KR20140132191A - Plasmonic organic optoelectronic devices comprising conducting polymer electrode incoporated with silver nanoparticles - Google Patents

Plasmonic organic optoelectronic devices comprising conducting polymer electrode incoporated with silver nanoparticles Download PDF

Info

Publication number
KR20140132191A
KR20140132191A KR1020130051406A KR20130051406A KR20140132191A KR 20140132191 A KR20140132191 A KR 20140132191A KR 1020130051406 A KR1020130051406 A KR 1020130051406A KR 20130051406 A KR20130051406 A KR 20130051406A KR 20140132191 A KR20140132191 A KR 20140132191A
Authority
KR
South Korea
Prior art keywords
layer
electrode
nmp
silver nanoparticles
organic optoelectronic
Prior art date
Application number
KR1020130051406A
Other languages
Korean (ko)
Other versions
KR101516474B1 (en
Inventor
김진영
고서진
최효성
송명훈
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Priority to KR1020130051406A priority Critical patent/KR101516474B1/en
Publication of KR20140132191A publication Critical patent/KR20140132191A/en
Application granted granted Critical
Publication of KR101516474B1 publication Critical patent/KR101516474B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a plasmon organic photoelectronic device in which a conductive polymer electrode layer comprises a silver nanoparticle layer. As a flexible plastic electrode, the plasmon organic photoelectronic device comprises a PEDOT:PSS film including silver nanoparticles, and can easily prepare a large area and flexible organic photoelectronic device at low costs by not using an ITO electrode. The organic photoelectronic device shows excellently improved photoelectric conversion efficiency compared to an organic photoelectronic device having a film which doesn′t include silver nanoparticles.

Description

은나노입자들을 포함하는 전도성 고분자 전극 기반의 플라즈몬 유기 광전자 디바이스{Plasmonic organic optoelectronic devices comprising conducting polymer electrode incoporated with silver nanoparticles}BACKGROUND OF THE INVENTION Field of the Invention [0001] The present invention relates to a conductive polymer electrode-based plasmonic organic optoelectronic device including silver nanoparticles,

본 발명은 전도성 고분자 전극이 은나노입자층을 포함하는 고성능 플라즈몬 유기 광전자 디바이스에 관한 것이다.The present invention relates to a high performance plasmonic organic optoelectronic device in which a conductive polymer electrode comprises a silver nanoparticle layer.

폴리머 태양전지(PSC) 및 폴리머 발광 다이오드(PLED) 등과 같은 유기 반도체 계열 광전자 디바이스는 용액 기반에서 저가로 제조되며 프린팅 기법을 이용하여 대면적 제작이 가능하므로 상당한 주목을 받는 기술 분야이다. 한편, 이러한 폴리머 기반 광전자 디바이스의 성능은 상업화를 위해 요구되는 수준에 도달하지는 못하는 실정이다. 폴리머 태양전지(PSC)에서 8% 정도의 광전변환효율(PCE)이 입증되었을 지라도, 여전히 실제 적용에는 많은 한계가 있다. Organic semiconductor optoelectronic devices such as polymer solar cells (PSC) and polymer light emitting diodes (PLED) are manufactured at a low cost from a solution base and can be manufactured in a large area using a printing technique. On the other hand, the performance of such polymer-based optoelectronic devices does not reach the level required for commercialization. Although the photovoltaic conversion efficiency (PCE) of the polymer solar cell (PSC) has been proven to be 8%, there are still many limitations in practical applications.

인듐주석산화물(ITO)은 우수한 전자 전도성과 적절한 투명성으로 인해 광전자 디바이스의 투명전극으로서 널리 사용되고 있다. 그러나, ITO는 본질적인 취성, 근적외선 영역에서의 불량한 투명성, 산 또는 염기 조건 하에서 화학적 불안정성, 고가의 인듐 사용, 및 스퍼터링법, 증착법 및 펄스 레이저 증착 등과 같은 고가의 제조방법의 사용과 같은 많은 단점을 지니고 있다.Indium tin oxide (ITO) has been widely used as a transparent electrode in optoelectronic devices due to its excellent electronic conductivity and proper transparency. However, ITO has many disadvantages such as inherent brittleness, poor transparency in the near infrared region, chemical instability under acid or base conditions, use of expensive indium, and the use of expensive manufacturing methods such as sputtering, evaporation and pulsed laser deposition have.

따라서, ITO 전극을 갖는 폴리머 태양전지(PSC) 및 폴리머 발광 다이오드(PLED)와 같은 종래 디바이스는 비용 절감적이면서도 플렉서블한 디바이스 적용에 유용하지 않은 문제가 있었다. Thus, conventional devices such as polymer solar cells (PSC) and polymer light emitting diodes (PLED) with ITO electrodes have been problematic in that they are not useful in cost-saving but flexible device applications.

한편, 한국공개특허 제2012-0027339호에서는 유기 광전자 소자를 위한 저비용 고효율의 투명한 유기 전극에 관한 것으로, 투명한 재료를 포함하는 기판; 기판과 접촉하며 투명한 광학 재료를 포함하는 광학 층; 기판 또는 광학 층, 또는 기판 및 광학 층 둘 다와 접촉하는 제1 전극; 광학 층을 통해 제1 전극까지 채널을 형성하는 하나 이상의 비아 (via); 제1 전극과 접촉하도록 하나 이상의 비아를 적어도 부분적으로 채우는 전도성 재료를 포함하며 광학 층 상에 놓이는 전도 층; 전도 층과 접촉하는 전계발광 층; 및 전계발광 층과 접촉하는 제2 전극을 포함하는 전계발광 소자를 개시한다. Korean Patent Publication No. 2002-0027339 discloses a low-cost, high-efficiency transparent organic electrode for an organic optoelectronic device, comprising: a substrate including a transparent material; An optical layer in contact with the substrate and comprising a transparent optical material; A first electrode in contact with either the substrate or the optical layer, or both the substrate and the optical layer; One or more vias forming a channel through the optical layer to the first electrode; A conductive layer comprising a conductive material at least partially filling the at least one via to contact the first electrode, the conductive layer being disposed on the optical layer; An electroluminescent layer in contact with the conductive layer; And a second electrode in contact with the electroluminescent layer.

이에, 본 발명의 목적은 특정 소재를 이용하여 광전변환효율을 보다 향상시킨 고성능 폴리머 태양전지를 제공하는 데에 있다.Accordingly, an object of the present invention is to provide a high-performance polymer solar cell in which photoelectric conversion efficiency is further improved by using a specific material.

상기 목적을 달성하기 위하여, 본 발명은 PEDOT[poly(3,4-ethylenedioxythiophene)] 및 PSS(polystyrene sulfonic acid)로 이루어진 전도성 고분자 전극(PEDOT:PSS층)을 포함한 유기 광전자 디바이스에 있어서, 상기 전도성 고분자 전극이 은나노입자층을 포함하는 플라즈몬 유기 광전자 디바이스를 제공한다.In order to achieve the above object, the present invention provides an organic optoelectronic device including a conductive polymer electrode (PEDOT: PSS layer) made of PEDOT [poly (3,4-ethylenedioxythiophene)] and PSS (polystyrene sulfonic acid) The electrode provides a plasmonic organic optoelectronic device comprising a layer of silver nanoparticles.

상기 은나노입자는 PEDOT:PSS층 100 부피부에 대하여 1 내지 10 부피부로 포함된다.The silver nanoparticles are included as 1 to 10 parts skin to 100 parts PEDOT: PSS layer skin.

상기 유기 광전자 디바이스는 폴리머 태양전지 또는 폴리머 발광 다이오드 중 어느 하나일 수 있다.The organic optoelectronic device may be either a polymer solar cell or a polymer light emitting diode.

상기 폴리머 태양전지는 기판; PEDOT:PSS층에 은나노입자가 포함된 양극의 전도성 고분자 전극층; 광활성층; 및 금속 전극을 포함할 수 있다.The polymer solar cell comprises a substrate; PEDOT: Conductive polymer electrode layer of anode containing silver nanoparticles in PSS layer; A photoactive layer; And a metal electrode.

상기 폴리머 발광 다이오드는 기판; PEDOT:PSS층에 은나노입자가 포함된 전도성 고분자 전극층; 수퍼 옐로우(Super yellow)층; LiF층 및 금속 전극을 포함할 수 있다.The polymer light emitting diode comprising: a substrate; PEDOT: Conductive polymer electrode layer containing silver nanoparticles in the PSS layer; A super yellow layer; A LiF layer and a metal electrode.

상기 기판은 유리 기판일 수 있다.The substrate may be a glass substrate.

상기 광활성층은 PTBT (Poly[5,6-bis[octyloxy]-4-[thiophen-2-yl] benzo[c][1,2,5]thiadiazole]) 및 PC61BM ([6,6]-phenyl-C61 butyric acid methyl ester)로 이루어질 수 있다.The photoactive layer is PTBT (Poly [5,6-bis [ octyloxy] -4- [thiophen-2-yl] benzo [c] [1,2,5] thiadiazole]) and the PC 61 BM ([6,6] -phenyl-C61 butyric acid methyl ester).

상기 금속 전극은 Al 전극일 수 있다. The metal electrode may be an Al electrode.

본 발명에 따른 플라즈몬 유기 광전자 디바이스는 플렉서블 플라스틱 전극으로서 은나노입자를 포함한 PEDOT:PSS 필름을 구비하며, ITO 전극을 사용하지 않으므로, 저가의 비용으로 손쉽게 대면적 및 플렉서블 유기 광전자 디바이스를 제조할 수 있으며, 상기 유기 광전자 디바이스는 은나노입자를 포함하지 않는 필름을 구비한 유기 광전자 디바이스에 비해 탁월하게 향상된 광전변환효율을 나타낸다.The plasmonic organic optoelectronic device according to the present invention includes a PEDOT: PSS film containing silver nanoparticles as a flexible plastic electrode, and does not use an ITO electrode, so that a large-area and flexible organic optoelectronic device can be easily manufactured at low cost, The organic optoelectronic device exhibits a significantly improved photoelectric conversion efficiency compared to an organic optoelectronic device with a film that does not contain silver nanoparticles.

도 1은 본 발명에 따른 폴리머 태양전지(a)와 폴리머 발광다이오드(b)의 모식도를 각각 나타낸 것이고,
도 2a는 은나노입자 층의 TEM 이미지를 나타낸 것이고,
도 2b는 NMP 용액 및 필름에서의 은나노입자의 UV-Vis 흡수 스펙트럼을 나타낸 것이고,
도 2c는 ITO, NMP:PH500 필름 및 Ag@NMP:PH500 필름의 광 투과도를 나타낸 것이고,
도 3a는 양극으로 NMP:PH500 필름 및 Ag@NMP:PH500 필름을 구비한 폴리머 태양전지의 J-V 특성을 나타낸 것이고,
도 3b는 NMP:PH500 필름 및 Ag@NMP:PH500 필름을 구비한 폴리머 태양전지의 IPCE 곡선을 나타낸 것이고,
도 3c는 NMP:PH500 필름 및 Ag@NMP:PH500 필름을 구비한 폴리머 태양전지의 IPCE 값의 차(ΔIPCE)의 스펙트럼을 나타낸 것이고,
도 3d는 Ag@NMP:PH500 필름을 구비한 플렉서블 폴리머 태양전지를 나타낸 것이고,
도 4a는 적용 전압에 따른 전류 밀도 변화를 나타낸 것이고,
도 4b는 적용 전압에 따른 휘도 변화, 도 4c는 전력 밀도에 따른 EL 효율 변화, 도 4d는 전압에 따른 전력 효율 변화를 각각 나타낸 것이다.
Fig. 1 is a schematic view of a polymer solar cell (a) and a polymer light-emitting diode (b) according to the present invention,
2A shows a TEM image of a silver nanoparticle layer,
FIG. 2B shows UV-Vis absorption spectra of silver nanoparticles in NMP solution and film,
2C shows the light transmittance of ITO, NMP: PH500 film and Ag @ NMP: PH500 film,
3A shows JV characteristics of a polymer solar cell having an NMP: PH500 film and an Ag @ NMP: PH500 film as an anode,
FIG. 3B shows an IPCE curve of a polymer solar cell having an NMP: PH500 film and an Ag @ NMP: PH500 film,
FIG. 3C shows a spectrum of the difference (IPCE) between the IPCE values of a polymer solar cell having an NMP: PH500 film and an Ag @ NMP: PH500 film,
Figure 3d shows a flexible polymer solar cell with an Ag @ NMP: PH500 film,
4A shows the current density variation according to the applied voltage,
FIG. 4B is a graph showing changes in luminance depending on applied voltage, FIG. 4C is a graph showing changes in EL efficiency according to power density, and FIG.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 PEDOT[poly(3,4-ethylenedioxythiophene)] 및 PSS(polystyrene sulfonic acid)로 이루어진 전도성 고분자 전극층(PEDOT:PSS층)을 포함한 유기 광전자 디바이스에 있어서, 상기 전도성 고분자 전극층이 은나노입자층을 포함하는 플라즈몬 유기 광전자 디바이스를 제공한다.The present invention provides an organic optoelectronic device including a conductive polymer electrode layer (PEDOT: PSS layer) composed of PEDOT [poly (3,4-ethylenedioxythiophene)] and PSS (polystyrene sulfonic acid), wherein the conductive polymer electrode layer includes a silver nanoparticle layer Thereby providing a plasmonic organic optoelectronic device.

이때, 상기 은나노입자는 환원제로서 N-메틸-2-피롤리돈(NMP)을 이용하여 질산은을 환원시켜 은나노입자(Ag@NMP)를 제조한다. At this time, the silver nanoparticles are reduced with silver nitrate using N-methyl-2-pyrrolidone (NMP) as a reducing agent to prepare silver nanoparticles (Ag @ NMP).

상기 은나노입자는 PEDOT:PSS층 100 부피부에 대하여 1 내지 10 부피부로 포함되며, 바람직하게는 5 부피부로 포함한다. 만약 은나노입자의 함량 범위가 상기 범위를 벗어나면 최적화된 전극의 역할을 못하는 문제가 야기될 수 있다.The silver nanoparticles are included in 1 to 10 parts skin, preferably 5 parts skin, for 100 parts PEDOT: PSS layer skin. If the content of the silver nanoparticles is out of the above range, the electrode may not function as an optimized electrode.

상기 플라즈몬 유기 광전자 디바이스는 폴리머 태양전지 또는 폴리머 발광 다이오드 중 어느 하나일 수 있다.The plasmon organic optoelectronic device may be either a polymer solar cell or a polymer light emitting diode.

상기 폴리머 태양전지는 기판; PEDOT:PSS층에 은나노입자가 포함된 전도성 고분자 전극층; 광활성층; 및 금속 전극을 포함할 수 있다.The polymer solar cell comprises a substrate; PEDOT: Conductive polymer electrode layer containing silver nanoparticles in the PSS layer; A photoactive layer; And a metal electrode.

상기 폴리머 발광 다이오드는 기판; PEDOT:PSS층에 은나노입자가 포함된 정공수송층; 수퍼 옐로우(Super yellow)층; LiF층 및 금속 전극을 포함할 수 있다.The polymer light emitting diode comprising: a substrate; A hole transport layer containing silver nanoparticles in the PEDOT: PSS layer; A super yellow layer; A LiF layer and a metal electrode.

상기 기판은 유리 기판일 수 있지만, 이에 한정되는 것은 아니다.The substrate may be a glass substrate, but is not limited thereto.

상기 광활성층은 PTBT (Poly[5,6-bis[octyloxy]-4-[thiophen-2-yl] benzo[c][1,2,5]thiadiazole] 및 PC61BM([6,6]-phenyl-C61butyricacidmethylester)로 이루어질 수 있지만, 이에 한정되는 것은 아니다.The photoactive layer is PTBT (Poly [5,6-bis [ octyloxy] -4- [thiophen-2-yl] benzo [c] [1,2,5] thiadiazole] , and PC 61 BM ([6,6] - phenyl-C61 butyric acid methylester), but is not limited thereto.

상기 금속 전극은 Al 전극일 수 있지만, 이에 한정되는 것은 아니다.The metal electrode may be an Al electrode, but is not limited thereto.

본 발명에 따른 폴리머 태양전지 또는 폴리머 발광다이오드는 당해 분야에서 일반적으로 알려진 방법에 의해 제작할 수 있다.The polymer solar cell or the polymer light emitting diode according to the present invention can be manufactured by a method generally known in the art.

특히, 본 발명에서는 플렉서블 전도성 고분자 전극으로서 은나노입자를 포함한 PEDOT:PSS 필름을 구비한 ITO 없는 플라즈몬 유기 광전자 디바이스를 성공적으로 제작할 수 있었으며, 은나노입자가 삽입된 Ag@NMP:PH500 전극은 ITO와 유사한 투명도를 가지며, 450 S/cm의 높은 전도성을 나타내었고, Ag@NMP:PH500 전극을 구비한 폴리머 태양전지는 전력변환효율이 개선되었고, Ag@NMP:PH500 전극을 구비한 폴리머 발광 다이오드는 124% 정도 전력 효율이 개선되었다.
In particular, in the present invention, a plasmon organic optoelectronic device without a ITO having a PEDOT: PSS film including silver nanoparticles as a flexible conductive polymer electrode was successfully manufactured, and Ag @ NMP: PH500 electrode having silver nanoparticles embedded therein has transparency similar to ITO The polymer solar cell with Ag @ NMP: PH500 electrode improved the power conversion efficiency and the polymer light emitting diode with Ag @ NMP: PH500 electrode had 124% Power efficiency is improved.

이하, 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<실시예 1> 광디바이스의 제조&Lt; Example 1 > Fabrication of optical device

1. 은나노입자(Ag@NMP) 제조1. Manufacture of silver nanoparticles (Ag @ NMP)

은나노입자는 환원제로서 N-메틸-2-피롤리돈(NMP)을 이용하여 질산은을 환원시켜 제조하였다. 즉, 3 mg의 질산은을 3 mL의 NMP 스탁 용액에 첨가하고, 1분 동안 진탕시킨 후 1시간 동안 UV 조사에 노출시켰다. NMP에 용해된 은나노입자(50 ㎕)를 PEDOT:PSS (Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PH500) 용액 1 mL에 첨가하고, 얻어진 혼합물을 실온에서 2시간 동안 교반하여 Ag@NMP를 제조하였다. Silver nanoparticles were prepared by reducing silver nitrate using N-methyl-2-pyrrolidone (NMP) as a reducing agent. That is, 3 mg of silver nitrate was added to 3 mL of NMP stock solution, shaken for 1 minute, and then exposed to UV irradiation for 1 hour. The silver nanoparticles (50 μl) dissolved in NMP were added to 1 mL of PEDOT: PSS (poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) (PH500) solution and the resulting mixture was stirred at room temperature for 2 hours Ag @ NMP was prepared.

비교 전극(NMP:PH500)의 제조를 위하여, 은나노입자 없는 순수한 NMP(50 ㎕)를 1 mL PH500과 혼합하였다.For the preparation of the comparative electrode (NMP: PH500), pure NMP without silver nanoparticles (50 mu l) was mixed with 1 mL of PH500.

2. 폴리머 태양전지 제작2. Polymer solar cell production

앞서 준비된 은나노입자를 이용한 glass/Ag@NMP:PH500/PTBT:PC61BM/Al 폴리머 태양전지(도 1a 참조)와, 비교를 위해 glass/NMP:PH500/PTBT:PC61BM/Al 폴리머 태양전지를 각각 제작하였다.A comparison of glass / Ag @ NMP: PH500 / PTBT: PC 61 BM / Al polymer solar cell (see FIG. 1A) using silver nanoparticles prepared above and glass / NMP: PH500 / PTBT: PC 61 BM / Respectively.

먼저, 유리 기판을 세정제로 깨끗하게 세정하고, 아세톤과 이소프로필 알콜올에서 순차적으로 초음파 처리하여 세정한 후, 100℃에서 밤새도록 오븐에서 건조시켰다. First, the glass substrate was thoroughly cleaned with a cleaning agent, washed sequentially with acetone and isopropyl alcohol by ultrasonic treatment, and then dried in an oven at 100 DEG C overnight.

애노드로 사용되는 NMP:PH500(1:20 v/v%) 층과 Ag@NMP:PH500(1:20 v/v%) 층은 유리 기판 상에서 2000 rpm으로 60초 동안 스핀 코팅하고, 대기 중 120℃에서 15분 동안 굽고 글러브 박스로 이동시켰다. The NMP: PH500 (1:20 v / v%) layer and the Ag @ NMP: PH500 (1:20 v / v%) layer used as the anode were spin-coated on a glass substrate at 2000 rpm for 60 seconds, Lt; 0 &gt; C for 15 minutes and transferred to a glove box.

NMP:PH500 층과 Ag@NMP:PH500 층 상부에 o-디클로로벤젠에 용해된 PTBT:PC61BM(1:2,0.68 중량%) 혼합 용액을 이용하여 1000 rpm에서 60초 동안 스핀 코팅하여 광활성층을 형성시켰다.The mixture was spin-coated at 1000 rpm for 60 seconds using a mixed solution of PTBT: PC 61 BM (1: 2,0.68 wt%) dissolved in o-dichlorobenzene on the NMP: PH500 layer and the Ag @ NMP: PH500 layer, .

상기 준비된 디바이스를 진공(<10-6Torr) 하에서 회수하고 100 nm 두께의 Al 전극을 상기 광활성층 상부에 증착시켰다. 증착된 Al 전극의 면적은 폴리머 태양전지의 활성 면적으로서 13.5 mm2이었다. The prepared device was recovered under vacuum (< 10 -6 Torr) and an Al electrode with a thickness of 100 nm was deposited on the photoactive layer. The area of the deposited Al electrode was 13.5 mm 2 as the active area of the polymer solar cell.

3. 폴리머 발광 다이오드 제작3. Polymer Light Emitting Diode Fabrication

앞서 준비된 은나노입자를 이용한 glass/Ag@NMP:PH500/SY/LiF/Al 폴리머 발광 다이오드(도 1b 참조)와, 비교를 위해 glass/NMP:PㄴH500/SY/LiF/Al 폴리머 발광 다이오드를 각각 제작하였다.A glass / NMP: P H500 / SY / LiF / Al polymer light emitting diode (see FIG. 1B) using silver nanoparticles prepared above and a glass / Ag @ NMP: PH500 / SY / LiF / Al polymer light emitting diode Respectively.

NMP:PH500 층과 Ag@NMP:PH500 층 상부에 클로로벤젠에 용해된 SY(Super Yellow, M n = 1,950,000 g mol-1) (0.8 중량%) 용액을 이용하여 2000 rpm에서 45초 동안 스핀 코팅하였다.Coated at 2000 rpm for 45 seconds using a solution of SY (Super Yellow, M n = 1,950,000 g mol -1 ) (0.8 wt%) dissolved in chlorobenzene on top of the NMP: PH500 layer and Ag @ .

상기 SY 층 상부에 열증착을 통해 1 nm 두께의 LiF 층과 100 nm 두께의 Al 층을 증착시켰다.
A 1 nm thick LiF layer and a 100 nm thick Al layer were deposited on the SY layer by thermal evaporation.

<실시예 2> 광디바이스의 성능 평가&Lt; Embodiment 2 > Performance evaluation of optical device

1. 은나노입자 층의 성능 분석1. Performance analysis of silver nanoparticle layer

앞서 준비된 은나노입자의 투사전자 현미경(TEM) 분석은 200 kV에서 작동된 JEOL JEM-2100 TEM을 이용하여 관찰하였다. 이때, TEM 분석을 위하여 탄소 코팅된 구리 그리드 상에 NMP에 용해된 은나노입자 몇 방울을 놓아 둔 후 실온에서 1시간 동안 진공 오븐에서 건조시킨 시료를 사용하였다. 그 결과 도 2a와 같이 은나노입자는 3 내지 9 nm의 직경으로 무질서하게 분산되어 있었다.Transmission electron microscopy (TEM) analysis of the previously prepared silver nanoparticles was observed using a JEOL JEM-2100 TEM operated at 200 kV. For the TEM analysis, several drops of silver nanoparticles dissolved in NMP were placed on a carbon-coated copper grid, and then dried in a vacuum oven at room temperature for 1 hour. As a result, the silver nanoparticles were dispersed randomly in a diameter of 3 to 9 nm as shown in FIG.

또한, Varian Cary 5000 분광분석기를 이용하여 앞서 준비된 은나노입자의 UV-Vis 흡수 스펙트럼을 분석한 결과, 도 2b와 같이 약 420 nm에서 표면 플라몬 흡수 밴드가 관찰되어 은나노입자의 형성을 명확하게 확인할 수 있었다.As a result of analyzing the UV-Vis absorption spectrum of the silver nanoparticles prepared above using a Varian Cary 5000 spectrometer, a surface plasmon absorption band was observed at about 420 nm as shown in FIG. 2b, and the formation of silver nanoparticles was clearly observed there was.

또한, ITO, NMP:PH500 필름 및 Ag@NMP:PH500 필름의 광 투과도를 공기 중에서 측정한 결과, 도 2c와 같이 NMP:PH500 필름과 Ag@NMP:PH500 필름의 투명도가 ITO와 견줄만 하였고, Ag@NMP:PH500 필름이 약 420 nm인 Ag 플라즈몬 피크 부근에서 NMP:PH500 필름보다 우수한 흡수도를 나타내었다.The transparency of the NMP: PH500 film and the Ag @ NMP: PH500 film was comparable to that of ITO as shown in FIG. 2C, and the transmittance of the Ag @ NMP: The NMP: PH500 film showed better absorption than the NMP: PH500 film in the vicinity of the Ag plasmon peak at about 420 nm.

2. 폴리머 태양전지의 성능 평가2. Performance evaluation of polymer solar cell

앞서 준비된 폴리머 태양전지의 전류 밀도-전압(J-V)은 Keithley 2635A Source Measure Unit을 이용하여 측정하였다. 이때, 마스크를 이용하여 100 mWcm-2에서 1.5G 조명 하에서 측정하였다.The current density-voltage ( JV ) of the previously prepared polymer solar cell was measured using a Keithley 2635A Source Measure Unit. At this time, measurement was performed under a 1.5G illumination at 100 mWcm -2 using a mask.

도 3a 및 표 1에서는 애노드로 NMP:PH500 필름 및 Ag@NMP:PH500 필름을 구비한 ITO 없는 폴리머 태양전지의 J-V 특성을 나타낸 것으로서, Ag@NMP:PH500 필름을 구비한 폴리머 태양전지는 NMP:PH500 필름을 구비한 폴리머 태양전지보다 32% 증가한 광전변환효율(PCE)을 나타내었다.3A and Table 1 show the JV characteristics of an ITO-free polymer solar cell having an anode NMP: PH500 film and an Ag @ NMP: PH500 film. A polymer solar cell having an Ag @ NMP: Showed a photoelectric conversion efficiency (PCE) of 32% higher than that of a polymer solar cell having a film.

태양전지Solar cell J sc (mA/cm2) J sc (mA / cm 2 ) V oc (V) V oc (V) FFFF BestPCE (%)BestPCE (%) NMP:PH500NMP: PH500 8.528.52 0.790.79 0.480.48 3.273.27 Ag@NMP:PH500Ag @ NMP: PH500 9.119.11 0.840.84 0.560.56 4.314.31

또한, 앞서 준비된 폴리머 태양전지의 IPCE(incident photon to current efficiency)는 IPCE system (Model QEX7)을 이용하여 대기 중에서 측정하였다.In addition, the incident photon to current efficiency (IPCE) of the polymer solar cell prepared above was measured in the air using an IPCE system (Model QEX7).

도 3b는 NMP:PH500 필름 및 Ag@NMP:PH500 필름을 구비한 폴리머 태양전지의 IPCE 곡선으로서, 380 nm 내지 520 nm 범위에서 Ag@NMP:PH500 필름을 구비한 폴리머 태양전지의 IPCE 값이 NMP:PH500 필름을 구비한 폴리머 태양전지보다 훨씬 높게 나타났다.3B is an IPCE curve of a polymer solar cell having an NMP: PH500 film and an Ag @ NMP: PH500 film, wherein the IPCE value of the polymer solar cell having Ag @ NMP: PH500 film in the range of 380 nm to 520 nm is NMP: Lt; RTI ID = 0.0 &gt; PH500 &lt; / RTI &gt; film.

도 3c는 NMP:PH500 필름 및 Ag@NMP:PH500 필름을 구비한 폴리머 태양전지의 IPCE 값의 차(ΔIPCE)의 스펙트럼을 나타낸 것으로서, Ag 플라즈몬 밴드와 거의 중첩되므로 은나노입자의 SPR 효과를 통해 광흡수가 증가됨을 시사한다.FIG. 3C shows a spectrum of the difference in IPCE value (ΔIPCE) between a polymer solar cell having an NMP: PH500 film and an Ag @ NMP: PH500 film, and almost overlaps with the Ag plasmon band. .

도 3d는 Ag@NMP:PH500 필름을 구비한 플렉서블 폴리머 태양전지를 나타낸 것이다.Figure 3d shows a flexible polymer solar cell with Ag @ NMP: PH500 film.

3. 폴리머 발광 다이오드의 성능 평가3. Performance evaluation of polymer light emitting diodes

앞서 준비된 폴리머 발광 다이오드의 적용 전압에 따른 전류 밀도는 Keithley 2635A Source Measure Unit을 이용하여 측정하였고, 적용 전압에 따른 휘도는 Konica Minolta spectroradiometer (CS-2000)로 측정하였다. The current density according to the application voltage of the polymer light emitting diode prepared above was measured using a Keithley 2635A Source Measure Unit and the luminance according to the applied voltage was measured with a Konica Minolta spectroradiometer (CS-2000).

도 4a는 적용 전압에 따른 전류 밀도 변화를 나타낸 것으로서, Ag@NMP:PH500 필름을 구비한 폴리머 발광 다이오드에서의 전하 주입이 NMP:PH500 필름을 구비한 폴리머 발광 다이오드와 비교하여 개선됨을 확인할 수 있다.4A shows changes in current density according to an applied voltage. It can be confirmed that the charge injection in the polymer light emitting diode having the Ag @ NMP: PH500 film is improved as compared with the polymer light emitting diode having the NMP: PH500 film.

도 4b는 적용 전압에 따른 휘도 변화, 도 4c는 전력 밀도에 따른 EL 효율 변화, 도 4d는 전압에 따른 전력 효율 변화를 각각 나타낸 것이고, 표 2에서는 애노드로 NMP:PH500 필름 및 Ag@NMP:PH500 필름을 각각 구비한 폴리머 발광 다이오드의 최대 휘도, 최대 EL 효율 및 최대 전력 효율을 나타낸 것으로, Ag@NMP:PH500 필름을 구비한 폴리머 발광 다이오드에서 최대 휘도, 최대 EL 효율 및 최대 전력 효율이 NMP:PH500 필름을 구비한 폴리머 발광 다이오드보다 향상됨을 확인할 수 있다.4B shows the change in luminance depending on the applied voltage, FIG. 4C shows the change in EL efficiency according to the power density, and FIG. 4D shows the change in power efficiency according to the voltage. In Table 2, the anode NMP: PH500 film and Ag @ NMP: PH500 Maximum EL efficiency, and maximum power efficiency of polymer light emitting diodes each having a film, respectively, in a polymer light emitting diode equipped with Ag @ NMP: PH500 film. The maximum luminance, maximum EL efficiency, It can be confirmed that the polymer light emitting diode is improved as compared with a polymer light emitting diode having a film.

발광 다이오드Light emitting diode 최대 휘도
(cd m-2)
(at voltage)
Maximum luminance
(cd m -2 )
(at voltage)
최대 EL 효율
(cd A-1)
(at voltage)
Maximum EL efficiency
(cdA -1)
(at voltage)
최대 전략 효율
(lm W-1)
(at voltage)
Maximum Strategy Efficiency
(lm W -1 )
(at voltage)
턴온 전압 (V)Turn-on Voltage (V)
NMP:PH500NMP: PH500 15582 (21.0V)15582 (21.0V) 14.43 (14.2V)14.43 (14.2V) 3.75 (8.2V)3.75 (8.2 V) 2.02.0 Ag@NMP:PH500Ag @ NMP: PH500 22402 (20.2V)22402 (20.2V) 16.77 (9.4V)16.77 (9.4V) 8.4 (5.0V)8.4 (5.0 V) 2.02.0

그리고, Ag@NMP:PH500 필름을 구비한 SY 필름의 형광 발광 증진 효과는 개선된 디바이스의 성능을 뒷받침하는 근거가 되는데, 고상 광발광 측정과 공초점 레이저 주사 현미경을 이용하여 Ag@NMP:PH500 필름을 구비한 SY 필름의 형광 발광 증진 효과를 검토하였다. The fluorescence emission enhancement effect of the SY film with the Ag @ NMP: PH500 film serves as a basis for the improved device performance. The Ag @ NMP: PH500 film was prepared using a solid-state photoluminescence measurement and a confocal laser scanning microscope. Was examined for the fluorescence emission enhancement effect of the SY film.

그 결과, Ag@NMP:PH500 필름을 구비한 SY 필름의 형광 발광 양자 효율은 Ag@NMP:PH500 필름을 구비하지 않은 SY 필름과 비교하여 7.1%에서 18.6%로 크게 개선되었다.
As a result, the fluorescence quantum efficiency of the SY film with the Ag @ NMP: PH500 film was greatly improved from 7.1% to 18.6% as compared with the SY film without the Ag @ NMP: PH500 film.

종합하면, 본 발명에서는 플렉서블 전도성 고분자 전극으로서 은나노입자를 포함한 PEDOT:PSS 필름을 구비한 ITO 없는 플라즈몬 유기 광전자 디바이스를 성공적으로 제작할 수 있었으며, 은나노입자가 삽입된 Ag@NMP:PH500 전극은 ITO와 유사한 투명도를 가지며, 450 S/cm의 높은 전도성을 나타내었다. Ag@NMP:PH500 전극을 구비한 폴리머 태양전지는 광전변환효율이 개선되었고, Ag@NMP:PH500 전극을 구비한 폴리머 발광 다이오드는 124% 정도 전력 효율이 개선되었다. As a result, in the present invention, a plasmon organic optoelectronic device without a ITO having a PEDOT: PSS film containing silver nanoparticles as a flexible conductive polymer electrode can be successfully manufactured, and Ag @ NMP: PH500 electrode with silver nanoparticles is similar to ITO Transparency and high conductivity of 450 S / cm. Ag @ NMP: Polymer solar cell with PH500 electrode improved the photoelectric conversion efficiency, and the polymer light emitting diode with Ag @ NMP: PH500 electrode improved power efficiency by 124%.

따라서, 상기 Ag@NMP:PH500 전극은 저가로 손쉽게 제작할 수 있으며, 대면적 및 플렉서블 유기 광전자 디바이스용 플렉서블 전극으로서 유용하게 사용될 수 있다.
Therefore, the Ag @ NMP: PH500 electrode can be easily manufactured at low cost and can be usefully used as a flexible electrode for large-area and flexible organic optoelectronic devices.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various modifications and changes may be made without departing from the scope of the appended claims.

Claims (8)

PEDOT[poly(3,4-ethylenedioxythiophene)] 및 PSS(polystyrene sulfonic acid)로 이루어진 전도성 고분자 전극층(PEDOT:PSS층)을 포함한 유기 광전자 디바이스에 있어서, 상기 전도성 고분자 전극층이 은나노입자층을 포함하는 플라즈몬 유기 광전자 디바이스.An organic optoelectronic device including a conductive polymer electrode layer (PEDOT: PSS layer) composed of PEDOT [poly (3,4-ethylenedioxythiophene)] and PSS (polystyrene sulfonic acid), wherein the conductive polymer electrode layer comprises a plasmon organic photoelectron device. 청구항 1에 있어서, 상기 은나노입자는 상기 PEDOT:PSS층 100 부피부에 대하여 1 내지 10 부피부로 포함되는 것을 특징으로 하는 플라즈몬 유기 광전자 디바이스. The plasmon organic optoelectronic device according to claim 1, wherein the silver nanoparticles are contained as 1 to 10 parts skin for 100 parts of the PEDOT: PSS layer. 청구항 1에 있어서, 상기 플라즈몬 유기 광전자 디바이스는 폴리머 태양전지 또는 폴리머 발광 다이오드 중 어느 하나인 것을 특징으로 하는 플라즈몬 유기 광전자 디바이스. The plasmon organic optoelectronic device of claim 1, wherein the plasmon organic optoelectronic device is one of a polymer solar cell or a polymer light emitting diode. 청구항 3에 있어서, 상기 폴리머 태양전지는 기판; PEDOT:PSS층에 은나노입자가 포함된 전도성 고분자 전극층; 광활성층; 및 금속 전극을 포함하는 폴리머 태양전지인 것을 특징으로 하는 플라즈몬 유기 광전자 디바이스. 4. The solar cell of claim 3, wherein the polymer solar cell comprises: a substrate; PEDOT: Conductive polymer electrode layer containing silver nanoparticles in the PSS layer; A photoactive layer; And a polymer solar cell comprising a metal electrode. 청구항 3에 있어서, 상기 폴리머 발광 다이오드는 기판; PEDOT:PSS층에 은나노입자가 포함된 전도성 고분자 전극층; 수퍼 옐로우(Super yellow)층; LiF층 및 금속 전극을 포함하는 폴리머 발광 다이오드인 것을 특징으로 하는 플라즈몬 유기 광전자 디바이스. 4. The method of claim 3, wherein the polymer light emitting diode comprises: a substrate; PEDOT: Conductive polymer electrode layer containing silver nanoparticles in the PSS layer; A super yellow layer; A LiF layer, and a metal electrode. &Lt; Desc / Clms Page number 13 &gt; 청구항 4 또는 청구항 5에 있어서, 상기 기판은 유리기판인 것을 특징으로 하는 플라즈몬 유기 광전자 디바이스. The plasmon organic optoelectronic device according to claim 4 or 5, wherein the substrate is a glass substrate. 청구항 4 또는 청구항 5에 있어서, 상기 광활성층은 PTB7(poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno-[3,4-b]thiophenediyl]]) 및 PC70BM([6,6]-phenyl-C70 butyric acid methyl ester)로 이루어진 층인 것을 특징으로 하는 플라즈몬 유기 광전자 디바이스. The photoactive layer according to claim 4 or 5, wherein the photoactive layer is at least one selected from the group consisting of PTB7 (poly [[4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b '] dithiophene- -diyl] [3-fluoro-2 - [(2-ethylhexyl) -carbonyl] thieno- [3,4-b] thiophenediyl]] and PC 70 BM ([6,6] -phenyl-C70 butyric acid methyl ester ). &Lt; / RTI &gt; 청구항 4 또는 청구항 5에 있어서, 상기 금속 전극은 Al 전극인 것을 특징으로 하는 플라즈몬 유기 광전자 디바이스. The plasmon organic optoelectronic device according to claim 4 or 5, wherein the metal electrode is an Al electrode.
KR1020130051406A 2013-05-07 2013-05-07 Plasmonic organic optoelectronic devices comprising conducting polymer electrode incoporated with silver nanoparticles KR101516474B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130051406A KR101516474B1 (en) 2013-05-07 2013-05-07 Plasmonic organic optoelectronic devices comprising conducting polymer electrode incoporated with silver nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130051406A KR101516474B1 (en) 2013-05-07 2013-05-07 Plasmonic organic optoelectronic devices comprising conducting polymer electrode incoporated with silver nanoparticles

Publications (2)

Publication Number Publication Date
KR20140132191A true KR20140132191A (en) 2014-11-17
KR101516474B1 KR101516474B1 (en) 2015-05-20

Family

ID=52453284

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130051406A KR101516474B1 (en) 2013-05-07 2013-05-07 Plasmonic organic optoelectronic devices comprising conducting polymer electrode incoporated with silver nanoparticles

Country Status (1)

Country Link
KR (1) KR101516474B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960909A (en) * 2017-03-27 2017-07-18 陈胜红 A kind of high efficiency is inverted organic photovoltaic battery and preparation method thereof
WO2018010935A1 (en) 2016-07-11 2018-01-18 Institutt For Energiteknikk Organic-inorganic hybrid material and method for silicon surface passivation
US10070515B2 (en) 2015-08-10 2018-09-04 Samsung Electronics Co., Ltd. Transparent electrode using amorphous alloy and method of manufacturing the same
CN113161490A (en) * 2021-03-09 2021-07-23 嘉兴学院 AuNCs-PEDOT and PSS composite flexible electrode and solar cell device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393194A (en) 2014-12-10 2015-03-04 京东方科技集团股份有限公司 Flexible electrode, fabrication method of flexible electrode, electronic skin and flexible display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422109B1 (en) * 2001-05-15 2004-03-10 주식회사 미뉴타텍 Polymer coordination complex useful as an electrode
JP4843904B2 (en) * 2004-03-12 2011-12-21 ソニー株式会社 Photoelectric conversion element and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10070515B2 (en) 2015-08-10 2018-09-04 Samsung Electronics Co., Ltd. Transparent electrode using amorphous alloy and method of manufacturing the same
WO2018010935A1 (en) 2016-07-11 2018-01-18 Institutt For Energiteknikk Organic-inorganic hybrid material and method for silicon surface passivation
CN106960909A (en) * 2017-03-27 2017-07-18 陈胜红 A kind of high efficiency is inverted organic photovoltaic battery and preparation method thereof
CN106960909B (en) * 2017-03-27 2019-10-18 江苏博创升降机械有限公司 A kind of inversion organic photovoltaic battery and preparation method thereof
CN113161490A (en) * 2021-03-09 2021-07-23 嘉兴学院 AuNCs-PEDOT and PSS composite flexible electrode and solar cell device

Also Published As

Publication number Publication date
KR101516474B1 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
Xiao et al. Ternary organic solar cells offer 14% power conversion efficiency
Min et al. Fully Solution‐Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers
Kim et al. Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device
Ko et al. Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles
Liu et al. Toward see‐through optoelectronics: Transparent light‐emitting diodes and solar cells
TWI503050B (en) An electrically conducting structure for a light transmissible device
Palilis et al. A water soluble inorganic molecular oxide as a novel efficient electron injection layer for hybrid light-emitting diodes (HyLEDs)
KR101516474B1 (en) Plasmonic organic optoelectronic devices comprising conducting polymer electrode incoporated with silver nanoparticles
Jin et al. Molecular doping of CuSCN for hole transporting layers in inverted-type planar perovskite solar cells
Zhang et al. High efficiency solution processed inverted white organic light emitting diodes with a cross-linkable amino-functionalized polyfluorene as a cathode interlayer
JP2015515749A (en) Metal oxide charge transport materials doped with organic molecules
KR101679965B1 (en) Solar cell and method for manufacturing the same
KR20150124913A (en) Organic solar cell and method for manufacturing the same
Chiba et al. Dual mode OPV-OLED device with photovoltaic and light-emitting functionalities
KR20200004769A (en) Organic solar cells comprising optical defensive double carrier transport layer and manufacturing method thereof
Kim et al. Flexible organic light-emitting diode with a conductive polymer electrode
CN107032341B (en) A kind of grapheme material and its method of modifying and application
CN111816794A (en) PEIE (Positive electrode interference) intervention standard inverted QLED (quantum dot light emitting diode) device and preparation method thereof
Li et al. Vacuum‐Deposited Transparent Organic Photovoltaics for Efficiently Harvesting Selective Ultraviolet and Near‐Infrared Solar Energy
Ou et al. Efficient inorganic perovskite light-emitting diodes by inducing grain arrangement via a multifunctional interface
KR20160020121A (en) Perovskite solar cell and method of manufacturing the same
Wang et al. Inverse-architecture perovskite solar cells with 5, 6, 11, 12-tetraphenylnaphthacene as a hole conductor
KR101648760B1 (en) Polymer electron transporting buffer material and organo-electronic devices using the same
KR20180122268A (en) The method for manufacturing of organic solar cell and organic solar cell thereby
US20160276610A1 (en) Polymer solar cell using a low-temperature, solution-processed metal-oxide thin film as a hole-extraction layer

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 5