KR20150061617A - HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF - Google Patents

HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
KR20150061617A
KR20150061617A KR1020150048144A KR20150048144A KR20150061617A KR 20150061617 A KR20150061617 A KR 20150061617A KR 1020150048144 A KR1020150048144 A KR 1020150048144A KR 20150048144 A KR20150048144 A KR 20150048144A KR 20150061617 A KR20150061617 A KR 20150061617A
Authority
KR
South Korea
Prior art keywords
coating film
target
coating
crystalline
base material
Prior art date
Application number
KR1020150048144A
Other languages
Korean (ko)
Inventor
김광호
명희복
김두인
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020150048144A priority Critical patent/KR20150061617A/en
Publication of KR20150061617A publication Critical patent/KR20150061617A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Abstract

The present invention relates to a four-substance-based coating showing a high hardness and a low friction and a manufacturing method thereof which can be applied to an airplane, parts of transport machines, various tools, etc. The manufacturing method of the present invention, in one chamber, supplies the substance of Cr through a magnetron sputtering of a Cr target using a DC pulse, the substances of Ti and B through a high-power impulse magnetron sputtering of a TiB_2 target, and the substance of N through an injection of nitrogen gas into the chamber. Therefore, even a coating film is formed at a process temperature of around 200°C which is relatively low, a crystalline Cr-Ti-B-N coating film can be directly manufactured without a separate post-treatment such as annealing.

Description

고 경도 저마찰 Cr―Ti―B―N 코팅 및 그 제조방법{HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF}TECHNICAL FIELD The present invention relates to a high-hardness low-friction Cr-Ti-B-N coating and a method of manufacturing the same. BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]

본 발명은 항공기나 운반기계 부품, 각종 공구 등에 적용될 수 있는 고 경도 저마찰 특성을 나타내는 4 성분계 코팅 및 그 제조방법에 관한 것으로, 좀 더 상세하게는 Cr-Ti-B-N 코팅에 관한 것이다. TECHNICAL FIELD The present invention relates to a four-component coating showing high hardness and low friction characteristics applicable to aircraft, transportation machine parts, various tools, and the like, and more particularly to a Cr-Ti-B-N coating.

항공기나 자동차 부품, 기타 절삭 공구 등은 고 경도와 저마찰 특성을 요하며, 그에 따라 제품 자체의 벌크 소재를 그와 같은 물성을 갖춘 것으로 선택하나, 가공성 등으로 인하여, 양자를 모두 구비한 소재로 만들어지기 어렵다. 그에 따라 기본적인 물성을 구비한 벌크 소재로 부품을 기공한 후, 용도에 맞는 코팅재로 표면처리를 하게 된다. 종래 주로 사용되어오고 있는 고 경도 저마찰 코팅은 CrN코팅이나, 이러한 표면처리 소재에 관하여는 다양한 시도와 제안이 이루어지고 있다.Aircraft, automobile parts, and other cutting tools require high hardness and low friction properties. Therefore, the bulk material of the product itself is selected to have such properties, but due to its processability, It is difficult to be made. Accordingly, after piercing the parts with a bulk material having basic physical properties, the surface is treated with a coating material suitable for the application. The high hardness low friction coating which has conventionally been mainly used is CrN coating, and various attempts and proposals have been made about such surface treatment materials.

대한민국 공개특허 제10-2006-0134859호에서는 절삭공구 등에 대하여, 경화강에 대한 표면처리로서, 다성분계 복합 코팅을 제안하고 있다. 상기 공보에 따르면, Ti-Si-N 삼성분계 코팅을 아크 증착법으로 실시하여 마찰특성 등의 물성을 향상시키고 있다. Korean Patent Laid-Open No. 10-2006-0134859 proposes a multicomponent composite coating as a surface treatment for hardened steel for cutting tools and the like. According to the publication, Ti-Si-N ternary system coating is carried out by arc vapor deposition to improve physical properties such as friction characteristics.

그러나, 좀 더 높은 경도와 낮은 마찰계수를 갖는 새로운 코팅 소재와 그러한 코팅을 좀 더 용이하게 제작할 수 있는 기술에 대한 새로운 시도는 여전히 필요하다. However, there is still a need for a new coating material with a higher hardness and a lower coefficient of friction, and a new technique for making such a coating more easily.

따라서 본 발명의 목적은 좀 더 높은 경도와 더 낮은 마찰계수를 나타내는 새로운 조성의 코팅소재와 그러한 코팅 소재를 좀 더 간편하게 제작할 수 있는 제조방법을 제공하고자 함이다. It is therefore an object of the present invention to provide a coating composition of a new composition which exhibits a higher hardness and a lower coefficient of friction and a manufacturing method which makes it easier to manufacture such coating composition.

상기 목적에 따라 본 발명은, Cr-Ti-B-N 사성분계로 고 경도 저마찰 코팅 소재를 제안하며, 상기 코팅 소재는 하나의 챔버에서 Cr 성분은 Cr 타깃을 DC 펄스를 이용한 마그네트론 스퍼터링을 통하여 공급하고, Ti와 B 성분은 TiB2 타깃을 고전력 임펄스 마그네트론 스퍼터링을 이용하여 공급하고, N 성분은 챔버 내 질소가스를 주입하여 공급함으로써 Cr-Ti-B-N 코팅 막을 제작할 수 있도록 하였다. According to the above-mentioned object, the present invention proposes a high hardness low friction coating material of Cr-Ti-BN four component system, wherein the Cr material is supplied in one chamber through a magnetron sputtering using a DC pulse, , Ti and B components were prepared by supplying TiB 2 target using high-power impulse magnetron sputtering, and N-component was injected with nitrogen gas in the chamber to prepare a Cr-Ti-BN coating film.

본 발명에 따르면, 고 경도 저 마찰 특성을 갖는 Cr-Ti-B-N 사성분계 결정성 코팅 재를 어닐링 등의 후처리 공정 없이 박막 형성 자체만으로 제작할 수 있어, 비교적 간편한 공정으로 우수한 품질의 코팅을 실시할 수 있으며, 그로 인하여 항공기나 운반기계, 공구 등에 본 발명의 코팅을 적용하여 내구성을 확보할 수 있다. According to the present invention, it is possible to manufacture a crystalline coating material of Cr-Ti-BN yarn having high hardness and low friction property by a thin film formation alone without post-treatment such as annealing, Therefore, the coating of the present invention can be applied to an aircraft, a conveying machine, a tool, etc. to ensure durability.

도 1은 본 발명의 실시예에 대한 장치 구성을 나타내는 개략도이다.
도 2는 본 발명에 따라 제작된 Cr-Ti-B-N 사성분계 코팅 막에 대한 TEM 사진과 SADP 사진 및 결정성장 상태를 보여주는 TEM 사진이다.
도 3은 본 발명에 따라 제작된 Cr-Ti-B-N 사성분계 코팅 막에 대한 파단면의 SEM 사진이다.
도 4는 본 발명에 따라 모재에 Cr-Ti-B-N 사성분계 코팅이 적용된 시편(A3)을 가지고 시험한 마찰계수에 대한 그래프이다.
도 5는 본 발명에 따른 Cr-Ti-B-N 사성분계 코팅의 조성비를 나타낸 테이블이다.
도 6은 본 발명에 따른 Cr-Ti-B-N 사성분계 코팅공정에서 HIPIMS 증착조건을 나타내는 테이블이다.
1 is a schematic diagram showing a configuration of an apparatus according to an embodiment of the present invention.
FIG. 2 is a TEM photograph, a SADP photograph, and a TEM photograph showing a crystal growth state of the Cr-Ti-BN composite coating film prepared according to the present invention.
3 is a SEM photograph of the fracture surface of the Cr-Ti-BN yarn component coating film fabricated according to the present invention.
FIG. 4 is a graph showing the friction coefficient of a test piece (A3) coated with a Cr-Ti-BN-based coating on a base material according to the present invention.
FIG. 5 is a table showing a composition ratio of the Cr-Ti-BN composite coating according to the present invention.
FIG. 6 is a table showing HIPIMS deposition conditions in a Cr-Ti-BN component coating process according to the present invention.

이하, 본 발명의 바람직한 실시예에 대하여 첨부도면을 참조하여 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1에는 본 발명의 Cr-Ti-B-N 사성분계 코팅을 실시하기 위한 장치 구성이 나와 있다. FIG. 1 shows a device configuration for carrying out coating of the Cr-Ti-B-N component system of the present invention.

하나의 챔버 안에 모재를 기판 홀더에 탑재시키고, 모재 주변을 포위하는 히터를 설치한다. 모재는 스테인레스스틸이나 실리콘일 수 있으나, 이에 한정되는 것은 아니며, 고 경도 저마찰 특성을 구비하게 하고자 하는 다른 합금 재나 세라믹 재 등도 가능하며, 특히 내구성을 요하는 금속 모재에 유용하다. 고순도(순도 99.9% 이상)의 Cr 타깃을 준비하고, Cr 타깃에 전원을 인가하되, DC 펄스를 인가할 수 있는 전원 장치를 준비한다. A base material is mounted on a substrate holder in one chamber, and a heater surrounding the base material is installed. The base material may be stainless steel or silicon, but it is not limited thereto, and other alloys and ceramic materials which are desired to have high hardness and low frictional properties are also possible, and are particularly useful for metal base materials which require durability. A Cr target with high purity (purity of 99.9% or more) is prepared, and a power supply is provided to apply a DC pulse while applying power to the Cr target.

TiB2 타깃 역시 고순도(순도 99.9% 이상)의 것으로 준비하여 HIPIMS 전원 장치를 연결한다. HIPIMS(High Power Impulse Magnetron Sputter)용 전원장치는 1000V 정도 이상의 고전압과 수μsec 정도의 짧은 지속 시간의 임펄스 전압과 전류를 발생시킬 수 있어, 임펄스 파형을 조절함에 따라 원하는 수준의 박막을 만들 수 있게 된다. HIPIMS는 기존의 펄스 DC 스퍼터와 비교하여 더 높은 전류 밀도와 플라즈마 밀도를 가짐으로써 타깃의 이온화율을 현저히 높인다. 이는 아크 이온 플레이팅(Arc ion plating)법과 비슷한 아주 우수한 막질의 막을 형성하면서도 아크 이온 플레이팅의 최대 단점인 코팅 막에 존재하는 매크로 파티클(macro particle)의 영향이 거의 없어 결함이 없는 매끈한 표면을 가지게 된다. 본 실시예에서 적용한 HIPIMS 동작 조건은 도 6의 테이블에 나타내었다. The TiB 2 target should also be of high purity (purity greater than 99.9%) and connected to the HIPIMS power supply. The power supply for HIPIMS (High Power Impulse Magnetron Sputter) can generate impulse voltage and current with a high voltage of about 1000V or more and a short duration of several microseconds, so that a desired level of thin film can be produced by controlling the impulse waveform . HIPIMS significantly increases target ionization rate by having higher current density and plasma density compared to conventional pulse DC sputter. This is because it forms a very good film quality similar to the arc ion plating method, but it has a smooth surface without defect because there is no influence of macro particles present in the coating film which is the biggest disadvantage of arc ion plating do. The HIPIMS operating conditions applied in this embodiment are shown in the table of FIG.

가스 공급장치(MFC:Mass Flow Controller)를 통해 챔버 안에 비활성 가스와 반응을 위한 N2 가스가 공급되게 한다. The inert gas and N 2 gas for reaction are fed into the chamber through a mass flow controller (MFC).

챔버의 진공도를 조절하는 다수의 펌프를 챔버에 연결하고, 모재 홀더에는 바이어스 전압을 인가할 전원을 연결한다.A plurality of pumps for controlling the degree of vacuum of the chamber are connected to the chamber, and a power supply for applying a bias voltage is connected to the base material holder.

먼저, 0.1 Pa 정도로 챔버 안을 진공화한 후, Ar 가스를 주입하여 0.67Pa로 유지하면서, 바이어스 전압을 -700 V 정도로 인가하여 생성되는 플라즈마를 이용한 플라즈마 에칭으로 모재를 세정하고 코팅 막의 밀착성을 위한 표면활성화 과정을 실시한다. 이 과정은 10 분 내외로 충분하다.
First, the inside of the chamber is evacuated to about 0.1 Pa, and plasma is etched by plasma generated by applying a bias voltage of about -700 V while maintaining the pressure at 0.67 Pa by injecting Ar gas. Then, the base material is cleaned Perform the activation process. This process takes about 10 minutes.

*다음, 바이어스 전압을 -600 V정도로 낮추고, HIPIMS 전원 장치를 켜, 0.6 kW 정도의 전력을 공급하여 이온 충격(ion bombardment)을 가하여, 모재의 표면활성화를 좀 더 강화한다. 이 경우도 Ar의 공정 압력은 0.67 Pa 정도로 유지하며, 10 분 내외로 실시할 수 있다. Next, lower the bias voltage to -600 V, turn on the HIPIMS power supply, apply 0.6 kW of power, and apply ion bombardment to further enhance the surface activation of the base material. In this case, the process pressure of Ar is maintained at about 0.67 Pa and can be performed within about 10 minutes.

본격적인 코팅 막을 모재에 입히기 위해, DC 펄스 스퍼터링과 동시에 HIPIMS 전원을 동작시킨다. 이때, 모재와 각 타깃 간의 간격은 150 mm 정도로 조절하며, 챔버내 기저 압력을 6.67×10-3 Pa 정도로 유지하고, 질소 가스를 주입하여 박막 증착을 실시할 때의 공정 압력은 0.1 내지 1.0 Pa, 바람직하게는 0.8 Pa 내외로 유지한다. 히터를 켜 챔버 내 온도를 150 내지 300 ℃, 바람직하게는 200 ℃ 정도로 유지하며, 모재 기판 홀더에 인가하는 바이어스 전압은 -100V 내외로 낮춘다. 코팅 박막의 증착을 위한 가스 공급은 비활성 가스인 Ar 대 N2 가스의 유량 공급비를 5:3 정도로 유지하며, 총 공급유량 속도를 80 sccm 정도로 할 수 있다. To apply a full-scale coating film to the base material, HIPIMS power supply is operated simultaneously with DC pulse sputtering. At this time, the gap between the base material and each target is adjusted to about 150 mm, the base pressure in the chamber is maintained at about 6.67 × 10 -3 Pa, the process pressure at the time of thin film deposition by injecting nitrogen gas is 0.1 to 1.0 Pa, Preferably about 0.8 Pa. The heater is turned on to maintain the temperature in the chamber at about 150 to 300 ° C, preferably about 200 ° C, and the bias voltage applied to the base substrate holder is reduced to about -100V or so. The gas supply for deposition of the coating thin film may be such that the flow rate of the inert gas, Ar to N 2 gas, is maintained at about 5: 3, and the total supply flow rate is about 80 sccm.

Cr 타깃에 인가하는 DC 펄스 마그네트론 스퍼터링 전원의 전력은 0.8 kW 이하로 제어하며, 전원장치는 Pungjurn Instruments Inc.의 PDC 1026A 모델을 이용하여 펄스 전력을 인가하였다. Cr target The power of the DC pulse magnetron sputtering power supply was controlled to be less than 0.8 kW and the power source was pulsed using PDC 1026A model of Pungjurn Instruments Inc.

TiB2 타깃에 인가하는 HIPIMS 전원의 전력은 0.8 kW 이하로 제어하며, 도 6과 같이 펄스인가 조건을 제어하며, HIPIMS 전원에 의해 사성분계 코팅 박막은 결정화도와 밀착력면에서 우수한 특성을 나타낼 수 있게 된다. 상기와 같은 공정 조건을 통해, 코팅 막 생성 속도는 3μm/hr 정도가 되며, 코팅 막 증착은 약 1 시간 정도 지속 되어 시편을 제작하였다. The power of the HIPIMS power source applied to the TiB 2 target is controlled to be less than 0.8 kW and the pulse application condition is controlled as shown in FIG. 6, and the quaternary thin film coated with the HIPIMS power source exhibits excellent characteristics in terms of crystallinity and adhesion . Through the above process conditions, the coating film formation rate was about 3 μm / hr, and the coating film deposition was continued for about 1 hour to prepare the specimen.

이와 같이 제작된 시편은 코팅 막의 조성 분석, 결정립 형성 등의 막질 특성 분석을 실시하였고, 모재를 스테인레스스틸로 한 것을 택하여 마찰계수 측정과 경도 측정을 실시하였다. 각각의 타깃 전력을 변화시켜가며 도 5에서와 같이 조성이 다른 6종의 시편(A0~A5)을 제작하였다. The specimens thus fabricated were analyzed for the film properties such as composition analysis of the coating film and grain formation, and the coefficient of friction and hardness were measured by using stainless steel as the base material. 6 specimens (A0 to A5) having different compositions were fabricated as shown in FIG. 5 while varying the respective target powers.

본 발명의 실시예에 따라 제작된 시편들의 특성을 측정하고 TEM 사진을 찍어 관찰하였고, 도 2에는 CrTi0 .1B0.4N1 .3 코팅 막의 TEM 사진들이 나타나 있고, 그 중(a)는 밝은 필드를 적용한 것으로 검게 보이는 결정상과 그 성장 방향을 볼 수 있고, (b)는 어두운 필드를 적용하여, 밝게 보이는 결정상을 볼 수 있고, (c)SADP 상으로 (200),(220),(111) 방향으로 결정이 성장되었음을 알 수 있다. (d)는 좀 더 확대된 TEM 사진으로 상당한 영역의 그레인 바운더리를 갖는 결정이 생성되었음을 확인할 수 있다. FIG. 2 shows TEM images of a CrTi 0 .1 B 0.4 N 1 .3 coating film, wherein (a) shows a bright (C) SADP phase (200), (220), (111), and (111) fields, respectively. ) Direction of the crystal growth. (d) is a more enlarged TEM photograph showing that a crystal having a grain boundary of a considerable area is generated.

이와 같이, 나노복합체 형태의 CrTi0 .1B0.4N1 .3 코팅 막은 본 발명의 경우, 결정화를 위한 별다른 어닐링 등의 추가 공정 없이 상당한 크기의 결정립을 갖는 결정질로 형성되었음을 알 수 있다. In this way, it can be seen that the nanocomposite in the form of CrTi 0 .1 B 0.4 1 .3 N coating film in the case of the present invention, formed from a crystalline having a large size of crystal grains without any additional processing, such as much Annealing for crystallization.

도 3에는 A3 시편의 파단면에 대한 SEM 사진으로, 코팅 막의 치밀함을 볼 수 있고, 그에 따라 경도 우수성이 기대될 수 있다. FIG. 3 is an SEM photograph of the fracture surface of the A3 specimen, showing the denseness of the coating film, and accordingly, the hardness can be expected to be excellent.

도 4에서는 종래 CrN 코팅 막을 입힌 모재와 대비하여 본 발명의 Cr-Ti-B-N 사성분계 코팅 막을 입힌 시편 A1, A3, A5의 마찰계수를 측정한 그래프를 보여준다. FIG. 4 is a graph showing friction coefficients of specimens A1, A3, and A5 coated with a Cr-Ti-B-N composite coating film of the present invention in comparison with a conventional CrN coating film-coated base material.

Ti와 Cr의 상대적인 원자조성비를 달리하며 제작한 코팅 막에 대한 마찰계수 측정으로부터 Ti:Cr의 증착 파워비가 0.8kw:0.8 kw 즉, 1:1일 때 가장 마찰계수가 낮았다. 그외의 조성비에서도 사성분계 코팅은 종래 CrN 코팅보다 마찰계수가 작아 윤활성과 그에 따른 내구성이 더 향상될 수 있음을 알 수 있다.The coefficient of friction of Ti: Cr was different from that of Ti: Cr. The coefficient of friction of Ti: Cr was 0.8kw: 0.8kw, that is, 1: 1. In other composition ratios, the quaternary component coating has a lower coefficient of friction than the conventional CrN coating, so that lubricity and thus durability can be further improved.

CrTi0 .1B0.4N1 .3 코팅 막을 입힌 스틸모재에 대해 실시한 경도 측정에서 경우, 30 GPa를 나타내 이 역시 CrN에 비해 향상된 특성을 보였다. CrTi 0 .1 B 0.4 N 1 .3 Hardness measurements of the coated steel base material showed 30 GPa, which was also improved compared to CrN.

마모의 경우, Cr이 표면에서 대기의 H2O와 반응하여 Cr2O3의 자기 윤활막을 형성시키며 또한 비정질 h-BN의 영향(B2O3)으로 보다 더 낮은 마찰계수를 가지게 된 것으로 추측되고, 이는 나노복합체의 미세구조에 따른 효과로 보이며, 경도와 내마모성이 향상된 소재가공을 제공한다.
In the case of wear, it is assumed that Cr reacted with H 2 O at the surface to form a magnetic lubricating film of Cr 2 O 3 and also had a lower coefficient of friction due to the influence of amorphous h-BN (B 2 O 3 ) , Which appears to be an effect of the nanocomposite microstructure and provides material processing with improved hardness and abrasion resistance.

본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다. It is to be understood that the invention is not limited to the disclosed embodiment, but is capable of many modifications and variations within the scope of the appended claims. It is self-evident.

도면부호 없음
*
No reference
*

Claims (6)

챔버에, Cr 타깃과 TiB2 타깃을 설치하고, 상기 Cr 타깃에는 DC 펄스 전원을 인가하고, 상기 TiB2 타깃에는 임펄스 전원을 인가하되, Cr 타깃과 TiB2 타깃에 대한 인가전력의 비를 제어하고, 질소가스를 비활성 가스와 함께 공급하여, 모재에 Cr-Ti-B-N 사성분계 결정성 나노복합체 코팅 막을 형성하되, Cr-Ti-B-N 사성분계 결정성 나노복합체 코팅 막의 조성은 CrTi0 .1~0.6B0.4~1.1N1 .3~2.1인 것을 특징으로 하는 Cr-Ti-B-N 코팅 방법.To the chamber, and install the Cr target and the TiB 2 target and the Cr target has to apply a DC pulse power supply, the TiB 2 target is, but is the impulse power supply, and is controlling the ratio of electric power to the Cr target and the TiB 2 target , by supplying nitrogen gas with an inert gas, but BN CrTi-four-component crystalline nanocomposite coating film on the base material, CrTi-BN four-component crystalline nanocomposite coating membrane composition was CrTi 0 .1 ~ 0.6 B 0.4 to 1.1 N 1. 3 to 2.1 . 제1항에 있어서, 상기 모재를 지지하는 홀더에는 -70 내지 -150 V의 바이어스 전압을 인가하고, DC 펄스 전원의 전력과 임펄스 전원의 전력은 0.1 kW 내지0.8kW로 제어하는 것을 특징으로 하는 Cr-Ti-B-N 코팅 방법.The method of claim 1, wherein a bias voltage of -70 to -150 V is applied to the holder for supporting the base material, and the power of the DC pulse power source and the power of the impulse power source are controlled to be 0.1 kW to 0.8 kW. -Ti-BN coating method. 제1항 또는 제2항에 있어서, 코팅 공정 중 챔버 내 온도를 150 내지 250℃로 유지하는 것을 특징으로 하는 Cr-Ti-B-N 코팅 방법.The method of claim 1 or 2, wherein the temperature in the chamber during the coating process is maintained at 150 to 250 占 폚. 내구성을 향상시키기 위하여, 스테인레스스틸, 실리콘, 세라믹, 철강합금, 금속 중 어느 하나로 된 모재 표면에 형성되는 결정성 나노복합체 코팅 막으로서, CrTi0.1~0.6B0.4~1.1N1.3~2.1인 것을 특징으로 하는 Cr-Ti-B-N 사성분계 결정성 코팅 막.A crystalline nanocomposite coating film formed on the surface of a base material made of any one of stainless steel, silicon, ceramic, steel alloy and metal to improve durability and is characterized by having a CrTi of 0.1 to 0.6 B 0.4 to 1.1 N 1.3 to 2.1 Cr-Ti-BN-based crystalline coating film. 제4항에 있어서, 상기 Cr-Ti-B-N 사성분계 결정성 코팅 막의 마찰계수는 0.2 내지 0.3인 것을 특징으로 하는 Cr-Ti-B-N 사성분계 결정성 나노복합체 코팅 막.The Cr-Ti-B-N crystalline nanocomposite coating film according to claim 4, wherein the Cr-Ti-B-N yarn crystalline coating film has a coefficient of friction of 0.2 to 0.3. 제4항에 있어서, 상기 Cr-Ti-B-N 사성분계 결정성 코팅 막의 경도는 20 내지 30GPa 인 것을 특징으로 하는 Cr-Ti-B-N 사성분계 결정성 코팅 막.


5. The Cr-Ti-BN-based crystalline coating film according to claim 4, wherein the crystalline coating film of the Cr-Ti-BN yarn component has a hardness of 20 to 30 GPa.


KR1020150048144A 2015-04-06 2015-04-06 HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF KR20150061617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150048144A KR20150061617A (en) 2015-04-06 2015-04-06 HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150048144A KR20150061617A (en) 2015-04-06 2015-04-06 HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130014366A Division KR20140101120A (en) 2013-02-08 2013-02-08 HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF

Publications (1)

Publication Number Publication Date
KR20150061617A true KR20150061617A (en) 2015-06-04

Family

ID=53499519

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150048144A KR20150061617A (en) 2015-04-06 2015-04-06 HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
KR (1) KR20150061617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756785A (en) * 2016-12-29 2017-05-31 西安交通大学青岛研究院 A kind of multiple elements design nanometer hard coat and preparation method thereof
CN110042343A (en) * 2019-03-20 2019-07-23 广东工业大学 A kind of titanium diboride base coating of multicycle structure and its preparation method and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756785A (en) * 2016-12-29 2017-05-31 西安交通大学青岛研究院 A kind of multiple elements design nanometer hard coat and preparation method thereof
CN110042343A (en) * 2019-03-20 2019-07-23 广东工业大学 A kind of titanium diboride base coating of multicycle structure and its preparation method and application
CN110042343B (en) * 2019-03-20 2021-02-12 广东工业大学 Titanium diboride-based coating with multi-periodic structure and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Lin et al. Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses
Alami et al. Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering
Arnell et al. Recent developments in pulsed magnetron sputtering
JP6329742B2 (en) Remote arc discharge plasma assist treatment
Lin et al. Structure and properties of Cr2O3 coatings deposited using DCMS, PDCMS, and DOMS
Nakao et al. DLC coating by HiPIMS: The influence of substrate bias voltage
Wu et al. Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering (HPPMS)
Grudinin et al. Chromium films deposition by hot target high power pulsed magnetron sputtering: Deposition conditions and film properties
US20230135238A1 (en) TICN Having Reduced Growth Defects by Means of HIPIMS
Yang et al. Influence of high power impulse magnetron sputtering pulse parameters on the properties of aluminum nitride coatings
Xie et al. Deposition of titanium films on complex bowl-shaped workpieces using DCMS and HiPIMS
Zhang et al. Low-temperature crystallization and hardness enhancement of alumina films using the resputtering technique
KR20150061617A (en) HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF
CN106048539A (en) Preparation method of titanium-aluminum metal nitride composite hard film
KR20120059255A (en) Coating Material Comprising Titanium, Silver, and Nitrogen and Coating Method of the Same
Zhao et al. Effect of axial magnetic field on the microstructure, hardness and wear resistance of TiN films deposited by arc ion plating
US20140255286A1 (en) Method for manufacturing cubic boron nitride thin film with reduced compressive residual stress and cubic boron nitride thin film manufactured using the same
KR20140101120A (en) HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF
Zhang et al. High-temperature oxidation resistant (Cr, Al) N films synthesized using pulsed bias arc ion plating
CN105339521A (en) Target age compensation method for performing stable reactive sputtering processes
KR101695590B1 (en) ELECTRODE FOR WATER TREATMENT WITH DIAMOND COATING LAYER ON Ti SUBSTRATE AND MANUFACTURING METHOD THREREOF
Bagcivan et al. Comparison of (Cr0. 75Al0. 25) N Coatings Deposited by Conventional and High Power Pulsed Magnetron Sputtering
Mishra et al. Advances in thin film technology through the application of modulated pulse power sputtering
Audronis et al. Characterization studies of pulse magnetron sputtered hard ceramic titanium diboride coatings alloyed with silicon
Nikiforov et al. Preparation and characterization of TiN coatings produced by combination of PI3D and ICP assisted magnetron PVD

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application