. Therefore, the crystallization mechanism or the crystallization step of the sample can be observed in real time.

본 발명의 일 실시예에 따른 정전기 부양 장치는 부양된 용액 방울에 과포화 상태를 제공할 수 있다. 과포화정도는 결정성장의 속도를 결정한다. 일반적인 수조에서의 결정성장은 과포화시 수조바닥 및 벽면으로부터 결정이 생성되어 단결정 성장을 방해한다. 따라서, 일반적인 수조에서의 결정성장은 과포화상태를 크게 만들 수 없다. 따라서, 부양에 의해 수조벽이 제거된 상기 정전기 부양 장치는 매우 큰 과포화상태를 만들 수 있으므로 단결정 성장 시간을 단축할 수 있다. The electrostatic lifting device according to one embodiment of the present invention can provide a supersaturated state to the floated solution droplets. The degree of supersaturation determines the rate of crystal growth. Crystalline growth in a general water bath produces crystals from the bottom and walls of the tank during supersaturation, which interferes with the growth of single crystals. Therefore, crystal growth in a general water tank can not make the supersaturated state large. Therefore, the electrostatic flotation apparatus in which the water jacket wall is removed by the float can make a supersaturated state so that the single crystal growth time can be shortened.

본 발명의 일 실시예에 따른 정전기 부양장치는 타 음압부양장치나 전기역학부양장치와는 달리 외부 힘 (음압, 전자기력)의 변화가 없어 결정성장에 필요한 과포화 정도를 잘 제어할 수 있으므로, 과포화 용액에 결정 성장을 유도할 수 있는 탐침을 접촉시켜 각 과포화 정도에 따른 결정성장 메카니즘을 쉽게 연구할 수 있다.Since the electrostatic lifting apparatus according to an embodiment of the present invention does not change the external force (negative pressure, electromagnetic force) unlike the other negative pressure lifting apparatus or the electrodynamic lifting apparatus, the degree of supersaturation required for crystal growth can be well controlled, Can contact a probe capable of inducing crystal growth, so that the crystal growth mechanism depending on the degree of each supersaturation can be easily studied.

상기 정전기 부양 장치에 의해 제공되는 과포화 용액은 준안정상태에 있으므로 준안정성의 새로운 물질을 생성하는 것이 가능하다. Since the supersaturated solution provided by the electrostatic lifting device is in a metastable state, it is possible to generate a new metastable substance.

자외선 노출은 부양된 폴리머에 균일한 경화를 제공할 수 있다. 자외선 노출은 부양된 단백질 액체에 균일한 상전이를 제공할 수 있다.Exposure to ultraviolet light can provide uniform curing to the suspended polymer. Ultraviolet exposure can provide a uniform phase transition to the floated protein liquid.

*이하, 첨부된 도면을 참조로 본 발명의 바람직한 실시예들에 대하여 보다 상세히 설명한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. In the following drawings, like reference numerals refer to like elements, and the size of each element in the drawings may be exaggerated for clarity and convenience of explanation.

도 1은 본 발명의 일 실시예에 따른 정전기 부양 결정 성장 장치를 설명하는 단면도이다.1 is a cross-sectional view illustrating an apparatus for growing electrostatic free crystals according to an embodiment of the present invention.

도 2는 도 1의 정전 부양 결정 성장 장치의 평면도이다.2 is a plan view of the electrostatic floating crystal growing apparatus of FIG.

도 3a은 도 1의 방울 디스펜서의 노즐부를 나타내는 사시도이다.FIG. 3A is a perspective view showing a nozzle portion of the drop dispenser of FIG. 1; FIG.

도 3b는 도 3a의 노즐붕의 단면도이다.Figure 3b is a cross-sectional view of the nozzle baffle of Figure 3a.

도 4는 도 1의 정전기 부양 장치의 동작을 설명하는 단면도이다.4 is a cross-sectional view illustrating the operation of the electrostatic lifting apparatus of FIG.

도 5는 방울 디스펜서를 설명하는 사시도이다.5 is a perspective view illustrating the droplet dispenser.

도 1 내지 도 5를 참조하면, 정전기 부양 결정 성장 장치(100)는 상부 전극(112), 상기 상부 전극(112)과 수직으로 이격되어 배치된 하부 전극(114), 상기 상부 전극(112)과 상기 하부 전극(114) 사이에 수직 정전기장(electrostatic field)을 인가하는 전원부(118), 및 상기 상부 전극(112)과 상기 하부 전극(114) 사이에 용액을 방출하여 용액 방울(solution droplet)을 형성하는 방울 디스펜서(droplet dispenser)를 포함한다. 상기 용액 방울(10)은 하전 상태(charged state)로 유지되고 중력에 반하여 상기 수직 정전기장에 의하여 정전기 부양된다. 상기 용액 방울은 상기 정전기 부양된 상태(electrostatically levitated state)에서 증발하고, 상기 용액에 용해된 용질은 결정으로 성장한다.1 to 5, the electrostatic standing crystal growth apparatus 100 includes an upper electrode 112, a lower electrode 114 vertically spaced apart from the upper electrode 112, A power supply part 118 applying a vertical electrostatic field between the lower electrodes 114 and a solution droplet by discharging a solution between the upper electrode 112 and the lower electrode 114. [ And a droplet dispenser to form the droplet dispenser. The droplet 10 is maintained in a charged state and is electrostatically levitated by the vertical electrostatic field against gravity. The solution droplets evaporate in the electrostatically levitated state, and the solute dissolved in the solution grows into crystals.

상기 상부 전극(112)은 원판 형상으로 도전체일 수 있다. 구체적으로, 상기 상부 전극(112)은 구리 재질일 수 있다. 상기 상부 전극(112)은 상기 하부 전극에 대하여 음의 전위(electric potential)로 유지될 수 있다. 이에 따라, 수직 정전기장은 상기 하부 전극에서 상부 전극 방향을 가질 수 있다. 이에 따라, 상기 용액 방울이 양의 전하로 대전된 경우, 정전기력(electrosatic force)은 중력에 반하여 상기 용액 방울에 인가될 수 있다. 이에 따라, 상기 용액 방울은 정전기 부양될 수 있다. 상기 상부 전극은 구형 또는 타원형으로 변형될 수 있다.The upper electrode 112 may be a disk-shaped conductor. Specifically, the upper electrode 112 may be made of copper. The upper electrode 112 may be maintained at a negative electric potential with respect to the lower electrode. Accordingly, the vertical electrostatic field can have the direction of the upper electrode from the lower electrode. Thus, when the droplet is charged with a positive charge, an electrosatic force can be applied to the droplet against gravity. Accordingly, the droplet of the solution can be electrostatically levitated. The upper electrode may be deformed into a spherical shape or an elliptical shape.

상기 하부 전극(114)은 상기 상부 전극(112)과 수직으로 정렬될 수 있다. 상기 하부 전극(114)은 도전체일 수 있다. 상기 하부 전극(114)은 구리 재질일 수 있다. 상기 하부 전극(114)은 상기 상부 전극에 대하여 양의 전위로 유지될 수 있다. 상기 하부 전극(114)은 접지될 수 있다. 상기 하부 전극(114)의 중심에는 관통홀(114a)이 배치될 수 있다. 상기 관통홀(114a)의 직경은 5 mm 내지 15 mm일 수 있다. The lower electrode 114 may be vertically aligned with the upper electrode 112. The lower electrode 114 may be a conductive material. The lower electrode 114 may be made of copper. The lower electrode 114 may be maintained at a positive potential with respect to the upper electrode. The lower electrode 114 may be grounded. A through hole 114a may be formed in the center of the lower electrode 114. The diameter of the through hole 114a may be 5 mm to 15 mm.

상기 상부 전극(112)과 상기 하부 전극(114) 사이에 수직 정전기장이 인가될 수 있다. 상기 수직 정전기장의 방향은 상부 전극 방향(음의 z축 방향)일 수 있다. 상기 하부 전극(114)의 직경은 상기 상부 전극(112)보다 클 수 있다. 상기 전기력선은 수직 방향으로 집속될 수 있다. 이에 따라, 집속된 정전기장은 부양된 시료의 수평 방향 안정성을 제공할 수 있다. 상기 상부 전극(112)에 대한 상기 하부 전극(114)의 직경의 비는 2 내지 10 일 수 있다. 상기 상부 전극(112)과 상기 하부 전극(114) 사이의 간격은 수십 밀리미터 내지 수 센치 미터일 수 있다.  A vertical electrostatic field may be applied between the upper electrode 112 and the lower electrode 114. The direction of the vertical electrostatic field may be the upper electrode direction (negative z-axis direction). The diameter of the lower electrode 114 may be greater than the diameter of the upper electrode 112. The electric lines of force may be focused in a vertical direction. Thus, the focused electrostatic field can provide horizontal stability of the floated sample. The ratio of the diameter of the lower electrode 114 to the upper electrode 112 may be 2 to 10. The distance between the upper electrode 112 and the lower electrode 114 may be several tens of millimeters to several centimeters.

상기 수직 정전기장의 방향은 음의 z축 방향인 경우, 상기 하부 전극(114)의 상부면에는 양의 표면전하(surface charge)가 유도되고, 상기 상부 전극(112)의 하부면에는 음의 표면 전하가 유도될 수 있다. 상기 하부 전극(114)의 전위는 상기 상부 전극(112)의 전위보다 높을 수 있다. 상기 하부 전극(114)은 접지되고, 상기 상부 전극(112)은 음의 직류 전압으로 유지될 수 있다.When the direction of the vertical electrostatic field is in the negative z-axis direction, a positive surface charge is induced on the upper surface of the lower electrode 114, and a negative surface charge Can be induced. The potential of the lower electrode 114 may be higher than that of the upper electrode 112. The lower electrode 114 may be grounded and the upper electrode 112 may be maintained at a negative DC voltage.

상기 상부 전극(112)과 상기 하부 전극(114) 사이의 공간은 대기로 채워질 수 있다. 상기 대기의 압력은 대기압일 수 있다. 상기 대기에 포함된 먼지는 상기 용액 방울에 불순물로 작용할 수 있다. 이에 따라, 상기 대기 중에 포함된 먼지는 필터를 통하여 제거될 수 있다. 상기 상부 전극(112)과 상기 하부 전극(114) 사이의 거리는 수 밀리미터 내지 수 센치미터일 수 있다. 상기 하부 전극(112)과 상부 전극(114) 사이에 인가되는 수직 정전기장의 세기는 유전체 파괴 전기장(dielectic breakdown electric field or dielectric strength)의 수 분의 1 내지 수십 분의 1 일 수 있다.The space between the upper electrode 112 and the lower electrode 114 may be filled with air. The pressure of the atmosphere may be atmospheric pressure. The dust contained in the atmosphere may act as an impurity on the droplet of the solution. Accordingly, the dust contained in the atmosphere can be removed through the filter. The distance between the upper electrode 112 and the lower electrode 114 may be several millimeters to several centimeters. The intensity of the vertical electrostatic field applied between the lower electrode 112 and the upper electrode 114 may be one to several tenths of a dielectic breakdown electric field or dielectric strength.

밀폐부(130)는 상기 부양된 용액 방울을 감싸는 밀폐된 공간을 제공할 수 있다. 상기 하부 전극(114) 및 상기 하부 전극(114)는 상기 밀폐부(130)의 내부에 배치될 수 있다. 상기 밀폐부(130)는 아크릴 재질의 글러브 박스(glove box)일 수 있다. 상기 밀폐부(130)는 미세 먼지를 제거하는 공기 필터를 포함할 수 있다. 이에 따라, 상기 밀폐부(130)는 미세 먼지가 제거된 공기를 밀폐부 내부에 제공할 수 있다. 또한, 상기 밀폐부(130)의 압력은 대기압 또는 대기압보다 높게 유지될 수 있다. 이에 따라, 상기 밀폐부(130)의 공기는 외부로 서서히 유출되면서, 먼지가 상기 밀폐부 내부로 유입되는 것을 억제할 수 있다.Closure 130 may provide an enclosed space enclosing the floated solution droplets. The lower electrode 114 and the lower electrode 114 may be disposed inside the sealing part 130. The sealing part 130 may be a glove box made of acrylic material. The hermetic seal 130 may include an air filter for removing fine dust. Accordingly, the sealing part 130 can provide the air with the fine dust removed therein. In addition, the pressure of the sealing portion 130 may be maintained higher than atmospheric pressure or atmospheric pressure. Accordingly, the air of the closed portion 130 gradually flows out to the outside, and dust can be prevented from flowing into the inside of the closed portion.

상기 밀폐부(130)는 적외선 대역 또는 가시광선 대역에서 투명한 재질의 유리 또는 아크릴 재질이 바람직할 수 있다. 이에 따라, 상기 부양된 용액 방울의 위치는 실시간으로 모니터링될 수 있다. 상기 밀폐부(130)는 속이 빈 다각기둥 형태일 수 있다. The closure 130 may be made of glass or acrylic material of transparent material in the infrared band or the visible light band. Accordingly, the position of the floated solution droplet can be monitored in real time. The closure 130 may be in the form of a hollow prism.

구체적으로, 상기 밀폐부(130)는 8각 기둥 형태일 수 있다. 상기 밀폐부의 밑면은 테이블에 장착될 수 있다. 서로 마주보는 한 쌍의 측면에는 수직 위치 측정용 광원(161)과 수직 위치 검출부(162)가 배치될 수 있다. 상기 수직 위치 측정용 광원(161) 및 상기 수직 위치 검출부(162)는 상기 밀폐부(130)의 외부에 배치될 수 있다.Specifically, the sealing portion 130 may be in the form of an octagonal column. The bottom surface of the closed portion can be mounted on the table. A light source 161 for vertical position measurement and a vertical position detection unit 162 may be disposed on a pair of side faces facing each other. The vertical position measuring light source 161 and the vertical position detecting unit 162 may be disposed outside the sealing unit 130.

수직 위치 측정용 광원(161)은 상기 부양된 용액 방울에 광을 조사할 수 있다. 수직 위치 측정용 광원(161)은 수 밀리미터의 빔 직경을 가진 레이저 빔을 출력할 수 있다. 상기 레이저 빔은 상기 부양된 용액 방울에서 산란될 수 있다. 수직 위치 측정용 광원(161)은 가시 광선 영역의 헬륨-레온 레이저일 수 있다.The light source 161 for vertical position measurement can irradiate light onto the floating droplets of the solution. The light source 161 for vertical position measurement can output a laser beam having a beam diameter of several millimeters. The laser beam can be scattered in the suspended solution drops. The light source 161 for vertical position measurement may be a helium-ray laser in the visible light region.

상기 수직 위치 검출부(162)는 상기 수직 위치 측정용 광원(161)에 조사된 상기 부양된 용액 방울의 위치를 검출할 수 있다. 상기 수직 위치 검출부(162)는 위치 검출기(position sensitive detector )일 수 있다. 상기 수직 위치 검출부(162)는 2차원 위치 검출기일 수 있다. 상기 수직 위치 검출부(162)는 용액 방울의 수직 위치(z 축 위치) 및 수평 위치(y 축 위치)를 검출할 수 있다. 상기 수직 위치는 전원부(118)에 제공되고, 상기 전원부(118)는 출력 전압을 제어할 수 있다. 이에 따라, 상기 용약 방울의 수직 위치는 제어될 수 있다. The vertical position detecting unit 162 may detect the position of the floated droplet irradiated on the vertical position measuring light source 161. The vertical position detector 162 may be a position sensitive detector. The vertical position detector 162 may be a two-dimensional position detector. The vertical position detecting unit 162 can detect the vertical position (z-axis position) and the horizontal position (y-axis position) of the droplet of the solution. The vertical position may be provided to the power supply unit 118, and the power supply unit 118 may control the output voltage. Accordingly, the vertical position of the drug droplet can be controlled.

전원부(118)는 상기 상부 전극(112)과 상기 하부 전극(114) 사이에 직류 전압(-Vdc)을 인가할 수 있다. 상기 전원부(118)는 전압 제어부를 포함할 수 있다. 상기 전압 제어부는 비례적분미분(PID) 제어를 수행할 수 있다. 상기 전압 제어부는 수직 위치 측정부로부터 수직 위치 신호를 제공받을 수 있다. 구체적으로, 용액 방울이 기준 위치보다 아래로 이동한 경우, 상기 수직 정전기장의 세기는 증가할 수 있다. 상기 용액 방울이 기준 위치보다 위로 이동한 경우, 상기 수직 정전기장의 세기는 감소할 수 있다. The power supply unit 118 may apply a DC voltage (-Vdc) between the upper electrode 112 and the lower electrode 114. The power supply unit 118 may include a voltage control unit. The voltage control unit may perform proportional integral derivative (PID) control. The voltage control unit may receive a vertical position signal from the vertical position measurement unit. Specifically, when the solution droplet is moved below the reference position, the intensity of the vertical electrostatic field can increase. If the solution droplet moves above the reference position, the intensity of the vertical electrostatic field may decrease.

상기 정전기 부양 장치는 중력에 반하여 수직 정전기장 또는 수직 전압을 제어하여 대전된 시료 또는 대전된 용액 방울을 부양시킬 수 있다. 상기 대전된 용액 방울은 대기압의 공기와 접촉할 수 있다. 상기 공기의 온도는 상온일 수 있다. 구체적으로, 상기 공기의 온도는 섭씨 20 도 내지 섭씨 40일 수 있다. 상기 공기 중의 먼지는 공기 필터를 통하여 제거될 수 있다. 상기 공기의 습도는 일정하게 유지될 수 있다. 상기 공기의 상대습도는 30 퍼센트 내지 90 퍼센트일 수 있다.The electrostatic lifting device can control a vertical static field or a vertical voltage against gravity to flood the charged sample or the charged solution droplet. The charged droplets of the solution may contact air at atmospheric pressure. The temperature of the air may be room temperature. Specifically, the temperature of the air may be from 20 degrees centigrade to 40 degrees centigrade. The dust in the air can be removed through the air filter. The humidity of the air can be kept constant. The relative humidity of the air can be from 30 percent to 90 percent.

통상적인 진공 상태에서 동작하는 정전기 부양 장치와 달리, 본 발명의 일 실시예에 따른 정전기 부양 장치는 공기의 대기압에서 동작할 수 있다. 진공 상태에서 동작하는 정전기 부양 장치는 중력에 수직한 평면(x-y 평면)에서 시료의 위치를 제어하는 보조 전극들(116a,116b)을 포함할 수 있다. Unlike an electrostatic flotation apparatus that operates in a conventional vacuum, the electrostatic flotation apparatus according to one embodiment of the present invention can operate at atmospheric pressure of air. An electrostatic flotation apparatus operating in a vacuum state may include auxiliary electrodes 116a, 116b that control the position of the sample in a plane (x-y plane) normal to gravity.

대기 중에서 동작하는 정전기 부양 장치는 중력에 수직한 평면(x-y 평면)에서 시료의 위치를 제어하는 보조 전극들(116a,116b)이 제거된 구조를 포함할 수 있다. 즉, 대기는 점성을 가진 유체로 상기 부양된 시료에 마찰력 또는 감쇠력(damping force)을 제공할 수 있다.The electrostatic flotation apparatus operating in the atmosphere may include a structure in which auxiliary electrodes 116a and 116b controlling the position of the sample in a plane (x-y plane) perpendicular to gravity are removed. That is, the atmosphere can provide a frictional or damping force to the floated sample with a viscous fluid.

대기 중에서 동작하는 정전기 부양 장치는 중력에 평행한 수직 방향의 시료의 위치를 용이하게 제어할 수 있다. 즉, 공기는 점성을 가진 매질로 상기 부양된 시료에 마찰력 또는 감쇠력(damping force)을 제공할 수 있다. 따라서, 대기 중에서 동작하는 정전기 부양 장치는 진공 상태보다, 수직 위치의 요동없이 안정적인 수직 위치 제어를 제공할 수 있다.An electrostatic lifting device operating in the atmosphere can easily control the position of the sample in the vertical direction parallel to gravity. That is, air can provide frictional or damping force to the floated sample with a viscous medium. Therefore, the electrostatic lifting apparatus operating in the atmosphere can provide stable vertical position control without oscillation of the vertical position, rather than the vacuum state.

용액 방울(10)은 용매에 용해된 용질을 포함할 수 있다. 상기 용매는 물(H2O)과 같은 휘발성 물질일 수 있다. 상기 용질은 비휘발성일 수 있다. 증발 속도를 제어하기 위하여, 용매는 2 개 이상일 수 있다. 상기 용질 또는 결정은 AH2PO4 (A=K, NH4, Cs), ABCl3 (A=Cs, K, Rb; B= Co, Cu, Zn, Cd, Mn), LiASO4 (A= Cs, K), CuS04 ·5H2O, K3Fe(CN)6, DKDP, KDCO3, NiSO4 ·6H2O, NaKC4H4O6 (Potassium sodium tartrate, Rochelle Salt), (NH2CH2COOH)3·H2SO4 (Triglycine sulfate ;TGS), KD2PO4 (Deuterated potassium dihydrogen phosphate; DKDP), NaCl, 단백질 결정, 또는 KH2PO4(potassium dihydrogen phosphate;KDP)일 수 있다.The droplet 10 may comprise a solute dissolved in a solvent. The solvent may be a volatile substance such as water (H 2 O). The solute may be non-volatile. To control the rate of evaporation, the solvent may be more than one. The solute or decision AH 2 PO 4 (A = K , NH4, Cs), ABCl 3 (A = Cs, K, Rb; B = Co, Cu, Zn, Cd, Mn), LiASO 4 (A = Cs, K), CuS0 4 · 5H 2 O, K 3 Fe (CN) 6, DKDP, KDCO 3, NiSO 4 · 6H 2 O, NaKC 4 H 4 O 6 (Potassium sodium tartrate, Rochelle Salt), (NH 2 CH 2 COOH) 3 · H 2 SO 4 (Triglycine sulfate; TGS), KD 2 PO 4 (Deuterated potassium dihydrogen phosphate; DKDP), NaCl, protein crystals, or KH 2 PO 4 (potassium dihydrogen phosphate ; KDP) Lt; / RTI >

상기 용질은 섭씨 30도 이상의 고온의 용매에 용해될 수 있다. 이어서, 상기 용질이 용해된 용액은 섭씨 30도 이하의 저온으로 냉각될 수 있다. 이에 따라, 상기 용액은 포화 용액으로 준비될 수 있다. The solute may be dissolved in a high temperature solvent of 30 degrees Celsius or more. The solution in which the solute is dissolved can then be cooled to a low temperature of 30 degrees Celsius or less. Accordingly, the solution can be prepared as a saturated solution.

상기 방울 디스펜서(120)는 상기 용액을 용액 방울(10)로 상기 정전기 부양 장치에 투입할 수 있다. 또한, 상기 방울 디스펜서(120)는 상기 용액 방울(10)을 상기 하부 전극(114)의 표면 전하와 동일한 전하로 대전시킬 수 있다. 상기 방울 디스펜서(120)는 상기 용액 방울(10)을 양의 전하로 대전시킬 수 있다.The droplet dispenser 120 may inject the solution into the electrostatic lifting device 10 with droplets 10. The droplet dispenser 120 may charge the droplet 10 with the same charge as the surface charge of the lower electrode 114. The droplet dispenser 120 can charge the droplet 10 with a positive charge.

상기 방울 디스펜서(120)는 예비 용액 방울을 분출하는 노즐부(122)를 포함할 수 있다. 상기 노즐부(122)는 유체 통로를 제공하고 상기 용액(11)을 방출하여 상기 예비 용액 방울(10a)을 형성하는 니들(needle,123), 및 상기 니들(123)을 감싸고 상기 니들의 일단이 통과하도록 벌어지는 구멍을 가지는 상부 커버(125)를 포함하는 방울 절단부(126)를 포함할 수 있다. 상기 니들(123)이 상기 상부 커버(125) 위로 돌출된 상태에서 상기 예비 용액 방울을 방출한 경우, 상기 방울 절단부(126)는 상기 방출된 예비 용액 방울(10a)을 절단하여 용액 방울(10)을 생성할 수 있다.The drop dispenser 120 may include a nozzle portion 122 for ejecting a preliminary solution droplet. The nozzle unit 122 includes a needle 123 for providing a fluid path and releasing the solution 11 to form the preliminary solution droplet 10a and a needle 122 for surrounding the needle 123, And a top cover 125 having an opening that flares to pass therethrough. The droplet cutting unit 126 cuts the discharged preliminary solution droplet 10a to remove the droplet 10 from the droplet 10 when the preliminary solution droplet is discharged while the needle 123 protrudes above the upper cover 125. [ Can be generated.

상기 방울 디스펜서의 노즐부(122)는 상기 하부 전극(114)의 중심에 형성된 관통홀(114a)을 통하여 삽입될 수 있다. 상기 노즐부(122)의 일단은 상기 관통홀(114a)을 통하여 상기 상부 전극(112)과 하부 전극(114)의 중심 부위에 삽입될 수 있다. 상기 노즐부(122)는 상기 관통홀(114a)을 통하여 수직 운동을 수행할 수 있다. 상기 노즐부(122)는 상기 용액 방울을 형성한 후 바로 하강할 수 있다. The nozzle unit 122 of the droplet dispenser may be inserted through the through hole 114a formed in the center of the lower electrode 114. [ One end of the nozzle unit 122 may be inserted into the central portion of the upper electrode 112 and the lower electrode 114 through the through hole 114a. The nozzle unit 122 may perform a vertical motion through the through hole 114a. The nozzle unit 122 may be immediately lowered after forming the droplet.

니들(needle)은 도전체로 형성될 수 있다. 상기 니들(123)은 원통 형상일 수 있다. 상기 니들(123)은 내부에 유체 통로를 포함할 수 있다. 상기 니들(123)의 일단은 연장 방향으로 반경이 순차적으로 감소하는 테이퍼 형상(123a)을 가질 수 있다. 상기 테이퍼 형상은 상기 방울 절단부(126)에 의한 충격을 억제할 수 있다. 이에 따라, 상기 테이퍼 형상은 상기 절단된 용액 방울의 떨어짐을 억제할 수 있다. 상기 니들(123)은 접지될 수 있다. 상기 니들(123)의 일단과 상기 상부 전극(112) 사이에 정전기장이 생성될 수 있다. 상기 니들(123)의 일단에는 양의 전하가 축적될 수 있다. 상기 니들의 일단은 용액을 토출하고, 상기 니들(123)의 타단은 용액 이송부(128)에 연결될 수 있다. A needle may be formed of a conductor. The needle 123 may be cylindrical. The needle 123 may include a fluid passage therein. One end of the needle 123 may have a tapered shape 123a whose radius gradually decreases in the extending direction. The tapered shape can suppress an impact caused by the droplet cutting portion 126. Thus, the tapered shape can suppress the drop of the cut solution drops. The needle 123 may be grounded. An electrostatic field can be generated between one end of the needle 123 and the upper electrode 112. [ Positive electric charges can be accumulated at one end of the needle 123. One end of the needle discharges the solution, and the other end of the needle 123 can be connected to the solution transferring part 128.

상기 상부 전극(112)과 상기 하부 전극(114) 사이에 수직 정전기장이 인가된 경우, 상기 상부 전극(112)의 하부면에는 음의 표면 전하가 유도될 수 있다. 또한, 상기 하부 전극(114)의 상부면에는 양의 표면 전하가 유도될 수 있다. 상기 니들(123)의 일단이 상기 상부 전극(112)과 상기 하부 전극(114) 사이에 위치한 경우, 상기 니들(123)은 상기 상부 전극(112)보다 높은 전위를 가질 수 있다. 이에 따라, 상기 니들(123)의 일단에는 양의 전하가 유도될 수 있다. 상기 니들(123)과 상기 상부 전극(112) 사이의 정전기장은 유전체 파괴 정전기장(dielectric breakdown electrostatic electic field)보다 작을 수 있다.When a vertical electrostatic field is applied between the upper electrode 112 and the lower electrode 114, a negative surface charge may be induced on the lower surface of the upper electrode 112. In addition, a positive surface charge can be induced on the upper surface of the lower electrode 114. When one end of the needle 123 is positioned between the upper electrode 112 and the lower electrode 114, the needle 123 may have a higher potential than the upper electrode 112. Accordingly, a positive charge can be induced at one end of the needle 123. The electrostatic field between the needle 123 and the upper electrode 112 may be less than a dielectric breakdown electrostatic electic field.

통상적으로, 상기 예비 용액 방울(10a)은 점성, 노즐부와 표면 장력, 또는 젖음력(wettign force)을 가진다. 따라서, 상기 예비 용액 방울(10a)은 상기 수직 정전기장 또는 상기 니들과 상기 상부 전극 사이의 정전기장에 의하여 노즐부(122)의 일단에서 분리되어 부양되는 것이 어렵다. 따라서 예비 용액 방울을 절단하여 용이하게 부양하는 방법이 요구된다.Typically, the preliminary solution droplet 10a has a viscosity, a nozzle portion and a surface tension, or a wettability force. Therefore, it is difficult for the preliminary solution droplet 10a to be separated from the one end of the nozzle unit 122 by the electrostatic field between the vertical electrostatic field or the needle and the upper electrode, and floated. Therefore, there is a demand for a method of easily lifting the preliminary solution droplet by cutting it.

상기 니들(123)의 일단은 접촉 대전(Triboelectric charging) 및/또는 유도 대전(induction charging)을 통하여 예비 용액 방울(10a)에 양의 전하를 제공할 수 있다. 상기 니들(123)이 접지된 도체인 경우, 정전기장에 의하여 상기 니들의 표면에 양의 전하가 유도된다. 상기 예비 용액 방울은 상기 니들(123)과 접촉을 통하여 양의 전하로 대전될 수 있다. 접촉 대전(Triboelectric charging)은 마찰(friction), 접촉(contact), 또는 분리(separatation)로 인한 대전을 포함할 수 있다. 상기 용액 방울은 상기 정전기장에 의하여 양의 전하를 가질 수 있다. One end of the needle 123 may provide positive charge to the preliminary solution droplet 10a through triboelectric charging and / or induction charging. When the needle 123 is a grounded conductor, a positive charge is induced on the surface of the needle by an electrostatic field. The preliminary solution droplet may be charged with a positive charge through contact with the needle 123. Triboelectric charging may include charging due to friction, contact, or separatation. The droplet may have a positive charge by the electrostatic field.

본 발명의 변형된 실시예에 따르면, 상기 니들은 부도체일 수 있다. 이 경우, 상기 방울 절단부는 접지된 도전체일 수 있다. 이에 따라, 상기 수직 정전기장에 의하여 상기 방울 절단부의 표면에 양의 전하가 유도된다. 상기 방울 절단부의 양의 전하는 상기 예비 용액 방울과의 접촉 대전또는 유도 대전을 통하여 상기 예비 용액 방울에 전달될 수 있다.According to a modified embodiment of the present invention, the needle may be non-conductive. In this case, the droplet cutting portion may be a grounded conductor. Accordingly, positive charges are induced on the surface of the droplet cutting portion by the vertical electrostatic field. Positive charges of the droplet cutting portion can be transferred to the preliminary solution droplet through contact charging or induced charging with the preliminary solution droplet.

본 발명의 변형된 실시예에 따르면, 상기 니들은 접지된 도전체이고, 상기 방울 절단부는 접지된 도전체일 수 있다. 이에 따라, 상기 수직 정전기장에 의하여 상기 방울 절단부의 표면 및 상기 니들의 일단에 양의 전하가 유도된다. 상기 방울 절단부의 양의 전하 및 상기 니들의 양의 전하는 상기 예비 용액 방울과의 접촉 대전 또는 유도 대전을 통하여 상기 예비 용액 방울에 전달될 수 있다. 또는, 상기 예비 용액 방울은 상기 수직 정전기장에 의하여 양의 유도 전하를 가질 수 있다.According to a modified embodiment of the present invention, the needle is a grounded conductor, and the drop cutout may be a grounded conductor. As a result, the positive electrostatic field induces a positive charge on the surface of the droplet cutting portion and one end of the needle. The positive charge of the droplet cutting portion and the positive amount of the needle can be transferred to the preliminary solution droplet through contact charging or induced charging with the preliminary solution droplet. Alternatively, the preliminary solution droplet may have a positive induced charge by the vertical electrostatic field.

상기 예비 용액 방울에 제공된 양의 전하와 상기 수직 정전기장에 의한 정전기력(electrostatic force)은 상기 용액 방울의 중력(graviation force)을 상쇄할 수 있다. 그러나, 상기 예비 용액 방울은 상기 니들 내부의 용액과 접촉할 수 있다. 이에 따라, 유체의 점성에 의하여, 상기 정전기장은 상기 예비 용액 방울을 타원 형태로 변형할 수 있다.The positive charge provided to the preliminary solution droplet and the electrostatic force due to the vertical static electric field can offset the gravitation force of the solution droplet. However, the preliminary solution droplet may contact the solution inside the needle. Thus, due to the viscosity of the fluid, the electrostatic field can deform the preliminary solution droplet into an elliptic shape.

상기 니들의 내부 직경은 수십 마이크로미터 내지 수 밀리미터일 수 있다. 상기 니들의 외부 직경은 수십 마이크로미터 내지 수 밀리미터일 수 있다. 상기 니들의 내부 직경은 용액 방울의 크기에 의존할 수 있다. 상기 용액 방울의 직경은 1 mm 내지 10 mm일 수 있다.The inner diameter of the needle may be from a few tens of micrometers to several millimeters. The outside diameter of the needle may be from a few tens of micrometers to several millimeters. The inner diameter of the needle may depend on the size of the solution droplet. The diameter of the droplet may be between 1 mm and 10 mm.

젖음이란 고체의 표면에 액체가 부착되었을 때, 고체와 액체 원자간의 상호 작용에 의해 액체가 퍼지는 현상을 의미한다. 젖음각(wetting angle)이 작을 수록 젖음성이 좋다. 상기 니들(123)은 발수성 또는 소수성로 코팅 처리될 수 있다. 이에 따라, 상기 니들(123)과 상기 예비 용액 방울의 접촉 면적이 감소하고 젖음각이 증가할 수 있다. 상기 예비 용액 방울(10a)은 상기 수직 정전기장에 의하여 쉽게 분리될 수 있다.Wetting refers to the phenomenon of liquid spreading due to the interaction between a solid and a liquid atom when the liquid adheres to the surface of the solid. The smaller the wetting angle, the better the wetting. The needle 123 may be coated with a water repellent or hydrophobic. Accordingly, the contact area between the needle 123 and the preliminary solution droplet may be reduced and the wetting angle may be increased. The preliminary solution droplet 10a can be easily separated by the vertical electrostatic field.

상기 방울 절단부(126)는 상기 예비 용액 방울을 절단할 수 있다. 상기 방울 절단부(126)는 상기 니들에 채워진 용액과 상기 예비 용액 방울을 서로 물리적으로 분리할 수 있다. 이에 따라, 상기 절단된 용액 방울은 정전기 부양될 수 있다. 상기 방울 절단부는 상기 니들을 감싸는 몸체부(124)와 상기 몸체부(124)와 연결된 상부 커버(125)를 포함할 수 있다. 상기 방울 절단부는 상기 니들에 대하여 상대적으로 수직운동을 수행할 수 있다. 이에 따라, 상기 방울 절단부는 상기 니들의 일단에 분출된 예비 용액 방울을 절단할 수 있다.The droplet cutting portion 126 may cut the preliminary solution droplet. The droplet cutting portion 126 may physically separate the solution filled in the needle and the preliminary solution droplet from each other. Thereby, the cut solution drops can be electrostatically levitated. The droplet cutting portion may include a body portion 124 surrounding the needle and an upper cover 125 connected to the body portion 124. The droplet cutting portion can perform a vertical motion relative to the needle. Accordingly, the droplet cutting portion can cut the preliminary solution droplet ejected to one end of the needle.

상기 방울 절단부의 상부 커버(125)는 원뿔 형상일 수 있다. 상기 상부 커버(125)의 정점(125a)에서 반경 방향으로 복수의 슬릿(slit)을 포함할 수 있다. 또는, 상기 상부 커버(125)는 정점(125a)이 벌어질(open) 수 있도록 반경 방향으로 갈라진 틈(gap)을 포함할 수 있다. 상기 니들(123)의 일단이 상기 상부 커버(125)의 정점을 관통하로록 돌출된 경우, 상기 정점(125a)은 벌어질 수 있다. 또한, 상기 니들의 일단이 하강함에 따라, 상기 니들(123)의 테이퍼 형상(123a)은 상기 상부 커버(125)와 접촉할 수 있다. 이에 따라, 상기 방울 절단부(126)는 상기 니들을 따라 충격없이, 상기 예비 용액 방울(10a)을 절단할 수 있다.The upper cover 125 of the droplet cutting portion may be conical. And may include a plurality of slits in a radial direction at an apex 125a of the upper cover 125. [ Alternatively, the top cover 125 may include radially spaced gaps to allow the apex 125a to open. When one end of the needle 123 protrudes through the apex of the upper cover 125, the apex 125a may be opened. In addition, as one end of the needle descends, the tapered shape 123a of the needle 123 can contact the upper cover 125. [ Accordingly, the droplet cutting portion 126 can cut the preliminary solution droplet 10a without impact along the needle.

상기 방울 절단부(126)는 테프론, 실리콘, 염화비닐, 폴리에칠렌, 폴리프로필렌, 폴리우레판, 아크릴, 고무, 구리, 폴리에스테르, 알루미늄, 또는 나일론 일 수 있다. 상기 방울 절단부는 발수성 또는 소수성 재질이거나, 발수성 또는 소수성 물질로 코팅 처리될 수 있다. 상기 방울 절단부가 도전성 물질인 경우, 상기 방울 절단부는 접지되거나 상기 상부 전극 보다 높은 전위를 가질 수 있다. 이에 따라, 상기 방운 절단부는 상기 수직 정전기장 하에서 양의 전하로 대전될 수 있다.The drop cut 126 may be Teflon, silicone, vinyl chloride, polyethylene, polypropylene, polyurethane, acrylic, rubber, copper, polyester, aluminum, or nylon. The droplet cutting portion may be a water repellent or hydrophobic material, or may be coated with a water repellent or hydrophobic material. When the droplet cutting portion is a conductive material, the droplet cutting portion may be grounded or have a potential higher than that of the upper electrode. Accordingly, the blow cut portion can be charged with positive charge under the vertical electrostatic field.

상기 상부 커버(125)는 신축성 또는 탄성 재질일 수 있다. 이에 따라, 상기 니들이 수직 운동을 통하여 상기 상부 커버의 정점 위로 돌출된 경우, 상기 상부 커버는 벌어질(open) 수 있다. 또한, 상기 니들이 수직 운동을 통하여 상기 상부 커버의 내부에 배치된 경우, 상기 상부 커버는 상기 정점이 닫혀 원래의 형상으로 복원될 수 있다.The upper cover 125 may be an elastic or elastic material. Accordingly, when the needle protrudes above the vertex of the upper cover through the vertical movement, the upper cover may open. Further, when the needle is disposed inside the top cover through the vertical movement, the top cover can be restored to its original shape by closing the apex.

상기 상부 커버가 상기 예비 용액 방울을 절단함에 따라, 상기 예비 용액 방울은 상기 상부 커버의 정점에 위치할 수 있다. 상기 상부 커버가 발수성 또는 소수성 물질로 코팅 처리된 경우, 상기 예비 용액 방울과 상기 상부 커버의 접촉 면적은 최소화될 수 있다. 이에 따라, 상기 수직 정전기장은 상기 예비 용액 방울을 분리하여 정전기 부양시킬 수 있다. 상기 상부 커버의 정점에 위치한 상기 예비 용액 방울을 부양하기 위하여, 상기 수직 정전기장의 세기는 증가될 수 있다.As the top cover cuts the preliminary solution droplet, the preliminary solution droplet may be located at the apex of the top cover. When the top cover is coated with a water repellent or hydrophobic material, the contact area between the preliminary solution droplet and the top cover can be minimized. Accordingly, the vertical electrostatic field can separate the preliminary solution droplets and electrostatic levitate them. In order to float the preliminary solution droplet located at the apex of the upper cover, the intensity of the vertical electrostatic field can be increased.

상기 방울 디스펜서(120)는 상기 니들에 수직 운동을 제공하는 니들 선형 운동 제공부(127a), 및 상기 방울 절단부의 수직 운동을 제공하는 방울 절단 선형 운동 제공부(127b)를 포함할 수 있다.The droplet dispenser 120 may include a needle linear motion providing portion 127a for providing a vertical motion to the needle, and a droplet cutting linear motion providing portion 127b for providing a vertical motion of the droplet cutting portion.

상기 니들 선형 운동 제공부(127a)는 상기 방울 절단부의 몸체부에 연결될 수 있다. 상기 니들 선형 운동 제공부(127a)는 모터 또는 피스톤을 이용하여 상기 니들의 수직 운동을 제공할 수 있다. 상기 방울 절단부는 몸체부(124)의 측면에 형성되고 수직으로 연장되는 장홈(long groove,124a)을 포함할 수 있다. 상기 니들 선형 운동부 제공부는 상기 장홈(124a)을 통하여 상기 니들에 연결될 수 있다.The needle linear motion imparting unit 127a may be connected to the body of the droplet cutting unit. The needle linear motion imparting unit 127a may provide a vertical motion of the needle using a motor or a piston. The droplet cutting portion may include a long groove 124a formed on the side surface of the body portion 124 and extending vertically. The needle linear motion part providing part may be connected to the needle through the groove 124a.

상기 방울 절단 선형 운동부(127b)는 상기 방울 절단부(126)에 연결될 수 있다. 상기 방울 절단 선형 운동부(127b)는 모터 또는 피스톤과 같은 직선 운동 수단을 이용하여 상기 방울 절단부에 선형 운동을 제공할 수 있다. 상기 방울 절단부가 상기 예비 용액 방울을 절단한 경우, 상기 니들 및 상기 방울 전달부는 동시에 빠른 속도로 하강할 수 있다. 이에 따라, 상기 용액 방울은 상기 방울 디스펜서로부터 분리될 수 있다.The droplet cutting linear motion portion 127b may be connected to the droplet cutting portion 126. The droplet cutting linear motion portion 127b may provide linear motion to the droplet cutting portion using linear motion means such as a motor or a piston. When the droplet cutting portion cuts the preliminary solution droplet, the needle and the droplet transmitting portion can simultaneously descend at a high speed. Accordingly, the droplet may be separated from the droplet dispenser.

상기 니들 선형 운동부(127a) 및 상기 방울 절단 선형 운동부(127b)는 지지판(129) 또는 테이블에 장착될 수 있다. 상기 니들은 접지될 수 있다. 이에 따라, 상기 니들은 상기 용액 방울에 접촉 대전을 통하여 전하를 제공할 수 있다.The needle linear motion part 127a and the drop cutting linear motion part 127b may be mounted on a support plate 129 or a table. The needle may be grounded. Thus, the needle can provide charge to the droplet through contact charging.

용액 이송부(128)는 상기 니들(123)에 압력을 인가하여 용액을 이송시킬 수 있다. 상기 용액 이송부(128)는 배럴(barrel,128a)과 플런저(plunger,128b)를 포함할 수 있다. 배럴의 내부에는 용액이 수납될 수 있다. 상기 플런저는 상기 배럴의 내부에 삽입되어, 압력을 상기 용액에 인가할 수 있다. 이에 따라, 상기 용액은 상기 니들을 통하여 토출될 수 있다. 상기 용액이 상기 니들을 통하여 토출되는 동안, 상기 상부 전극과 상기 하부 전극 사이에 전기장이 인가될 수 있다. 상기 플런저는 토출하고자 하는 양을 조절하는 압력 조절부에 연결될 수 있다.The solution transferring part 128 can apply pressure to the needle 123 to transfer the solution. The solution transferring part 128 may include a barrel 128a and a plunger 128b. The solution can be stored inside the barrel. The plunger may be inserted into the barrel to apply pressure to the solution. Accordingly, the solution can be discharged through the needle. An electric field may be applied between the upper electrode and the lower electrode while the solution is being discharged through the needle. The plunger may be connected to a pressure regulator for regulating an amount to be discharged.

한 쌍의 제1 보조 전극들(116a)은 상기 하부 전극의 중심축에 수직한 평면에 제1 보조 전기장을 인가하고 상기 용액 방울을 중심으로 서로 대향하여 배치될 수 있다. 제1 보조 전극들(116a)은 부분 원통 셀(partial cylindrical shell) 형상을 가질 수 있다. 제1 보조 전극들(116a)은 x 축 방향으로 서로 정렬될 수 있다.The pair of first auxiliary electrodes 116a may be disposed to face each other with the first auxiliary electric field applied to a plane perpendicular to the center axis of the lower electrode and centering the solution drops. The first auxiliary electrodes 116a may have a partial cylindrical shell shape. The first auxiliary electrodes 116a may be aligned with each other in the x-axis direction.

한 쌍의 제2 보조 전극들(116b)은 상기 하부 전극의 중심축에 수직한 평면에 제2 보조 전기장을 인가하고 상기 용액 방울을 중심으로 서로 대향하여 배치될 수 있다. 제2 보조 전극들(116b)은 부분 원통 셀(partial cylindrical shell) 형상을 가질 수 있다. 제2 보조 전극들(116b)은 y 축 방향으로 서로 정렬될 수 있다.The pair of second auxiliary electrodes 116b may be disposed to face each other with the second auxiliary electric field applied to a plane perpendicular to the central axis of the lower electrode and centering the solution drops. The second auxiliary electrodes 116b may have a partial cylindrical shell shape. And the second auxiliary electrodes 116b may be aligned with each other in the y-axis direction.

제1 보조 전원(164a)은 상기 제1 보조 전극들(116a) 사이에 제1 보조 전기장을 인가할 수 있다. 제2 보조 전원(164b)은 상기 제2 보조 전극들(116b) 사이에 제2 보조 전기장을 인가하는 인가할 수 있다. 상기 제1 보조 전기장 및 제2 보조 전기장은 xy 평면에서 서로 수직(orthogonal)할 수 있다. The first auxiliary power source 164a may apply a first auxiliary electric field between the first auxiliary electrodes 116a. The second auxiliary power source 164b may apply a second auxiliary electric field between the second auxiliary electrodes 116b. The first sub-electric field and the second sub-electric field may be orthogonal to each other in the xy plane.

제1 수평 위치 광원과 상기 제1 수평 위치 검출부는 상기 제1 보조 전극들(116a)과 나란히 배치될 수 있다. 구체적으로, 상기 제1 수평 위치 광원 및 상기 제1 수평 위치 검출부는 상기 제1 보조 전극들(116a)을 연결하는 x 축 방향으로 서로 이격되어 배치될 수 있다. 상기 제1 수평 위치 광원 및 상기 제1 수평 위치 검출부는 상기 밀폐부(130)의 외측에 배치될 수 있다. 상기 제1 보조 전원(164a)은 상기 제1 수평 위치 검출부의 제1 수평 위치 신호를 제공받아 상기 제1 보조 전극들(116a) 사이의 제1 전기장을 제어할 수 있다. 이에 따라, 상기 부양된 용액 방출의 제1 방향의 위치는 제어될 수 있다.The first horizontal position light source and the first horizontal position detecting unit may be disposed side by side with the first auxiliary electrodes 116a. Specifically, the first horizontal position light source and the first horizontal position detecting unit may be spaced apart from each other in the x-axis direction connecting the first auxiliary electrodes 116a. The first horizontal position light source and the first horizontal position detecting unit may be disposed outside the sealing unit 130. The first auxiliary power supply 164a may receive a first horizontal position signal of the first horizontal position detector and may control a first electric field between the first auxiliary electrodes 116a. Accordingly, the position of the floating solution discharge in the first direction can be controlled.

제2 수평 위치 광원(165)과 상기 제2 수평 위치 검출부(163)는 상기 제2 보조 전극들(116b)과 나란히 배치될 수 있다. 구체적으로, 상기 제2 수평 위치 광원(165) 및 상기 제2 수평 위치 검출부(163)는 상기 제2 보조 전극들(116b)을 연결하는 y 축 방향으로 서로 이격되어 배치될 수 있다. 상기 제2 수평 위치 광원(165) 및 상기 제2 수평 위치 검출부(163)는 상기 밀폐부(130)의 외측에 배치될 수 있다. 상기 제2 보조 전원(164b)은 상기 제2 수평 위치 검출부의 제2 수평 위치 신호를 제공받아 상기 제2 보조 전극들(116b) 사이의 제2 전기장을 제어할 수 있다. 이에 따라, 상기 부양된 용액 방출의 제2 방향의 위치는 제어될 수 있다.The second horizontal position light source 165 and the second horizontal position detection unit 163 may be disposed side by side with the second auxiliary electrodes 116b. Specifically, the second horizontal position light source 165 and the second horizontal position detecting unit 163 may be spaced apart from each other in the y-axis direction connecting the second auxiliary electrodes 116b. The second horizontal position light source 165 and the second horizontal position detector 163 may be disposed outside the hermetic seal 130. The second auxiliary power source 164b may receive a second horizontal position signal of the second horizontal position detector and may control a second electric field between the second auxiliary electrodes 116b. Accordingly, the position of the floating solution discharge in the second direction can be controlled.

상기 수직 위치 검출부(151)가 2 차원 검출기를 사용하는 경우, 부양된 용액 방울의 y축 위치가 검출될 수 있다. 이 경우, 상기 제2 수평 위치 광원은 상기 수직 위치 광원으로 일체화될 수 있다. 또한, 상기 제2 수평 위치 검출부는 상기 수직 위치 검출부로 일체화될 수 있다.When the vertical position detector 151 uses a two-dimensional detector, the y-axis position of the floated solution droplet can be detected. In this case, the second horizontal position light source may be integrated into the vertical position light source. The second horizontal position detecting unit may be integrated with the vertical position detecting unit.

온도 조절부(140)는 상기 밀폐부(130) 내부의 대기의 온도를 조절할 수 있다. 상기 대기의 온도는 섭씨 20 도 내지 섭씨 40도일 수 있다. 바람직하게는, 상기 대기의 온도는 섭씨 25 도 내지 섭씨 30도일 수 있다. 상기 온도 조절부는 일정한 온도의 유체를 상기 밀폐부의 내부 측면을 따라 순환시킬 수 있다. The temperature regulating unit 140 can regulate the temperature of the atmosphere inside the sealing unit 130. The temperature of the atmosphere may be from 20 degrees Celsius to 40 degrees Celsius. Preferably, the temperature of the atmosphere can be from 25 degrees Celsius to 30 degrees Celsius. The temperature regulator may circulate a fluid at a constant temperature along the inner side of the enclosure.

습도 조절부(150)는 상기 밀폐부(130) 내부의 대기의 습도를 조절할 수 있다. 습도 조절부는 밀폐부 내부에 습기를 제공하거나 밀폐부 내부의 대기의 습기를 제거할 수 있다. 상기 밀폐부의 내부의 상대 습도는 30 퍼센트 내지 90 퍼센트일 수 있다.The humidity controller 150 may adjust the humidity of the atmosphere inside the hermetic seal 130. The humidity controller may provide moisture inside the enclosure or remove moisture from the atmosphere inside the enclosure. The relative humidity inside the enclosure may be between 30 percent and 90 percent.

대기압 조절부(190)는 외부 대기를 상기 밀폐부(130) 내부에 제공할 수 있다. 상기 대기압 조절부(190)는 상기 밀폐부 내부의 압력을 대기압에 보다 높도록 유지할 수 있다.The atmospheric pressure regulator 190 may provide an external atmosphere to the inside of the sealing part 130. The atmospheric pressure regulator 190 can maintain the pressure inside the closed portion higher than the atmospheric pressure.

상기 예비 용액 방울 대전시키는 방법은 접촉 대전(triboelectric charging) 또는 유도 대전(induction charging)을 사용하는 것이 바람직할 수 있다. 그러나, 상기 예비 용액 방울 대전시키기 위하여, 광전자 하전(photoelectric charging) 등이 사용될 수 있다.The preliminary solution droplet charging method may preferably use triboelectric charging or induction charging. However, in order to charge the preliminary solution droplets, photoelectric charging, etc. may be used.

부양된 용액 방울에서, 단결정이 성장하는 경우, 상기 단결정은 용액보다 밀도가 높기 때문에, 상기 단결정은 용액 방울의 하부에 가라앉을 수 있다.In the suspended solution droplets, when the single crystal grows, the single crystal can sink to the bottom of the droplet because the single crystal is denser than the solution.

다시, 도 1 내지 도 3을 참조하면, 정전기 부양 결정 성장 방법이 설명된다.Referring again to Figures 1 to 3, a method for growing electrostatic floating crystals is described.

중력에 반하여 상부 전극(112)과 하부 전극(114) 사이에 수직 정전기장이 인가된다. 상기 상부 전극(112)은 음의 전위로 유지되고, 상기 하부 전극(114)은 접지된 경우, 상기 수직 정전기장은 생성될 수 있다. A vertical electrostatic field is applied between the upper electrode 112 and the lower electrode 114 against gravity. The upper electrode 112 is maintained at a negative potential and the lower electrode 114 is grounded, the vertical electrostatic field can be generated.

이어서, 상기 상부 전극(112)과 상기 하부 전극(114) 사이에 용액 방울(10)은 부양된다. 구체적으로, 방울 디스펜서(120)는 노즐부(122)를 포함할 수 있다. 상기 노즐부(122)는 수직 운동할 수 있다. 상기 노즐부(122)는 용액을 방출하고 접지된 도전성 니들(123) 및 상기 니들을 감싸는 용액 절단부(126)를 포함할 수 있다. 상기 니들(123) 및 상기 니들을 감싸는 용액 절단부(126)는 상기 하부 전극(114)의 중심에 형성된 관통홀()을 통하여 상승될 수 있다. 상기 니들(123)은 상기 상부 전극(112)의 전위보다 높은 직류 전위로 유지될 수 있다. 이에 따라, 상기 니들(123)은 양의 전하로 대전될 수 있다. 상기 상승된 니들(123)의 일단으로 용액이 토출된다. 이에 따라, 상기 니들의 일단에 예비 용액 방울이 형성된다. 상기 예비 용액 방울(10a)은 상기 니들(123) 또는 상기 수직 정전기장에 의하여 양의 전하로 대전될 수 있다. 상기 대전된 용액 방울은 상기 수직 정전기장에 의하여 수직 방향으로 장축을 가지는 타원 형태를 가질 수 있다. 상기 니들(123)을 하강시키거나 상기 용액 절단부를 상승시켜, 상기 대전된 예비 용액 방울은 절단될 수 있다. 상기 용액 절단부(126)는 상기 대전된 예비 용액 방울과 상기 니들의 내부의 용액을 실질적으로 분리할 수 있다. 또는, 상기 용액 절단부(126)는 상기 대전된 예비 용액 방울과 상기 니들의 내부의 용액의 접촉 부위의 크기를 최소화할 수 있다. 상기 니들 및 니들을 감싸는 상기 용액 절단부는 하강할 수 있다. 이에 따라, 전기장이 가해진 상기 절단된 용액 방울은 쉽게 부양된다.Then, the droplet 10 is floated between the upper electrode 112 and the lower electrode 114. Specifically, the droplet dispenser 120 may include a nozzle portion 122. The nozzle unit 122 can move vertically. The nozzle portion 122 may include a solution cutting portion 126 that discharges a solution and surrounds the grounded conductive needle 123 and the needle. The needle 123 and the solution cutting portion 126 surrounding the needle may be lifted through a through hole formed in the center of the lower electrode 114. The needle 123 may be maintained at a DC potential higher than the potential of the upper electrode 112. [ Accordingly, the needle 123 can be charged with a positive charge. And the solution is discharged to one end of the raised needle 123. Thereby, a preliminary solution droplet is formed at one end of the needle. The preliminary solution droplet 10a can be charged with a positive charge by the needle 123 or the vertical electrostatic field. The charged droplets may have an elliptical shape having a long axis in the vertical direction by the vertical electrostatic field. By lowering the needle 123 or raising the solution cutting portion, the charged preliminary solution droplet can be cut. The solution cutting portion 126 can substantially separate the charged preliminary solution droplet and the solution inside the needle. Alternatively, the solution cutting portion 126 may minimize the size of the contact area of the charged preliminary solution droplet and the solution inside the needle. The solution cutting portion surrounding the needle and the needle can be lowered. As a result, the cut solution drops applied with an electric field are easily floated.

이어서, 상기 용액 방울(10)의 용매는 증발되고, 상기 용액 방울(10)은 과포화 용액을 형성한다. 상기 용매는 물일 수 있다. 상기 용매의 증기압은 온도에 의존할 수 있다. 따라서, 상기 증발 속도를 조절하기 위하여, 상기 밀폐부의 온도 및 습도가 조절될 수 있다. 대기의 수증기압은 포화수증기압 이하일 수 있다.Subsequently, the solvent of the droplet 10 is evaporated, and the droplet 10 forms a supersaturated solution. The solvent may be water. The vapor pressure of the solvent may depend on the temperature. Therefore, in order to adjust the evaporation rate, the temperature and humidity of the closed part can be adjusted. The water vapor pressure of the atmosphere can be less than the saturated water vapor pressure.

이어서, 상기 과포화 용액에서 결정 핵이 생성된다. 상기 결정 핵은 하나인 것이 바람직하다. 따라서, 상기 과포화 용액에서 불필한 결정 핵의 생성을 억제하기 위하여, 상기 과포화 용액의 대류가 제공될 수 있다. 구체적으로, 상기 과포화 용액의 대류는 적외선 레이저를 이용한 국부 가열을 통하여 수행될 수 있다. 또는 유도 전기장을 이용한 회전력(torque)은 상기 과포화 용액을 회전시킬 수 있다. 이에 따라, 상기 과포화 용액의 대류가 제공될 수 있다.Then, crystal nuclei are generated in the supersaturated solution. The crystal nuclei are preferably one. Therefore, convection of the supersaturated solution may be provided in order to suppress the generation of undesired crystal nuclei in the supersaturated solution. Specifically, convection of the supersaturated solution can be performed by local heating using an infrared laser. Or a torque using an induced electric field can rotate the supersaturated solution. Thereby, convection of the supersaturated solution can be provided.

이어서, 상기 결정 핵은 성장되어, 결정을 생성한다. 상기 용질 또는 결정은 AH2PO4 (A=K, NH4, Cs), ABCl3 (A=Cs, K, Rb; B= Co, Cu, Zn, Cd, Mn), LiASO4 (A= Cs, K), CuS04 ·5H2O, K3Fe(CN)6, DKDP, KDCO3, NiSO4 ·6H2O, NaKC4H4O6 (Potassium sodium tartrate, Rochelle Salt), (NH2CH2COOH)3·H2SO4 (Triglycine sulfate ;TGS), KD2PO4 (Deuterated potassium dihydrogen phosphate; DKDP), NaCl, 단백질 결정, 또는 KH2PO4(potassium dihydrogen phosphate;KDP)일 수 있다.Then, the crystal nuclei are grown to form crystals. The solute or decision AH 2 PO 4 (A = K , NH4, Cs), ABCl 3 (A = Cs, K, Rb; B = Co, Cu, Zn, Cd, Mn), LiASO 4 (A = Cs, K), CuS0 4 · 5H 2 O, K 3 Fe (CN) 6, DKDP, KDCO 3, NiSO 4 · 6H 2 O, NaKC 4 H 4 O 6 (Potassium sodium tartrate, Rochelle Salt), (NH 2 CH 2 COOH) 3 · H 2 SO 4 (Triglycine sulfate; TGS), KD 2 PO 4 (Deuterated potassium dihydrogen phosphate; DKDP), NaCl, protein crystals, or KH 2 PO 4 (potassium dihydrogen phosphate ; KDP) Lt; / RTI >

도 6은 본 발명의 다른 실시예에 따른 정전기 부양 결정 성장 장치를 설명하는 도면이다.6 is a view illustrating an electrostatic floating crystal growing apparatus according to another embodiment of the present invention.

다시, 도 1, 도 2, 및 도 6을 참조하면, 본 발명의 다른 실시예에 따른 정전기 부양 결정 성장 방법이 설명된다.Referring again to FIGS. 1, 2, and 6, a method for growing electrostatic free crystal according to another embodiment of the present invention will be described.

중력에 반하여 상부 전극(112)과 하부 전극(114) 사이에 수직 정전기장이 인가된다. 상부 전극(112)은 음의 전위로 유지되고, 상기 하부 전극(114)은 접지될 수 있다. 이 경우, 상기 수직 정전기장이 생성될 수 있다. A vertical electrostatic field is applied between the upper electrode 112 and the lower electrode 114 against gravity. The upper electrode 112 may be held at a negative potential, and the lower electrode 114 may be grounded. In this case, the vertical static electricity field can be generated.

이어서, 상기 상부 전극(112)과 상기 하부 전극(114) 사이에 용액 방울(10)은 부양된다. 구체적으로, 방울 디스펜서(120)는 노즐부(222)를 포함할 수 있다. 상기 노즐부(222)는 수직 운동할 수 있다. 상기 노즐부(222)는 용액을 방출하는 도전성 니들(223)을 포함할 수 있다. 상기 니들은 상기 하부 전극(114)의 중심에 형성된 관통홀(114a)을 통하여 상승될 수 있다. 상기 니들은 상기 상부 전극의 전위보다 높은 직류 전위로 유지될 수 있다. 이에 따라, 상기 니들은 양의 전하로 대전될 수 있다. 상기 상승된 니들의 일단으로 용액이 토출된다. 이에 따라, 상기 니들의 일단에 예비 용액 방울(10a)이 형성된다. 상기 예비 용액 방울은 상기 니들 또는 상기 수직 정전기장에 의하여 양의 전하로 대전될 수 있다. 상기 대전된 용액 방울은 상기 수직 정전기장에 의하여 수직 방향으로 장축을 가지는 타원 형태를 가질 수 있다. 상기 수직 정전기장의 세기를 증가시키면, 상기 대전된 예비 용액 방울은 상기 니들로부터 분리될 수 있다. 이에 따라, 상기 절단된 용액 방울은 부양된다.Then, the droplet 10 is floated between the upper electrode 112 and the lower electrode 114. Specifically, the droplet dispenser 120 may include a nozzle portion 222. The nozzle unit 222 can be vertically moved. The nozzle unit 222 may include a conductive needle 223 that emits a solution. The needle may be raised through a through hole 114a formed in the center of the lower electrode 114. [ The needle may be maintained at a higher DC potential than the potential of the upper electrode. Thus, the needle can be charged with a positive charge. And the solution is discharged to one end of the raised needle. Thereby, the preliminary solution droplet 10a is formed at one end of the needle. The preliminary solution droplet can be charged with positive charge by the needle or the vertical electrostatic field. The charged droplets may have an elliptical shape having a long axis in the vertical direction by the vertical electrostatic field. By increasing the intensity of the vertical electrostatic field, the charged preliminary solution droplet can be separated from the needle. Thereby, the cut solution drops are floated.

이어서, 상기 용액 방울(10)의 용매는 증발되고 상기 용액 방울은 과포화 용액을 형성한다. 상기 용매는 물일 수 있다. 상기 용매의 증기압은 온도에 의존할 수 있다. 따라서, 상기 증발 속도를 조절하기 위하여, 상기 밀폐부의 온도 및 습도가 조절될 수 있다. 대기의 수증기압은 포화수증기압 이하일 수 있다.Subsequently, the solvent of the droplet 10 is evaporated and the droplet forms a supersaturated solution. The solvent may be water. The vapor pressure of the solvent may depend on the temperature. Therefore, in order to adjust the evaporation rate, the temperature and humidity of the closed part can be adjusted. The water vapor pressure of the atmosphere can be less than the saturated water vapor pressure.

이어서, 상기 과포화 용액에서 결정 핵이 생성된다. 상기 결정 핵은 하나인 것이 바람직하다. 따라서, 상기 과포화 용액에서 불필한 결정 핵의 생성을 억제하기 위하여, 상기 과포화 용액의 대류가 제공될 수 있다. 구체적으로, 상기 과포화 용액의 대류는 적외선 레이저를 이용한 국부 가열을 통하여 수행될 수 있다. 또는 유도 전기장을 이용한 회전력(torque)은 상기 과포화 용액을 회전시킬 수 있다. 이에 따라, 상기 과포화 용액의 대류가 제공될 수 있다.Then, crystal nuclei are generated in the supersaturated solution. The crystal nuclei are preferably one. Therefore, convection of the supersaturated solution may be provided in order to suppress the generation of undesired crystal nuclei in the supersaturated solution. Specifically, convection of the supersaturated solution can be performed by local heating using an infrared laser. Or a torque using an induced electric field can rotate the supersaturated solution. Thereby, convection of the supersaturated solution can be provided.

이어서, 상기 결정 핵은 성장되어, 결정을 생성한다.Then, the crystal nuclei are grown to form crystals.

본 발명의 변형된 실시예에 따르면, 상기 예비 용액 방울을 대전시키 위하여, 다른 방법이 사용될 수 있다. 구체적으로, 상기 예비 용액 방울 대전시키기 위하여, 광전자 하전(photoelectric charging) 등이 사용될 수 있다.According to a modified embodiment of the present invention, another method may be used to charge the preliminary solution droplet. Specifically, in order to charge the preliminary solution droplets, photoelectric charging or the like may be used.

도 7은 본 발명의 일 실시예에 따른 정전기 부양 결정 성장 방법으로 성장된 KDP 결정을 나타내는 사진이다.7 is a photograph showing KDP crystals grown by the electrostatic floating crystal growth method according to an embodiment of the present invention.

도 8은 본 발명의 일 실시예에 따른 정전기 부양 결정 성장 방법으로 성장된 NaCl 결정을 나타내는 사진이다.8 is a photograph showing NaCl crystals grown by the electrostatic floating crystal growth method according to an embodiment of the present invention.

도 7 및 도 8을 참조하면, KDP(KP2PO4) 단결정이 과포화 용액의 하부에 침전되어 있다. NaCl 단결정이 과포화 용액의 하부에 침전되어 있다. 공중에 부양된 수용액은 무접촉(noncontact) 결정 성장을 제공할 수 있다. 증발에 의해 자발적으로 결정이 형성된다. 따라서, 높은 결정질과 높은 순도의 단결정이 성장될 수 있다. Referring to FIGS. 7 and 8, a KDP (KP2PO4) single crystal is precipitated in the lower portion of the supersaturated solution. The NaCl monocrystal is deposited at the bottom of the supersaturated solution. An aqueous suspension floated in the air can provide noncontact crystal growth. Crystals are spontaneously formed by evaporation. Therefore, a single crystal of high crystallinity and high purity can be grown.

도 9는 KDP 수용액의 형상 변화를 나타내는 사진들이다.9 is a photograph showing the shape change of the KDP aqueous solution.

도 9를 참조하면, 대기의 온도는 섭씨 28도이고, 초기 부양된 용액 방울의 크기는 2.5 mm이다. 상대 습도는 50 퍼센트이다. 좌측으로부터 초기 상태(a), 30분 후(b), 1시간 후(c), 1시간 30분 후(d), 1시간 43분 후(e), 및 다결정화된 이후(f)의 사진 영상들이 각각 표시된다. (f)의 경우, KDP 다결정이 생성되었다.Referring to FIG. 9, the temperature of the atmosphere is 28 degrees Celsius, and the size of the initially flooded solution droplets is 2.5 mm. Relative humidity is 50 percent. (A), 30 minutes (b), 1 hour (c), 1 hour 30 minutes (d), 1 hour 43 minutes (e), and after polycrystallization Images are displayed respectively. (f), a KDP polycrystalline was produced.

도 10은 시간에 따른 KDP 수용액의 농도 변화를 나타내는 그래프이다.10 is a graph showing the concentration change of KDP aqueous solution with time.

도 10을 참조하면, 도 10은 부양된 KDP 수용액의 시간에 따른 농도변화를 나타내고, C(t)/C(0)가 1일때, 포화농도이다. 1 초과의 상대 농도는 과포화 상태이다. 물 1000 liter에 100 g의 KDP 용질이 용해된 KDP 수용액이 준비된다. 초기 상태의 농도는 C(0)이고, 시간에 따른 농도는 C(t)이다. 상기 KDP 수용액은 정전기 부양되고, 물이 증발함에 따라, 상기 KDP 수용액의 노말농도(normal conentration)는 시간에 따라 변한다. KDP의 분자량은 136.09 g/mol이다. 결정화가 일어날 수 있는 포화 노말농도는 1g/ml이다. 포화 용액의 노말농도는 약 3g/ml 까지 결정 형성 없이 과포화 상태를 유지한다. Referring to FIG. 10, FIG. 10 shows a change in concentration of the suspended aqueous KDP solution over time, and is a saturated concentration when C (t) / C (O) is 1. Relative concentrations above 1 are supersaturated. An aqueous solution of KDP in which 100 g of KDP solute is dissolved in 1000 liters of water is prepared. The initial concentration is C (0) and the concentration over time is C (t). The KDP aqueous solution is electrostatically levitated, and as the water evaporates, the normal con- centration of the aqueous KDP solution changes with time. The molecular weight of KDP is 136.09 g / mol. The saturated normal concentration at which crystallization can occur is 1 g / ml. The normal concentration of the saturated solution maintains the supersaturation without crystal formation up to about 3 g / ml.

도 11은 본 발명의 일 실시예에 따른 수용액 KDP에서 단결정이 성장하는 모습을 나타내는 사진이다.11 is a photograph showing growth of a single crystal in an aqueous solution KDP according to an embodiment of the present invention.

도 11을 참조하면, 왼쪽 사진과 오른 쪽 사진은 서로 다른 각도에 대응한다. 사진의 하단에 있는 검정색 줄은 1mm를 나타내는 기준 자(scale bar)이다. 직경 1mm 수준의 단결정 KDP가 얻어질 수 있다.Referring to FIG. 11, the left photograph and the right photograph correspond to different angles. The black line at the bottom of the picture is a scale bar representing 1mm. A single crystal KDP having a diameter of 1 mm level can be obtained.

본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

112: 상부 전극
114: 하부 전극
120: 방울 디스펜서
122: 노즐부
123: 니들
126: 방울 절단부
112: upper electrode
114: lower electrode
120: Drop dispenser
122:
123: Needle
126:

Claims (9)

상부 전극;
상기 상부 전극과 수직으로 이격되어 배치된 하부 전극;
상기 상부 전극과 상기 하부 전극 사이에 수직 정전기장을 인가하는 전원부 및
상기 상부 전극과 상기 하부 전극 사이에 용액을 방출하여 용액 방울(solution droplet)을 형성하는 방울 디스펜서(droplet dispenser)를 포함하고,
대기 중에서 상기 용액 방울은 하전 상태(cahrged state)로 유지되고 중력에 반하여 상기 수직 정전기장에 의하여 정전기 부양되고,
상기 용액 방울은 상기 정전기 부양된 상태에서 증발하고,
상기 용액에 용해된 용질은 결정으로 성장하는 것을 특징으로 하는 정전기 부양 결정 성장 장치.
An upper electrode;
A lower electrode disposed perpendicularly to the upper electrode;
A power supply unit for applying a vertical electrostatic field between the upper electrode and the lower electrode,
And a droplet dispenser for discharging a solution between the upper electrode and the lower electrode to form a solution droplet,
The solution droplets in the atmosphere are maintained in a cahrged state and electrostatically levitated by the vertical electrostatic field against gravity,
The solution droplets are evaporated in the electrostatic levitation state,
Wherein the solute dissolved in the solution grows into crystals.
제1 항에 있어서,
상기 용액 방울은 상기 방울 디스펜서와 접촉 대전을 통하여 상기 하부 전극의 전하 형태로 대전되는 것을 특징으로 하는 정전기 부양 결정 성장 장치.
The method according to claim 1,
Wherein the droplet is charged in a charge form of the lower electrode through contact charging with the droplet dispenser.
제1 항에 있어서,
상기 용액 방울은 공기의 대기압에서 정전기 부양되는 것을 특징으로 하는 정전기 부양 결정 성장 장치.
The method according to claim 1,
Wherein the solution drops are electrostatically levitated at atmospheric pressure of air.
제1 항에 있어서,
상기 하부 전극은 접지되고,
상기 상부 전극은 음의 전압으로 유지되는 것을 특징으로 하는 정전기 부양 결정 성장 장치.
The method according to claim 1,
The lower electrode is grounded,
Wherein the upper electrode is maintained at a negative voltage.
제2 항에 있어서,
상기 상부 커버는 신축성 또는 탄성 재질인 것을 특징으로 하는 정전기 부양 결정 성장 장치.
3. The method of claim 2,
Wherein the upper cover is an elastic or elastic material.
제1 항에 있어서,
상기 하부 전극의 중심축에 수직한 평면에 제1 보조 전기장을 인가하고 상기 용액 방울을 중심으로 서로 대향하여 배치되고 된 한 쌍의 제1 보조 전극들;
상기 하부 전극의 중심축에 수직한 평면에 제2 보조 전기장을 인가하고 상기 용액 방울을 중심으로 서로 대향하여 배치되는 한 쌍의 제2 보조 전극들;
상기 제1 보조 전극들 사이에 제1 보조 전압을 인가하는 제1 보조 전원; 및
상기 제2 보조 전극들 사이에 제2 보조 전압을 인가하는 제2 보조 전원을 더 포함하고,
상기 제1 보조 전기장은 상기 제2 보조 전기장에 수직한 것을 특징으로 하는 정전기 부양 결정 성장 장치.
The method according to claim 1,
A pair of first auxiliary electrodes arranged to face each other with a first auxiliary electric field applied to a plane perpendicular to the center axis of the lower electrode and centering on the solution bubbles;
A pair of second auxiliary electrodes arranged to face each other with a second auxiliary electric field applied to a plane perpendicular to the central axis of the lower electrode and centering on the solution drops;
A first auxiliary power supply for applying a first auxiliary voltage between the first auxiliary electrodes; And
And a second auxiliary power supply for applying a second auxiliary voltage between the second auxiliary electrodes,
Wherein the first auxiliary electric field is perpendicular to the second auxiliary electric field.
제1 항에 있어서,
상기 결정은 AH2PO4 (A=K, NH4, Cs), ABCl3 (A=Cs, K, Rb; B= Co, Cu, Zn, Cd, Mn), LiASO4 (A= Cs, K), CuS04 5H2O, K3Fe(CN)6, DKDP, KDCO3, NiSO4 6H2O, NaKC4H4O6 (Potassium sodium tartrate, Rochelle Salt), (NH2CH2COOH)3H2SO4 (Triglycine sulfate ;TGS), KD2PO4 (Deuterated potassium dihydrogen phosphate; DKDP), NaCl, 단백질 결정, 또는 KH2PO4(potassium dihydrogen phosphate;KDP)인 것을 특징으로 하는 정전기 부양 결정 성장 장치.
The method according to claim 1,
(A = Cs, K), CuS04 5H2O, K3Fe (A = Cs, K, Rb; B = Co, Cu, Zn, Cd, Mn) (CN) 6, DKDP, KDCO3, NiSO4 6H2O, NaKC4H4O6, Rochelle Salt, NH2CH2COOH, Triglycine sulfate, KD2PO4, NaCl, protein crystals, or KH2PO4 wherein the substrate is potassium dihydrogen phosphate (KDP).
중력에 반하여 상부 전극과 하부 전극 사이에 수직 정전기장을 인가하는 단계;
대기 중에서 상기 상부 전극과 상기 하부 전극 사이에 용액 방울을 부양하는 단계;
상기 용액 방울의 용매를 증발시키어 과포화 용액을 형성하는 단계;
상기 과포화 용액에서 결정 핵을 생성시키는 단계; 및
상기 결정 핵을 성장시키어 결정을 생성하는 단계를 포함하는 정전기 부양 결정 성장 방법.
Applying a vertical electrostatic field between the upper and lower electrodes against gravity;
Floating a solution droplet between the upper electrode and the lower electrode in the atmosphere;
Evaporating the solvent of the droplet to form a supersaturated solution;
Generating crystal nuclei in the supersaturated solution; And
And growing the crystal nucleus to produce crystals.
제8 항에 있어서,
상기 결정은 AH2PO4 (A=K, NH4, Cs), ABCl3 (A=Cs, K, Rb; B= Co, Cu, Zn, Cd, Mn), LiASO4 (A= Cs, K), CuS04 5H2O, K3Fe(CN)6, DKDP, KDCO3, NiSO4 6H2O, NaKC4H4O6 (Potassium sodium tartrate, Rochelle Salt), (NH2CH2COOH)3H2SO4 (Triglycine sulfate ;TGS), KD2PO4 (Deuterated potassium dihydrogen phosphate; DKDP), NaCl, 단백질 결정, 또는 KH2PO4(potassium dihydrogen phosphate;KDP)인 것을 특징으로 하는 정전기 부양 결정 성장 방법.
9. The method of claim 8,
(A = Cs, K), CuS04 5H2O, K3Fe (A = Cs, K, Rb; B = Co, Cu, Zn, Cd, Mn) (CN) 6, DKDP, KDCO3, NiSO4 6H2O, NaKC4H4O6, Rochelle Salt, NH2CH2COOH, Triglycine sulfate, KD2PO4, NaCl, protein crystals, or KH2PO4 and potassium dihydrogen phosphate (KDP).
KR1020150079633A 2015-06-05 2015-06-05 Electrostatic Levitation Crystal Growth Apparatus For Solution And Electrostatic Levitation Crystal Growing Method Of The Same KR102029007B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150079633A KR102029007B1 (en) 2015-06-05 2015-06-05 Electrostatic Levitation Crystal Growth Apparatus For Solution And Electrostatic Levitation Crystal Growing Method Of The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150079633A KR102029007B1 (en) 2015-06-05 2015-06-05 Electrostatic Levitation Crystal Growth Apparatus For Solution And Electrostatic Levitation Crystal Growing Method Of The Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140023883A Division KR101622593B1 (en) 2014-02-28 2014-02-28 Electrostatic Levitation Crystal Growth Apparatus For Solution And Electrostatic Levitation Crystal Growing Method Of The Same

Publications (2)

Publication Number Publication Date
KR20150102750A true KR20150102750A (en) 2015-09-07
KR102029007B1 KR102029007B1 (en) 2019-11-08

Family

ID=54243425

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150079633A KR102029007B1 (en) 2015-06-05 2015-06-05 Electrostatic Levitation Crystal Growth Apparatus For Solution And Electrostatic Levitation Crystal Growing Method Of The Same

Country Status (1)

Country Link
KR (1) KR102029007B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351700A (en) * 1999-06-14 2000-12-19 Sumitomo Metal Ind Ltd Organic molecule separator and separation and method for producing crystal of organic molecule
JP2001002500A (en) * 1999-06-17 2001-01-09 Sumitomo Metal Ind Ltd Organic molecule separator, separation of organic molecule and formation of organic molecule crystal
JP2001213699A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Ind Ltd Crystal preparation equipment, crystal preparation method, and its equipment kit
JP2004532974A (en) * 2001-01-19 2004-10-28 ケミカル ホロボイス アクティエボラーグ System and method for screening molecular nucleation propensity with levitated droplets
JP2006162264A (en) * 2004-12-02 2006-06-22 Onchip Cellomics Consortium Liquid droplet operation apparatus and operation method
KR101203877B1 (en) * 2010-11-26 2012-11-22 한국표준과학연구원 Single Crystal Manufacturing Method, Single Crystal Manufacturing Apparatus, and Single Crystal
KR20130119594A (en) * 2012-04-24 2013-11-01 한국표준과학연구원 Levitation apparatus and levitation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351700A (en) * 1999-06-14 2000-12-19 Sumitomo Metal Ind Ltd Organic molecule separator and separation and method for producing crystal of organic molecule
JP2001002500A (en) * 1999-06-17 2001-01-09 Sumitomo Metal Ind Ltd Organic molecule separator, separation of organic molecule and formation of organic molecule crystal
JP2001213699A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Ind Ltd Crystal preparation equipment, crystal preparation method, and its equipment kit
JP2004532974A (en) * 2001-01-19 2004-10-28 ケミカル ホロボイス アクティエボラーグ System and method for screening molecular nucleation propensity with levitated droplets
JP2006162264A (en) * 2004-12-02 2006-06-22 Onchip Cellomics Consortium Liquid droplet operation apparatus and operation method
KR101203877B1 (en) * 2010-11-26 2012-11-22 한국표준과학연구원 Single Crystal Manufacturing Method, Single Crystal Manufacturing Apparatus, and Single Crystal
KR20130119594A (en) * 2012-04-24 2013-11-01 한국표준과학연구원 Levitation apparatus and levitation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Neil D. Draper et al., Ion-Induced Nucleation in Solution: Promotion of solute Nucleation in Charged Levitated Droplets, Journal of the American Chemical Society, 2007, Vol. 129, No 37, pages 11364-11377.* *
T. Hilger et al., Controlling Charge on Levitating Drops, Analytical Chemistry, 2007, Vol. 79, No. 15, pages 6027-6030.* *

Also Published As

Publication number Publication date
KR102029007B1 (en) 2019-11-08

Similar Documents

Publication Publication Date Title
Hurle Crystal pulling from the melt
Chen et al. Long-ranged attraction between charged polystyrene spheres at aqueous interfaces
Berg et al. Stable, unstable and metastable charged droplets
Mollot et al. Nonlinear dynamics of capillary bridges: experiments
KR101622593B1 (en) Electrostatic Levitation Crystal Growth Apparatus For Solution And Electrostatic Levitation Crystal Growing Method Of The Same
US20110042215A1 (en) Ac field induced biomolecule cyrstallization and hydration cage disruption
Pacheco-Martinez et al. Spontaneous orbiting of two spheres levitated in a vibrated liquid
KR102029007B1 (en) Electrostatic Levitation Crystal Growth Apparatus For Solution And Electrostatic Levitation Crystal Growing Method Of The Same
Opara et al. Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers
Anthony et al. The kinetics of droplet migration in solids in an accelerational field
JPWO2012133537A1 (en) Method and apparatus for separating mixture
Gardner et al. Using acoustics to study and stimulate the coalescence of oil drops surrounded by water
Chung et al. Internal flow of an electrostatically levitated droplet undergoing resonant shape oscillation
Wille et al. Shear modulus of two-dimensional colloidal crystals
Polat et al. Electrostatic charge on spray droplets of aqueous surfactant solutions
EP1510602B1 (en) Drop tube type granular crystal producing device
KR101501506B1 (en) Electrostatic Levitation Apparaus
RU2308782C1 (en) Nanoelectronic complex
CN116027444B (en) Suspension power gravity measurement device and method based on electrostatic regulation and control
DeMattei et al. Crystal growth by the Electrochemical Czochralski Technique (ECT)
Obaid Premature Rayleigh jets in a millimeter-scale water drop levitated in a strong electric field
Panigrahi et al. Transport Phenomena in Crystal Growth
Plomp Crystal growth studied on a micrometer scale
Graafsma et al. Modified counterweights and beamstop for the Huber 512 and 511.1 four-circle diffractometers
Wang Effects of high magnetic fields on the behavior of feeble magnetic fluids

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant