KR20150014185A - Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same - Google Patents

Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same Download PDF

Info

Publication number
KR20150014185A
KR20150014185A KR1020130089533A KR20130089533A KR20150014185A KR 20150014185 A KR20150014185 A KR 20150014185A KR 1020130089533 A KR1020130089533 A KR 1020130089533A KR 20130089533 A KR20130089533 A KR 20130089533A KR 20150014185 A KR20150014185 A KR 20150014185A
Authority
KR
South Korea
Prior art keywords
lithium
trimethylsilyl
phosphate
secondary battery
bis
Prior art date
Application number
KR1020130089533A
Other languages
Korean (ko)
Inventor
김일홍
이경미
유성훈
김경호
하회진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020130089533A priority Critical patent/KR20150014185A/en
Publication of KR20150014185A publication Critical patent/KR20150014185A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The purpose of the present invention is to provide a liquid electrolyte for a secondary battery which is effective in improving conductivity, and a lithium secondary battery containing the same. To this end, provided is a liquid electrolyte for a lithium secondary battery comprising lithium salt, a nonaqueous solvent, and organic silane including a trialkylsilyl group, wherein the organic silane including the trialkylsilyl group is included in the range of 2 to 6 wt% based on the total weight of the liquid electrolyte.

Description

이차전지용 액체 전해질 및 이를 포함하는 리튬 이차전지 {Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a liquid electrolyte for a secondary battery and a lithium secondary battery including the same.

본 발명은 이차전지용 액체 전해질 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a liquid electrolyte for a secondary battery and a lithium secondary battery including the same.

화석연료의 고갈에 의한 에너지원의 가격 상승, 환경 오염의 관심이 증폭되며, 친환경 대체 에너지원에 대한 요구가 미래생활을 위한 필수 불가결한 요인이 되고 있다. 이에 원자력, 태양광, 풍력, 조력 등 다양한 전력 생산기술들에 대한 연구가 지속되고 있으며, 이렇게 생산된 에너지를 더욱 효율적으로 사용하기 위한 전력저장장치 또한 지대한 관심이 이어지고 있다.The increase in the price of energy sources due to the depletion of fossil fuels, the increase of interest in environmental pollution, and the demand for environmentally friendly alternative energy sources are becoming indispensable factors for future life. Various researches on power generation technologies such as nuclear power, solar power, wind power, and tidal power have been continuing, and electric power storage devices for more efficient use of such generated energy have also been attracting much attention.

특히, 리튬 이차전지의 경우, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 수요가 급격히 증가하고 있고, 최근에는 전기자동차(EV), 하이브리드 전기자동차(HEV)의 동력원으로서의 사용이 실현화되고 있으며, 그리드(Grid)화를 통한 전력 보조전원 등의 용도로도 사용영역이 확대되고 있다.Particularly, in the case of a lithium secondary battery, the demand for an energy source is rapidly increasing due to an increase in technology development and demand for a mobile device. Recently, the use of a lithium secondary battery as a power source for an electric vehicle (EV) and a hybrid electric vehicle , And the area of use is also expanding for applications such as power assisted power supply through gridization.

리튬 이차전지는 전극 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 비수계 전해액이 함침되어 있는 구조로 이루어져 있는 것이 일반적이다.The lithium secondary battery generally has a structure in which a non-aqueous electrolyte solution containing a lithium salt is impregnated in an electrode assembly having a porous separator interposed between a positive electrode and a negative electrode coated with an active material on an electrode current collector.

이러한 리튬 이차전지는 일반적으로 양극 활물질로 리튬 코발트계 산화물, 리튬 망간계 산화물, 리튬 니켈계 산화물 등의 금속 산화물과 음극 활물질로 탄소 재료를 사용하며, 음극과 양극 사이에 폴리올레핀계 다공성 분리막을 개재하고, LiPF6 등의 리튬염을 가진 비수성 전해액을 함침시켜 제조된다. Such a lithium secondary battery generally uses a metal oxide such as lithium cobalt oxide, lithium manganese oxide, or lithium nickel oxide as a positive electrode active material, and a carbon material as a negative electrode active material. A polyolefin-based porous separator is interposed between the negative electrode and the positive electrode , LiPF 6, and the like.

충전 시에는 양극 활물질의 리튬 이온이 방출되어 음극의 탄소 층으로 삽입되고, 방전시에는 탄소 층의 리튬 이온이 방출되어 양극 활물질로 삽입되며, 비수성 전해액은 음극과 양극 사이에서 리튬 이온을 이동시키는 매질 역할을 한다.During charging, lithium ions of the positive electrode active material are released and inserted into the carbon layer of the negative electrode. During discharging, lithium ions of the carbon layer are released to be inserted into the positive electrode active material. The non-aqueous electrolyte moves lithium ions between the negative electrode and the positive electrode It acts as a medium.

최근에는 전극 활물질로서 종래 사용하는 재료를 벗어나, 스피넬 구조의 리튬 망간계 금속 산화물을 양극 활물질에 사용하는 것에 대한 연구가 많이 진행되고 있다. In recent years, studies on the use of a lithium manganese-based metal oxide having a spinel structure as a cathode active material have been extensively carried out, away from materials conventionally used as an electrode active material.

전극-전해질 간의 계면 반응은 리튬 이차전지에 사용되는 전극 소재 및 전해질의 종류에 따라 달라진다. 따라서, 전극 소재의 변화에 따른 전해액 기술의 개발이 필요한 실정이다.The interfacial reaction between the electrode and the electrolyte depends on the type of the electrode material and the electrolyte used in the lithium secondary battery. Therefore, it is necessary to develop the electrolyte technology according to the change of the electrode material.

본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-described problems of the prior art and the technical problems required from the past.

본 발명의 목적은, 전도성이 향상되는 효과가 있는 이차전지용 액체 절해질 및 이를 포함하는 리튬 이차전지를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid-insulating material for a secondary battery having an improved conductivity and a lithium secondary battery including the same.

따라서, 본 발명의 비제한적인 예에서 이차전지용 액체 전해질은, 리튬염, 비수계 용매 및 트리알킬실릴기를 포함하는 유기실란을 포함하는 것을 특징으로 한다.Thus, in a non-limiting example of the present invention, the liquid electrolyte for a secondary battery is characterized by comprising a lithium salt, a nonaqueous solvent and an organosilane containing a trialkylsilyl group.

상기 리튬염은, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드로 이루어진 군에서 선택된 하나 이상일 수 있다.The lithium salt, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, One or more selected from the group consisting of CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lithium lower aliphatic carboxylate, lithium tetraphenylborate have.

상기 비수계 용매는, 프로필렌카르보네이트(PC), 에틸렌카르보네이트(EC), 비닐렌카르보네이트(VC), 디에틸카르보네이트(DEC), 디메틸카르보네이트(DMC), 메틸에틸카르보네이트(MEC), 에틸메틸카르보네이트(EMC), 테트라하이드로푸란(THF), 2-메틸테트라하이드로푸란(2MeTHF), 디옥솔란(DOX), 디메톡시에탄(DME), 디에톡시에탄(DEE), γ-부티로락톤(GBL), 아세토니트릴(AN), 술포란으로 이루어진 군에서 선택된 하나 이상일 수 있다.The non-aqueous solvent may be at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate (VC), diethyl carbonate (DEC), dimethyl carbonate (MEC), ethyl methyl carbonate (EMC), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), dioxolane (DOX), dimethoxyethane (DME), diethoxyethane DEE), gamma -butyrolactone (GBL), acetonitrile (AN), and sulfolane.

상기 트리알킬실릴기를 포함하는 유기실란은, 트리스(트리메틸실릴)포스페이트, 트리스(트리에틸실릴)포스페이트, 트리스(비닐디메틸실릴)포스페이트, 트리스(트리메틸실릴)보레이트, 트리스(트리에틸실릴)보레이트, 트리스(비닐디메틸실릴)보레이트, 트리스(트리프로필실릴)보레이트, 비스(트리메틸실릴)메틸포스페이트, 비스(트리메틸실릴)에틸포스페이트, 비스(트리메틸실릴)-n-프로필포스페이트, 비스(트리메틸실릴)-i-프로필포스페이트, 비스(트리메틸실릴)-n-부틸포스페이트, 비스(트리메틸실릴)트리클로로에틸포스페이트, 비스(트리메틸실릴)트리플루오로에틸포스페이트, 비스(트리메틸실릴)펜타플루오로프로필포스페이트, 비스(트리메틸실릴)페닐포스페이트, 디메틸트리메틸실릴포스페이트, 디에틸트리메틸실릴포스페이트, 디-n-프로필트리메틸실릴포스페이트, 디-i-프로필트리메틸실릴포스페이트, 디-n-부틸트리메틸실릴포스페이트, 비스(트리클로로에틸)트리메틸실릴포스페이트, 비스(트리플루오로에틸)트리메틸실릴포스페이트, 비스(펜타플루오로프로필)트리메틸실릴포스페이트, 디페닐트리메틸실릴포스페이트로 이루어진 군에서 선택된 하나 이상일 수 있다.The organosilane containing the trialkylsilyl group is preferably selected from the group consisting of tris (trimethylsilyl) phosphate, tris (triethylsilyl) phosphate, tris (vinyldimethylsilyl) phosphate, tris (trimethylsilyl) (Trimethylsilyl) -bis (trimethylsilyl) borate, bis (trimethylsilyl) methylphosphate, bis (trimethylsilyl) ethylphosphate, bis (trimethylsilyl) (Trimethylsilyl) trifluoroethyl phosphate, bis (trimethylsilyl) pentafluoropropyl phosphate, bis (trimethylsilyl) n-butyl phosphate, bis (trimethylsilyl) trichloroethyl phosphate, bis ) Phenyl phosphate, dimethyltrimethylsilyl phosphate, diethyltrimethylsilyl phosphate, di-n-propyl (Trichloroethyl) trimethylsilyl phosphate, bis (trifluoroethyl) trimethylsilyl phosphate, bis (pentafluoropropyl) diphenylsilyl phosphate, di Trimethylsilyl phosphate, diphenyltrimethylsilyl phosphate, and the like.

상기 트리알킬실릴기를 포함하는 유기실란은, 액체 전해질의 전체 중량 대비 2 중량% 이상 내지 6 중량% 이하의 범위 내에서 포함될 수 있다.The organosilane containing the trialkylsilyl group may be contained in an amount of 2% by weight or more and 6% by weight or less based on the total weight of the liquid electrolyte.

상기 트리알킬실릴기를 포함하는 유기실란은, 액체 전해질의 전체 중량 대비 3 중량% 이상 내지 5 중량% 이하의 범위 내에서 포함될 수 있다.The organosilane containing the trialkylsilyl group may be contained in an amount of 3 wt% or more to 5 wt% or less based on the total weight of the liquid electrolyte.

본 발명은 또한, 상기 액체 전해질 및 양극 활물질로서, 하기 화학식 (1)로 표현되는 화합물과 하기 화학식 (2)로 표현되는 화합물 중에서 선택된 하나 이상의 리튬 금속 산화물을 포함하는 것을 특징으로 하는 리튬 이차전지를 제공할 수 있다.The present invention also provides a lithium secondary battery comprising the liquid electrolyte and the positive electrode active material, wherein the lithium secondary battery comprises at least one lithium metal oxide selected from a compound represented by the following formula (1) and a compound represented by the following formula (2) .

LixMyMn2-yO4-zAz (1) Li x M y Mn 2 - y O 4 - z z (1)

상기 식에서, In this formula,

0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고; 0.9? X? 1.2, 0 <y <2, 0? Z <0.2;

M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Si, Ga, Sn, P, Sb, Ta, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;M is at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Si, Ga, Sn, Ti and Bi;

A는 -1 또는 -2가의 하나 이상의 음이온이다.
A is one or more of an anion of -1 or -2.

(1-x)LiM’O2-yAy -xLi2MnO3-y’Ay’ (2)(1-x) LiM'O 2-y A y -xLi 2 MnO 3 -y ' A y' (2)

상기 식에서, In this formula,

M’은 MnaMb이고;M 'is Mn a M b ;

M은 Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이며;M is one or more selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and two period transition metals;

A는 PO4, BO3, CO3, F 및 NO3의 음이온으로 이루어진 군에서 선택되는 하나 이상이고,A is at least one selected from the group consisting of PO 4 , BO 3 , CO 3 , F and NO 3 anions,

0<x<1; 0≤y≤0.02; 0≤y’≤0.02; 0.5≤a≤1.0; 0≤b≤0.5; a + b = 1 이다.0 &lt; x <1; 0? Y? 0.02; 0? Y? 0.02; 0.5? A? 1.0; 0? B? 0.5; a + b = 1.

상기 리튬 이차전지는, 음극 활물질로서, 탄소계 물질, 및/또는 Si을 포함할 수 있다.The lithium secondary battery may include a carbon-based material and / or Si as a negative electrode active material.

상기 리튬 이차전지는, 리튬 이온 전지, 리튬 이온 폴리머 전지, 리튬 폴리머 전지로 이루어진 군에서 선택된 하나일 수 있다.The lithium secondary battery may be one selected from the group consisting of a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery.

본 발명은 또한, 상기 리튬 이차전지를 포함하는 것을 특징으로 하는 전지팩을 제공할 수 있다.The present invention can also provide a battery pack including the lithium secondary battery.

또한, 상기 전지팩을 에너지원으로 사용하는 것을 특징으로 하는 디바이스를 제공할 수 있다.Further, it is possible to provide a device characterized by using the battery pack as an energy source.

본 발명은, 양극, 음극 및 양극과 음극 사이에 고분자 막을 개재시킨 구조의 전극 조립체를 전지 케이스에 수납하고 상기 액체 전해질을 주입한 후 밀봉한 구조의 리튬 이차전지를 제공한다.The present invention provides a lithium secondary battery having a structure in which an electrode assembly having a positive electrode, a negative electrode, and a polymer film interposed between the positive electrode and the negative electrode is housed in a battery case, and the liquid electrolyte is injected and sealed.

하나의 구체적인 예에서, 상기 전극은 양극일 수 있다.In one specific example, the electrode may be an anode.

일반적으로, 상기 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물인 전극 합제를 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.Generally, the positive electrode is prepared by applying an electrode mixture, which is a mixture of a positive electrode active material, a conductive material and a binder, on a positive electrode collector, followed by drying. If necessary, a filler may be further added to the mixture.

상기 양극 활물질은, 상기 화학식 1 및 2 로 표현되는 전극 활물질 외에, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2-xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.The cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ) or lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals in addition to the electrode active material represented by the above formulas (1) and ( 2 ). Lithium manganese oxides such as Li 1 + x Mn 2 -x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 and Cu 2 V 2 O 7 ; A Ni-site type lithium nickel oxide expressed by the formula LiNi 1-x M x O 2 (where M = Co, Mn, Al, Cu, Fe, Mg, B or Ga and x = 0.01 to 0.3); Formula LiMn 2-x M x O 2 ( where, M = Co, Ni, Fe , Cr, and Zn, or Ta, x = 0.01 ~ 0.1 Im) or Li 2 Mn 3 MO 8 (where, M = Fe, Co, Ni, Cu, or Zn); A lithium manganese composite oxide having a spinel structure represented by LiNi x Mn 2-x O 4 ; LiMn 2 O 4 in which a part of Li in the formula is substituted with an alkaline earth metal ion; Disulfide compounds; Fe 2 (MoO 4 ) 3 , and the like, but is not limited thereto.

상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.The cathode current collector generally has a thickness of 3 to 500 mu m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Examples of the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel A surface treated with carbon, nickel, titanium, silver or the like may be used. The current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.

상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is usually added in an amount of 1 to 50% by weight based on the total weight of the mixture including the cathode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.

한편, 상기 탄성을 갖는 흑연계 물질이 도전재로 사용될 수 있고, 상기 물질들과 함께 사용될 수도 있다.On the other hand, the graphite-based material having elasticity may be used as a conductive material, and may be used together with the materials.

상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 50 wt% based on the total weight of the mixture containing the cathode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.

상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is optionally used as a component for suppressing the expansion of the anode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery. Examples of the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.

상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.The negative electrode is prepared by applying, drying and pressing an anode active material on an anode current collector, and may optionally further include a conductive material, a binder, a filler, and the like as described above.

상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있고, 상세하게는 탄소계 물질 및/또는 Si을 포함할 수 있다.The negative electrode active material may include, for example, carbon such as non-graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0≤x≤1 ), Li x WO 2 (0≤x≤1), Sn x Me 1-x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen, 0 &lt; x &lt; Lithium metal; Lithium alloy; Silicon-based alloys; Tin alloy; SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, and Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials; Titanium oxide; Lithium titanium oxide and the like can be used, and in particular, a carbon-based material and / or Si can be included.

상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is generally made to have a thickness of 3 to 500 mu m. Such an anode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples of the anode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, a surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode collector, fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.

상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.The separation membrane is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally 0.01 to 10 mu m and the thickness is generally 5 to 300 mu m. Such separation membranes include, for example, olefinic polymers such as polypropylene, which are chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. When a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.

본 발명은, 상기 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다.The present invention provides a battery module including the secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.

이 때, 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.At this time, specific examples of the device include a power tool that is powered by an electric motor and moves; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like; An electric motorcycle including an electric bike (E-bike) and an electric scooter (E-scooter); An electric golf cart; And a power storage system, but the present invention is not limited thereto.

상기에서 설명한 바와 같이, 본 발명에 따른 이차전지용 액체 전해질은, 전도성이 향상되는 효과가 있는 이차전지용 액체 절해질 및 이를 포함하는 리튬 이차전지를 제공할 수 있다.INDUSTRIAL APPLICABILITY As described above, the liquid electrolyte for a secondary battery according to the present invention can provide a liquid electrolyte for a secondary battery having improved conductivity and a lithium secondary battery including the same.

도 1은 실험예 1에 따른 챔버에서의 사이클 특성을 비교한 그래프이다;
도 2는 실험예 2에 따른 챔버에서의 저항 특성을 비교한 그래프이다;
도 3은 실험예 3에 따른 챔버에서의 사이클 특성을 비교한 그래프이다.
1 is a graph comparing cycle characteristics in a chamber according to Experimental Example 1;
2 is a graph comparing resistance characteristics in a chamber according to Experimental Example 2;
3 is a graph comparing cycle characteristics in a chamber according to Experimental Example 3;

이하에서는 실시예를 통해 본 발명의 내용을 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.

<실시예 1>&Lt; Example 1 >

천연흑연, 도전재(Denka black), 바인더(PVdF)를 90 : 5 : 5 의 중량비로 NMP에 넣고 믹싱하여 음극 합제를 제조하고, 20 ㎛ 두께의 구리 호일에 상기 음극 합제를 60 ㎛ 두께로 코팅한 후, 압연 및 건조하여 음극을 제조하였다.Denka black and a binder (PVdF) were mixed in NMP at a weight ratio of 90: 5: 5 and mixed to prepare a negative electrode mixture. To the copper foil having a thickness of 20 탆, the negative electrode mixture was coated to a thickness of 60 탆 And then rolled and dried to prepare a negative electrode.

양극으로는 Li1.2Ni0.14Mn0.52M0.14O2를 활물질로 사용하고 도전재(Denka black), 바인더(PVdF)를 각각 90 : 5 : 5 의 중량비로 NMP에 넣고 믹싱한 후 20 ㎛ 두께의 알루미늄 호일에 코팅하고, 압연 및 건조하여 양극을 제조하였다.As the anode, Li 1.2 Ni 0.14 Mn 0.52 M 0.14 O 2 was used as an active material, a conductive material (Denka black) and a binder (PVdF) were mixed in NMP at a weight ratio of 90: 5: 5, Coated on a foil, rolled and dried to prepare a positive electrode.

이렇게 제조된 음극과 양극 사이에 분리막으로서 폴리에틸렌 막(Celgard, 두께: 20 ㎛)을 개재한 후, EC/EMC = 1/2 (vol%) 용매에 LiPF6가 1M로 녹아 있고, 포스페이트계 첨가제로서 트리스(메틸실릴)포스페이트가 전해액 전체 중량을 기준으로 4 중량% 첨가된 액체 전해액을 주입하여, 파우치 전지를 제조하였다.
This polyethylene as a separator between the prepared negative electrode and the positive electrode film (Celgard, thickness: 20 ㎛) interposed, and then, EC / EMC = 1/2 (vol %) , and LiPF 6 in a solvent is dissolved in 1M, a phosphate-based additive A liquid electrolyte in which tris (methylsilyl) phosphate was added in an amount of 4% by weight based on the total weight of the electrolytic solution was injected to prepare a pouch battery.

<비교예 1>&Lt; Comparative Example 1 &

상기 실시예 1에서, 트리스(메틸실릴)포스페이트가 전해액 전체 중량을 기준으로 2 중량% 첨가된 액체 전해액을 주입한 것을 제외하고는 실시예 1과 동일한 방법으로 파우치 전지를 제조하였다.
A pouch battery was produced in the same manner as in Example 1, except that the liquid electrolyte in which tris (methylsilyl) phosphate was added in an amount of 2% by weight based on the total weight of the electrolytic solution was injected.

<비교예 2>&Lt; Comparative Example 2 &

상기 실시예 1에서, 트리스(메틸실릴)포스페이트가 전해액 전체 중량을 기준으로 0.5 중량% 첨가된 액체 전해액을 주입한 것을 제외하고는 실시예 1과 동일한 방법으로 파우치 전지를 제조하였다.
A pouch battery was manufactured in the same manner as in Example 1, except that the liquid electrolyte in which tris (methylsilyl) phosphate was added in an amount of 0.5% by weight based on the total weight of the electrolytic solution was injected.

<비교예 3>&Lt; Comparative Example 3 &

상기 실시예 1에서, 트리스(메틸실릴)포스페이트가 첨가되지 않은 액체 전해액을 주입한 것을 제외하고는 실시예 1과 동일한 방법으로 파우치 전지를 제조하였다.
A pouch battery was produced in the same manner as in Example 1 except that a liquid electrolyte in which tris (methylsilyl) phosphate was not added was injected in Example 1 above.

<실험예 1><Experimental Example 1>

상기 실시예 1 및 비교예 1 내지 3에서 제조된 파우치 전지를 45℃ 챔버에서 4.35V - 2.5V 의 조건으로 C-rate 충방전을 진행한 후 용량을 확인하여, 그 결과를 하기 도 1에 나타내었다. The pouch batteries prepared in Example 1 and Comparative Examples 1 to 3 were subjected to C-rate charging and discharging at a temperature of 4.35 V to 2.5 V in a 45 ° C chamber, and the capacities were checked. The results are shown in FIG. 1 .

도 1 에 따르면, 실시예 1의 전지는 비교예 1 내지 3의 전지에 비하여 충방전에 따른 급격한 성능 저하를 방지할 수 있음을 알 수 있다.
1, it can be seen that the battery of Example 1 is able to prevent a rapid performance deterioration due to charging and discharging as compared with the batteries of Comparative Examples 1 to 3.

<실험예 2><Experimental Example 2>

상기 실시예 1 및 비교예 1 내지 3에서 제조된 파우치 전지를 45℃ 챔버에서 4.35V - 2.5V 의 조건으로 충방전하는 과정을 200회 반복 수행한 후, 100사이클마다 초기 저항을 기준으로 SOC 50 에서 저항 증가율을 측정하였으며, 그 결과를 하기 도 2에 나타내었다. The process of charging and discharging the pouch batteries prepared in Example 1 and Comparative Examples 1 to 3 under a condition of 4.35 V to 2.5 V in a 45 ° C chamber was repeated 200 times and then SOC 50 And the results are shown in FIG. 2.

도 2 에 따르면, 실시예 1의 전지는 비교예 1 내지 3의 전지에 비하여 저항의 증가율이 매우 낮은 것으로 관찰되었다. 따라서, 실시예 1의 전지는 적정량의 트리스(메틸실릴)포스페이트를 포함함으로써, 망간 용출에 따른 음극의 저항 증가 및 수소가스 발생으로 인해 리튬 이차전지의 내부 저항이 크게 증가하지 않는 것을 알 수 있다.According to Fig. 2, the battery of Example 1 was observed to have a very low rate of increase in resistance as compared with the batteries of Comparative Examples 1 to 3. Therefore, it can be seen that the battery of Example 1 contains a proper amount of tris (methylsilyl) phosphate, so that the internal resistance of the lithium secondary battery does not greatly increase due to the increase in the resistance of the negative electrode due to the elution of manganese and generation of hydrogen gas.

<실험예 3><Experimental Example 3>

상기 실시예 1 및 비교예 1 내지 3에서 제조된 파우치 전지를 45℃ 챔버에서 4.35V - 2.5V의 조건으로 200사이클의 충방전 과정을 반복한 후 100사이클마다 0.5C 용량을 측정하였고, 그 결과를 하기 도 3에 나타내었다.The pouch batteries prepared in Example 1 and Comparative Examples 1 to 3 were repeatedly charged and discharged at a temperature of 4.35 V - 2.5 V in a 45 ° C chamber for 200 cycles, and a capacity of 0.5 C was measured every 100 cycles. As a result, Is shown in Fig.

도 3 에 따르면, 실시예 1의 전지는 비교예 1 내지 3의 전지에 비하여 충방전에 따른 급격한 성능 저하를 방지할 수 있음을 알 수 있다.
According to FIG. 3, it can be seen that the battery of Example 1 is able to prevent a sudden drop in performance due to charging and discharging, compared with the batteries of Comparative Examples 1 to 3.

본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (11)

리튬염;
비수계 용매; 및
트리알킬실릴기를 포함하는 유기실란;
을 포함하는 것을 특징으로 하는 리튬 이차전지용 액체 전해질.
Lithium salts;
Non-aqueous solvent; And
Organosilanes including trialkylsilyl groups;
Wherein the liquid electrolyte further comprises an electrolyte.
제 1 항에 있어서,
상기 리튬염은, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 리튬 이차전지용 액체 전해질.
The method according to claim 1,
The lithium salt, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, At least one selected from the group consisting of CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lithium lower aliphatic carboxylate, lithium tetraphenylborate and imide A liquid electrolyte for a lithium secondary battery.
제 1 항에 있어서,
상기 비수계 용매는, 프로필렌카르보네이트(PC), 에틸렌카르보네이트(EC), 비닐렌카르보네이트(VC), 디에틸카르보네이트(DEC), 디메틸카르보네이트(DMC), 메틸에틸카르보네이트(MEC), 에틸메틸카르보네이트(EMC), 테트라하이드로푸란(THF), 2-메틸테트라하이드로푸란(2MeTHF), 디옥솔란(DOX), 디메톡시에탄(DME), 디에톡시에탄(DEE), γ-부티로락톤(GBL), 아세토니트릴(AN), 술포란으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 리튬 이차전지용 액체 전해질.
The method according to claim 1,
The nonaqueous solvent may be at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate (VC), diethyl carbonate (DEC), dimethyl carbonate (MEC), ethyl methyl carbonate (EMC), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), dioxolane (DOX), dimethoxyethane (DME), diethoxyethane DEE), gamma -butyrolactone (GBL), acetonitrile (AN), and sulfolane.
제 1 항에 있어서, 상기 트리알킬실릴기를 포함하는 유기실란은,
트리스(트리메틸실릴)포스페이트, 트리스(트리에틸실릴)포스페이트, 트리스(비닐디메틸실릴)포스페이트, 트리스(트리메틸실릴)보레이트, 트리스(트리에틸실릴)보레이트, 트리스(비닐디메틸실릴)보레이트, 트리스(트리프로필실릴)보레이트, 비스(트리메틸실릴)메틸포스페이트, 비스(트리메틸실릴)에틸포스페이트, 비스(트리메틸실릴)-n-프로필포스페이트, 비스(트리메틸실릴)-i-프로필포스페이트, 비스(트리메틸실릴)-n-부틸포스페이트, 비스(트리메틸실릴)트리클로로에틸포스페이트, 비스(트리메틸실릴)트리플루오로에틸포스페이트, 비스(트리메틸실릴)펜타플루오로프로필포스페이트, 비스(트리메틸실릴)페닐포스페이트, 디메틸트리메틸실릴포스페이트, 디에틸트리메틸실릴포스페이트, 디-n-프로필트리메틸실릴포스페이트, 디-i-프로필트리메틸실릴포스페이트, 디-n-부틸트리메틸실릴포스페이트, 비스(트리클로로에틸)트리메틸실릴포스페이트, 비스(트리플루오로에틸)트리메틸실릴포스페이트, 비스(펜타플루오로프로필)트리메틸실릴포스페이트, 디페닐트리메틸실릴포스페이트로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 리튬 이차전지용 액체 전해질.
The organic silane according to claim 1,
Tris (trimethylsilyl) borate, tris (vinyldimethylsilyl) borate, tris (trimethylsilyl) phosphate, tris (triethylsilyl) phosphate, tris (vinyldimethylsilyl) Bis (trimethylsilyl) ethyl phosphate, bis (trimethylsilyl) -n-propyl phosphate, bis (trimethylsilyl) -i-propyl phosphate, bis (trimethylsilyl) (Trimethylsilyl) pentafluoropropylphosphate, bis (trimethylsilyl) phenylphosphate, dimethyltrimethylsilylphosphate, diethyl (trimethylsilyl) trifluoroethylphosphate, bis (trimethylsilyl) Trimethylsilyl phosphate, di-n-propyltrimethylsilyl phosphate, di-i-propyltrimethylsilyl (Pentafluoropropyl) trimethylsilyl phosphate, bis (trichloroethyl) trimethylsilyl phosphate, bis (trifluoroethyl) trimethylsilyl phosphate, bis (pentafluoropropyl) trimethylsilyl phosphate, diphenyltrimethylsilyl phosphate, Wherein the electrolyte is at least one selected from the group consisting of lithium, lithium, and lithium.
제 1 항에 있어서,
상기 트리알킬실릴기를 포함하는 유기실란은, 액체 전해질의 전체 중량 대비 2 중량% 이상 내지 6 중량% 이하의 범위 내에서 포함되어 있는 것을 특징으로 하는 리튬 이차전지용 액체 전해질.
The method according to claim 1,
Wherein the organosilane containing the trialkylsilyl group is contained in an amount of 2 wt% to 6 wt% based on the total weight of the liquid electrolyte.
제 5 항에 있어서,
상기 트리알킬실릴기를 포함하는 유기실란은, 액체 전해질의 전체 중량 대비 3 중량% 이상 내지 5 중량% 이하의 범위 내에서 포함되어 있는 것을 특징으로 하는 리튬 이차전지용 액체 전해질.
6. The method of claim 5,
Wherein the organosilane containing the trialkylsilyl group is contained in an amount of 3 wt% to 5 wt% based on the total weight of the liquid electrolyte.
제 1 항 내지 제 6 항 중 어느 하나에 따른 액체 전해질; 및
양극 활물질로서, 하기 화학식 (1)로 표현되는 화합물과 하기 화학식 (2)로 표현되는 화합물 중에서 선택된 하나 이상의 리튬 금속 산화물을 포함하는 것을 특징으로 하는 리튬 이차전지:

LixMyMn2-yO4-zAz (1)
상기 식에서,
0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고;
M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Si, Ga, Sn, P, Sb, Ta, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;
A는 -1 또는 -2가의 하나 이상의 음이온이다.


(1-x)LiM’O2-yAy -xLi2MnO3-y’Ay’ (2)
상기 식에서,
M’은 MnaMb이고;
M은 Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이며;
A는 PO4, BO3, CO3, F 및 NO3의 음이온으로 이루어진 군에서 선택되는 하나 이상이고,
0<x<1; 0≤y≤0.02; 0≤y’≤0.02; 0.5≤a≤1.0; 0≤b≤0.5; a + b = 1 이다.
A liquid electrolyte according to any one of claims 1 to 6; And
1. A lithium secondary battery comprising as a positive electrode active material at least one lithium metal oxide selected from a compound represented by the following formula (1) and a compound represented by the following formula (2)

Li x M y Mn 2 - y O 4 - z z (1)
In this formula,
0.9? X? 1.2, 0 <y <2, 0? Z <0.2;
M is at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Si, Ga, Sn, Ti and Bi;
A is one or more of an anion of -1 or -2.


(1-x) LiM'O 2-y A y -xLi 2 MnO 3 -y ' A y' (2)
In this formula,
M 'is Mn a M b ;
M is one or more selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and two period transition metals;
A is at least one selected from the group consisting of PO 4 , BO 3 , CO 3 , F and NO 3 anions,
0 &lt; x &lt;1; 0? Y? 0.02; 0? Y? 0.02; 0.5? A? 1.0; 0? B? 0.5; a + b = 1.
제 7 항에 있어서,
상기 리튬 이차전지는, 음극 활물질로서, 탄소계 물질, 및/또는 Si을 포함하는 것을 특징으로 하는 리튬 이차전지.
8. The method of claim 7,
Wherein the lithium secondary battery comprises a carbonaceous material and / or Si as a negative electrode active material.
제 7 항에 있어서,
상기 리튬 이차전지는, 리튬 이온 전지, 리튬 이온 폴리머 전지, 리튬 폴리머 전지로 이루어진 군에서 선택된 하나인 것을 특징으로 하는 리튬 이차전지.
8. The method of claim 7,
Wherein the lithium secondary battery is one selected from the group consisting of a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery.
제 7 항에 따른 리튬 이차전지를 포함하는 것을 특징으로 하는 전지팩.A battery pack comprising the lithium secondary battery according to claim 7. 제 10 항에 따른 전지팩을 에너지원으로 사용하는 것을 특징으로 하는 디바이스.A device according to claim 10, wherein the battery pack is used as an energy source.
KR1020130089533A 2013-07-29 2013-07-29 Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same KR20150014185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130089533A KR20150014185A (en) 2013-07-29 2013-07-29 Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130089533A KR20150014185A (en) 2013-07-29 2013-07-29 Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same

Publications (1)

Publication Number Publication Date
KR20150014185A true KR20150014185A (en) 2015-02-06

Family

ID=52571109

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130089533A KR20150014185A (en) 2013-07-29 2013-07-29 Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same

Country Status (1)

Country Link
KR (1) KR20150014185A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196452A (en) * 2015-04-02 2016-11-24 旭化成株式会社 Compound, electrolyte additive, electrolyte, and lithium ion secondary battery
KR20170031636A (en) 2015-09-11 2017-03-21 에스케이케미칼주식회사 Electrolyte additives for secondary battery, electrolyte and secondary battery comprising same
WO2018169369A1 (en) * 2017-03-17 2018-09-20 주식회사 엘지화학 Electrolyte additive and lithium secondary battery electrolyte comprising same
WO2018190485A1 (en) * 2017-04-13 2018-10-18 인천대학교 산학협력단 Silyl phosphate based electrolyte additive, and lithium secondary battery comprising same
WO2019108031A1 (en) * 2017-11-30 2019-06-06 주식회사 엘지화학 Composition for gel polymer electrolyte, gel polymer electrolyte prepared by means of same, and lithium secondary battery comprising same
KR20200064715A (en) 2018-11-29 2020-06-08 한양대학교 산학협력단 Sulfide glass ceramic, process for producing the same, and all-solid secondary battery containing the solid electrolyte
CN111386624A (en) * 2017-11-30 2020-07-07 株式会社Lg化学 Composition for gel polymer electrolyte, gel polymer electrolyte prepared from the composition, and lithium secondary battery comprising the gel polymer electrolyte
CN111987359A (en) * 2019-11-27 2020-11-24 中节能万润股份有限公司 Novel lithium ion battery electrolyte additive and application thereof
CN112151866A (en) * 2020-10-19 2020-12-29 珠海冠宇电池股份有限公司 Electrolyte for lithium ion battery and lithium ion battery comprising same
CN113054258A (en) * 2021-04-21 2021-06-29 广州天赐高新材料股份有限公司 Novel application of substituted silicon-based phosphate compound, electrolyte and lithium ion battery
WO2022149740A1 (en) * 2021-01-07 2022-07-14 삼성에스디아이주식회사 Electrolyte for lithium battery, and lithium battery comprising same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196452A (en) * 2015-04-02 2016-11-24 旭化成株式会社 Compound, electrolyte additive, electrolyte, and lithium ion secondary battery
KR20170031636A (en) 2015-09-11 2017-03-21 에스케이케미칼주식회사 Electrolyte additives for secondary battery, electrolyte and secondary battery comprising same
US11476499B2 (en) 2017-03-17 2022-10-18 Lg Energy Solution, Ltd. Electrolyte additive and electrolyte for lithium secondary battery including the same
WO2018169369A1 (en) * 2017-03-17 2018-09-20 주식회사 엘지화학 Electrolyte additive and lithium secondary battery electrolyte comprising same
US11031628B2 (en) 2017-03-17 2021-06-08 Lg Chem, Ltd. Electrolyte additive and electrolyte for lithium secondary battery including the same
WO2018190485A1 (en) * 2017-04-13 2018-10-18 인천대학교 산학협력단 Silyl phosphate based electrolyte additive, and lithium secondary battery comprising same
WO2019108031A1 (en) * 2017-11-30 2019-06-06 주식회사 엘지화학 Composition for gel polymer electrolyte, gel polymer electrolyte prepared by means of same, and lithium secondary battery comprising same
CN111386624A (en) * 2017-11-30 2020-07-07 株式会社Lg化学 Composition for gel polymer electrolyte, gel polymer electrolyte prepared from the composition, and lithium secondary battery comprising the gel polymer electrolyte
CN111386624B (en) * 2017-11-30 2023-09-19 株式会社Lg新能源 Composition for gel polymer electrolyte, gel polymer electrolyte prepared from the composition, and lithium secondary battery including the gel polymer electrolyte
KR20200064715A (en) 2018-11-29 2020-06-08 한양대학교 산학협력단 Sulfide glass ceramic, process for producing the same, and all-solid secondary battery containing the solid electrolyte
CN111987359A (en) * 2019-11-27 2020-11-24 中节能万润股份有限公司 Novel lithium ion battery electrolyte additive and application thereof
CN112151866A (en) * 2020-10-19 2020-12-29 珠海冠宇电池股份有限公司 Electrolyte for lithium ion battery and lithium ion battery comprising same
CN112151866B (en) * 2020-10-19 2022-08-30 珠海冠宇电池股份有限公司 Electrolyte for lithium ion battery and lithium ion battery comprising same
WO2022149740A1 (en) * 2021-01-07 2022-07-14 삼성에스디아이주식회사 Electrolyte for lithium battery, and lithium battery comprising same
WO2022222420A1 (en) * 2021-04-21 2022-10-27 广州天赐高新材料股份有限公司 New use of substituted silicon-based phosphate compound, electrolyte, and lithium ion battery
CN113054258A (en) * 2021-04-21 2021-06-29 广州天赐高新材料股份有限公司 Novel application of substituted silicon-based phosphate compound, electrolyte and lithium ion battery

Similar Documents

Publication Publication Date Title
KR20140148355A (en) Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Comprising The Same
KR20150014185A (en) Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR101445602B1 (en) Secondary Battery Having Improved Safety
KR101623724B1 (en) Anode Mixture for Secondary Battery Having Improved Structural Safety and Secondary Battery Having the Same
KR101623719B1 (en) The Method for Preparing Cathode Material for Lithium Secondary Battery
KR20130117356A (en) Cathode active material and the secondary battery comprising the same
KR101495301B1 (en) The Electrodes For Secondary Battery and the Secondary Battery Comprising the Same
US20170331103A1 (en) Cathode active material and lithium secondary battery comprising the same
KR101792750B1 (en) Cathode comprising double layer of cathode active material and lithium secondary battery comprising the same
KR101692795B1 (en) The Method for Preparing Lithium Secondary Battery and the Lithium Secondary Battery Prepared by Using the Same
KR101445600B1 (en) Secondary Battery Having Improved Safety
US9831493B2 (en) Cathode active material and lithium secondary battery comprising the same
KR101507450B1 (en) Lithium Battery Having Higher Performance
KR101514303B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101490842B1 (en) Composite Electrode Comprising Different Electrode Active Material Coating Layers and Lithium Secondary Battery Comprising the Same
KR20130117712A (en) Lithium battery having higher performance
KR101617418B1 (en) Secondary Battery Having Crown Ether Compound for Preventing Deposition of Manganese and the Same
KR101595328B1 (en) Anode Electrodes for Secondary Battery and Lithium Secondary Battery Containing The Same
KR20150014216A (en) Lithium Secondary Battery Improved Energy Density
KR20130117710A (en) Secondary battery comprising electrolytes containing boron-based compound
KR20130115768A (en) Multi layered electrode and the method of the same
KR20150014162A (en) Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR101596493B1 (en) Electrode Assembly Including Ion Adsorption Film for Preventing Deposition of Manganese and Secondary Battery Having the Same
KR101497351B1 (en) Lithium Secondary Battery Including Excess Amount of Electrolyte
KR20150014829A (en) Cathode with Eliminated Gas for Secondary Battery and Lithium Secondary Battery Having the Same

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination