KR20140059608A - Method for detecting target molecules using reflectance-based colorimetric analysis - Google Patents

Method for detecting target molecules using reflectance-based colorimetric analysis Download PDF

Info

Publication number
KR20140059608A
KR20140059608A KR1020120126222A KR20120126222A KR20140059608A KR 20140059608 A KR20140059608 A KR 20140059608A KR 1020120126222 A KR1020120126222 A KR 1020120126222A KR 20120126222 A KR20120126222 A KR 20120126222A KR 20140059608 A KR20140059608 A KR 20140059608A
Authority
KR
South Korea
Prior art keywords
gold nanoparticles
reflection
aptamer
target substance
target material
Prior art date
Application number
KR1020120126222A
Other languages
Korean (ko)
Other versions
KR101399574B1 (en
Inventor
구만복
서호빈
권영섭
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020120126222A priority Critical patent/KR101399574B1/en
Publication of KR20140059608A publication Critical patent/KR20140059608A/en
Application granted granted Critical
Publication of KR101399574B1 publication Critical patent/KR101399574B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

The present invention relates to a method for detecting target substance using reflectance-based colormetric analysis. In particular, according to the method for detecting target substance using reflectance-based colormetric analysis, a target substance is detected by using a target-specific aptamer, goldnano particles and salt. The goldnano particles and salt form a complex with the aptamer. The method for detecting target substance using reflectance-based colormetric analysis can use the nanogold particles having a higher density than a density of other nanogold particles used by the existing UV/VIS spectrophotometer. Therefore, very small amounts of the target substance can be detected; the volume of the sample used is small; a sample can be applied to a real-time measurement and a microchannel because the sample can be analyzed by various platforms.

Description

반사 기반 색도 분석을 이용한 타겟물질 검출 방법{Method for Detecting Target Molecules Using Reflectance-based Colorimetric Analysis}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for detecting a target substance using reflection-based chromaticity analysis,

본 발명은 반사 기반 색도 분석을 이용한 타겟물질 검출 방법에 관한 것으로, 더욱 자세하게는 표적물질에 특이적인 앱타머(aptamer) 및 상기 앱타머와 복합체를 형성하는 금 나노입자와 염을 이용하여 반사 기반 색도 분석법으로 타켓물질을 검출하는 방법에 관한 것이다.
The present invention relates to a method for detecting a target substance using reflection-based chromaticity analysis, and more particularly, to a method for detecting a target substance by using an aptamer specific to a target substance and gold nanoparticles and a salt forming a complex with the aptamer, And a method for detecting a target substance by an analytical method.

기존 옥시테트라사이클린(oxytetracycline)과 같은 항생제 탐지 방법 중 금 나노 입자를 이용한 색도 분석법이 잘 알려져 있다. 금 나노입자에 표적물질 특이적인 앱타머(aptamer)가 흡착되면 염(NaCl)에 의한 금 나노입자의 응집이 억제되어 붉은 색을 유지한다. 그러나 표적물질이 투입이 되면 표적물질이 표적물질에 특이적인 앱타머와 결합되게 되고, 금 나노입자는 염(NaCl)에 의한 응집 반응이 일어나 붉은색에서 푸른색으로의 색도 변화가 관찰되며, 이 변화를 분광 광도계(UV-Vis Spectrophotometer)로 측정한다 (Bao-Fen Ye et al ., Nanoscale, 4:5998, 2012; Shiping Song et al ., Trends in Analytical Chemistry, 27:108, 2008; Yeon Seok Kim et al ., Biosensors and Bioelectronics, 26:1644, 2010). Chromatography using gold nanoparticles is well known among antibiotic detection methods such as oxytetracycline. When a target specific aptamer is adsorbed on gold nanoparticles, aggregation of gold nanoparticles due to salt (NaCl) is suppressed and the red color is maintained. However, when the target material is added, the target material is bound to the aptamer specific to the target material, and the gold nanoparticles undergo aggregation reaction by the salt (NaCl), and a change in chromaticity from red to blue is observed. The change is measured by a UV-Vis spectrophotometer (Bao-Fen Ye et al ., Nanoscale , 4: 5998, 2012; Shiping Song et al ., Trends in Analytical Chemistry , 27: 108,2008 ; Yeon Seok Kim et al ., Biosensors and Bioelectronics , 26: 1644, 2010).

기존의 분광 광도계(UV-Vis Spectrophotometer)를 이용한 측정법은 샘플을 1㎖ 큐벳(cuvette)에 넣고 빛을 샘플에 투과시켜 샘플의 흡광도(absorbance)를 측정하게 되는데 투과된 빛의 세기가 샘플의 농도가 높으면 높을수록 약해져 측정할 수 있는 샘플의 농도에 한계가 있으며, 또한 측정 방식의 구조상 많은 양의 샘플이 필요하게 되며, 큐벳(cuvette)이 아닌 다른 형태의 플랫폼에 놓여있는 샘플 측정은 불가능하다는 문제점이 있다.In a conventional UV-Vis spectrophotometer, a sample is placed in a 1 ml cuvette and light is passed through the sample to measure the absorbance of the sample. The intensity of the transmitted light is determined by the concentration of the sample The higher the height, the more difficult it is to measure the concentration of the sample, the larger the amount of the sample is required in the structure of the measurement method, and the problem is that it is impossible to measure the sample placed on a platform other than the cuvette have.

이 발명 기술의 효과를 입증하기 위해 타겟 물질의 한 예로 사용된 옥시테트라사이클린(oxytetracycline)은 테트라사이클린(tetracycline) 계열의 항생물질로Streptomyces rimosus와 기타 Streptomyces에 의해 생산되며, 박테리아의 필수 단백질 생산을 방해하여 작동한다. 이 단백질이 없으면 박테리아가 성장 및 증식을 할 수 없다. 옥시테트라사이클린은 Chlamydia , Mycoplasma , Propionibacterium acnes , Haemophilus influenzae에 의한 감염 치료에 사용되며, 가축 및 가금류의 질병과 감염을 방지하기 위해 구강 투여 또는 근육 주사를 통해 사용된다. 옥시테트라사이클린의 부작용으로 위장, 감광성 알레르기 반응과 치아, 뼈와 같은 칼슘이 풍부한 장기를 손상시킬 수 있다. 때문에 옥시테트라사이클린은 특정 조건을 제외하고 12세 미만의 아동과 임신한 여성의 치료에 사용되지 않는다. 가축에 투입된 옥시테트라사이클린은 음식물, 식수에 잔류 될 수 있기 때문에 이를 감지하는 센서의 개발이 다양하게 이루어지고 있다. Oxytetracycline , an example of a target substance used to demonstrate the efficacy of this invention technique, is produced by Streptomyces rimosus and other Streptomyces as a tetracycline family of antibiotics and inhibits the production of essential proteins of bacteria . Without this protein, the bacteria can not grow and multiply. Oxytetracyclines are known as Chlamydia , Mycoplasma , Propionibacterium acnes , Haemophilus Used to treat infections by influenzae and used by oral or intramuscular injection to prevent diseases and infections of livestock and poultry. Side effects of oxytetracycline can damage stomach, photosensitive allergic reactions and organs rich in calcium, such as teeth and bones. Therefore, oxytetracycline is not used for the treatment of children under the age of 12 and pregnant women except under certain conditions. Since oxytetracycline added to livestock can remain in food and drinking water, various sensors have been developed to detect it.

이에, 본 발명자들은 상기 종래기술들의 문제점을 극복하기 위하여 예의 연구 노력한 결과, 표적물질에 특이적인 앱타머 및 상기 앱타머와 복합체를 형성하는 금 나노입자와 염을 이용한 타겟물질 검출에 있어서, 금 나노입자의 응집정도를 반사 기반 색도 분석법으로 측정하면 효과적으로 표적물질의 검출이 가능한 것을 확인하고, 본 발명을 완성하게 되었다.
As a result of intensive research efforts to overcome the problems of the prior art, the present inventors have found that in the detection of a target substance using a gold nanoparticle and a salt forming a complex with an aptamer specific to a target substance and the aptamer, It has been confirmed that the target substance can be effectively detected by measuring the degree of coagulation of the particles by reflection-based chromaticity analysis, and the present invention has been completed.

본 발명의 목적은 표적물질에 특이적인 앱타머 및 상기 앱타머와 복합체를 형성하는 금 나노입자와 염을 이용하여 반사 기반의 색도 분석법으로 표적물질을 검출하는 방법 및 이를 이용한 앱타센서를 제공하는 데 있다.
An object of the present invention is to provide a method for detecting a target substance by reflection-based chromaticity analysis using gold nanoparticles and salts forming a complex with an aptamer specific to a target substance and a salt thereof, and to provide an apta sensor using the method have.

상기 목적을 달성하기 위하여, 본 발명은 (a) 금 나노입자 표면에 타겟물질에 특이적으로 결합하는 앱타머를 흡착시키는 단계; (b) 타겟물질을 첨가하여 상기 앱타머와 타겟물질 사이의 특이적 결합에 의한 앱타머-타겟물질 복합체를 형성시켜, 금 나노입자를 유리시키는 단계; 및 (c) 염을 첨가하여 유리된 금 나노입자를 응집시켜 색상변화를 유도시킨 다음, 금 나노입자의 응집정도를 반사 방식 기반의 색도 분석법으로 측정하는 단계를 포함하는 반사 기반 색도 분석법을 이용한 타겟물질의 검출방법을 제공한다.
In order to achieve the above object, the present invention provides a method for preparing a gold nanoparticle, comprising: (a) adsorbing an aptamer specifically binding to a target substance on a gold nanoparticle surface; (b) adding a target material to form an aptamer-target material complex by specific binding between the aptamer and the target material to liberate the gold nanoparticles; And (c) aggregating the free gold nanoparticles by adding a salt to induce a color change, and then measuring the degree of aggregation of the gold nanoparticles by a chromaticity analysis method based on a reflection method. A method of detecting a substance is provided.

본 발명에 따른 반사 기반 색도 분석 방법을 이용한 타겟물질의 검출방법은 기존에 사용되고 있는 분광 광도계(UV/VIS spectrophotometer)보다 높은 농도의 금 나노 입자를 사용할 수 있어 극소량의 표적물질도 검출할 수 있으며, 사용되는 샘플의 양이 적고, 다양한 플랫폼으로 분석할 수 있기 때문에 실시간 측정 및 마이크로 채널 등의 다양한 응용이 가능하다.
The method of detecting a target material using the reflection-based chromaticity analysis method according to the present invention can detect gold nanoparticles at a concentration higher than that of a conventional UV / VIS spectrophotometer, Since the amount of samples used is small and can be analyzed on various platforms, various applications such as real-time measurement and microchannel are possible.

도 1은 반사 기반의 색도 분석 앱타센서의 모식도를 나타낸 것이다.
도 2는 금 나노입자의 표면에서 반사가 가장 잘 일어나는 각도를 선별하기 위하여 다양한 반사각에서 측정한 그래프이다.
도 3은 다양한 농도의 금 나노입자의 응집에 따른 색도 변화를 분광 광도계를 이용하여 측정한 그래프이다.
도 4는 다양한 농도의 금 나노입자의 응집에 따른 색도 변화를 반사 기반의 색도 분석방법을 이용하여 측정한 그래프이다.
도 5는 다양한 농도의 염 농도에 따른 금 나노입자의 응집 정도를 반사 기반의 색도 분석방법을 이용하여 측정한 그래프이다.
도 6은 반사 기반의 색도 분석 방법을 이용해 옥시테트라사이클린을 농도별로 측정한 그래프이다.
1 is a schematic diagram of a reflection-based chromaticity analyzer sensor.
2 is a graph measured at various reflection angles in order to select an angle at which reflection is most likely to occur at the surface of gold nanoparticles.
FIG. 3 is a graph showing a change in chromaticity caused by aggregation of gold nanoparticles at various concentrations using a spectrophotometer.
FIG. 4 is a graph showing a change in chromaticity caused by agglomeration of gold nanoparticles at various concentrations, using a reflection-based chromaticity analysis method.
FIG. 5 is a graph showing the degree of aggregation of gold nanoparticles according to various concentrations of salt concentration, using a reflection-based chromaticity analysis method.
FIG. 6 is a graph showing the measurement of oxytetracycline by concentration using a reflection-based chromaticity analysis method.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

본 발명은 일관점에서, (a) 금 나노입자 표면에 타겟물질에 특이적으로 결합하는 앱타머를 흡착시키는 단계; (b) 타겟물질을 첨가하여 상기 앱타머와 타겟물질 사이의 특이적 결합에 의한 앱타머-타겟물질 복합체를 형성시켜, 금 나노입자를 유리시키는 단계; 및 (c) 염을 첨가하여 유리된 금 나노입자를 응집시켜 색상변화를 유도시킨 다음, 금 나노입자의 응집정도를 반사 방식 기반의 색도 분석법으로 측정하는 단계를 포함하는 반사 기반 색도 분석법을 이용한 타겟물질의 검출방법에 관한 것이다. According to one aspect of the present invention, there is provided a method for preparing a gold nanoparticle comprising: (a) adsorbing an aptamer specifically binding to a target substance on a gold nanoparticle surface; (b) adding a target material to form an aptamer-target material complex by specific binding between the aptamer and the target material to liberate the gold nanoparticles; And (c) aggregating the free gold nanoparticles by adding a salt to induce a color change, and then measuring the degree of aggregation of the gold nanoparticles by a chromaticity analysis method based on a reflection method. And a method for detecting a substance.

본원에서 "앱타머(aptamer)"란, 높은 친화성으로 타겟물질을 특이적으로 인지할 수 있는 작은 단일가닥 올리고핵산을 말한다.As used herein, the term " aptamer " refers to a small single-stranded oligonucleotide capable of specifically recognizing a target substance with high affinity.

본 발명에 있어서, 상기 타켓물질은 옥시테트라사이클린인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니며, 옥시테트라사이클린을 포함한 항생제, 저분자물질, 단백질 및 핵산 등을 검출할 수 있다.In the present invention, the target substance may be oxytetracycline. However, the present invention is not limited thereto. Antibiotics, low-molecular substances, proteins and nucleic acids including oxytetracycline can be detected.

상기 타겟물질은 물, 토양, 공기, 식품, 폐기물, 동식물 장내 및 동식물 조직 중 어느 하나 이상에서 채취된 시료로부터 검출되는 것을 특징으로 할 수 있다. The target material may be detected from a sample collected from at least one of water, soil, air, food, waste, plants and animals, and plant and animal tissues.

본 발명에서 "시료"란, 테트라사이클린계 화합물을 함유하거나 함유하고 있는 것으로 추정되어 분석이 행해질 조성물을 의미하며, 액체, 토양, 공기, 식품, 폐기물, 동식물 장내 및 동식물 조직 중 어느 하나 이상에서 채취된 시료로부터 검출되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다. 이때, 액체는 물, 혈액, 소변, 눈물, 땀, 타액, 림프 및 뇌척수액 등임을 특징으로 할 수 있으며, 상기 물은 강수(江水), 해수(海水), 호수(湖水) 및 우수(雨水) 등을 포함하고, 폐기물은 하수, 폐수 등을 포함하며, 상기 동식물은 인체를 포함한다. 또한, 상기 동식물 조직으로는 점막, 피부, 외피, 털, 비늘, 안구, 혀, 뺨, 발굽, 부리, 주둥이, 발, 손, 입, 유두, 귀, 코 등의 조직을 포함한다. The term "sample" in the present invention means a composition to be assayed and presumed to contain or contain a tetracycline compound, and may be collected from any one or more of liquid, soil, air, food, waste, But the present invention is not limited thereto. In this case, the liquid may be characterized by water, blood, urine, tears, sweat, saliva, lymph and cerebrospinal fluid. The water may be characterized by precipitation, seawater, lake water, And the waste includes sewage, wastewater, etc., and the animal or plant includes a human body. The animal and plant tissues include tissues such as mucous membrane, skin, skin, hair, scales, eyeball, tongue, cheek, hoof, beak, snout, foot, hand, mouth, nipple, ear and nose.

본 발명에 있어서, 상기 금 나노입자는 염화금(HAuCl4)을 시트로산 염 (citrate)으로 환원시켜 제조되며, 11 내지 15 nm 크기를 가지는 것을 특징으로 할 수 있다.In the present invention, the gold nanoparticles may be prepared by reducing HAuCl 4 with citrate, and have a size of 11 to 15 nm.

본 발명에 있어서, 상기 앱타머 흡착 금 나노입자는 2 내지 10nM의 농도로 첨가되는 것을 특징으로 할 수 있다. In the present invention, the aptamer-adsorbing gold nanoparticles may be added in a concentration of 2 to 10 nM.

본 발명에서는 반사를 기반으로 하여 금 나노입자의 응집 정도에 따른 색 변화를 측정하기 위하여 반사방식의 분석 장비를 구축하였으며, 반사방식의 분석 장비의 Optical fiber는 각도를 조절할 수 있는 홀더에 고정되어 있고, 하나의 Optical fiber에서 HL-2000-FHSA에서 나오는 빛을 샘플에 투영시켜주면 샘플에 의해 반사된 빛이 다른 하나의 Optical fiber로 들어가게 된다. 이 빛은 Optical fiber를 따라 연결된 USB4000에서 각 파장대별 반사광의 intensity를 측정하여 결과를 얻게 된다 (도 1).In the present invention, a reflection type analysis device is constructed to measure the color change according to the degree of aggregation of gold nanoparticles based on reflection, and the optical fiber of the reflection type analysis device is fixed to a holder capable of adjusting the angle , Projecting the light from the HL-2000-FHSA on one optical fiber into the sample causes the light reflected by the sample to enter the other optical fiber. This light is obtained by measuring the intensity of reflected light of each wavelength band in the USB4000 connected along the optical fiber (FIG. 1).

본 발명에 있어서, 상기 금 나노입자는 2 내지 10nM의 농도로 첨가되는 것을 특징으로 할 수 있으며, 바람직하게는 10nM의 앱타머 흡착 금 나노입자를 첨가한다.In the present invention, the gold nanoparticles may be added at a concentration of 2 to 10 nM, preferably 10 nM of an aptamer-adsorbed gold nanoparticles.

본 발명에 있어서, 상기 (c) 단계의 염은 0.1 내지 0.01M의 염화나트륨(NaCl)을 첨가하는 것을 특징으로 할 수 있으며, 바람직하게는 0.1M의 염화나트륨을 첨가한다.In the present invention, the salt of step (c) may be characterized by adding 0.1 to 0.01 M sodium chloride (NaCl), preferably 0.1 M sodium chloride.

본 발명에 있어서, 상기 (d) 단계는 반사 측정 장치의 평면과 입사광선 사이의 각도를 40 내지 70°로 하여, 550 내지 650nm에서 반사된 빛을 측정하는 것을 특징으로 할 수 있으며, 바람직하게는 40°의 반사각에서 520nm, 650nm에서 측정한다.In the step (d) of the present invention, light reflected at 550 to 650 nm may be measured at an angle of 40 to 70 degrees between the plane of the reflection measuring device and the incident light, Measure at 520 nm and 650 nm at an angle of reflection of 40 °.

본 발명의 일 실시예에서, 본 발명의 금 나노 입자의 표면에서 반사가 가장 잘 일어나는 각도를 선별하기 위하여, 실시예 1의 반사 측정 장치의 평면과 입사광선 사이의 각도를 40°, 50°, 60° 및 70°로 조절하여 실험을 수행한 결과, 반사 측정 장치의 평면과 입사광선 사이의 각도를 40°로 하여 측정하였을 때, 520nm에서 피크가 다른 각도에 비해 뾰족하게 나타난 것을 확인할 수 있었으며, 본 발명의 금 나노입자의 적당한 농도를 선별하기 위하여, 2nM, 4nM, 6nM, 8nM 및 10nM의 금 나노입자를 이용하여 실험을 수행한 결과, 분광 광도계를 이용하여 측정한 경우, 금 나노입자의 농도에 따라 흡광도 값이 불안정하게 나타났으나(도 3), 반사 기반의 분석 장비에서 측정한 경우, 높은 농도의 금 나노입자에서도 반사 측정값이 안정하게 측정되며, 피크가 분명하게 관찰되는 것을 확인할 수 있었으며, 본 발명에 사용되는 금 나노입자의 농도는 10nM로 정하였다.In an embodiment of the present invention, in order to select an angle at which reflection is most likely to occur at the surface of the gold nanoparticle of the present invention, the angle between the plane of the reflection measuring device of Example 1 and the incident ray is set to 40, 60 ° and 70 °. As a result, when the angle between the plane of the reflection measuring device and the incident light was 40 °, it was confirmed that the peak was sharp compared with other angles at 520 nm, In order to select an appropriate concentration of the gold nanoparticles of the present invention, experiments were conducted using gold nanoparticles of 2 nM, 4 nM, 6 nM, 8 nM and 10 nM. As a result, when the gold nanoparticles were measured using a spectrophotometer, (Fig. 3), the reflection measurement value is stably measured even at a high concentration of gold nanoparticles when measured by a reflection-based analyzer, and the peak is clearly observed It was confirmed that the concentration of the gold nano-particles used in the present invention was determined to 10nM.

또한, 실험 과정에서 추가되는 염(NaCl)의 농도에 따른 금 나노입자의 응집도를 측정하기 위하여, 0.1M, 0.05M, 0.025M, 0.017M의 염화나트륨(NaCl)을 첨가하여 실험을 수행한 결과, 0.1M의 염화나트륨을 첨가하였을 경우, 금 나노입자가 완전히 응집되는 것을 관찰하였으며(도 5), 본 발명에서 사용되는 염화칼슘의 농도는 0.1M로 정하였다.In addition, in order to measure the degree of aggregation of gold nanoparticles according to the concentration of salt (NaCl) added during the experiment, 0.1 M, 0.05 M, 0.025 M and 0.017 M sodium chloride (NaCl) When 0.1 M sodium chloride was added, it was observed that the gold nanoparticles were completely agglomerated (FIG. 5), and the concentration of calcium chloride used in the present invention was set at 0.1 M.

본 발명의 일 실시에에서, 본 발명의 반사 기반 색도 분석법을 이용하여 옥시테트라사이클린을 검출하기 위해, 11.11nM 농도의 금 나노 입자 51.3㎕와 19.9μM 옥시테트라사이클린 특이적인 앱타머 2.85㎕를 버퍼용액(조성)에 넣고 상온에서 30분간 반응시켜 금 나노 입자 표면에 옥시테트라사이클린에 특이적으로 결합하는 앱타머를 흡착시켰다. 그 후 Binding buffer (100mM NaCl, 20mM Tris-Cl, 2mM MgCl2, 5mM KCl and 1mM CaCl2, pH 7.6) 에 녹아있는 옥시테트라사이클린 2.85ul를 첨가하여, 30분간 반응시켜 앱타머-타겟 반응을 유도한 후, 57㎕의 샘플을 준비된 플레이트에 로딩하고 3㎕의 2M NaCl를 첨가하여 앱타머와 결합되어 있지 않은 금 나노입자의 응집을 유도하였다. 반응 2분 후에, 반사각을 40°로 설정하여 520nm, 650nm에서 금 나노입자의 응집정도를 반사 기반의 분석 장비를 이용하여 측정한 결과, 1nM 까지 옥시테트라사이클린의 검출이 가능하였으며, UV/VIS 분광 광도계로 관찰한 경우에는 25nM 까지 검출할 수 있는 것으로 나타나, 반사 기반의 색도 분석 방법으로 검출할 경우 민감도가 25배 향상된 것을 확인하였다. 즉, 본 발명에 따른 반사 기반의 색도 분석 방법을 이용한 타겟물질 검출방법은 민감도가 매우 향상되어 식품이나 물 등에 극히 미량 존재하는 항생물질 또는 무극성의 저분자량의 물질의 검출에 적합하다. In one embodiment of the present invention, in order to detect oxytetracycline using the reflection-based chromaticity analysis method of the present invention, 51.3 μl of gold nanoparticles having a concentration of 11.11 nM and 2.85 μl of 19.9 μM oxytetracycline-specific aptamer were dissolved in a buffer solution (Composition) and reacted at room temperature for 30 minutes to adsorb an aptamer that specifically binds to oxytetracycline on the surface of gold nanoparticles. After that, 2.85 μl of oxytetracycline dissolved in a binding buffer (100 mM NaCl, 20 mM Tris-Cl, 2 mM MgCl 2, 5 mM KCl and 1 mM CaCl 2, pH 7.6) was added and reacted for 30 minutes to induce an aptamer- , 57 [mu] l of the sample was loaded onto the prepared plate and 3 [mu] l of 2M NaCl was added to induce aggregation of the gold nanoparticles not bound to the aptamer. After 2 minutes of reaction, the reflection angle was set at 40 ° and the degree of aggregation of gold nanoparticles at 520 nm and 650 nm was measured using a reflection-based analyzer. As a result, oxytetracycline was detectable up to 1 nM, and UV / VIS spectroscopy It was confirmed that the sensitivity was 25 times higher when the sample was detected by the reflection - based colorimetric method. That is, the method of detecting a target substance using the reflection-based chromaticity analysis method according to the present invention is suitable for the detection of an antibiotic substance or a non-polar low molecular weight substance having an extremely low sensitivity to foods or water.

본 발명의 타겟물질에 특이적으로 결합하는 앱타머, 앱타머 흡착 금 나노입자 및 염을 이용하여 타겟물질에 의해 앱타머와 결합하지 않은 금 나노입자의 응집 반응에 따른 색상변화를 반사 기반 분석법을 이용하여 타겟물질 검출용 앱타센서에 활용할 수 있다. The color change due to the agglutination reaction of the gold nanoparticles not bound to the aptamer by the target material using the aptamer, the aptamer-adsorbing gold nanoparticles and the salt that specifically bind to the target material of the present invention is determined by a reflection- Can be utilized for an apta sensor for detecting a target material.

상기 검출 센서 시스템은, 키트(kit)의 형태로 제공될 수 있다. 타겟물질 검출용 키트는 병, 통(tub), 작은 봉지(sachet), 봉투(envelope), 튜브, 앰플(ampoule) 등과 같은 형태를 취할 수 있으며 이들은 부분적으로 또는 전체적으로 플라스틱, 유리, 종이, 호일, 왁스 등으로부터 형성될 수 있다. 용기는, 처음에는 용기의 일부이거나 또는 기계적, 접착성, 또는 기타 수단에 의해 용기에 부착될 수 있는, 완전히 또는 부분적으로 분리가 가능한 마개를 장착할 수 있다. 용기는 또한 주사바늘에 의해 내용물에 접근할 수 있는, 스토퍼가 장착될 수 있다. 상기 키트는 외부 패키지를 포함할 수 있으며, 외부 패키지는 구성 요소들의 사용에 관한 사용설명서를 포함할 수 있다.
The detection sensor system may be provided in the form of a kit. The kit for detecting a target substance may take the form of a bottle, a tub, a sachet, an envelope, a tube, an ampoule, etc., which may be partly or wholly made of plastic, glass, paper, foil, Wax, and the like. The container may be fitted with a cap which is initially part of the container or can be fully or partially detachable, which may be attached to the container by mechanical, adhesive, or other means. The container may also be equipped with a stopper, which is accessible to the contents by the injection needle. The kit may include an external package, and the external package may include instructions for use of the components.

실시예Example

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

앱타머Aptamer 흡착 금 나노입자의 제조 Fabrication of adsorbed gold nanoparticles

앱타머 흡착 금 나노입자를 만드는데 이용하기 위해 시트로산염 (citrate)로 안정화된 금 나노입자를 생성하였다. 큰 비커에 HCl과 HNO3를 3:1 비율로 섞어서 왕수를 만들어 준비한 뒤, 금 나노입자를 만드는데 사용할 200 ml 플라스크와 자석을 적어도 15분 이상 담가두어 오염물질을 제거하였다. 위와 같이 준비한 플라스크에 3차 증류수를 98 ml 넣고 핫플레이트 위에서 저어주면서(stirring) 50 mM의 HAuCl4 용액을 2㎖ 첨가하여 HAuCl4의 최종 농도가 1 mM이 되도록 하였다. 이 용액이 끓기 시작하면 빠르게 38.8 mM의 시트르산나트륨(sodium citrate) 용액을 10 ml 첨가하였다. 그러면 용액의 색이 밝은 노란색에서 짙은 붉은색으로 1분 안에 변화하였다. 20분 더 끓인 뒤에는 상온에서 식을 때까지 교반하면서 놔두었다. 만드는 과정에서 응집된 금 나노입자 혹은 그 외의 불순물을 제거하기 위해, 상기의 용액을 0.45㎛ 나이트로셀룰로오스(nitrocellulose) 필터 페이퍼를 이용하여 여과하여 11 내지 15nm의 크기를 가지는 금 나노입자를 제작하였으며, 완성된 금 나노입자는 4 ℃에 냉장 보관하였다.
Citrate-stabilized gold nanoparticles were generated for use in making aptamer-adsorbed gold nanoparticles. A large beaker HCl and HNO 3 to 3: 1 ratio mixed litter placed behind prepared made aqua regia, at least more than 15 minutes to 200 ml flask and the magnet used to make the gold nanoparticles to remove contaminants. 98 ml of tertiary distilled water was added to the flask prepared above, and 2 ml of 50 mM HAuCl 4 solution was added by stirring on a hot plate so that the final concentration of HAuCl 4 was 1 mM. When the solution started to boil, 10 ml of 38.8 mM sodium citrate solution was rapidly added. Then the color of the solution changed from bright yellow to dark red within 1 minute. After boiling for another 20 minutes, they were allowed to stir at room temperature until cooling. In order to remove aggregated gold nanoparticles or other impurities in the process, the solution was filtered using 0.45 mu m nitrocellulose filter paper to prepare gold nanoparticles having a size of 11-15 nm, The finished gold nanoparticles were refrigerated at 4 ° C.

반사 방식의 분석 장비 구축Construction of reflection type analysis equipment

본 발명에서는 리플렉턴스를 기반으로 하여 금 나노입자의 응집 정도에 따른 색 변화를 측정하기 위하여, 압티클 파이버(Optical fiber), USB4000 분광분석기(Ocean Optics (USA)) 및 HL-2000-FHSA (Ocean Optics (USA))를 이용하여 분석하였다. In the present invention, optical fibers, a USB4000 spectrometer (Ocean Optics (USA)) and HL-2000-FHSA (manufactured by Hewlett-Packard Company) were used to measure the color change according to the degree of aggregation of gold nanoparticles based on reflectance Ocean Optics (USA)).

Optical fiber는 각도를 조절할 수 있는 홀더에 고정되어 있고, 하나의 Optical fiber에서 HL-2000-FHSA에서 나오는 빛을 샘플에 투영시켜주면 샘플에 의해 반사된 빛이 다른 하나의 Optical fiber로 들어가게 된다. 이 빛은 Optical fiber를 따라 연결된 USB4000에서 각 파장대별 반사광의 intensity를 측정하여 결과를 얻게 된다. 이 분석 장비의 모식도는 도 1에 나타내었다. The optical fiber is fixed to the angle-adjustable holder. If one optical fiber projects the light from the HL-2000-FHSA onto the sample, the light reflected by the sample enters the other optical fiber. This light is obtained by measuring the intensity of reflected light by each wavelength in USB4000 connected along optical fiber. A schematic diagram of this analytical instrument is shown in FIG.

샘플은 아크릴과 유리 재질의 웰(well;지름 8mm, 높이 1mm) 에 로딩하였으며, 본 발명에서는 520nm, 650nm에서 신호의 세기(signal intensity)를 계산하여 금 나노 입자의 응집 정도를 분석하였다.
The sample was loaded into wells (8 mm in diameter and 1 mm in height) made of acrylic and glass. In the present invention, signal intensity of 520 nm and 650 nm was calculated to analyze the degree of aggregation of gold nanoparticles.

반사 방식의 분석 조건 최적화 Optimization of analytical conditions of reflection method

(1) 반사각(1) Reflection angle

본 발명의 금 나노 입자의 표면에서 반사가 가장 잘 일어나는 각도를 선별하기 위하여, 실시예 1의 반사 측정 장치의 평면과 입사광선 사이의 각도입사 광선의 각도를 40°, 50°, 60° 및 70°로 조절하여 실험을 수행하였다. In order to select the angle at which the reflection is most likely to occur at the surface of the gold nanoparticles of the present invention, the angle of the angle between the plane of the reflection measuring device of Example 1 and the incident ray is 40 °, 50 °, 60 ° and 70 ° Deg.].

금 나노입자 10nM와 염화나트륨(NaCl) 0.1M을 증류수(distilled water)에 첨가하여 반응시킨 후, 평면과 입사광선 사이의 각도입사 광선의 각도를 40°, 50°, 60° 및 70°로 조절하여 반사 흡광도를 즉정하였다. After adding 10 nM gold nanoparticles and 0.1 M sodium chloride (NaCl) to distilled water, the angles of incident light between plane and incident light were adjusted to 40, 50, 60 and 70 degrees The reflectance absorbance was immediately obtained.

그 결과, 반사 측정 장치의 평면과 입사광선 사이의 각도입사 광선의 각도를 40°로 하여 측정하였을 때, 520nm, 650nm에서 피크가 잘 표현된 것을 확인할 수 있다 (도 2).
As a result, it was confirmed that the peak was well expressed at 520 nm and 650 nm when the angle of the incident light beam between the plane of the reflection measuring device and the incident light was 40 ° (FIG. 2).

(2) 금 나노입자의 농도(2) Concentration of gold nanoparticles

또한, 본 발명의 금 나노입자의 적당한 농도를 선별하기 위하여, 2nM, 4nM, 6nM, 8nM 및 10nM의 금 나노입자를 이용하여 실험을 수행하였다. In order to select an appropriate concentration of the gold nanoparticles of the present invention, experiments were conducted using 2nM, 4nM, 6nM, 8nM and 10nM gold nanoparticles.

다양한 농도의 금 나노입자와 염화나트륨(NaCl) 0.1M을 증류수(distilled water)에 첨가하여 응집시킨 후, 반사 측정 장치의 평면과 입사광선 사이의 각도입사 광선의 각도를 40°한 반사 기반 측정방법과 분광 광도계(spectrophotometer)에서 측정하였다.The gold nanoparticles of various concentrations and 0.1 M of NaCl were added to distilled water to coagulate and then the angle between the plane of the reflection measuring device and the incident light was 40 °. And measured by a spectrophotometer.

그 결과, 분광 광도계를 이용하여 측정한 경우, 금 나노입자의 농도에 따라 흡광도 값이 불안정하게 측정되는(도 3)는 반면, 반사 기반의 분석 장비에서 측정한 경우, 높은 농도의 금 나노입자에서도 반사 측정값이 안정하게 측정되며, 피크가 분명하게 관찰되는 것을 확인할 수 있었으며(도 4), 적정 금 나노입자의 농도는 10nM로 정하였다.
As a result, when measured using a spectrophotometer, the absorbance value is unstably measured according to the concentration of the gold nanoparticles (FIG. 3). On the other hand, when measured by a reflection-based analyzer, The reflection measurement was measured stably and the peak was clearly observed (Fig. 4), and the concentration of the titrant gold nanoparticles was set at 10 nM.

(3) 금 나노입자 응집도 측정(3) Measurement of aggregation degree of gold nanoparticles

실험 과정에서 추가되는 염(NaCl)의 농도에 따른 금 나노입자의 응집도를 측정하기 위하여, 0.1M, 0.05M, 0.025M, 0.017M의 염화나트륨(NaCl)을 첨가하여 실험을 수행하였다.Experiments were conducted by adding 0.1 M, 0.05 M, 0.025 M and 0.017 M sodium chloride (NaCl) in order to measure the degree of aggregation of gold nanoparticles according to the concentration of salt (NaCl) added during the experiment.

금 나노입자 10nM과 염화나트륨의 농도를 0.1M, 0.05M, 0.025M, 0.017M로 다르게 증류수(distilled water)에 첨가하여 금 나노입자의 응집을 유도하였으며, 반사각을 40°로 설정하여 520nm에서 금 나노입자의 응집정도를 반사 기반의 분석 장비를 이용하여 측정하였다.The concentration of gold nanoparticles (10 nM) and sodium chloride (0.1 M, 0.05 M, 0.025 M, and 0.017 M) were added to distilled water to induce aggregation of gold nanoparticles. The reflection angle was set at 40 °, The degree of coagulation of the particles was measured using a reflection - based analyzer.

그 결과, 0.1M의 염화나트륨을 첨가하였을 경우, 금 나노입자가 완전히 응집되는 것을 관찰하였으며(도 5), 적정 염화칼슘의 농도는 0.1M로 정하였다.
As a result, when 0.1 M sodium chloride was added, aggregation of the gold nanoparticles was completely observed (FIG. 5), and the concentration of the appropriate calcium chloride was set at 0.1 M.

금 나노 입자를 이용한 Using gold nanoparticles 옥시테트라사이클린Oxytetracycline 검출 방법 Detection method

본 발명에서 금 나노입와 반사 기반 색도 측정방법을 이용하여 표적물질의 검출 유무를 확인하기 위하여, 옥시테크라사이클린 검출을 수행하였다. In the present invention, detection of oxytocracycline was performed in order to confirm whether or not the target substance was detected using the gold nanoimage and the reflection-based chromaticity measuring method.

금 나노 입자는 상기 실시예 1에서 제조된 금 나노 입자를 증류수로 세척하여 준비하였으며, 옥시테트라사이클린에 특이적으로 결합하는 앱타머는 다음의 서열번호 1과 같이 준비하였다. The gold nanoparticles were prepared by washing the gold nanoparticles prepared in Example 1 with distilled water, and the aptamer specifically binding to oxytetracycline was prepared as shown in SEQ ID NO: 1 below.

서열번호1:5'-CGTACGGAATTCGCTAGCGGGCGGGGGTGCTGGGGGAATGGAGTGCTGCGTGCTGCGGGGATCCGAGCTCCACGTG-3' SEQ ID NO: 1: 5'-CGTACGGAATTCGCTAGCGGGCGGGGGTGCTGGGGGAATGGAGTGCTGCGTGCTGCGGGGATCCGAGCTCCACGTG-3 '

상기 준비된 11.11nM 농도의 금 나노 입자 51.3㎕ 용액에 19.9μM 옥시테트라사이클린 특이적인 앱타머 2.85㎕를 첨가하고, 상온에서 30분간 반응시켜 금 나노 입자 표면에 옥시테트라사이클린에 특이적으로 결합하는 앱타머를 흡착시켰다. 그 후 바인딩 버퍼(Binding buffer; 100mM NaCl, 20mM Tris-Cl, 2mM MgCl2, 5mM KCl 및 1mM CaCl2, pH 7.6) 에 녹아있는 옥시테트라사이클린 2.85㎕를 첨가하여, 30분간 반응시켜 앱타머-타겟 반응을 유도한 후, 57㎕의 샘플을 준비된 웰(well)에 로딩하고 3㎕의 2M NaCl를 첨가하여 앱타머와 결합되어 있지 않은 금 나노입자의 응집을 유도하였다. 반응 2분 후에, 반사각을 40°로 설정하여 520nm, 620nm에서 금 나노입자의 응집정도를 반사 기반의 분석 장비를 이용하여 측정하였다.2.85 占 퐇 of 19.9 占 옥 oxytetracycline-specific aptamer was added to a solution of 51.3 占 퐇 of the prepared gold nanoparticles having a concentration of 11.11 nM and reacted at room temperature for 30 minutes to obtain aptamer specifically binding to oxytetracycline Respectively. Then 2.85 μl of oxytetracycline dissolved in a binding buffer (100 mM NaCl, 20 mM Tris-Cl, 2 mM MgCl 2, 5 mM KCl and 1 mM CaCl 2, pH 7.6) was added and reacted for 30 minutes to give an aptamer- After induction, 57 [mu] l of the sample was loaded into the prepared wells and 3 [mu] l of 2M NaCl was added to induce agglutination of the gold nanoparticles not bound to the aptamer. Two minutes after the reaction, the degree of aggregation of the gold nanoparticles was measured using a reflection-based analyzer at 520 nm and 620 nm by setting the reflection angle to 40 °.

그 결과, 1nM 까지 옥시테트라사이클린의 검출이 가능하였으며, 기존에 분광 광도계로 관찰한 경우에는 25nM 까지 검출할 수 있는 것으로 나타난 것Yeon Seok Kim et al ., Biosensors and Bioelectronics, 26:1644, 2010)과 비교했을 때, 반사 기반의 색도 분석 방법으로 검출할 경우 민감도가 25배 향상된 것을 확인하였다.
As a result, it was possible to detect oxytetracycline up to 1 nM, and it could be detected up to 25 nM when observed with a spectrophotometer. Yeon Seok Kim et al ., Biosensors and Bioelectronics , 26: 1644, 2010), it was confirmed that the sensitivity was improved 25 times by the reflection-based chromaticity analysis method.

비교예Comparative Example 1 : 반사 기반의 색도 분석 방법 및 분광광도계 비교 1: Reflection-based chromaticity analysis method and spectrophotometer comparison

상기 실시예 4와 같이 금나노입자를 이용한 타겟물질 검출방법에서 반사방식 측정한 결과와 기존의 분광광도계를 이용한 측정결과(Yeon Seok Kim et al ., Biosensors and Bioelectronics, 26:1644, 2010)와 비교한 결과, 반사 기반의 색도 분석 방법은 기존에 사용되고 있는 UV/VIS 분광광도계의 방식의 샘플 농도의 제약을 벗어나, 높은 농도의 금 나노 입자를 이용할 수 있어 더 민감하게 타겟물질을 검출할 수 있으며, 측정되는 샘플의 양이 적어 효율적인 실험이 가능하다 (표 1).
As in Example 4, the results of the reflection method measurement and the measurement result using a conventional spectrophotometer (Yeon Seok Kim et < RTI ID = 0.0 > al ., Biosensors and Bioelectronics , 26: 1644, 2010). As a result, the reflection-based chromaticity analysis method can utilize a high concentration of gold nanoparticles beyond the limit of the sample concentration of the conventional UV / VIS spectrophotometer system The target substance can be detected sensitively, and the amount of the sample to be measured is small, so efficient experiments are possible (Table 1).

반사 방식 측정 방법 및 분광광도계 비교Comparison of reflection method and spectrophotometer 분광광도계
(Spectrophotometer)
Spectrophotometer
(Spectrophotometer)
반사 방식 측정방법How to measure reflection method
금나노입자 농도Gold nanoparticle concentration lowlow high high 샘플 볼륨Sample volume largelarge small small PlatformPlatform fixedfixed variousvarious Sensitive(LOD)Sensitive (LOD) ~25nM ~ 25nM ~1nM ~ 1 nM

이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the invention is not limited thereby. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> Korea University Research and Business Foundation <120> Method for Detecting Target Molecules Using Reflectance-based Colorimetric Analysis <130> P12-B230 <160> 1 <170> KopatentIn 2.0 <210> 1 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> oxytetracycline aptamer <400> 1 cgtacggaat tcgctagcgg gcgggggtgc tgggggaatg gagtgctgcg tgctgcgggg 60 atccgagctc cacgtg 76 <110> Korea University Research and Business Foundation <120> Method for Detecting Target Molecules Using Reflectance-based          Colorimetric Analysis <130> P12-B230 <160> 1 <170> Kopatentin 2.0 <210> 1 <211> 76 <212> DNA <213> Artificial Sequence <220> <223> oxytetracycline aptamer <400> 1 cgtacggaat tcgctagcgg gcgggggtgc tgggggaatg gagtgctgcg tgctgcgggg 60 atccgagctc cacgtg 76

Claims (6)

다음 단계를 포함하는 반사 기반 색도 분석을 이용한 타겟물질의 검출방법:
(a) 금 나노입자 표면에 타겟물질에 특이적으로 결합하는 앱타머를 흡착시키는 단계;
(b) 타겟물질을 첨가하여 상기 앱타머와 타겟물질 사이의 특이적 결합에 의한 앱타머-타겟물질 복합체를 형성시켜, 금 나노입자를 유리시키는 단계; 및
(c) 염을 첨가하여 유리된 금 나노입자를 응집시켜 색상변화를 유도시킨 다음, 금 나노입자의 응집정도를 반사 방식 기반의 색도 분석법으로 측정하는 단계.
A method of detecting a target material using reflection-based chromaticity analysis comprising the steps of:
(a) adsorbing an aptamer that specifically binds to a target substance on the surface of gold nanoparticles;
(b) adding a target material to form an aptamer-target material complex by specific binding between the aptamer and the target material to liberate the gold nanoparticles; And
(c) aggregating free gold nanoparticles by adding a salt to induce color change, and measuring the degree of aggregation of gold nanoparticles by a chromaticity analysis method based on a reflection method.
제1항에 있어서, 상기 금 나노입자는 염화금(HAuCl4)을 시트로산염(citrate)으로 환원시켜 제조되며, 11 내지 15 nm 크기를 가지는 것을 특징으로 하는 타겟물질의 검출방법.
The method of claim 1, wherein the gold nanoparticles are prepared by reducing HAuCl 4 with citrate and have a size of 11 to 15 nm.
제1항에 있어서 상기 금 나노입자는 2 내지 10nM의 농도로 첨가되는 것을 특징으로 하는 타겟물질의 검출방법.
The method of claim 1, wherein the gold nanoparticles are added at a concentration of 2 to 10 nM.
제1항에 있어서, 상기 타켓물질은 옥시테트라사이클린인 것을 특징으로 하는 타겟물질의 검출방법.
The method of claim 1, wherein the target material is oxytetracycline.
제1항에 있어서, 상기 (c) 단계의 염은 0.1 내지 0.01M의 염화나트륨(NaCl)인 것을 특징으로 하는 타겟물질의 검출방법.
The method for detecting a target substance according to claim 1, wherein the salt of step (c) is 0.1 to 0.01 M sodium chloride (NaCl).
제1항에 있어서, 상기 (d) 단계는 반사 측정 장치의 평면과 입사광선 사이의 각도를 40 내지 70°로 하여, 520 내지 650nm에서 반사된 빛을 측정하는 것을 특징으로 하는 타겟물질의 검출방법.
The method according to claim 1, wherein the step (d) comprises measuring the light reflected from 520 to 650 nm at an angle of 40 to 70 degrees between the plane of the reflection measuring device and the incident light .
KR1020120126222A 2012-11-08 2012-11-08 Method for Detecting Target Molecules Using Reflectance-based Colorimetric Analysis KR101399574B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120126222A KR101399574B1 (en) 2012-11-08 2012-11-08 Method for Detecting Target Molecules Using Reflectance-based Colorimetric Analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120126222A KR101399574B1 (en) 2012-11-08 2012-11-08 Method for Detecting Target Molecules Using Reflectance-based Colorimetric Analysis

Publications (2)

Publication Number Publication Date
KR20140059608A true KR20140059608A (en) 2014-05-16
KR101399574B1 KR101399574B1 (en) 2014-05-27

Family

ID=50889387

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120126222A KR101399574B1 (en) 2012-11-08 2012-11-08 Method for Detecting Target Molecules Using Reflectance-based Colorimetric Analysis

Country Status (1)

Country Link
KR (1) KR101399574B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865247A (en) * 2015-05-25 2015-08-26 华东理工大学 Application of color development method based on nanogold aggregation to immunodetection
CN107677622A (en) * 2017-11-26 2018-02-09 桂林电子科技大学 A kind of solution surface reflects absorbance measurement device
KR102084103B1 (en) * 2018-12-14 2020-03-04 한국과학기술연구원 Diagnostic kit for detection of bacteria
CN112326950A (en) * 2020-10-20 2021-02-05 甘肃农业大学 Detection method of T-2 toxin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892734B2 (en) 2005-08-11 2011-02-22 The Board Of Trustees Of The University Of Illinois Aptamer based colorimetric sensor systems
WO2010029175A1 (en) 2008-09-12 2010-03-18 Modpro Ab Detection method and device based on nanoparticle aggregation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865247A (en) * 2015-05-25 2015-08-26 华东理工大学 Application of color development method based on nanogold aggregation to immunodetection
CN104865247B (en) * 2015-05-25 2017-11-03 华东理工大学 Application of the coloration method based on nanogold aggregation in immune detection
CN107677622A (en) * 2017-11-26 2018-02-09 桂林电子科技大学 A kind of solution surface reflects absorbance measurement device
CN107677622B (en) * 2017-11-26 2023-09-26 桂林电子科技大学 Solution surface reflection absorbance measuring device
KR102084103B1 (en) * 2018-12-14 2020-03-04 한국과학기술연구원 Diagnostic kit for detection of bacteria
CN112326950A (en) * 2020-10-20 2021-02-05 甘肃农业大学 Detection method of T-2 toxin

Also Published As

Publication number Publication date
KR101399574B1 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
Shenashen et al. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns
Ehtesabi et al. Carbon dots—Sodium alginate hydrogel: A novel tetracycline fluorescent sensor and adsorber
CN107118758B (en) A kind of gold/platinum bimetal nano cluster fluorescence probe based on polyethyleneimine protection and its application in detection aureomycin
CN107589113B (en) A kind of method of paper base double mode detection lead ion
CN108659833B (en) Yellow fluorescent carbon dot and preparation method and application thereof
CN105928914B (en) The qualitative checking method of sulfurated hydrogen detection sensor and preparation method thereof, the quantitative detecting method of hydrogen sulfide and intracellular hydrogen sulfide
KR101399574B1 (en) Method for Detecting Target Molecules Using Reflectance-based Colorimetric Analysis
CN111004804A (en) Aptamer and kit for detecting enrofloxacin and ciprofloxacin and application of aptamer and kit
Lin et al. Role of novel silicon nanoparticles in luminescence detection of a family of antibiotics
CN106052872B (en) A kind of terramycin SERS detection methods based on nano material self assembly
CN103995130A (en) Alpha 1-microglobulin detection kit and preparation
Liu et al. A facile fluorescent sensing strategy for determination of hydrogen peroxide in foods using a nanohybrid of nanoceria and carbon dots based on the target-promoted electron transfer
CN102305857A (en) Latex immunoreagent for determining helicobacter pylori antibody and detection method thereof
CN105866047A (en) Biosensor for detecting divalent mercury ions, and making method thereof
CN104914099A (en) Aptamer-modified nanogold colorimetric detection-based analysis method of ibuprofen
CN107607722B (en) A kind of method of beta lactoglobulin in quantitative detection milk powder
CN107167469B (en) A kind of identification gram-positive bacterium and the instruction material of negative bacteria and its preparation method and application
Lv et al. A gold nanoparticle based colorimetric and fluorescent dual-channel probe for acetylcholinesterase detection and inhibitor screening
CN106872682A (en) A kind of colorimetric bio sensor for detecting mercury ion and preparation method thereof
CN109668866B (en) Preparation and detection method of fluorescent probe for detecting iodide ions in water environment
CN109298180A (en) A method of detection salmonella typhimurium
CN113390846A (en) Application of sulfur quantum dots as fluorescent probe in tetracycline detection
KR101342080B1 (en) Nucleic Acid Aptamer Capable of Specifically Binding to Tetracyclines Compound and Use thereof
KR101342710B1 (en) Nucleic Acid Aptamer Capable of Specifically Binding to Tetracyclines Compound and Use thereof
CN103168243A (en) Gel particle measurement reagent and measurement method using same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190411

Year of fee payment: 6