KR20140148270A - 대규모 다중 안테나 무선통신 시스템에서 에너지 효율적인 신호 전송 방법 및 장치 - Google Patents

대규모 다중 안테나 무선통신 시스템에서 에너지 효율적인 신호 전송 방법 및 장치 Download PDF

Info

Publication number
KR20140148270A
KR20140148270A KR20130120132A KR20130120132A KR20140148270A KR 20140148270 A KR20140148270 A KR 20140148270A KR 20130120132 A KR20130120132 A KR 20130120132A KR 20130120132 A KR20130120132 A KR 20130120132A KR 20140148270 A KR20140148270 A KR 20140148270A
Authority
KR
South Korea
Prior art keywords
antenna
selecting
antennas
signal
terminal
Prior art date
Application number
KR20130120132A
Other languages
English (en)
Other versions
KR102202935B1 (ko
Inventor
변용석
김태윤
이용환
임종한
Original Assignee
삼성전자주식회사
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 서울대학교산학협력단 filed Critical 삼성전자주식회사
Priority to US14/310,755 priority Critical patent/US9088944B2/en
Priority to EP14813359.8A priority patent/EP3011688B1/en
Priority to PCT/KR2014/005472 priority patent/WO2014204267A1/en
Priority to CN201480035479.0A priority patent/CN105453452B/zh
Publication of KR20140148270A publication Critical patent/KR20140148270A/ko
Priority to US14/739,496 priority patent/US9444529B2/en
Application granted granted Critical
Publication of KR102202935B1 publication Critical patent/KR102202935B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/386TPC being performed in particular situations centralized, e.g. when the radio network controller or equivalent takes part in the power control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

본 발명은 다중 사용자 대규모 다중 안테나를 사용하는 무선 통신 시스템에서 에너지 효율을 고려하여 MIMO 모드를 선택하고, 통신에 사용할 안테나 서브셋을 선택할 수 있는 방법에 관한 것이다.
대규모 다중 안테나의 사용에 따라 안테나를 운용하기 위한 전력이 증가하였지만 기존의 많은 기술들은 안테나를 운용 하기 위한 전력을 고려하지 않아 단순히 송신 전력을 감소시키기 위한 연구가 진행 되었다. 하지만 본 발명은 송신 전력뿐만 아니라 RF 회로가 소모하는 전력을 추가적으로 고려하여, 안테나 전체를 사용하는 것이 아니라 송신전력을 최소화할 수 있는 안테나 서브셋을 선택할 수 있는 방법을 제공하는 것을 목적으로 한다.
본 발명에 따르면, 에너지 효율을 향상 시키기 위한 사용자 스케줄링 방법을 고려하며, 보다 에너지 효율적인 다중 안테나 기법을 선택하고 대규모 다중 안테나 시스템에서 소모 전력을 최소화 하는 안테나를 선택함으로써 기지국의 에너지 효율을 크게 낮출 수 있는 효과가 있다나아가 본 발명에 따르면 적은 수의 안테나를 사용하게 됨에 따라 복잡도 감소 이득을 얻을 수 있는 효과가 있다.

Description

대규모 다중 안테나 무선통신 시스템에서 에너지 효율적인 신호 전송 방법 및 장치 {A METHOD AND APPARATUS FOR ENERGY EFFICIENT SIGNAL TRANSMISSION IN MASSIVE MULTI-ANTENNA WIRELESS COMMUNICATION SYSTEMS }
본 발명은 다중 사용자 대규모 다중 안테나를 사용하는 무선 통신 시스템에서 기지국의 에너지 효율이 증가되도록 안테나 모드를 선택하고, 전체 안테나 중 상기 단말에 신호를 전송할 안테나 서브 셋을 선택하는 신호 전송 기법에 관한 것이다.
스마트폰의 보급에 따른 무선 멀티미디어 서비스의 활성화, SNS(Social Networking Service)의 활성화, 사물통신 등의 무선 수요 확대로 인해 무선 데이터 트래픽이 폭발적으로 급증하고 있다. 이에 기존의 데이터 전송 방식으로 처리가 쉽지 않은 빅데이터(big data) 환경이 도래하고 있다.
빅데이터 환경의 도래에 따라 무선 자원을 효율적으로 관리하기 위한 기술로 대규모 다중 안테나(massive multiple-input multiple output; 이하 M-MIMO라 지칭함) 시스템의 사용이 고려되고 있다. 또한 M-MIMO 기술은 에너지 효율적인 녹색 통신(green communications) 기술 중 하나로 크게 주목 받고 있다.
종래의 무선 통신 시스템은 더 많은 기지국을 설치하거나 주파수 대역 확보등과 같이 채널 용량을 크게 증가 시키기 위한 연구가 중심이 되어 진행 되었다. 예를 들어, OFDMA(orthogonal frequency division multiple access), 다중 안테나 기술, 릴레이 전송 기술과 같은 종래의 기술은 높은 채널 용량을 제공하기 위한 것이다.
하지만 높은 채널 용량을 제공하기 위해서는 큰 에너지 소모가 필수적으로 요구된다. 이를 고려할 때, 총 에너지가 제한된 기기나 에너지 효율을 중시하는 네트워크에서 채널 용량만을 높이는 방식은 효율적이지 못한 문제가 있다.
한편, 최근 M-MIMO 시스템 및 분산 안테나 시스템 등이 등장하여 풍부한 자원을 바탕으로 단말의 전송 요구사항을 만족시키기 용이해지고 있다. 이에 따라 앞으로의 무선 통신 시스템은 단말의 전송 요구사항을 만족 시키면서 최대한 에너지 효율적인 시스템이 필요하다.
기존의 에너지 효율을 고려한 전송 기법들의 경우 다수의 안테나를 이용함에 따라 소모되는 전력의 양을 고려하지 않고 오로지 송신 전력만을 고려하고 있었다. 하지만 M-MIMO 시스템의 등장으로 인해 매우 많은 안테나를 운용하기 위한 전력이 더 소모되는 문제가 발생할 수 있다.
상기와 같은 문제를 해결하기 위하여, 본 발명은 사용자의 전송 요구사항을 만족시키며 송신 전력뿐만 아니라 RF 회로에서 소모하는 전력을 고려하여 기지국의 전력 효율을 향상시키는 신호 전송 방법을 제공하는 것을 목적으로 한다.
상기와 같은 문제를 해결하기 위한 본 발명의 실시예를 따르는 대규모 다중 안테나 기법을 사용하는 무선통신에서 기지국이 신호를 전송하는 방법은, 신호를 전송할 단말을 선택하는 단계; 전체 안테나의 소모 전력을 고려하여 다중 안테나 기법을 선택하는 단계; 상기 전체 안테나 중 상기 단말에 신호를 전송할 안테나 서브 셋을 선택하는 단계; 및 상기 안테나 서브 셋을 이용하여 상기 단말에게 신호를 전송하는 단계를 포함하는 것을 특징으로 한다.
나아가 상기 다중 안테나 기법을 선택하는 단계는, 다중 안테나 기법 별로 상기 전체 안테나의 필요 전력을 계산하고, 더 적은 전력이 필요한 다중 안테나 기법을 선택하는 단계인 것을 특징으로 한다.
나아가 상기 안테나 서브 셋을 선택하는 단계는, 상기 선택한 다중 안테나 기법과 안테나 별 채널 이득 또는 안테나 간의 상관도를 고려하여 상기 안테나 서브 셋을 선택하는 단계인 것을 특징으로 한다.
한편, 본 발명의 실시예를 따르는 대규모 다중 안테나 기법을 사용하는 무선통신에서 단말에게 신호를 전송하는 기지국은 상기 단말과 신호를 송수신하는 송수신부; 및 신호를 전송할 단말을 선택하고, 전체 안테나의 소모 전력을 고려하여 다중 안테나 기법을 선택하며, 상기 전체 안테나 중 상기 단말에 신호를 전송할 안테나 서브 셋을 선택하고, 상기 안테나 서브 셋을 이용하여 상기 단말에게 신호를 전송하도록 제어하는 제어부를 포함하는 것을 특징으로 한다.
나아가 상기 제어부는, 다중 안테나 기법 별로 상기 전체 안테나의 필요 전력을 계산하고, 더 적은 전력이 필요한 다중 안테나 기법을 선택하는 것을 특징으로 한다.
나아가, 상기 제어부는, 상기 선택한 다중 안테나 기법과 안테나 별 채널 이득 또는 안테나 간의 상관도를 고려하여 상기 안테나 서브 셋을 선택하는 것을 특징으로 한다.
본 발명에 따르면 에너지 효율적인 사용자 스케줄링 방법을 제공할 수 있으며 효율적인 다중 안테나 기법을 선택하여 추가적인 이득을 얻을 수 있는 효과가 있다.
나아가 본 발명을 따르면 기지국의 전력 효율이 향상될 뿐만 아니라 추가적으로 사용하는 안테나 수가 감소 됨에 따라 복잡도 또한 감소되는 이득을 얻을 수 있는 효과가 있다.
도 1은 본 발명의 실시예를 따르는 에너지 효율적인 신호 전송 방법에서 기지국과 단말간의 관계를 설명하기 위한 네트워크 구성도,
도 2는 본 발명의 실시예를 따르는 에너지 효율적인 신호 전송 방법을 설명하기 위한 순서도,
도 3은 본 발명의 실시예를 따르는 에너지 효율적인 신호 전송 방법에서 사용자를 선택하는 과정을 설명하기 위한 순서도,
도 4는 본 발명의 실시예를 따르는 에너지 효율적인 신호 전송 방법에서 안테나 기법에 따라 안테나 서브셋을 선택하는 과정을 설명하기 위한 순서도이다.
도 1은 본 발명에서 제안하는 에너지 효율적인 신호 전송 기법에서 기지국과 단말간의 관계에 대하여 나타낸 도면이다.
기지국(101)이
Figure pat00001
개의 안테나(102)를 사용하고 있고, 기지국(101)이 신호를 전송해야 하는 단말이 총
Figure pat00002
개 있다고 가정한다. 기지국(101)이 단말 선택기(103)를 통해 동시에 신호를 전송할 단말
Figure pat00003
개를 선택하며 신호 생성기(104)을 사용하여
Figure pat00004
개의 단말에게 전할 심볼 신호를 형성하고, 빔 형성기(105)를 통해 전송할 신호를 생성할 때, 기지국(101)로부터 서비스를 받는 단말
Figure pat00005
(106)의 수신 신호는 다음과 같이 나타낼 수 있다.
Figure pat00006
여기서
Figure pat00007
는 기지국(101)으로부터 단말
Figure pat00008
(106)로의 경로 손실 (path loss)을,
Figure pat00009
는 기지국(101)이 단말
Figure pat00010
(106)로 전송하는 송신 전력을,
Figure pat00011
는 기지국(101)으로부터 단말
Figure pat00012
(106)로의
Figure pat00013
채널 벡터를,
Figure pat00014
Figure pat00015
는 각각 기지국(101)이 전송하는
Figure pat00016
빔 가중치 벡터와 송신 신호를, 그리고
Figure pat00017
는 평균이 0이고 분산이
Figure pat00018
인 가산성 백색 가우시안 잡음 (adaptive white Gaussian noise)을 나타낸다. 이때, 기지국이 소모하는 총 전력은 하기 수학식 2와 같이 나타낼 수 있다.
Figure pat00019
여기서
Figure pat00020
는 기지국이 신호를 전송할 때 안테나 하나가 필요로 하는 RF 회로의 소모 전력을 나타낸다.
도 2a는 본 발명의 실시예를 따르는 에너지 효율적인 신호 전송 방법을 설명하기 위한 순서도이다.
단계 210에서 기지국은 데이터 전송을 필요로 하는 단말
Figure pat00021
개의 필요 전송 요구사항과 전송 신호를 상위 계층으로부터 전달받아 단말 별 필요 전송 요구 사항을 계산한다.
단계 220에서 기지국은 단말의 필요 전송 요구사항과 단말의 채널 환경에 의거하여 단일 안테나를 통해 전송할 때, 필요로 하는 송신 전력
Figure pat00022
을 계산한 뒤, 이를 바탕으로 단말을 선택할 수 있다.
이후 단계 230에서 기지국은 선택된 단말에 대한 다중 안테나 기법을 결정한다. 예를 들어 기지국은 MRT(maximal ratio transmission)과 ZFBF(zero-forcing beamforming) 중 송신 전력을 더 적게 사용할 수 있는 다중 안테나 기법을 선택할 수 있다.
도 2b는 본 발명의 다른 실시예를 따르는 에너지 효율적인 신호 전송 방법을 설명하기 위한 순서도이다.
도 2a와 동일하게 단계 210에서 기지국은 데이터 전송을 필요로 하는 단말
Figure pat00023
개의 필요 전송 요구사항과 전송 신호를 상위 계층으로부터 전달받아 단말 별 필요 전송 요구 사항을 계산하며, 단계 220에서 기지국은 단말의 필요 전송 요구사항과 단말의 채널 환경에 의거하여 단일 안테나를 통해 전송할 때, 필요로 하는 송신 전력
Figure pat00024
을 계산한 뒤, 이를 바탕으로 단말을 선택할 수 있다.
이후 단계 240에서 기지국은 상기 선택된 다중 안테나 기법으로 전송할 경우 송신 전력이 최소화 되는 안테나 수
Figure pat00025
를 계산하며, 총
Figure pat00026
개의 안테나 중 전송 효율을 최대화 할 수 있는 안테나 서브셋을 선택할 수 있다.
한편 본 명세서에서 도 2a와 도 2b는 별개의 도면으로 구분하고 있지만, 본 발명은 이에 한정되지 않는다. 즉, 도 2a와 도 2b의 신호 전송 방법은 하나의 프로세스로 이해될 수 있다. 이 경우, 도 2b의 단계 240은 도 2a의 단계 230 이후에 진행될 수 있다.
안테나를 선택하는 방법은 크게 2가지를 예시할 수 있다. 첫째는 안테나 별 채널 이득을 비교하여 선택하는 방법이며, 둘째는 안테나 간의 상관도를 고려하여 선택하는 방법이다.
이러한 안테나 선택 방법은 결정된 MIMO 모드의 특성 따라 달라질 수 있다. 예를 들어, MIMO 모드가 MRT로 결정되어 안테나를 선택할 경우에는 채널 이득이 클수록 성능이 크게 증가하기 때문에 안테나 별 채널 이득을 비교하여 안테나의 채널 이득이 큰 안테나 들을 선택하는 것이 적절하다.
또 다른 일례로 MIMO 모드가 ZFBF로 결정되어 안테나를 선택하는 경우에는 채널 행렬의 계수 (Rank)가 클수록 성능이 증가하고, Rank는 안테나 간의 상관도가 작을수록 증가 하기 때문에 안테나간의 상관도가 가장 작은 안테나들을 선택하는 것이 적절하다.
또 다른 MIMO 기법으로써 Eigen beamforming (EBF) 같은 경우에는 채널 상관도가 클수록 성능 이득이 크기 때문에 안테나 간의 상관도가 가장 클 수 있도록 인접한 안테나 들을 결정된 안테나 수 만큼 선택할 수 있다.
도 3은 본 발명에서 제안하는 에너지 효율적인 신호 전송 기법이 적용된 무선 통신 시스템에서 단말을 선택하는 방법들 중 일례를 도식화한 도면이다.
301단계에서 기지국은 모든 단말의 전송 요구사항과 전송 신호를 상위 계층으로부터 전달 받는다. 여기서 단말
Figure pat00027
가 요구하는 주파수 효율을
Figure pat00028
라 할 때, 단말
Figure pat00029
에게 전송할 때 필요로 하는 송신 전력을 다중화 수와 선택된 안테나 수에 따라 계산 할 수 있으며, 일례로 기지국이 다중 안테나 기법을 ZFBF로 결정했을 때, 단말
Figure pat00030
에게 전송할 때 필요로 하는 송신 전력은 하기 수학식 3과 같이 나타낼 수 있다.
Figure pat00031
따라서 기지국이
Figure pat00032
개의 안테나를 통해 신호를 전송할 때, 총 소모 하는 전력을 하기 수학식 4와 같이 나타낼 수 있다.
Figure pat00033
Figure pat00034
이기 때문에, 상기 [수학식 4]는 다중화 수
Figure pat00035
에 따라 항상 증가하는 함수 이기 때문에 다중화 수가 작을수록 소모하는 전력이 작아지는 것을 알 수 있으며, 기지국이 단말
Figure pat00036
에게 단일 안테나를 이용하여 전송할 때, 필요한 송신 전력인
Figure pat00037
따라서 302단계에서는 기지국이 하나의 자원 블락(resource block)에서 전송해야 하는 다중화 수를 결정한다. 일례로 기지국이 보유한 자원 블락의 수가
Figure pat00038
라 할 때, 모든 자원 블락에서 다중화 수가 최소가 되기 위한 다중화 수는 하기 수학식 5와 같이 나타낼 수 있다.
Figure pat00039
303단계에서는 기지국이 단말
Figure pat00040
에게 단일 안테나를 이용하여 전송할 때 필요한 송신 전력
Figure pat00041
를 계산하며 일례로 하기 수학식 6과 같이 계산 할 수 있다.
Figure pat00042
304단계에서는 하나의 자원 블락에서 동시에 전송할 단말
Figure pat00043
개의
Figure pat00044
합이 자원 블락별로 동일하도록 단말을 선택한다.
도 4는 본 발명에서 제안하는 에너지 효율적인 단말 선택 및 안테나 선택 기법이 적용된 무선 통신 시스템에서 다중 안테나 기법(MRT, ZFBF)을 결정하고 안테나를 선택하는 과정을 도식화한 도면이며, 다른 다중 안테나 기법으로의 확장은 쉽게 설명 될 수 있다. 401단계 및 402단계에서는 다중 안테나 기법 별로 필요로 하는 안테나 수를 계산하며, MRT로 전송 할 경우 필요로 하는 안테나 수는 하기 수학식 7과 같이 나타낼 수 있다.
Figure pat00045
여기서
Figure pat00046
는 다중 빔간 간섭에 의해 추가로 필요로 하는 송신 전력을 나타내며 하기 수학식 8과 같이 나타낼 수 있다.
Figure pat00047
ZFBF로 전송 할 경우 필요로 하는 안테나 수는 하기 수학식 9와 같이 나타낼 수 있다.
Figure pat00048
403 단계 및 404 단계에서는 각각 MRT와 ZFBF으로 신호를 전송할 때, 기지국이 필요로 하는 총 소모 전력을 계산하며, MRT로 전송하는 경우에는 하기 수학식 10과 같이 나타낼 수 있다.
Figure pat00049
ZFBF로 전송하는 경우에는 하기 수학식 11과 같이 나타낼 수 있다.
Figure pat00050
405 단계에서는 상기 403 단계 및 상기 404 단계에서 계산한 다중 안테나 기법별 필요 전력을 비교하여 더 적은 전력을 필요로 하는 다중 안테나 기법을 결정한다. 406 단계에서는 결정된 다중 안테나 기법 및 안테나 수를 고려하여 안테나를 선택한다. 일례로 다중 안테나 기법중 MRT가 선택된 경우에는 MRT의 빔포밍 이득이 최대화 될 수 있도록 채널 이득이 큰 순서대로 안테나를 선택하며, 또다른 일례로 다중 안테나 기법중 ZFBF가 선택된 경우에는 다중 단말 채널의 계수(rank)가 최대가 되도록 안테나를 선택한다.
이후 기지국은, 결정된 MIMO 모드와 이에 따른 안테나 수를 바탕으로 기지국이 보유하고 있는 안테나 중에서 안테나를 선택할 수 있다.
안테나를 선택하는 방법은 크게 2가지를 예시할 수 있다. 첫째는 안테나 별 채널 이득을 비교하여 선택하는 방법이며, 둘째는 안테나 간의 상관도를 고려하여 선택하는 방법이다.
이러한 안테나 선택 방법은 결정된 MIMO 모드의 특성 따라 달라질 수 있다. 예를 들어, MIMO 모드가 MRT로 결정되어 안테나를 선택할 경우에는 채널 이득이 클수록 성능이 크게 증가하기 때문에 안테나 별 채널 이득을 비교하여 안테나의 채널 이득이 큰 안테나 들을 선택하는 것이 적절하다.
또 다른 일례로 MIMO 모드가 ZFBF로 결정되어 안테나를 선택하는 경우에는 채널 행렬의 계수 (Rank)가 클수록 성능이 증가하고, Rank는 안테나 간의 상관도가 작을수록 증가 하기 때문에 안테나간의 상관도가 가장 작은 안테나 들을 선택하는 것이 적절하다.
또 다른 MIMO 기법으로써 Eigen beamforming (EBF) 같은 경우에는 채널 상관도가 클수록 성능 이득이 크기 때문에 안테나 간의 상관도가 가장 클 수 있도록 인접한 안테나 들을 결정된 안테나 수 만큼 선택할 수 있다.
본 명세서와 도면에 개시된 본 발명의 실시 예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
101 : 기지국
102 : 안테나
103 : 단말 선택기
104 : 신호 생성기
105 : 빔형성기
106 : 사용자

Claims (12)

  1. 대규모 다중 안테나 기법을 사용하는 무선통신에서 기지국이 신호를 전송하는 방법에 있어서,
    신호를 전송할 단말을 선택하는 단계;
    상기 전체 안테나 중 상기 단말에 신호를 전송할 안테나 서브 셋을 선택하는 단계; 및
    상기 안테나 서브 셋을 이용하여 상기 단말에게 신호를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서, 상기 안테나 서브 셋을 선택하는 단계는,
    상기 선택한 다중 안테나 기법과 안테나 별 채널 이득 또는 안테나 간의 상관도를 고려하여 상기 안테나 서브 셋을 선택하는 단계인 것을 특징으로 하는 방법.
  3. 제 2항에 있어서, 상기 안테나 서브 셋을 선택하는 단계는,
    상기 다중 안테나 기법을 MRT로 결정한 경우, 안테나 별 채널 이득이 큰 안테나들을 상기 안테나 서브 셋으로 선택하는 단계인 것을 특징으로 하는 방법.
  4. 제 2항에 있어서, 상기 안테나 서브 셋을 선택하는 단계는,
    상기 다중 안테나 기법을 ZFBF로 결정한 경우, 안테나간의 상관도가 가장 작은 안테나 들을 상기 안테나 서브 셋으로 선택하는 단계인 것을 특징으로 하는 방법.
  5. 대규모 다중 안테나 기법을 사용하는 무선통신에서 기지국이 신호를 전송하는 방법에 있어서,
    신호를 전송할 단말을 선택하는 단계;
    전체 안테나의 소모 전력을 고려하여 다중 안테나 기법을 선택하는 단계; 및
    상기 안테나 서브 셋을 이용하여 상기 단말에게 신호를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  6. 제 5항에 있어서, 상기 다중 안테나 기법을 선택하는 단계는,
    다중 안테나 기법 별로 상기 전체 안테나의 필요 전력을 계산하고, 더 적은 전력이 필요한 다중 안테나 기법을 선택하는 단계인 것을 특징으로 하는 방법.
  7. 대규모 다중 안테나 기법을 사용하는 무선통신에서 단말에게 신호를 전송하는 기지국에 있어서,
    상기 단말과 신호를 송수신하는 송수신부; 및
    신호를 전송할 단말을 선택하고, 상기 전체 안테나 중 상기 단말에 신호를 전송할 안테나 서브 셋을 선택하고, 상기 안테나 서브 셋을 이용하여 상기 단말에게 신호를 전송하도록 제어하는 제어부를 포함하는 것을 특징으로 하는 기지국.
  8. 제 7항에 있어서, 상기 제어부는,
    상기 선택한 다중 안테나 기법과 안테나 별 채널 이득 또는 안테나 간의 상관도를 고려하여 상기 안테나 서브 셋을 선택하는 것을 특징으로 하는 기지국.
  9. 제 8항에 있어서, 상기 제어부는,
    상기 다중 안테나 기법을 MRT로 결정한 경우, 안테나 별 채널 이득이 큰 안테나들을 상기 안테나 서브 셋으로 선택하는 것을 특징으로 하는 기지국.
  10. 제 8항에 있어서, 상기 기지국은,
    상기 다중 안테나 기법을 ZFBF로 결정한 경우, 안테나간의 상관도가 가장 작은 안테나 들을 상기 안테나 서브 셋으로 선택하는 것을 특징으로 하는 기지국.
  11. 대규모 다중 안테나 기법을 사용하는 무선통신에서 단말에게 신호를 전송하는 기지국에 있어서,
    상기 단말과 신호를 송수신하는 송수신부; 및
    신호를 전송할 단말을 선택하고, 전체 안테나의 소모 전력을 고려하여 다중 안테나 기법을 선택하며, 상기 안테나 서브 셋을 이용하여 상기 단말에게 신호를 전송하도록 제어하는 제어부를 포함하는 것을특징으로 하는 기지국.
  12. 제 11항에 있어서, 상기 제어부는,
    다중 안테나 기법 별로 상기 전체 안테나의 필요 전력을 계산하고, 더 적은 전력이 필요한 다중 안테나 기법을 선택하는 것을 특징으로 하는 기지국.
KR1020130120132A 2013-06-21 2013-10-08 대규모 다중 안테나 무선통신 시스템에서 에너지 효율적인 신호 전송 방법 및 장치 KR102202935B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/310,755 US9088944B2 (en) 2013-06-21 2014-06-20 Method and device for energy efficient signal transmission in massive multi-antenna wireless communication system
EP14813359.8A EP3011688B1 (en) 2013-06-21 2014-06-20 Method and device for energy efficient signal transmission in massive multi-antenna wireless communication system
PCT/KR2014/005472 WO2014204267A1 (en) 2013-06-21 2014-06-20 Method and device for energy efficient signal transmission in massive multi-antenna wireless communication system
CN201480035479.0A CN105453452B (zh) 2013-06-21 2014-06-20 用于无线通信***中能量高效地传输信号的方法和装置
US14/739,496 US9444529B2 (en) 2013-06-21 2015-06-15 Method and device for energy efficient signal transmission in massive multi-antenna wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361837898P 2013-06-21 2013-06-21
US61/837,898 2013-06-21

Publications (2)

Publication Number Publication Date
KR20140148270A true KR20140148270A (ko) 2014-12-31
KR102202935B1 KR102202935B1 (ko) 2021-01-14

Family

ID=52676687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130120132A KR102202935B1 (ko) 2013-06-21 2013-10-08 대규모 다중 안테나 무선통신 시스템에서 에너지 효율적인 신호 전송 방법 및 장치

Country Status (5)

Country Link
US (2) US9088944B2 (ko)
EP (1) EP3011688B1 (ko)
KR (1) KR102202935B1 (ko)
CN (1) CN105453452B (ko)
WO (1) WO2014204267A1 (ko)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138490A1 (en) * 2019-12-31 2021-07-08 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11463179B2 (en) 2019-02-06 2022-10-04 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US11594902B2 (en) 2016-12-12 2023-02-28 Energous Corporation Circuit for managing multi-band operations of a wireless power transmitting device
US11652369B2 (en) 2012-07-06 2023-05-16 Energous Corporation Systems and methods of determining a location of a receiver device and wirelessly delivering power to a focus region associated with the receiver device
US11670970B2 (en) 2015-09-15 2023-06-06 Energous Corporation Detection of object location and displacement to cause wireless-power transmission adjustments within a transmission field
US11689045B2 (en) 2015-12-24 2023-06-27 Energous Corporation Near-held wireless power transmission techniques
US11710987B2 (en) 2018-02-02 2023-07-25 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11777342B2 (en) 2016-11-03 2023-10-03 Energous Corporation Wireless power receiver with a transistor rectifier
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023351A1 (en) * 2012-08-09 2014-02-13 Telefonaktiebolaget L M Ericsson (Publ) Microwave link control
US9736647B2 (en) * 2014-03-19 2017-08-15 Verizon Patent And Licensing Inc. Method, apparatus, and system for network identifier supression
KR101616636B1 (ko) * 2014-10-16 2016-04-28 영남대학교 산학협력단 듀얼 모드 빔포밍 방법 및 장치
EP3227778B1 (en) * 2014-12-03 2021-03-17 Nokia Solutions and Networks Oy Control of transmission mode selection
CN107251618B (zh) * 2015-01-16 2021-05-14 梁平 具有中继器的多用户多入多出无线通信***中的波束成形
CN107026681B (zh) * 2016-02-01 2022-01-14 北京三星通信技术研究有限公司 信号发送方法、接收方法、发射机和接收机
US10211904B2 (en) * 2016-04-19 2019-02-19 Telefonaktiebolaget Lm Ericsson (Publ) Power control and beamforming with a plurality of power amplifiers
KR102271769B1 (ko) 2017-03-15 2021-07-01 삼성전자주식회사 에너지 효율적인 링크 적응을 수행하기 위한 무선 통신 장치 및 이의 무선 통신 방법
US11770172B2 (en) * 2018-05-10 2023-09-26 Qualcomm Incorporated Dynamic antenna selection in millimeter wave systems
GB2598740B (en) * 2020-09-09 2022-11-30 British Telecomm Wireless telecommunication system
WO2024051940A1 (en) * 2022-09-08 2024-03-14 Nokia Solutions And Networks Oy Method, apparatus and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039494A1 (en) * 2004-07-13 2006-02-23 Samsung Electronics Co., Ltd. Apparatus and method for beamforming in a multi-antenna system
EP1655871A2 (en) * 2004-11-09 2006-05-10 Samsung Electronics Co., Ltd. Method and apparatus for supporting various multiple antenna schemes in a baseband wireless access system
US20100098184A1 (en) * 2008-10-16 2010-04-22 Sun-Heui Ryoo Transmission method for multiple antenna system
KR20100092917A (ko) * 2009-02-13 2010-08-23 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송방법 및 장치
US20100322336A1 (en) * 2006-05-02 2010-12-23 Nabar Rohit U Beamforming to a Subset of Receive Antennas in a Wireless MIMO Communication System

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440777B2 (en) * 2004-08-13 2008-10-21 Broadcom Corporation Multi-transceiver system with MIMO and beam-forming capability
US7428268B2 (en) * 2004-12-07 2008-09-23 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
ATE458316T1 (de) * 2006-03-23 2010-03-15 Imec Kommunikationsverfahren mit adaptiver verbindungssteuerung
JP5106796B2 (ja) * 2006-06-19 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ 基地局、送信方法
EP2086140B1 (en) * 2006-11-22 2016-03-09 Fujitsu Limited Mimo-ofdm communication system and mimo-ofdm communication method
US8078212B2 (en) * 2007-08-10 2011-12-13 Intel Corporation Method and apparatus for allocating power in a MU-MIMO communication system
US8085721B2 (en) * 2008-03-10 2011-12-27 Elektrobit Wireless Communications Oy Adaptive transmission method and a base station using the method
US8326341B2 (en) * 2008-06-23 2012-12-04 Nokia Corporation Method, apparatus and computer program for downlink MU-MIMO power settings and control
KR101231912B1 (ko) * 2008-08-26 2013-02-08 삼성전자주식회사 빔 포밍 벡터의 반복적 갱신 방법 및 이를 지원하는 송신기
WO2010088721A1 (en) * 2009-02-04 2010-08-12 Commonwealth Scientific And Industrial Research Organisation Method and apparatus for antenna and transmission mode switching
US9048913B2 (en) * 2010-07-06 2015-06-02 Google Inc. Method and apparatus for adaptive control of transmit diversity to provide operating power reduction
KR101242177B1 (ko) * 2011-08-12 2013-03-12 고려대학교 산학협력단 다중 입력 단일 출력에서 빔포밍 설계 장치 및 방법
KR101836207B1 (ko) 2011-09-02 2018-04-19 엘지이노텍 주식회사 안테나의 빔 형성을 위한 장치 및 방법
US8873662B2 (en) * 2012-04-05 2014-10-28 Ericsson Modems Sa MIMO configuration methods and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039494A1 (en) * 2004-07-13 2006-02-23 Samsung Electronics Co., Ltd. Apparatus and method for beamforming in a multi-antenna system
EP1655871A2 (en) * 2004-11-09 2006-05-10 Samsung Electronics Co., Ltd. Method and apparatus for supporting various multiple antenna schemes in a baseband wireless access system
US20100322336A1 (en) * 2006-05-02 2010-12-23 Nabar Rohit U Beamforming to a Subset of Receive Antennas in a Wireless MIMO Communication System
US20100098184A1 (en) * 2008-10-16 2010-04-22 Sun-Heui Ryoo Transmission method for multiple antenna system
KR20100092917A (ko) * 2009-02-13 2010-08-23 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문자료* *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US11652369B2 (en) 2012-07-06 2023-05-16 Energous Corporation Systems and methods of determining a location of a receiver device and wirelessly delivering power to a focus region associated with the receiver device
US11670970B2 (en) 2015-09-15 2023-06-06 Energous Corporation Detection of object location and displacement to cause wireless-power transmission adjustments within a transmission field
US11689045B2 (en) 2015-12-24 2023-06-27 Energous Corporation Near-held wireless power transmission techniques
US11777342B2 (en) 2016-11-03 2023-10-03 Energous Corporation Wireless power receiver with a transistor rectifier
US11594902B2 (en) 2016-12-12 2023-02-28 Energous Corporation Circuit for managing multi-band operations of a wireless power transmitting device
US12027899B2 (en) 2016-12-12 2024-07-02 Energous Corporation Circuit for managing wireless power transmitting devices
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11710987B2 (en) 2018-02-02 2023-07-25 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11463179B2 (en) 2019-02-06 2022-10-04 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11784726B2 (en) 2019-02-06 2023-10-10 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11411437B2 (en) 2019-12-31 2022-08-09 Energous Corporation System for wirelessly transmitting energy without using beam-forming control
US11817719B2 (en) 2019-12-31 2023-11-14 Energous Corporation Systems and methods for controlling and managing operation of one or more power amplifiers to optimize the performance of one or more antennas
WO2021138490A1 (en) * 2019-12-31 2021-07-08 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Also Published As

Publication number Publication date
EP3011688B1 (en) 2020-10-14
CN105453452A (zh) 2016-03-30
US9088944B2 (en) 2015-07-21
EP3011688A4 (en) 2017-05-03
US20140376654A1 (en) 2014-12-25
CN105453452B (zh) 2019-04-26
KR102202935B1 (ko) 2021-01-14
EP3011688A1 (en) 2016-04-27
US20150280793A1 (en) 2015-10-01
WO2014204267A1 (en) 2014-12-24
US9444529B2 (en) 2016-09-13

Similar Documents

Publication Publication Date Title
KR102202935B1 (ko) 대규모 다중 안테나 무선통신 시스템에서 에너지 효율적인 신호 전송 방법 및 장치
KR102177804B1 (ko) 다중입력 다중출력 시스템에서 스케줄링 방법 및 장치
JP5560369B2 (ja) 多入力多出力システム用ダウンリンク伝送方法及び基地局
EP1695456B1 (en) Method and apparatus in a mimo based communication system
US9820290B2 (en) Virtual antenna mapping method and apparatus for feedback of virtual antenna mapping information in MIMO system
US8724653B2 (en) Downlink transmission method and eNodeB in multiple input multiple output system
JP2018532315A (ja) 無線通信方法及び無線通信装置
JP2011509040A (ja) コラボラティブ多入力多出力通信システムにおけるプリコーディングされた信号を送信する方法
CN101867398A (zh) 一种适用于频分复用***的单用户波束成形方法和装置
KR20090100877A (ko) 다중 입출력 무선통신 시스템에서 상향링크 빔 성형 및 공간분할 다중 접속 장치 및 방법
US9083490B2 (en) Apparatus and method for mitigating inter-cell interference in multiple antenna system
KR20080087364A (ko) 다중 사용자 통신 방법에서 피드백 정보 제어 방법
KR102306100B1 (ko) Mu­mimo 간섭 채널 네트워크 환경에서의 간섭정렬 송수신 신호처리 장치 및 방법
CN103999513A (zh) 用于mu-mimo的上行链路功率控制
Cui et al. Capacity analysis and optimal power allocation for coordinated transmission in MIMO-OFDM systems
JP2008236066A (ja) 空間多重伝送用送信方法および装置
Pramudito et al. Load-aware energy efficient adaptive large scale antenna system
CN107579762B (zh) 一种基于量化和统计信道信息的多小区协作预编码方法
KR101679132B1 (ko) 대규모 안테나를 이용하는 다중 사용자 무선 통신 시스템에서 다중 신호 전송 방법
CN103973344A (zh) 一种面向d2d通信的基站天线选择方法
Kusashima et al. Fractional base station cooperation cellular network
CN108233996B (zh) 获取信道信息的方法以及相应的***和终端
KR20090098108A (ko) 다중 안테나 시스템에서 사용자 스케줄링 방법
KR20130141941A (ko) 다중셀 협력통신 시스템에서 협력적 신호 전송 방법
Ahmadian et al. Performance evaluation of linear beamforming receiver for large CoMP sparse massive MIMO channel matrices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right