KR20140092492A - Manufacturing method of cathod active material for lithium rechargeable battery and cathod active material made by the same - Google Patents

Manufacturing method of cathod active material for lithium rechargeable battery and cathod active material made by the same Download PDF

Info

Publication number
KR20140092492A
KR20140092492A KR1020120157975A KR20120157975A KR20140092492A KR 20140092492 A KR20140092492 A KR 20140092492A KR 1020120157975 A KR1020120157975 A KR 1020120157975A KR 20120157975 A KR20120157975 A KR 20120157975A KR 20140092492 A KR20140092492 A KR 20140092492A
Authority
KR
South Korea
Prior art keywords
active material
lithium
solution
concentration
metal
Prior art date
Application number
KR1020120157975A
Other languages
Korean (ko)
Other versions
KR101970201B1 (en
Inventor
이민형
윤진경
정재용
신종승
최문호
김직수
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Priority to KR1020120157975A priority Critical patent/KR101970201B1/en
Priority to PCT/KR2013/012298 priority patent/WO2014104811A1/en
Publication of KR20140092492A publication Critical patent/KR20140092492A/en
Application granted granted Critical
Publication of KR101970201B1 publication Critical patent/KR101970201B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a lithium complex oxide for a lithium secondary battery and, more specifically, to a positive electrode active material having high thermal stability and thermal efficiency obtained by adjusting a concentration of manganese at an inner core and an outer bulk portion, regarding a lithium transitional metal oxide having a concentration gradient.

Description

리튬 이차전지용 양극활물질의 제조 방법 및 그에 의한 리튬 이차전지용 양극 활물질{MANUFACTURING METHOD OF CATHOD ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE BATTERY AND CATHOD ACTIVE MATERIAL MADE BY THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery, and a positive electrode active material for a lithium secondary battery,

본 발명은 리튬 이차전지용 양극활물질의 제조 방법 및 그에 의한 리튬 이차전지용 양극 활물질에 관한 것으로서, 더욱 상세하게는 농도 구배를 갖는 리튬 전이 금속 산화물에 있어서, 내부 코아와 외부 벌크부에서의 망간의 농도를 조절하여 얻어지는 열안정성 및 효율 특성이 높은 리튬 이차전지용 양극활물질의 제조 방법 및 그에 의한 리튬 이차전지용 양극 활물질에 관한 것이다.
The present invention relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery, and more particularly, to a lithium transition metal oxide having a concentration gradient, wherein the concentration of manganese in the inner core and the outer bulk portion is The present invention relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery by the method.

현재 적용되고 있는 이차 전지 중에서 1990년대 초에 개발된 리튬 이온 전지는 소형, 경량, 대용량 전지로서 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 리튬 이차 전지는 수계 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 특히 최근에는 내연기관과 리튬 이차 전지를 혼성화(hybrid)한 전기자동차용 동력원에 관한 연구가 미국, 일본 및 유럽 등에서 활발히 진행 중에 있다.Among the currently applied secondary batteries, the lithium ion battery developed in the early 1990s has been widely used as a portable power source since it appeared in 1991 as a small, lightweight, large capacity battery. Lithium secondary batteries are attracting attention because they have higher operating voltages and energy densities than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries using an aqueous electrolyte solution. Recently, researches on a power source for an electric vehicle hybridized with an internal combustion engine and a lithium secondary battery have been actively carried out in the United States, Japan, and Europe.

그러나, 에너지 밀도 관점에서 전기자동차용의 대형 전지로 리튬 이온 전지 사용을 고려하고는 있지만, 아직까지는 안전성의 관점에서 니켈 수소 전지가 사용되고 있다. 전지자동차용으로 사용되기 위한 리튬 이온 전지에 있어서 최대의 당면 과제는 높은 가격과 안전성이다. 특히, 현재 상용화되어 사용되고 있는 LiCoO2나 LiNiO2와 같은 양극 활물질은 과충전 상태의 전지를 200 내지 270℃에서 가열하면, 급격한 구조 변화가 발생하게 되며, 그러한 구조변화로 인해 격자 내의 산소가 방출되는 반응이 진행되어 충전시의 탈 리튬에 의하여 결정 구조가 불안정하여 열적 특성이 매우 열악한 단점을 가지고 있다.However, from the viewpoint of energy density, the use of a lithium ion battery as a large-sized battery for an electric vehicle is considered, but a nickel-metal hydride battery is still used from the viewpoint of safety. The biggest challenge in lithium ion batteries for use in battery automobiles is high cost and safety. Particularly, in a cathode active material such as LiCoO2 or LiNiO2, which is currently in commercial use, when a battery in an overcharged state is heated at 200 to 270 DEG C, a rapid structural change occurs. As a result of such a structural change, And the crystalline structure is unstable due to the depolythide at the time of charging, which is a very poor thermal property.

이를 개선하기 위해 니켈의 일부를 전이금속 원소의 치환하여 발열 시작 온도를 약간 고온 측으로 이동시키거나 급격한 발열을 방지하는 등이 시도되고 있다. 니켈의 일부를 코발트로 치환한 LiNi1-xCoxO2(x=0.1-0.3) 물질의 경우 우수한 충?방전특성과 수명특성을 보이나, 열적 안전성 문제는 해결하지 못하였다. 또한 Ni자리에 열적 안전성이 뛰어난 Mn을 일부 치환한 Li-Ni-Mn계 복합산화물 또는 Mn 및 Co로 치환한 Li-Ni-Mn-Co계 복합산화물의 조성과 그 제조에 관련된 기술도 많이 알려져 있으며, 최근 일본특허 2000-227858호에서는 LiNiO2나 LiMnO2에 전이금속을 부분 치환하는 개념이 아니라 Mn과 Ni 화합물을 원자레벨에서 균일하게 분산시켜 고용체를 만드는 새로운 개념의 양극 활물질을 개시하였다.In order to improve this, attempts have been made to replace a part of nickel with a transition metal element to move the heat generation starting temperature to a slightly higher temperature side or to prevent rapid heat generation. The LiNi1-xCoxO2 (x = 0.1-0.3) material in which a portion of nickel was replaced with cobalt exhibited excellent charge-discharge characteristics and lifetime characteristics, but did not solve the thermal stability problem. Also, there are many known techniques for forming compositions of Li-Ni-Mn-based composite oxides partially substituted with Mn or Li-Ni-Mn-Co based composite oxides substituted with Mn and Co and having excellent thermal stability at Ni sites Recently, Japanese Patent Publication No. 2000-227858 discloses a new concept of a cathode active material in which LiNiO 2 or LiMnO 2 is not a concept of partial substitution of a transition metal but Mn and Ni compounds are uniformly dispersed at an atomic level to form a solid solution.

Ni을 Mn 및 Co로 치환한 Li-Ni-Mn-Co계 복합산화물의 조성에 대한 유럽 특허 0918041이나 미국특허 6040090에 따르면, LiNi1-xCoxMnyO2 (0<y≤0.3)는 기존의 Ni과 Co만으로 구성된 재료에 비해 향상된 열적안정성을 가지나, 여전히 Ni 계의 열적 안전성을 해결하지 못하였다.According to European Patent 0918041 or US Patent 6040090 on the composition of a Li-Ni-Mn-Co composite oxide in which Ni is substituted with Mn and Co, LiNi1-xCoxMnyO2 (0 < y? 0.3) Although it has improved thermal stability compared to the material, it still fails to solve the thermal stability of the Ni system.

이러한 단점을 해결하기 위해 전해질과 접하는 양극 활물질의 표면 조성을 변화시키는 방법을 적용하게 되었으며, 이러한 방법 중 하나가 표면코팅 방법이다. 일반적으로 코팅양은 양극 활물질 대비 1 내지 2 중량 % 이하의 작은 양으로 코팅 층은 수 나노미터 정도의 매우 얇은 박막 층을 형성하여 전해액과의 부반응을 억제하는 것으로 알려져 있거나, 코팅 후 열처리 온도가 높은 경우 분말 입자의 표면에 고용체를 형성하여 입자 내부와 다른 금속 조성을 갖는 경우가 있다. 이 경우 코팅 물질과 결합한 표면층이 수 십 나노미터 이하로 알려져 있으며, 코팅 층과 입자 벌크와의 급격한 조성차이가 있어 수백 싸이클의 장기 사용 시 그 효과가 줄어들게 된다.In order to solve such disadvantages, a method of changing the surface composition of a cathode active material in contact with an electrolyte has been applied. One of these methods is a surface coating method. Generally, it is known that the coating amount is a small amount less than 1 to 2% by weight of the cathode active material, and the coating layer is formed to form a very thin film layer of about several nanometers to inhibit side reactions with the electrolyte, There is a case where a solid solution is formed on the surface of the powder particles to have a different metal composition from the inside of the particle. In this case, the surface layer combined with the coating material is known to be several tens of nanometers or less, and there is a rapid composition difference between the coating layer and the particle bulk, so that the effect of the long-term use of several hundred cycles is reduced.

또한, 상기 코팅 층이 표면에 고루 분포하지 않은 불완전한 코팅으로 인해 그 효과가 반감된다.In addition, the effect is halved due to an imperfect coating that is not uniformly distributed over the surface of the coating.

이러한 단점을 없애기 위해 한국특허 출원번호 제10-2005-7007548호에 금속 조성의 농도 구배를 갖는 리튬 전이 금속 산화물에 대한 특허가, 한국특허 출원번호 제10-2006-0059784호에서는 내부 코아와 외부 벌크부의 접촉 경계면에서 외부 벌크부와 외부 쉘의 접촉 경계면까지 금속 조성이 연속적인 농도 구배로 존재하는 구조를 제안하고 있다.
In order to eliminate such disadvantages, Korean Patent Application No. 10-2005-7007548 discloses a patent for a lithium transition metal oxide having a concentration gradient of a metal composition, Korean Patent Application No. 10-2006-0059784 discloses an inner core and an outer bulk The metal composition from the negative contact interface to the contact interface between the outer bulk and the outer shell is present in a continuous concentration gradient.

본 발명은 농도 구배를 갖는 리튬 전이 금속 산화물에 있어서, 내부 코아와 외부 벌크부에서의 망간의 농도를 조절함으로써 열안정성 및 효율 특성이 높은 양극활물질을 제공하는 것을 목적으로 한다.
The present invention aims at providing a cathode active material having a lithium ion transition metal oxide having a concentration gradient, wherein the concentration of manganese in the inner core and the outer bulk is controlled to thereby provide a cathode having a high thermal stability and high efficiency.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

Lix1[Ni1-y1-z1-w1Coy1Mnz1Mw1]O2 (상기 식에서 0.9≤x1≤1.3, 0.2≤y1≤0.4, 0.55≤z1≤0.9, 0≤w1≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe,Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임)로 표시되는 코아부: Mg, Zn, Ca, Sr, Cu, Al, and Ni are selected from the group consisting of Li1 [Ni1-y1-z1-w1Coy1Mnz1Mw1] O2 where 0.9? X1? 1.3, 0.2? Y1? 0.4, 0.55? Z1? 0.9, At least one metal selected from Zr, P, Fe, Al, Ga, In, Cr, Ge and Sn)

Lix2[Ni1-y2-z2-w2Coy2Mnz2Mw2]O2 (상기 식에서 0.9≤x2≤1+z2, 0.2≤y2≤0.4, 0.2≤z2≤0.4, 0≤w2≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe,Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임)로 표시되는 외곽부; 및 Zn, Ca, Sr, Mg, and Zn in the above formula, 0.9? X2? 1 + z2, 0.2? Y2? 0.4, 0.2? Z2? 0.4, 0? W2? At least one metal selected from the group consisting of Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge and Sn; And

상기 코아부와 상기 외곽부 사이에 형성되고, Ni, Co, Mn 가 농도 구배를 나타내는 농도구배부를 포함하는 리튬 이차전지용 양극활물질을 제공한다.
And a concentration gradient portion formed between the core portion and the outer frame portion and having a concentration gradient of Ni, Co, and Mn, and a cathode active material for a lithium secondary battery.

본 발명에 있어서, 상기 리튬 이차전지용 양극활물질의 직경이 1 내지 25㎛ 인 것을 특징으로 한다. In the present invention, the cathode active material for a lithium secondary battery has a diameter of 1 to 25 mu m.

본 발명에 있어서, 상기 리튬 이차전지용 양극활물질의 입자 전체에서의 Mn 의 평균 농도가 0.4 내지 0.7 인 것을 특징으로 한다.
In the present invention, the average concentration of Mn in the whole particles of the positive electrode active material for a lithium secondary battery is 0.4 to 0.7.

본 발명에 의한 리튬 이차전지용 양극활물질은 코아부, 외곽부 및 상기 코아부와 상기 외곽부 사이에 형성되고, Ni, Co, Mn 가 농도 구배를 나타내는 농도구배부를 포함하는 리튬 이차전지용 양극활물질에 있어서, 상기 코아부에서는 망간의 농도가 높고, 상기 외과부에서는 망간의 농도가 낮게 형성함으로써 열안정성을 높이면서도 고전압 특성을 나타내게 된다.
The positive electrode active material for a lithium secondary battery according to the present invention comprises a core portion, an outer portion, and a concentration gradient portion formed between the core portion and the outer portion and having a concentration gradient of Ni, Co and Mn, , The concentration of manganese is high in the core portion and the concentration of manganese is low in the surgical portion, thereby exhibiting high voltage characteristics while enhancing thermal stability.

도 1 내지 도 11에 본 발명의 실시예 및 비교예에서 제조된 전구체 입자 및 소결체 입자의 SEM 사진을 측정한 결과를 나타내었다.
도 12 내지 도 14에 본 발명의 실시예 3과 4에서 제조된 전구체 및 소결체 내부에서 금속 이온의 농도 분포를 EDS 로 측정한 결과를 나타내었다.
도 15 와 도 16 에 본 발명의 일 실시예에서 제조된 양극활물질을 포함하는 전지의 초기용량 및 효율특성을 나타내었다.
도 17 내지 도 24에 본 발명의 일 실시예에서 제조된 양극활물질을 포함하는 전지의 율특성을 나타내었다.
도 25와 26에 본 발명의 일 실시예에서 제조된 양극활물질을 포함하는 전지를 1.0C의 전류밀도로 충방전한 수명특성에 대한 결과를 나타하였다.
FIGS. 1 to 11 show SEM photographs of the precursor particles and sintered body particles prepared in Examples and Comparative Examples of the present invention.
FIGS. 12 to 14 show the results of measuring the concentration distribution of metal ions in the precursors and sintered bodies produced in Examples 3 and 4 of the present invention by EDS.
FIGS. 15 and 16 show the initial capacity and efficiency characteristics of the battery including the cathode active material manufactured in the embodiment of the present invention.
FIGS. 17 to 24 show the rate characteristics of the battery including the cathode active material manufactured in one embodiment of the present invention.
25 and 26 show the results of the lifespan characteristics of the battery including the cathode active material manufactured according to the embodiment of the present invention by charging and discharging at a current density of 1.0 C, respectively.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<실시예 1> &Lt; Example 1 >

Ni:Co:Mn 몰비가 28:12:60이 되도록 2.5M의 황산니켈 6수화물(NiSO4?6H2O)과 황산코발트 7수화물(CoSO4·7H2O) 및 황산망간 1수화물(MnSO4·H2O) 혼합 금속용액을 제조하였다. 암모니아 수용액을 채운 내용적 90L를 가지는 연속반응기를 이용하였으며 초기 용액의 pH는 11~12 범위로 하였다. 상기 제조된 2.5M의 니켈/코발트/망간 혼합금속용액과 28% 암모니아수 및 25% 수산화나트륨 용액을 500rpm의 속도로 질소 투입 하에 교반하면서 정량펌프를 이용하여 동시에 연속적으로 투입하였다. 이때 반응기 내의 온도는 50℃를 유지하면서 혼합금속용액은 약2L/hr, 암모니아수는 약0.3L/hr의 속도로 투입하였고, 수산화나트륨은 반응기 내의 pH가 11~12를 유지하도록 투입량을 조정하면서 연속반응을 수행하여 입자 크기가 8 um 가 될때까지 성장시켰다. (NiSO4? 6H2O), cobalt sulfate heptahydrate (CoSO4 占 H2O), and manganese sulfate monohydrate (MnSO4 占 H2O) mixed metal solution was added to the mixture solution so that the molar ratio of Ni: Co: Mn became 28:12:60 . The initial pH of the initial solution was in the range of 11 to 12, using a continuous reactor having an internal volume of 90 L filled with ammonia aqueous solution. The prepared 2.5 M nickel / cobalt / manganese mixed metal solution, 28% ammonia water, and 25% sodium hydroxide solution were simultaneously and continuously injected at a rate of 500 rpm using a metering pump while stirring under nitrogen. At this time, while the temperature in the reactor was maintained at 50 ° C, the mixed metal solution was fed at a rate of about 2 L / hr and the ammonia water was fed at a rate of about 0.3 L / hr. The reaction was carried out until the particle size reached 8 μm.

이후, 외곽부 형성을 위해 Ni:Co:Mn 몰비가 33.3:33.3:33.3이 되도록 2.5M의 황산니켈 6수화물(NiSO4·6H2O)과 황산코발트 7수화물(CoSO4·7H2O) 및 황산망간 1수화물(MnSO4·H2O) 혼합 금속용액을 제조하였다. 암모니아 수용액을 채운 내용적 90L를 가지는 연속반응기를 이용하였으며 초기 용액의 pH는 11~12 범위로 하였다. 상기 제조된 2.5M의 니켈/코발트/망간 혼합금속용액과 28% 암모니아수 및 25% 수산화나트륨 용액을 500rpm의 속도로 질소 투입 하에 교반하면서 정량펌프를 이용하여 동시에 연속적으로 투입하였다. 이때 반응기 내의 온도는 50℃를 유지하면서 혼합금속용액은 약2L/hr, 암모니아수는 약0.3L/hr의 속도로 투입하였고 수산화나트륨은 반응기 내의 pH가 11~12를 유지하도록 투입량을 조정하면서 연속반응을 수행하여 농도구배부가 1 um 크기로 생성된 후, 농도가 일정한 외곽부가 1 um 가 생성되도록 하였다. Thereafter, 2.5 M of nickel sulfate hexahydrate (NiSO 4 .6H 2 O), cobalt sulfate heptahydrate (CoSO 4 .7H 2 O) and manganese sulfate monohydrate (MnSO 4) were added so that the molar ratio of Ni: Co: Mn was 33.3: 33.3: H2O) mixed metal solution was prepared. The initial pH of the initial solution was in the range of 11 to 12, using a continuous reactor having an internal volume of 90 L filled with ammonia aqueous solution. The prepared 2.5 M nickel / cobalt / manganese mixed metal solution, 28% ammonia water, and 25% sodium hydroxide solution were simultaneously and continuously injected at a rate of 500 rpm using a metering pump while stirring under nitrogen. At this time, while the temperature in the reactor was maintained at 50 ° C, the mixed metal solution was introduced at a rate of about 2 L / hr and the ammonia water was introduced at a rate of about 0.3 L / hr. While the sodium hydroxide was adjusted to a feed rate of 11 to 12, Was performed to produce a concentration gradient of 1 μm, and then a 1 μm outer contour was generated.

건조된 상기 금속복합수산화물을 수산화리튬( LiOH . H2O )과 Li/(Ni+Co+Mn)= 1.27의 몰비로 혼합하여 코딜라이트(Cordilite) 도가니(Sega)에 넣고 공기 흐름 하에서 750℃, 10시간 소성하여 리튬금속복합산화물을 얻었다.
The drying of the metal complex hydroxide, lithium hydroxide (LiOH. H2O) and the Li / (Ni + Co + Mn ) = a mixture of a 1.27 molar ratio of insert to the nose Delight (Cordilite) crucible (Sega) 750 ℃ under an air flow for 10 hours Followed by firing to obtain a lithium metal composite oxide.

<실시예 2>&Lt; Example 2 >

리튬원료를 탄산리튬(Li2CO3)를 사용하고 Li/(Ni+Co+Mn)=1.33의 몰비로 혼합하여 800℃로 소성한 것을 제외하고 실시예 1과 동힐하게 하여 리튬금속복합산화물을 얻었다
A lithium metal composite oxide was obtained by mixing lithium raw material with lithium carbonate (Li 2 CO 3) at a molar ratio of Li / (Ni + Co + Mn) = 1.33 and burning at 800 ° C,

<실시예 3> &Lt; Example 3 >

Ni:Co:Mn 몰비가 28:12:60이 되도록 2.5M의 황산니켈 6수화물(NiSO4?6H2O)과 황산코발트 7수화물(CoSO4·7H2O) 및 황산망간 1수화물(MnSO4·H2O) 혼합 금속용액을 제조하였다. 암모니아 수용액을 채운 내용적 90L를 가지는 연속반응기를 이용하였으며 초기 용액의 pH 는 9.5~10.5 범위로 하였다. 상기 제조된 2.5M의 니켈/코발트/망간 혼합금속용액과 28% 암모니아수 및 18% 탄산나트륨(Na2CO3) 용액을 500rpm의 속도로 질소 투입 하에 교반하면서 정량펌프를 이용하여 동시에 연속적으로 투입하였다. 이때 반응기 내의 온도는 60℃를 유지하면서 혼합금속용액은 1.4/hr, 암모니아수는 0.04L/hr의 속도로 투입하였고, 탄산화나트륨은 반응기 내의 pH가 9.5~10.5를 유지하도록 투입량을 조정하면서 연속반응을 수행하여 입자 크기가 9 um 가 될때까지 성장시켰다. (NiSO4? 6H2O), cobalt sulfate heptahydrate (CoSO4 占 H2O), and manganese sulfate monohydrate (MnSO4 占 O 2O) mixed metal solution so that the molar ratio of Ni: Co: Mn was 28:12:60 . A continuous reactor having an internal volume of 90 L filled with ammonia solution was used and the pH of the initial solution was in the range of 9.5 to 10.5 . The prepared 2.5 M nickel / cobalt / manganese mixed metal solution, 28% ammonia water and 18% sodium carbonate (Na 2 CO 3 ) solution were simultaneously and continuously introduced under stirring at a rate of 500 rpm using a metering pump while stirring under nitrogen. At this time, while maintaining the temperature in the reactor at 60 占 폚, 1.4 / hr, ammonia water was added at a rate of 0.04 L / hr, and the sodium carbonate was grown to a particle size of 9 μm by continuously adjusting the feed amount so that the pH in the reactor was maintained at 9.5 to 10.5.

이후, 외곽부 형성을 위해 Ni:Co:Mn 몰비가 33.3:33.3:33.3이 되도록 2.5M의 황산니켈 6수화물(NiSO4·6H2O)과 황산코발트 7수화물(CoSO4·7H2O) 및 황산망간 1수화물(MnSO4·H2O) 혼합 금속용액을 제조하였다. 암모니아 수용액을 채운 내용적 90L를 가지는 연속반응기를 이용하였으며 초기 용액의 pH는 9.5~10.5 범위로 하였다. 상기 제조된 2.5M의 니켈/코발트/망간 혼합금속용액과 28% 암모니아수 및 18% 탄산나트륨 용액을 500rpm의 속도로 질소 투입 하에 교반하면서 정량펌프를 이용하여 동시에 연속적으로 투입하였다. 이때 반응기 내의 온도는 50℃를 유지하면서 혼합금속용액은 1.4/hr, 암모니아수는 0.04L/hr 의 속도로 투입하였고, 탄산나트륨은 반응기 내의 pH가 9.5~10.5를 유지하도록 투입량을 조정하면서 연속반응을 수행하여 농도구배부가 1 um 크기로 생성된 후, 농도가 일정한 외곽부가 1 um 가 생성되도록 하였다. Since, Ni to the outer frame unit formed: Co: Mn molar ratio is 33.3: 33.3: 33.3 of 2.5M nickel sulfate hexahydrate such that the (NiSO 4 · 6H 2 O) and cobalt sulfate heptahydrate (CoSO 4 · 7H 2 O), and A mixed metal solution of manganese sulfate monohydrate (MnSO 4 .H 2 O) was prepared. A continuous reactor having an internal volume of 90 L filled with ammonia solution was used and the pH of the initial solution was in the range of 9.5 to 10.5. The prepared 2.5 M nickel / cobalt / manganese mixed metal solution, 28% ammonia water and 18% sodium carbonate solution were simultaneously and continuously injected at a rate of 500 rpm using a metering pump while stirring under nitrogen. At this time, while the temperature in the reactor was maintained at 50 ° C., the mixed metal solution was introduced at a rate of 1.4 / hr and the ammonia water was introduced at a rate of 0.04 L / hr. The sodium carbonate was subjected to a continuous reaction while adjusting the feed amount to maintain the pH within the reactor at 9.5 to 10.5 And a concentration gradient of 1 μm was generated, and then a 1 μm outer portion having a constant concentration was generated.

리튬과의 반응성과 Mn의 산화수의 변화를 방지하기 위해 건조된 상기 금속복합탄산화합물을 580℃, 6시간동안 열처리한 후 얻은 금속복합산화물을 수산화리튬(LiOH.H2O)과 Li/(Ni+Co+Mn)= 1.27의 몰비로 혼합하여 코딜라이트(Cordilite) 도가니(Sega)에 넣고 공기 흐름 하에서 750℃, 10시간 소성하여 리튬금속복합산화물을 얻었다.
To prevent the reactivity with lithium and the change in the oxidation number of Mn, the dried metal complex carbonate compound was heat-treated at 580 DEG C for 6 hours to obtain lithium hydroxide (LiOH.H2O) and Li / (Ni + Co + Mn) = 1.27, and the mixture was placed in a Cordilite crucible (Sega) and calcined at 750 DEG C for 10 hours under air flow to obtain a lithium metal composite oxide.

<실시예 4> <Example 4>

리튬원료를 탄산리튬(Li2CO3)를 사용하고 Li/(Ni+Co+Mn)=1.33의 몰비로 혼합하여 800℃로 소성한 것을 제외하고 실시예 3과 동힐하게 하여 리튬금속복합산화물을 얻었다
Except that lithium carbonate (Li 2 CO 3 ) was used as a raw material for lithium and the mixture was mixed at a molar ratio of Li / (Ni + Co + Mn) = 1.33 and calcined at 800 ° C to prepare a lithium metal composite oxide Got

<실시예 5> &Lt; Example 5 >

코아부의 조성을 Ni:Co:Mn 몰비가 22:8:70이 되도록 하고, 외곽부의 조성을 40:20:40 이 되도록 하는 것을 제외하고는 상기 실시예 3과 동일하게 하여 리튬금속복합산화물을 얻었다.
A lithium metal composite oxide was obtained in the same manner as in Example 3 except that the composition of the core portion was such that the molar ratio of Ni: Co: Mn was 22: 8: 70 and the composition of the outer portion was 40:20:40.

<실시예 6> &Lt; Example 6 >

리튬원료를 탄산리튬(Li2CO3)를 사용하고 Li/(Ni+Co+Mn)=1.33의 몰비로 혼합하여 800℃로 소성한 것을 제외하고 실시예 3과 동힐하게 하여 리튬금속복합산화물을 얻었다
A lithium metal composite oxide was obtained by mixing lithium raw material with lithium carbonate (Li 2 CO 3) at a molar ratio of Li / (Ni + Co + Mn) = 1.33 and burning at 800 ° C,

<비교예 1> &Lt; Comparative Example 1 &

입자 내부에서 Ni:Co:Mn 몰비가 25:13:62 로 일정하게 하여 실시예 3, 과 동일한 방법으로 전구체 및 리튬금속복합산화물을 얻었다.
A precursor and a lithium metal composite oxide were obtained in the same manner as in Example 3, except that the Ni: Co: Mn molar ratio within the particles was kept constant at 25:13:62.

<비교예 2> &Lt; Comparative Example 2 &

입자 내부에서 Ni:Co:Mn 몰비가 25:13:62 로 일정하게 하여 실시예 4, 와 동일한 방법으로 전구체 및 리튬금속복합산화물을 얻었다.
A precursor and a lithium metal composite oxide were obtained in the same manner as in Example 4, with a constant Ni: Co: Mn molar ratio of 25:13:62 within the particles.

<< 실험예Experimental Example > 전구체 및 소결체 > Precursors and sintered bodies SEMSEM 사진 측정 Photo measurement

상기 실시예 1 내지 6 에서 제조된 전구체 입자 및 소결체 입자의 SEM 사진을 측정하고 그 결과를 도 1 내지 9 에 나타내었으며, 비교예 1과 2의 SEM 사진을 도 10과 11에 나타내었다.
SEM photographs of the precursor particles and the sintered product particles prepared in Examples 1 to 6 were measured. The results are shown in FIGS. 1 to 9, and SEM photographs of Comparative Examples 1 and 2 are shown in FIGS.

<< 실험예Experimental Example > > EDSEDS 측정 Measure

상기 실시예 3과 4에서 제조된 전구체 및 소결체 내부에서 금속 이온의 농도 분포를 EDS 로 측정하고 그 결과를 도 12 내지 14에 나타내었다. 점선은 전구체에서의 금속 이온의 농도를 나타내고, 점은 실제로 측정된 금속 이온의 농도를 나타낸다. 열처리 전후 금속 농도의 변화가 없다는 것을 확인할 수 있다.
The concentration distributions of metal ions in the precursors and sintered bodies prepared in Examples 3 and 4 were measured by EDS and the results are shown in Figs. The dashed line represents the concentration of the metal ion in the precursor, and the point actually represents the concentration of the measured metal ion. It can be confirmed that there is no change in the metal concentration before and after the heat treatment.

<< 실험예Experimental Example > 전지 시험(> Battery test ( CoinCoin HalfHalf CellCell TestTest )- ) - 초기충방전Initial charge / discharge 특성 측정 Characterization

상기 실시예 1 내지 6 및 비교예 1 내지 2 에서 합성된 양극활물질을 카본블랙과 결착제인 PVDF[Poly(vinylidene fluoride)]와 94:3:3의 중량비로 유기용매인 NMP와 혼합하여 슬러리를 제조하였다. 이 슬러리를 두께 20um의 Al foil 에 도포한 후 건조하여 양극을 제조하였다. 상기 양극과 함께 음극으로 금속리튬과 분리막으로 다공성 폴리에틸렌 필름(CellGard 2502)을 사용하여 CR2016 코인반쪽셀(Coin half-cell)을 조립하였고, 전해액으로는 1.1M LiPF6 EC/EMC:3/7 용액을 사용하였다. The cathode active material synthesized in Examples 1 to 6 and Comparative Examples 1 and 2 was mixed with carbon black and PVDF [poly (vinylidene fluoride)] as a binder in a weight ratio of 94: 3: 3 with NMP as an organic solvent to prepare a slurry Respectively. This slurry was applied to an aluminum foil having a thickness of 20 um and then dried to prepare a positive electrode. A CR2016 coin half-cell was fabricated by using a porous polyethylene film (CellGard 2502) as a negative electrode and a porous polyethylene film (CellGard 2502) as a separator together with the positive electrode, and a 1.1 M LiPF6 EC / EMC: 3/7 solution Respectively.

상기에서 제조된 리튬 이차 전지를 2.0 내지 4.6 V 범위에서 전기화학 분석장치(Toyo System, Toscat 3100U)를 사용하여 양극 활물질 특성을 0.1CA의 전류에서부터 2.0CA까지 평가하였다. 이렇게 평가된 초기용량 및 효율특성은 도 15과 16 및 표 1과 2에 율특성은 도 17 내지 24에 나타내었으며, 도 25와 26에 1.0C의 전류밀도로 충방전한 수명특성에 대한 결과를 도시하였다.
The lithium secondary battery manufactured above was evaluated for a cathode active material characteristic from a current of 0.1 CA to 2.0 CA by using an electrochemical analyzer (Toyo System, Toscat 3100 U) in the range of 2.0 to 4.6 V. The initial capacity and efficiency characteristics thus evaluated are shown in Figs. 15 and 16 and Tables 1 and 2, and the rate characteristics are shown in Figs. 17 to 24. The results of the charging and discharging characteristics at a current density of 1.0 C in Figs. Respectively.

실시예 1Example 1 실시예 3Example 3 실시예 5Example 5 비교예 1Comparative Example 1 초기 충전용량(mAh/g)Initial charge capacity (mAh / g) 256.2256.2 260.0260.0 269.5269.5 261.0261.0 초기 방전용량(mAh/g)Initial discharge capacity (mAh / g) 236.4236.4 236.7236.7 253.0253.0 220.0220.0 초기 효율(%)Initial efficiency (%) 92.392.3 91.091.0 94.094.0 85.085.0

실시예 2Example 2 실시예 4Example 4 실시예 6Example 6 비교예 2Comparative Example 2 초기 충전량(mAh/g)Initial charge (mAh / g) 262.2262.2 260.9260.9 277.1277.1 254.1254.1 초기 방전량(mAh/g)The initial discharge amount (mAh / g) 217.6217.6 233.0233.0 252.7252.7 217.2217.2 초기 효율(%)Initial efficiency (%) 83.083.0 89.389.3 91.291.2 85.585.5

도 15 내지 24 및 표 1 내지 2에서 보는 바와 같이 본 발명의 실시예 1, 3, 5 및 6에서 제조된 양극활물질의 경우 90%이상의 높은 초기효율을 보이며 고율인 2.0C rate 에서도 용량이 175 mAh/g 이상으로 비교예 1의 120 mAh/g과 비교예 2의 140mAh/g 보다 높은 방전 용량과 율특성을 가지고 있음을 확인할 수 있다.As shown in FIGS. 15 to 24 and Tables 1 and 2, the cathode active materials prepared in Examples 1, 3, 5, and 6 of the present invention exhibited a high initial efficiency of 90% or higher and a capacity of 175 mAh / g and discharge capacity and rate characteristics higher than 120 mAh / g of Comparative Example 1 and 140 mAh / g of Comparative Example 2, respectively.

도 25와 26의 수명특성결과는 100 사이클 이 후에 실시예 1 내지 6에서 80% 이상의 용량 유지율을 보이고 있어 비교예 1과 2의 용량 유지율보다 높은 수명특성을 가진다. 25 and 26 show a capacity retention ratio of 80% or more in Examples 1 to 6 after 100 cycles, so that they have a higher lifetime characteristic than the capacity retention ratios of Comparative Examples 1 and 2.

Claims (3)

Lix1[Ni1-y1-z1-w1Coy1Mnz1Mw1]O2 (상기 식에서 0.9≤x1≤1.3, 0.2≤y1≤0.4, 0.55≤z1≤0.9, 0≤w1≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe,Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임)로 표시되는 코아부:
Lix2[Ni1-y2-z2-w2Coy2Mnz2Mw2]O2 (상기 식에서 0.9≤x2≤1+z2, 0.2≤y2≤0.4, 0.2≤z2≤0.4, 0≤w2≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe,Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임)로 표시되는 외곽부; 및
상기 코아부와 상기 외곽부 사이에 형성되고, Ni, Co, Mn 가 농도 구배를 나타내는 농도구배부를 포함하는 리튬 이차전지용 양극활물질.
Mg, Zn, Ca, Sr, Cu, Al, and Ni are selected from the group consisting of Li1 [Ni1-y1-z1-w1Coy1Mnz1Mw1] O2 where 0.9? X1? 1.3, 0.2? Y1? 0.4, 0.55? Z1? 0.9, At least one metal selected from Zr, P, Fe, Al, Ga, In, Cr, Ge and Sn)
Zn, Ca, Sr, Mg, and Zn in the above formula, 0.9? X2? 1 + z2, 0.2? Y2? 0.4, 0.2? Z2? 0.4, 0? W2? At least one metal selected from the group consisting of Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge and Sn; And
And a concentration gradient portion formed between the core portion and the outer portion and having a concentration gradient of Ni, Co, and Mn.
제 1 항에 있어서,
상기 리튬 이차전지용 양극활물질의 직경이 1 내지 25㎛ 인 것을 특징으로 하는 리튬 이차전지용 양극활물질.
The method according to claim 1,
Wherein the positive electrode active material for the lithium secondary battery has a diameter of 1 to 25 占 퐉.
제 1 항에 있어서,
상기 리튬 이차전지용 양극활물질의 입자 전체에서의 Mn 의 평균 농도가 0.4 내지 0.7 인 것을 특징으로 하는 리튬 이차전지용 양극활물질.
The method according to claim 1,
Wherein an average concentration of Mn in the whole particles of the positive electrode active material for a lithium secondary battery is 0.4 to 0.7.
KR1020120157975A 2012-12-31 2012-12-31 Manufacturing method of cathod active material for lithium rechargeable battery and cathod active material made by the same KR101970201B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120157975A KR101970201B1 (en) 2012-12-31 2012-12-31 Manufacturing method of cathod active material for lithium rechargeable battery and cathod active material made by the same
PCT/KR2013/012298 WO2014104811A1 (en) 2012-12-31 2013-12-27 Method for producing cathode active material for lithium secondary battery, and cathode active material for lithium secondary battery produded thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120157975A KR101970201B1 (en) 2012-12-31 2012-12-31 Manufacturing method of cathod active material for lithium rechargeable battery and cathod active material made by the same

Publications (2)

Publication Number Publication Date
KR20140092492A true KR20140092492A (en) 2014-07-24
KR101970201B1 KR101970201B1 (en) 2019-04-19

Family

ID=51021752

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120157975A KR101970201B1 (en) 2012-12-31 2012-12-31 Manufacturing method of cathod active material for lithium rechargeable battery and cathod active material made by the same

Country Status (2)

Country Link
KR (1) KR101970201B1 (en)
WO (1) WO2014104811A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052820A1 (en) * 2014-10-02 2016-04-07 주식회사 에코프로 Positive electrode active material for lithium secondary battery and lithium secondary battery including same
KR20160091657A (en) * 2015-01-26 2016-08-03 에스케이이노베이션 주식회사 Positive electrode active material for lithium secondary battery, positive electrode and lithium secondary battery comprising the same
WO2016175597A1 (en) * 2015-04-30 2016-11-03 주식회사 엘지화학 Cathode active material for secondary battery, preparation method therefor, and secondary battery comprising same
KR20170053368A (en) * 2015-11-06 2017-05-16 삼성에스디아이 주식회사 Positive electrode active material for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising positive electrode including the same
US10522828B2 (en) 2016-05-26 2019-12-31 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive active material for rechargeable sodium battery, and method of fabricating the same
US10581110B2 (en) 2015-04-30 2020-03-03 Lg Chem, Ltd. Positive electrode active material for secondary battery, method of preparing the same, and secondary battery including the positive electrode active material
WO2021154026A1 (en) * 2020-01-29 2021-08-05 주식회사 엘지화학 Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery including same
US11251425B2 (en) 2015-12-09 2022-02-15 Sk Innovation Co., Ltd. Lithium secondary battery
US11251423B2 (en) 2016-01-13 2022-02-15 Sk Innovation Co., Ltd. Lithium secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016052A1 (en) * 2022-07-18 2024-01-25 EMAGINEER Pty Ltd Improved construction system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060134631A (en) * 2005-06-23 2006-12-28 한양대학교 산학협력단 Core-shell structured cathode active materials with high capacity and safety and their preparing method for lithium secondary batteries

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101138A1 (en) * 2005-03-23 2006-09-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and method for manufacturing same
KR100674287B1 (en) * 2005-04-01 2007-01-24 에스케이 주식회사 Layered core·shell cathode active materials for lithium secondary batteries, Method for preparing thereof And lithium secondary batteries using the same
KR100822012B1 (en) * 2006-03-30 2008-04-14 한양대학교 산학협력단 Cathode active materials for lithium batteries, Method of preparing thereof and lithium secondary batteries comprising same
KR101185366B1 (en) * 2010-01-14 2012-09-24 주식회사 에코프로 A method of preparing positive active material precursor and positive active material for lithium battery with concentration grandients using batch reactor
KR101215829B1 (en) * 2010-07-22 2012-12-27 주식회사 에코프로 Manufacturing method of positive active material for lithium secondary battery, positive active material manufactured by the same and lithium secondary battery using positive active material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060134631A (en) * 2005-06-23 2006-12-28 한양대학교 산학협력단 Core-shell structured cathode active materials with high capacity and safety and their preparing method for lithium secondary batteries

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052820A1 (en) * 2014-10-02 2016-04-07 주식회사 에코프로 Positive electrode active material for lithium secondary battery and lithium secondary battery including same
US10522823B2 (en) 2014-10-02 2019-12-31 Ecopro Bm Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery comprising the same
KR20160091657A (en) * 2015-01-26 2016-08-03 에스케이이노베이션 주식회사 Positive electrode active material for lithium secondary battery, positive electrode and lithium secondary battery comprising the same
WO2016175597A1 (en) * 2015-04-30 2016-11-03 주식회사 엘지화학 Cathode active material for secondary battery, preparation method therefor, and secondary battery comprising same
US10581110B2 (en) 2015-04-30 2020-03-03 Lg Chem, Ltd. Positive electrode active material for secondary battery, method of preparing the same, and secondary battery including the positive electrode active material
KR20170053368A (en) * 2015-11-06 2017-05-16 삼성에스디아이 주식회사 Positive electrode active material for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising positive electrode including the same
US11251425B2 (en) 2015-12-09 2022-02-15 Sk Innovation Co., Ltd. Lithium secondary battery
US11251423B2 (en) 2016-01-13 2022-02-15 Sk Innovation Co., Ltd. Lithium secondary battery
US10522828B2 (en) 2016-05-26 2019-12-31 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive active material for rechargeable sodium battery, and method of fabricating the same
WO2021154026A1 (en) * 2020-01-29 2021-08-05 주식회사 엘지화학 Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery including same

Also Published As

Publication number Publication date
WO2014104811A1 (en) 2014-07-03
KR101970201B1 (en) 2019-04-19

Similar Documents

Publication Publication Date Title
KR101970201B1 (en) Manufacturing method of cathod active material for lithium rechargeable battery and cathod active material made by the same
CN110073527B (en) Nickel active material precursor, method for producing same, nickel active material, and lithium secondary battery
KR101452029B1 (en) Cathode active material with high capacity and lithium secondary battery comprising thereof
KR101785265B1 (en) Composite cathode active material, cathode, lithium battery comprising the same, and preparation method thereof
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
KR101328989B1 (en) Ni-based positive electrode active material and method for preparing the same and lithium battery using it
KR101577180B1 (en) Positive electrode active material with improved energy density
KR101577179B1 (en) Cathod active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
WO2007010915A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
CN110168785A (en) Ni-based active material presoma and preparation method thereof, Ni-based active material and lithium secondary battery
KR101762540B1 (en) Positive active material for sodium rechargeable batteries and method of manufacturing the same
US20130260249A1 (en) Lithium ion secondary battery and method for preparing the same
EP3382780B1 (en) Positive electrode active material for lithium secondary battery, comprising lithium cobalt oxide for high voltage, and method for preparing same
CN110817974B (en) Nickel-based active material precursor, method for preparing same, nickel-based active material, and lithium secondary battery
CN107799733B (en) Positive electrode active material for secondary battery, method for preparing same, and positive electrode and lithium secondary battery comprising same
KR20180002055A (en) Positive Electrode Active Material Comprising High-voltage Lithium Cobalt Oxide Having Doping element for Lithium Secondary Battery and Method of Manufacturing the Same
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
KR20200019571A (en) Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
KR20160083638A (en) Cathode active material for lithium secondary and lithium secondary batteries comprising the same
CN108807928B (en) Synthesis of metal oxide and lithium ion battery
KR101776896B1 (en) Cathode active material for lithium secondary battery and a method of making the same
KR101848979B1 (en) Transition metal oxide precursor, lithium composite transition metal hydroxide, secondary battery and cathode comprising the same
CN114512660A (en) Positive electrode active material precursor, preparation method thereof and positive electrode active material
KR101909317B1 (en) Cathode active material for lithium secondary battery and method of making the same
US20230041710A1 (en) Cathode active material, method for manufacturing the same, and secondary lithium ion battery including the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right