KR20140018569A - Preparation of bimetallic alloys loaded activated carbon nanotubes as anode materials for secondary batteries - Google Patents

Preparation of bimetallic alloys loaded activated carbon nanotubes as anode materials for secondary batteries Download PDF

Info

Publication number
KR20140018569A
KR20140018569A KR1020120084846A KR20120084846A KR20140018569A KR 20140018569 A KR20140018569 A KR 20140018569A KR 1020120084846 A KR1020120084846 A KR 1020120084846A KR 20120084846 A KR20120084846 A KR 20120084846A KR 20140018569 A KR20140018569 A KR 20140018569A
Authority
KR
South Korea
Prior art keywords
activated carbon
alloy
carbon nanotubes
carbon nanotube
metal
Prior art date
Application number
KR1020120084846A
Other languages
Korean (ko)
Other versions
KR101414536B1 (en
Inventor
박수진
이슬이
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020120084846A priority Critical patent/KR101414536B1/en
Publication of KR20140018569A publication Critical patent/KR20140018569A/en
Application granted granted Critical
Publication of KR101414536B1 publication Critical patent/KR101414536B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/178Opening; Filling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a manufacturing method for activated carbon nanotubes supported with bimetallic alloys for secondary battery anode materials and more specifically, to a novel activated carbon nanotube composite supported with bimetallic alloys for secondary battery anode materials which have high capacity and excellent cycle properties through the complexation of carbon materials capable of being commercially and easily used as the anode materials of a lithium secondary battery and high capacity metal materials capable of composing alloy with lithium ions such as aluminum (Al), silicone (Si), tin (Sn), bismuth (Bi), antimony (Sb) and the like which are recently highlighted as high capacity substitute materials, and a manufacturing method thereof. The activated carbon nanotube composite supported with bimetallic alloys exhibits high metal dispersion index, loading amounts and significantly improved energy capacity as compared to existing nanotubes and is able to be used as novel lithium secondary anode materials having excellent cycle properties and mechanical properties as compared to existing alloy materials. [Reference numerals] (AA) Example 1

Description

이차전지 음극재용 이종합금이 담지된 활성탄소나노튜브의 제조방법{PREPARATION OF BIMETALLIC ALLOYS LOADED ACTIVATED CARBON NANOTUBES AS ANODE MATERIALS FOR SECONDARY BATTERIES}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an active carbon nanotube,

본 발명은 이차전지 음극재용 이종합금(bimetalic alloy)이 담지된 활성탄소나노튜브의 제조방법에 관한 것으로, 더욱 상세하게는 리튬이차전지의 음극재로서 상업적으로 쉽게 이용할 수 있는 탄소소재와 고용량 대체소재로서 최근 크게 각광받고 있는 알루미늄(Al), 실리콘(Si), 주석(Sn), 비스무트(Bi) 및 안티몬(Sb) 등과 같이 리튬이온과 합금을 이룰 수 있는 고용량 금속 소재의 복합화를 통해 고용량 및 우수한 사이클 특성을 지니는 새로운 개념의 리튬이차전지 음극재용 이종합금이 담지된 활성탄소나노튜브 복합체 및 그 제조방법에 관한 것이다.The present invention relates to a method for producing activated carbon nanotubes on which a bimetalic alloy for a secondary battery anode material is carried, and more particularly, to a carbon material and a high-capacity alternative material which can be easily used as an anode material of a lithium secondary battery The combination of high-capacity metal materials that can be alloyed with lithium ions such as aluminum (Al), silicon (Si), tin (Sn), bismuth (Bi), and antimony (Sb) The present invention relates to a novel concept of an activated carbon nanotube composite on which a heterogeneous alloy for a lithium secondary battery anode material is supported, and a manufacturing method thereof.

현재 리튬이차전지 음극재로 널리 쓰이고 있는 흑연 물질은, 충·방전시 부피변화가 적지만, 전기적 용량의 이론값이 372 ㎃h/g으로 매우 낮은 값을 나타므로 고성능 전자기기에서 요구하는 고효율, 고성능을 갖는 배터리를 개발하는데 한계점으로 작용하고 있다.The graphite material widely used as an anode material of a lithium secondary battery has a small volume change during charging and discharging, but the theoretical value of the electric capacity is very low as 372 mAh / g. Therefore, the high efficiency, And it is a limitation in developing a battery having high performance.

이에 대한 대안으로 이론 용량 4,200 ㎃h/g을 갖는 실리콘 물질이 차세대 음극재 물질로 대두되고 있으나, 순수한 실리콘 음극재의 경우, 충·방전시 부피변화가 300%가 되기 때문에 긴 수명을 갖는 이차전지의 음극재로 사용하기에는 어려움이 따르고 있다.
As an alternative to this, a silicon material having a theoretical capacity of 4,200 mAh / g is being developed as a next generation anode material, but a pure silicon anode material has a volume change of 300% during charging and discharging, It is difficult to use it as an anode material.

최근, 주석(Sn), 안티몬(Sb), 비스무트(Bi), 실리콘(Si) 등과 같은 금속입자를 탄소나노튜브 등의 탄소소재와 복합화하여 복합체를 형성하였을 때 높은 초기 에너지용량과 안정성을 갖는다는 연구가 다수 보고되고 있다(Chem. Mater. 19 (2007) 2406-2410; Mater. Lett. 62 (2008) 2092-2095; Carbon 45 (2007) 1396-1409). 이러한 물질들이 나노구조화 되었을 때 형성되는 구조의 안정성에 의하여 음극재의 수명이 크게 향상될 것으로 기대하고 있다.2. Description of the Related Art Recently, metal particles such as tin (Sn), antimony (Sb), bismuth (Bi), and silicon (Si) have been combined with carbon materials such as carbon nanotubes to form composites. Mater. Lett. 62 (2008) 2092-2095; Carbon 45 (2007) 1396-1409). It is expected that the life of the anode material will be greatly improved by the stability of the structure formed when these materials are nano-structured.

그 중에서도, 실리콘을 기반으로 하는 음극재 물질은 이론적으로 Li4.4Si 형태를 이루었을 때, 4,200 ㎃h/g의 고효율을 보여 차세대 음극재로 큰 관심을 받고 있지만, 충·방전시 부피변화로 인한 효율감소(10회 반복 후, 전기용량이 급격히 감소)와 순수한 실리콘 물질의 낮은 전기전도성으로 인하여 음극재로 직접 사용하기에는 많은 어려움이 있다.
Among them, the anode material based on silicon has the high efficiency of 4,200 mAh / g when Li 4,4 Si is theoretically theoretically attracted to the next generation anode material. However, due to the volume change during charging and discharging There is a great deal of difficulty in using the anode material directly because of the reduced efficiency (after 10 repetitions, the rapid decrease of the capacitance) and the low electrical conductivity of the pure silicon material.

이에 본 발명자들은 탄소재료를 기반으로 하는 혁신적 리튬이차전지 음극재를 개발하기 위해 예의 노력한 결과, 고온 기상활성화 방법으로 제조된 활성탄소나노튜브와 Sn 및 Sb의 이종합금(bimetallic alloy)의 복합화를 통해 고용량 및 우수한 사이클 특성을 지니는 활성탄소나노튜브 복합체를 제조하고 본 발명을 완성하였다. As a result of intensive efforts to develop an innovative lithium secondary battery anode material based on a carbon material, the present inventors have found that by combining a bimetallic alloy of activated carbon or nattove and Sn and Sb produced by a high temperature vapor activation method, And an excellent cycle characteristic, and completed the present invention.

결국, 본 발명의 주된 목적은 새로운 개념의 리튬이차전지 음극재용 이종합금(bimetallic alloy)이 담지된 활성탄소나노튜브 복합체 및 그 제조방법을 제공하는데 있다.It is a main object of the present invention to provide an activated carbon nanotube composite having a new concept of a bimetallic alloy for a lithium secondary battery anode material and a method of manufacturing the same.

상기 목적을 달성하기 위하여, 본 발명은 고온 기상활성화 방법으로 제조된 활성탄소나노튜브와 Sn 및 Sb의 이종합금(bimetallic alloy)의 복합화를 통해 얻어지는 리튬이차전지 음극재용 이종합금이 담지된 활성탄소나노튜브 복합체를 제공한다.In order to accomplish the above object, the present invention provides a method for producing a lithium secondary battery anode material, which is obtained by combining a carbon nanotube and a bimetallic alloy of Sn and Sb prepared by a high temperature vapor phase activation method, Lt; / RTI >

또한, 본 발명은 고온 기상활성화 방법으로 용이하게 탄소나노튜브의 끝단을 개방한 후 나노스케일의 금속미립자 지지체로서 표면에 활성점을 다량으로 부여하여 크기 및 담지량이 제어된 금속미립자 도입하고, 상기 금속미립자를 활성탄소나노튜브의 튜브 속 삽입 및 튜브간 웹 안에 고정시키는 단계를 포함하는 활성탄소나노튜브의 제조방법을 제공한다.In addition, the present invention provides a nanoscale fine metal particle support by easily opening the end of a carbon nanotube by a high temperature vapor phase activation method, introducing a large amount of active sites on the surface thereof, introducing fine metal particles whose size and amount are controlled, And immobilizing the fine particles into the tube of the activated carbon or the nitrogen and the inside of the inter-tube web.

상기와 같은 본 발명에 따르면, 본 발명은 이산화탄소 기체를 이용한 고온 기상활성화 방법으로 탄소나노튜브의 끝단을 용이하게 다량 개방하여 고 비표면적을 가지며, 나노스케일의 금속미립자 지지체로서 표면에 활성점이 다량 존재하므로 금속/활성탄소나노튜브 복합체의 금속미립자의 함량과 분산율을 정밀하게 제어할 수 있다.In accordance with the present invention, the present invention provides a method for activating carbon nanotubes having a high specific surface area by opening a large amount of the ends of carbon nanotubes by a high temperature vapor activation method using carbon dioxide gas, and a nanoscale fine metal particle support, It is possible to precisely control the content and dispersion ratio of the metal microparticles of the metal / activated carbon / nitrogen composite.

또한, Sn/Sb 및 활성탄소나노튜브의 혼합액(suspension)의 화학적 환원법을 통한 금속미립자 도입 과정에서 이종금속 입자가 활성탄소나노튜브의 튜브 속 삽입 및 튜브간 웹 안에 고정화되는 효과가 있다.In addition, in the process of introducing fine metal particles through a chemical reduction method of a suspension of Sn / Sb and activated carbon nanotubes, the dissimilar metal particles are immobilized in the tube-inserted web of the activated carbon nanotube or the nanotube.

이로써, 본 발명의 이종합금이 담지된 활성탄소나노튜브 복합체는 고 금속 분산율 및 담지량, 그리고 기존의 탄소나노튜브보다 대폭 향상된 에너지용량을 나타내며, 기존의 합금소재보다 우수한 사이클 특성 및 기계적 특성을 지니는 새로운 개념의 리튬이차전지 음극재용으로 유용하게 사용될 수 있다. As a result, the activated carbon nanotube composite supporting the different alloy of the present invention exhibits a high metal dispersion ratio, a supported amount, and a significantly improved energy capacity compared to the conventional carbon nanotubes, and is a new concept having cycle characteristics and mechanical characteristics Of lithium secondary battery negative electrode material.

도 1은 본 발명의 일실시예에 따라 제조된 끝단이 개방된 활성탄소나노튜브의 TEM 사진이다.
도 2는 본 발명의 일실시예에 따른 이종합금이 담지된 활성탄소나노튜브 복합체의 TEM 사진이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a TEM photograph of an activated carbon or a nitrogen-containing activated carbon prepared according to an embodiment of the present invention.
2 is a TEM photograph of an activated carbon nanotube composite on which a heterogeneous alloy is supported according to an embodiment of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 이종합금(bimetallic alloy)이 담지된 활성탄소나노튜브 복합체를 제공한다.The present invention provides an activated carbon nanotube composite on which a bimetallic alloy is supported.

본 발명에 있어서, 상기 활성탄소나노튜브 복합체는 고온 기상활성화 방법으로 제조된 활성탄소나노튜브와 실리콘(Si), 인듐(In), 납(Pb), 갈륨(Ga), 게르마늄(Ge), 주석(Sn), 알루미늄(Al), 비스무트(Bi), 안티몬(Sb) 등에서 선택되는 2종의 합금금속과의 복합화를 통해 수득될 수 있다.In the present invention, the activated carbon nanotube composite may be prepared by mixing activated carbon nanotubes prepared by a high temperature vapor phase activation method and a metal such as silicon (Si), indium (In), lead (Pb), gallium (Ga), germanium (Ge) ), Aluminum (Al), bismuth (Bi), antimony (Sb), and the like.

바람직하게는, 상기 활성탄소나노튜브 복합체는 고온 기상활성화 방법으로 제조된 활성탄소나노튜브와 Sn 및 Sb의 합금인 것이 좋다.Preferably, the activated carbon nanotube composite is an alloy of Sn and Sb with activated carbon nanotubes prepared by a high temperature vapor activation method.

이때, 상기 Sn/Sb의 합금비율은 0.01 내지 99.99인 것이 바람직하고, 더욱 바람직하게는 0.1 내지 10인 것이 좋다.
At this time, the alloy ratio of Sn / Sb is preferably 0.01 to 99.99, more preferably 0.1 to 10.

본 발명은 또한, 이종합금이 담지된 활성탄소나노튜브 복합체의 제조방법을 제공한다.The present invention also provides a method for producing an activated carbon nanotube composite on which a heterogeneous alloy is supported.

구체적으로 상기 제조방법은, 1) 이산화탄소 기체를 이용한 고온 기상활성화 방법으로 탄소나노튜브의 끝단의 개방하고 외벽의 표면에 나노기공이 발현된 활성점이 다량 부여된 활성탄소나노튜브를 제조하는 단계; 2) 화학적 환원법을 통해 금속미립자의 크기 및 담지량이 제어된 금속미립자를 상기 활성탄소나노튜브에 도입하는 단계; 및 3) 상기 활성탄소나노튜브에 도입된 금속미립자를 튜브 속 삽입 및 튜브 간 웹 안에 고정시키는 단계;를 포함한다. Specifically, the method comprises the steps of: 1) preparing an activated carbon or a nitrogen-containing activated carbon nanotube having a large number of active sites on the surface of the outer wall of the carbon nanotube, the nanotube being exposed on the surface of the carbon nanotube by a high temperature vapor activation method using carbon dioxide gas; 2) introducing fine metal particles having controlled size and amount of metal fine particles into the activated carbon or the nitrogen through the chemical reduction method; And 3) fixing the fine metal particles introduced into the activated carbon nanotube into the tube and the inter-tube web.

본 발명에 있어서, 상기 1) 단계에서는, 흑연면이 한 겹 내지 수십 겹으로 둥글게 말린 형태로 형성된 탄소나노튜브의 끝단을 개방하고, 탄소나노튜브 외벽의 표면에 나노기공(defects)을 형성하여 비표면적을 증가시킴과 동시에 금속미립자의 도입을 위한 활성점을 부여한다.In the present invention, in the step 1), the ends of the carbon nanotubes formed in the form of a ring-like one-to-ten-folded graphite surface are opened to form nano pores on the surface of the outer wall of the carbon nanotube, Thereby increasing the surface area, and at the same time, giving active points for introduction of the metal fine particles.

또한, 상기 탄소나노튜브는 활성탄, 활성탄소섬유, 피치(pitch)계 나노섬유, 흑연산화물, 그래핀, 그래핀 산화물, 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 및 다중벽 탄소나노튜브에서 선택되는 1종 이상을 사용하는 것이 바람직하다.The carbon nanotubes may be selected from activated carbon, activated carbon fibers, pitch nanofibers, graphite oxides, graphene oxides, single wall carbon nanotubes, double wall carbon nanotubes, and multiwall carbon nanotubes Is preferably used.

또한, 상기 고온 기상활성화는 승온 과정에서의 반응기 내 분위기는 질소, 헬륨, 아르곤 등의 비활성 기체에서 선택되는 1종 이상을 사용하는 것이 바람직하며, 승온 속도는 1 내지 5℃/min., 기상활성화 온도는 400 내지 1,500℃가 바람직하다.It is preferable that at least one of inert gases such as nitrogen, helium, and argon is used as the atmosphere in the reactor during the temperature raising process at a high temperature, and the rate of temperature increase is 1 to 5 ° C / min. The temperature is preferably 400 to 1,500 占 폚.

상기 기상활성화 온도가 400℃보다 낮을 경우, 탄소나노튜브의 끝단이 개방되지 않거나 탄소나노튜브의 외벽 표면에 나노기공이 형성되지 않고, 1,500℃보다 높은 경우에는 형성된 나노기공의 붕괴 및 제조된 활성탄소나노튜브의 수득률이 저하될 수 있다.When the gas phase activation temperature is lower than 400 ° C., when the ends of the carbon nanotubes are not opened or nano pores are not formed on the outer wall surface of the carbon nanotubes, and when the temperature is higher than 1,500 ° C., the collapse of the formed nanopores, The yield of the nitrogen can be lowered.

또한, 기상활성화 시간은 5분 내지 2시간인 것이 바람직하고, 더욱 바람직하게는 10분 내지 60분인 것이 좋으며, 활성기체의 유입량 속도는 10 내지 500 ㏄/min.인 것이 바람직하다.The gas phase activation time is preferably 5 minutes to 2 hours, more preferably 10 minutes to 60 minutes, and the flow rate of the active gas is preferably 10 to 500 cc / min.

과도한 처리시간과 기체유입량은 제조된 활성탄소나노튜브의 수득률을 저하시키므로 바람직하지 않다. 더불어, 기상활성화에 사용되는 활성기체는 이산화탄소, 산소, 공기, 황화수소, 황화산화가스, 질화산화가스 및 암모니아 등 통상적으로 사용되는 활성가스라면 모두 사용이 가능하다.
Excessive treatment time and gas inflow amount are undesirable because they reduce the yield of produced activated carbon or nitrogen. In addition, the active gas used for the gas phase activation can be any of commonly used active gases such as carbon dioxide, oxygen, air, hydrogen sulfide, sulfurized oxidizing gas, nitrided oxidizing gas and ammonia.

상기 2) 단계에서는, 상기 1) 단계에서 제조된 끝단이 개방되고 외벽의 표면에 나노기공이 발현된 활성점이 다량 부여된 활성탄소나노튜브에 금속미립자를 도입하게 되는데, 이때 도입되는 금속미립자는 리튬이온과 반응하는 금속인 Si, In, Pb, Ga, Ge, Sn, Al, Bi, Sb 등에서 선택되는 2종의 합금금속인 것이 바람직하다. 상기 금속은 어떤 것이든 제한되지는 않으나 리튬이차전지의 음극재의 고용량 및 경제성을 고려하여, Sn 및 Sb의 합금을 주로 많이 사용한다. 이때, 도입되는 Sn/Sb의 합금비율은 0.01 내지 99.99가 바람직하며, 더욱 바람직하게는 0.1 내지 10인 것이 좋다.In the step 2), the metal fine particles are introduced into the activated carbon or the nitrogen-containing activated carbon, to which the active end point of the step 1) is opened and the surface of the outer wall is exposed with nanopores. In this case, It is preferable to use two kinds of alloy metals selected from Si, In, Pb, Ga, Ge, Sn, Al, Bi, Although the metal is not limited in any way, an alloy of Sn and Sb is mainly used in view of the high capacity and economical efficiency of the anode material of the lithium secondary battery. At this time, the alloy ratio of Sn / Sb introduced is preferably 0.01 to 99.99, more preferably 0.1 to 10.

더욱이, 활성탄소나노튜브의 튜브 속 및 튜브 외벽에 발현된 활성점은 금속미립자들의 핵형성 위치(nucleation site)로서 작용하여 금속미립자들의 침전(precipitate)을 유도하는 역할을 하는 것이 특징이다.Furthermore, the active sites expressed in the tube and on the outer wall of the tube of the activated carbon nanotube act as a nucleation site of the metal microparticles and induce precipitation of the metal microparticles.

또한, 상기 금속을 도입하는 단계에서 금속의 도입량은 활성탄소나노튜브 중량 대비 0.01 내지 70 wt.%인 것이 바람직하고, 더욱 바람직하게는 0.05 내지 50 wt.%인 것이 좋다. In the step of introducing the metal, the introduction amount of the metal is preferably 0.01 to 70 wt.%, More preferably 0.05 to 50 wt.%, Based on the weight of the activated carbon or the nitrogen.

또한, 금속미립자 도입에 사용되는 금속전구체는 클로라이드계, 질산염계, 하이드라진계, 황산염계, 인산염계, 시트르산계 등에서 선택되는 1종 또는 2종 이상의 복합물이 바람직하다.Further, the metal precursor used for introducing the metal fine particles is preferably a composite of at least one element selected from chloride, nitrate, hydrazine, sulfate, phosphate, citrate, and the like.

또한, 상기 2)단계에서는, 이종(bimetallic) 금속이온화합물에서 금속이온을 환원시키기 위해 환원성 용매로 수산화나트륨(NaOH), 수소화붕소나트륨(NaBH4), 수소화리튬알루미늄(LiAlH4) 등과 같은 금속수소화물 또는 이들의 혼합물을 첨가하는 것이 바람직하다. In addition, in the step 2), in order to reduce the metal ion from the bimetallic metal ion compound, a reducing agent such as sodium hydroxide (NaOH), sodium borohydride (NaBH 4 ), lithium aluminum hydride (LiAlH 4 ) It is preferred to add a paraffin or a mixture thereof.

또한, pH 분위기는 7.0 내지 13.0 범위에서 이루어지는 것이 바람직하다.
The pH atmosphere is preferably in the range of 7.0 to 13.0.

상기 3) 단계에서는, 금속미립자의 크기를 제어하고 활성탄소나노튜브의 튜브 속 삽입 및 튜브간 웹 안에 고분산으로 고정시키기 위해, 금속이온화합물과 함께 환원성 용매가 혼합된 활성탄소나노튜브를 초음파기기를 이용하여 1분 내지 24시간 처리하는 것이 바람직하다. 상기 초음파 처리 후에는, 이종합금이 담지된 활성탄소나노튜브를 멤브레인 필러를 이용하여 여과한 다음, 증류수나 무수 클로로포름, 에탄올, 아세톤과 같은 휘발성 용매로 세척하여 잔존하는 불순물이나 미합성 유기물질을 제거하고, 진공오븐을 이용하여 100 내지 150℃에서 24 내지 72시간 건조시키면 이종합금이 담지된 활성탄소나노튜브 복합체를 제조할 수 있다.
In the step 3), in order to control the size of the fine metal particles and to fix the activated carbon or the nanotube into the tube and fix the nanotube in a highly dispersed state in the inter-tube web, an activated carbon or a nitrogen-containing mixture of a metal ion compound and a reducing solvent is ultrasonically And then treated for 1 minute to 24 hours. After the ultrasonic treatment, the activated carbon or the nitrogen containing the heterogeneous alloy is filtered using a membrane filter, and then washed with a volatile solvent such as distilled water or anhydrous chloroform, ethanol or acetone to remove residual impurities or undissolved organic substances , And dried in a vacuum oven at 100 to 150 ° C for 24 to 72 hours to prepare an activated carbon nanotube composite bearing a heterogeneous alloy.

상기와 같이 제조된 이종합금이 담지된 활성탄소나노튜브 복합체는 초기 에너지 저장용량이 450 내지 2,000 ㎃h/g이며, 500회 충방전 후 에너지저장용량은 초기 대비 55 내지 95%가 유지된다. The activated carbon nanotube composite having the above-prepared heterogeneous alloy has an initial energy storage capacity of 450 to 2,000 mAh / g and an energy storage capacity of 55 to 95% after 500 charge / discharge cycles.

따라서, 본 발명의 이종합금이 담지된 활성탄소나노튜브 복합체는 고용량 및 우수한 사이클 특성을 지니는 새로운 개념의 리튬이차전지 음극재로 유용하게 사용될 수 있다. Therefore, the activated carbon nanotube composite supporting the hetero alloy of the present invention can be usefully used as a new concept lithium secondary battery anode material having a high capacity and excellent cycle characteristics.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

측정예 1. 이종합금이 담지된 활성탄소나노튜브 복합체의 표면 관찰Measurement example 1. Observation of surface of activated carbon nanotube complex bearing heterogeneous alloy

본 발명에 따라 제조된 리튬이차전지 음극재용 이종합금이 담지된 활성탄소나노튜브 복합체의 표면은 투과전자현미경(TEM; JEM2100F, JEOL, Japan)으로 관찰하였다.
The surface of the activated carbon nanotube composite on which the heterogeneous alloy for lithium secondary battery negative electrode material was prepared according to the present invention was observed with a transmission electron microscope (TEM; JEM2100F, JEOL, Japan).

측정예 2. 이종합금이 담지된 활성탄소나노튜브 복합체의 용량 및 사이클 특성 관찰Measurement example 2. Observation of the capacity and cycle characteristics of the activated carbon nanotube complex carrying the different alloy

본 발명에 따라 제조된 리튬이차전지 음극재용 이종합금이 담지된 활성탄소나노튜브 복합체 전극의 충방전 특성 및 충방전 횟수에 따른 에너지 저장용량의 변화 측정을 위해, 순환전압전류법(Cyclic Voltammetry, CV)를 이용하여 측정하였다.
The cyclic voltammetry (CV) method was used to measure the change of the energy storage capacity according to the charge-discharge characteristics and the number of times of charging and discharging of the activated carbon nanotube composite electrode supported on the heterogeneous alloy for a lithium secondary battery anode material manufactured according to the present invention. .

실시예 1.Example 1.

탄소나노튜브 1 g을 상온에서 증류수와 에탄올을 동일한 부피비로 혼합한 용액에 12시간 교반하여 완전히 세척한 후, 건조하여 튜브형 퍼니스에 넣고 질소(N2) 분위기 하에서 2℃/min.의 승온속도로 1,000℃까지 승온시켰다. 그 다음, 1,000℃에서 이산화탄소(CO2) 기체를 250 ㏄/min.의 유량속도로 유입해 30분간 기상활성화 시키고, 실온까지 냉각시켰다.After the distilled water and ethanol 1 g of carbon nanotubes at room temperature stirred for 12 hours in a solution mixture of the same volume ratio of the completely washed and dried, placed in a tubular furnace in a nitrogen (N 2) atmosphere at a heating rate of 2 ℃ / min. And the temperature was raised to 1,000 ° C. Subsequently, carbon dioxide (CO 2 ) gas was introduced at a flow rate of 250 cc / min at 1000 ° C, vapor-phase activated for 30 minutes, and cooled to room temperature.

상기와 같이 제조된 활성탄소나노튜브는 증류수에서 1~2회 세척하여 120℃에서 12시간 이상 진공건조하고, 카본블랙 및 폴리(비닐리덴 플루오라이드)와 함께 각각 70 : 20 : 10의 중량비로 혼합하여 집전체로 알루미늄 포일에 캐스팅한 후, 잔류 용매의 제거를 위해 120℃에서 24시간 진공건조하여 음극으로 사용하였다.The prepared activated carbon nanotubes were washed once or twice in distilled water, vacuum-dried at 120 ° C. for 12 hours or more, mixed with carbon black and poly (vinylidene fluoride) at a weight ratio of 70:20:10 Cast into an aluminum foil as a collector, vacuum dried at 120 DEG C for 24 hours to remove residual solvent, and used as a negative electrode.

양극소재로 리튬 금속을 사용하여 코인셀을 제조하였다.
A coin cell was fabricated using lithium metal as the anode material.

실시예 2.Example 2.

탄소나노튜브 2 g을 상온에서 증류수와 에탄올을 동일한 부피비로 혼합한 용액에 12시간 교반하여 완전히 세척한 후, 건조하여 튜브형 퍼니스에 넣고 질소(N2) 분위기 하에서 2℃/min.의 승온속도로 1,000℃까지 승온시켰다. 그 다음, 1,000℃에서 이산화탄소(CO2) 기체를 250 ㏄/min.의 유량속도로 유입해 30분간 기상활성화 시키고, 실온까지 냉각시켰다.2 g of the carbon nanotubes were thoroughly washed by stirring at room temperature for 12 hours in a mixed solution of distilled water and ethanol at the same volume ratio, and then dried and placed in a tubular furnace and heated at a rate of 2 ° C / min in a nitrogen (N 2 ) atmosphere And the temperature was raised to 1,000 ° C. Subsequently, carbon dioxide (CO 2 ) gas was introduced at a flow rate of 250 cc / min at 1000 ° C, vapor-phase activated for 30 minutes, and cooled to room temperature.

상기와 같이 제조된 활성탄소나노튜브는 증류수에서 1~2회 세척하여 120℃에서 12시간 이상 진공건조하고, 제조된 활성탄소나노튜브에 이종합금 미립자를 도입하기 위하여, 상기 활성탄소나노튜브 1 g을 Sn 염화물(SnCl2·2H2O, Aldrich, 98%) 3 g과 Sb 염화물(SbCl3, Aldrich, 98%) 2 g이 용해된 300 ㎖의 에틸렌글리콜 용액에 넣고 4시간동안 약하게 교반을 실시하였다.The prepared activated carbon nanotubes were washed once or twice in distilled water, vacuum-dried at 120 ° C. for 12 hours or more, and 1 g of the activated carbon nanotubes was introduced into a prepared activated carbon nanotube, 3 g of SnCl 2 .2H 2 O, Aldrich, 98%) and 2 g of Sb chloride (SbCl 3 , Aldrich, 98%) were dissolved in 300 ml of ethylene glycol solution and stirred vigorously for 4 hours.

그런 다음, 5 M 수소화리튬알루미늄(LiAlH4) 수용액 50 ㎖에 투입하여 혼합물의 pH를 알칼리 분위기(pH 10-13)로 조절하고 4시간 약한 교반을 실시한 후, 상기 혼합액을 초음파기기에 옮기어 2시간 처리하고, 포름알데히드 3 ㎖를 투입하여 천천히 승온 후 120℃에서 10분간 초음파 처리하고 상온까지 냉각하였다. Then, the mixture was poured into 50 ml of a 5 M aqueous solution of lithium aluminum hydride (LiAlH 4 ), the pH of the mixture was adjusted to an alkaline atmosphere (pH 10-13), and the mixture was stirred for 4 hours. The mixture was transferred to an ultrasonic device for 2 hours After 3 ml of formaldehyde was added, the temperature was slowly raised, and the mixture was ultrasonicated at 120 ° C for 10 minutes and cooled to room temperature.

상기와 같이 제조된 이종합금이 담지된 이종합금/활성탄소나노튜브 복합체는 증류수 및 아세톤으로 각각 충분히 세척하여 120℃에서 12시간 이상 완전 진공건조시켰다. 이때, 상기 이종합금을 도입하는 화학적 환원과정은 질소(N2) 분위기 하에서 실시하였다. The heterogeneous alloy / activated carbon nanotube composite supported with the heterogeneous alloy thus prepared was thoroughly washed with distilled water and acetone, respectively, and completely dried at 120 ° C. for 12 hours or more. At this time, the chemical reduction process of introducing the heterogeneous alloy was performed in a nitrogen (N 2 ) atmosphere.

건조된 이종금속/활성탄소나노튜브 복합체는 증류수에서 1~2회 세척하여 120℃에서 12시간 진공건조 하였으며, 카본블랙 및 폴리(비닐리덴 플루오라이드)와 함께 각각 70 : 20 : 10의 중량비로 혼합하여 집전체로 알루미늄 포일에 캐스팅한 후, 잔류 용매의 제거를 위해 120℃에서 24시간 진공건조하여 음극으로 사용하고, 양극소재로는 리튬 금속을 사용하여 코인셀을 제조하였다.
The dried heterogeneous metal / activated carbon nanotube composite was washed 1-2 times in distilled water, vacuum-dried at 120 ° C for 12 hours, mixed with carbon black and poly (vinylidene fluoride) at a weight ratio of 70:20:10 The collector was cast in an aluminum foil, vacuum dried at 120 ° C for 24 hours to remove residual solvent, and used as a negative electrode. Lithium metal was used as a positive electrode material to prepare a coin cell.

비교예 1.Comparative Example 1

탄소나노튜브 2 g을 상온에서 증류수와 에탄올을 동일한 부피비로 혼합한 용액에 12시간 교반하여 완전히 세척한 후 건조하여 튜브형 퍼니스에 넣고 질소(N2) 분위기 하에서 2℃/min.의 승온속도로 350℃까지 승온시켰다. 그 다음, 350℃에서 이산화탄소(CO2) 기체를 250 ㏄/min.의 유량속도로 유입해 300분간 기상활성화 시키고, 실온까지 냉각시켰다. By distilled water and ethanol, 2 g of carbon nanotubes at room temperature, stirred for 12 hours in a solution mixture of the same volume ratio fully washed and then dried into a tubular furnace in a nitrogen (N 2) atmosphere at a heating rate of 2 ℃ / min. 350 Lt; 0 > C. Subsequently, carbon dioxide (CO 2 ) gas was introduced at a flow rate of 250 cc / min at 350 ° C, vapor-phase activated for 300 minutes, and cooled to room temperature.

상기 탄소나노튜브는 증류수에서 1~2회 세척하여 120℃에서 12시간 이상 진공건조 하였으며, 카본블랙 및 폴리(비닐리덴 플루오라이드)와 함께 각각 70 : 20 : 10의 중량비로 혼합하여 집전체로 알루미늄 포일에 캐스팅한 후, 잔류 용매의 제거를 위해 120℃에서 24시간 진공건조하여 음극으로 사용하고, 양극소재로 리튬 금속을 사용하여 코인셀을 제조하였다.
The carbon nanotubes were washed once or twice in distilled water, vacuum-dried at 120 ° C. for 12 hours or more, mixed with carbon black and poly (vinylidene fluoride) at a weight ratio of 70: 20: 10, After casting in a foil, it was vacuum dried at 120 ° C for 24 hours to remove residual solvent, and used as a negative electrode, and a coin cell was produced using lithium metal as a positive electrode material.

비교예 2.Comparative Example 2

비교예 1과 동일한 과정으로 세척 건조된 탄소나노튜브에 금속미립자를 도입하기 위해, 상기 탄소나노튜브 1 g을 Sn 염화물(SnCl2·2H2O, Aldrich, 98%) 3 g이 용해된 300 ㎖의 에틸렌글리콜 용액에 넣고 4시간동안 약하게 교반을 실시하였다.In order to introduce fine metal particles into the washed and dried carbon nanotubes in the same manner as in Comparative Example 1, 1 g of the carbon nanotubes was dissolved in 300 ml of 3 g of Sn chloride (SnCl 2 .2H 2 O, Aldrich, 98% Of ethylene glycol solution, and the mixture was stirred vigorously for 4 hours.

그런 다음, 5 M 수소화리튬알루미늄(LiAlH4) 수용액 50 ㎖에 투입하여 혼합물의 pH를 조절하고 4시간 약한 교반을 실시한 후, 상기 혼합액을 초음파기기에 옮기어 2시간 처리하고, 포름알데히드 3 ㎖를 투입하여 천천히 승온 후 120℃에서 10분간 초음파 처리하고 상온까지 냉각하였다. Then, the mixture was poured into 50 ml of a 5 M aqueous solution of lithium aluminum hydride (LiAlH 4 ) to adjust the pH of the mixture, followed by weak stirring for 4 hours. Then, the mixed solution was transferred to an ultrasonic device for 2 hours, and 3 ml of formaldehyde After slowly warming, the mixture was ultrasonicated at 120 DEG C for 10 minutes and cooled to room temperature.

상기와 같이 제조된 금속미립자가 담지된 금속/활성탄소나노튜브 복합체는 증류수 및 아세톤에 충분히 세척하여 120℃에서 12시간 이상 완전 진공건조시켰다. 이때, 상기 이종합금을 도입하는 화학적 환원과정은 질소(N2) 분위기 하에서 실시하였다.The metal / activated carbon nanotube composite supported on the metal fine particles thus prepared was thoroughly washed with distilled water and acetone, and dried at 120 ° C for more than 12 hours. At this time, the chemical reduction process of introducing the heterogeneous alloy was performed in a nitrogen (N 2 ) atmosphere.

건조된 금속/활성탄소나노튜브 복합체는 증류수에서 1~2회 세척하여 120℃에서 12시간 진공건조 하였으며, 카본블랙 및 폴리(비닐리덴 플루오라이드)와 함께 각각 70 : 20 : 10의 중량비로 혼합하여 집전체로 알루미늄 포일에 캐스팅한 후, 잔류 용매의 제거를 위해 120℃에서 24시간 진공건조하여 음극으로 사용하고, 양극소재로는 리튬 금속을 사용하여 코인셀을 제조하였다.The dried metal / activated carbon nanotube composite was washed once or twice in distilled water, vacuum-dried at 120 ° C. for 12 hours, mixed with carbon black and poly (vinylidene fluoride) at a weight ratio of 70: 20: The whole was cast in an aluminum foil, vacuum dried at 120 DEG C for 24 hours to remove residual solvent, and used as a negative electrode. Lithium metal was used as a positive electrode material to prepare a coin cell.

본 발명에 따른 리튬이차전지 음극재용 이종합금이 담지된 활성탄소나노튜브 복합제 제조 조건Conditions for manufacturing the activated carbon nanotube complex agent containing the different alloy for the lithium secondary battery anode material according to the present invention 구분division 활성화조건
(활성가스/온도(℃)/시간(분))
Activation condition
(Active gas / temperature (占 폚) / hour (minute))
금속종류Metal type 금속담지량(탄소지지체 중량대비(wt.%))Amount of metal supported (wt.%) Relative to weight of carbon support 초음파 처리시간
(시간)
Ultrasonic processing time
(time)
실시예 1Example 1 CO2/1,000/30CO 2 / 1,000 / 30 -- -- -- 실시예 2Example 2 CO2/1,000/30CO 2 / 1,000 / 30 Sn, SbSn, Sb 2.52.5 22 비교예 1Comparative Example 1 CO2/350/5CO 2/350/5 -- -- -- 비교예 2Comparative Example 2 -- SnSn 1.51.5 --

본 발명에 따른 리튬이차전지 음극재용 이종합금이 담지된 활성탄소나노튜브 복합체의 초기 에너지 저장용량 및 사이클 특성The initial energy storage capacity and cycle characteristics of the activated carbon nanotube complex supported on the different alloy for the lithium secondary battery anode material according to the present invention 구분division 초기에너지 저장용량
(㎃h/g)
Initial energy storage capacity
(MAh / g)
사이클 특성
(500회 이후, 에너지 저장용량)
Cycle characteristics
(After 500 times, energy storage capacity)
실시예 1Example 1 470470 400400 실시예 2Example 2 1,8001,800 1,5501,550 비교예 1Comparative Example 1 275275 195195 비교예 2Comparative Example 2 435435 115115

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific descriptions are only for the preferred embodiment and that the scope of the present invention is not limited thereby. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (18)

이종합금(bimetallic alloy)이 담지된 활성탄소나노튜브 복합체.
Activated carbon nanotube composite loaded with a bimetallic alloy.
제 1항에 있어서,
상기 이종합금은 실리콘(Si), 인듐(In), 납(Pb), 갈륨(Ga), 게르마늄(Ge), 주석(Sn), 알루미늄(Al), 비스무트(Bi), 및 안티몬(Sb)에서 선택되는 2종의 합금금속인 것을 특징으로 하는 이종합금(bimetallic alloy)이 담지된 활성탄소나노튜브 복합체.
The method of claim 1,
The heteroalloy is formed of silicon (Si), indium (In), lead (Pb), gallium (Ga), germanium (Ge), tin (Sn), aluminum (Al), bismuth (Bi), and antimony (Sb). Activated carbon nanotube composite loaded with a bimetallic alloy, characterized in that the selected two kinds of alloy metal.
제 2항에 있어서,
상기 이종합금은 주석(Sn) 및 주석(Sn)의 합금인 것을 특징으로 하는 이종합금(bimetallic alloy)이 담지된 활성탄소나노튜브 복합체.
3. The method of claim 2,
The hetero-alloy is an activated carbon nanotube composite loaded with a bimetallic alloy, characterized in that the alloy of tin (Sn) and tin (Sn).
제 3항에 있어서,
상기 주석(Sn)/주석(Sn)의 합금비율은 0.01 내지 99.99인 것을 특징으로 하는 이종합금(bimetallic alloy)이 담지된 활성탄소나노튜브 복합체.
The method of claim 3, wherein
The alloy ratio of the tin (Sn) / tin (Sn) is an activated carbon nanotube composite loaded with a bimetallic alloy, characterized in that 0.01 to 99.99.
제1항에 있어서,
상기 활성탄소나노튜브 복합체의 초기에너지 저장용량은 450 내지 2,000 ㎃h/g인 것을 특징으로 하는 이종합금(bimetallic alloy)이 담지된 활성탄소나노튜브 복합체.
The method of claim 1,
The initial carbon storage capacity of the activated carbon nanotube composite is 450 to 2,000 mAh / g, the activated carbon nanotube composite loaded with a bimetallic alloy (bimetallic alloy).
제 1항에 있어서,
상기 활성탄소나노튜브 복합체의 500회 충방전 후 에너지저장용량은 초기 에너지저장용량의 55 내지 95%인 것을 특징으로 하는 이종합금(bimetallic alloy)이 담지된 활성탄소나노튜브 복합체.
The method of claim 1,
The energy storage capacity after 500 times of charge and discharge of the activated carbon nanotube composite is an activated carbon nanotube composite loaded with a bimetallic alloy, characterized in that 55 to 95% of the initial energy storage capacity.
1) 이산화탄소 기체를 이용한 고온 기상활성화 방법으로 탄소나노튜브의 끝단의 개방하고 외벽의 표면에 나노기공이 발현된 활성점이 다량 부여된 활성탄소나노튜브를 제조하는 단계;
2) 화학적 환원법을 통해 금속미립자의 크기 및 담지량이 제어된 금속미립자를 상기 활성탄소나노튜브에 도입하는 단계; 및
3) 상기 활성탄소나노튜브에 도입된 금속미립자를 튜브 속 삽입 및 튜브 간 웹 안에 고정시키는 단계;를 포함하는 이종합금(bimetallic alloy)이 담지된 활성탄소나노튜브 복합체 제조방법.
1) preparing activated carbon nanotubes having a large amount of active points in which carbon nanotubes are open at the ends of the carbon nanotubes and nanopores are expressed on the surface of the outer wall by carbon dioxide gas;
2) introducing the metal fine particles having a controlled size and loading of the metal fine particles through the chemical reduction method into the activated carbon nanotubes; And
3) inserting the metal fine particles introduced into the activated carbon nanotubes into the tube and fixing them in the inter-tube web; a method of manufacturing an activated carbon nanotube composite loaded with a bimetallic alloy comprising a.
제 7항에 있어서,
상기 탄소나노튜브는 활성탄, 활성탄소섬유, 피치(pitch)계 나노섬유, 흑연산화물, 그래핀, 그래핀 산화물, 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 및 다중벽 탄소나노튜브에서 선택되는 1종 이상인 것을 특징으로 하는 제조방법.
8. The method of claim 7,
The carbon nanotubes are selected from activated carbon, activated carbon fibers, pitch-based nanofibers, graphite oxide, graphene, graphene oxide, single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes 1 The production method characterized by the above-mentioned species.
제 7항에 있어서,
상기 1) 단계의 고온 기상활성화는 승온 과정에서의 반응기 내 분위기는 질소, 헬륨, 및 아르곤에서 선택되는 1종 이상의 비활성 기체를 사용하며, 승온 속도는 1 내지 5℃/min.이고, 기상활성화 온도는 400 내지 1,500℃인 것을 특징으로 하는 제조방법.
8. The method of claim 7,
The high temperature gas phase activation of step 1) is the atmosphere in the reactor during the temperature increase process using at least one inert gas selected from nitrogen, helium, and argon, the temperature increase rate is 1 to 5 ℃ / min. The manufacturing method characterized in that the 400 to 1,500 ℃.
제 7항에 있어서,
상기 1) 단계의 고온 기상활성화 시간은 5분 내지 2시간이고, 이산화탄소, 산소, 공기, 황화수소, 황화산화가스, 질화산화가스 및 암모니아에서 선택되는 활성기체의 유입량 속도는 10 내지 500 ㏄/min.인 것을 특징으로 하는 제조방법.
8. The method of claim 7,
The high temperature gas phase activation time of step 1) is 5 minutes to 2 hours, and the inflow rate of the active gas selected from carbon dioxide, oxygen, air, hydrogen sulfide, sulfur sulfide gas, nitric oxide gas and ammonia is 10 to 500 mW / min. Production method characterized in that.
제 7항에 있어서,
상기 2) 단계의 금속미립자는 리튬이온과 반응하는 금속인 실리콘(Si), 인듐(In), 납(Pb), 갈륨(Ga), 게르마늄(Ge), 주석(Sn), 알루미늄(Al), 비스무트(Bi), 및 안티몬(Sb)에서 선택되는 2종의 합금금속인 것을 특징으로 하는 제조방법.
8. The method of claim 7,
The metal fine particles of step 2) are silicon (Si), indium (In), lead (Pb), gallium (Ga), germanium (Ge), tin (Sn), aluminum (Al), which are metals reacting with lithium ions. Bismuth (Bi) and antimony (Sb) is a manufacturing method characterized in that the two kinds of alloy metals.
제 11항에 있어서,
상기 금속미립자는 주석(Sn) 및 주석(Sn)의 합금인 것을 특징으로 하는 제조방법.
12. The method of claim 11,
The metal particulate is a manufacturing method characterized in that the alloy of tin (Sn) and tin (Sn).
제 12항에 있어서,
상기 주석(Sn)/주석(Sn)의 합금비율은 0.01 내지 99.99인 것을 특징으로 하는 제조방법.
13. The method of claim 12,
The alloy ratio of the tin (Sn) / tin (Sn) is a manufacturing method, characterized in that 0.01 to 99.99.
제 7항에 있어서,
상기 2)단계에서 금속의 도입량은 활성탄소나노튜브 중량 대비 0.01 내지 70 wt.% 인 것을 특징으로 하는 제조방법.
8. The method of claim 7,
The amount of metal introduced in step 2) is 0.01 to 70 wt.%, Based on the weight of activated carbon nanotubes.
제 7항에 있어서,
상기 2) 단계에서 이종(bimetallic) 금속이온화합물에서 금속이온을 환원시키기 위해 환원성 용매로 수산화나트륨(NaOH), 수소화붕소나트륨(NaBH4), 및 수소화리튬알루미늄(LiAlH4)에서 선택되는 1종 이상의 금속수소화물을 첨가하는 것을 특징으로 하는 제조방법.
8. The method of claim 7,
At least one selected from sodium hydroxide (NaOH), sodium borohydride (NaBH 4 ), and lithium aluminum hydride (LiAlH 4 ) as a reducing solvent to reduce metal ions in the bimetallic metal ion compound in step 2). Method for producing a metal hydride.
제 7항에 있어서,
상기 3) 단계는 pH 7.0 내지 13.0 범위에서 이루어지는 것을 특징으로 하는 제조방법.
8. The method of claim 7,
The step 3) is characterized in that the production method is made in the range of pH 7.0 to 13.0.
제 7항에 있어서,
상기 금속미립자의 크기를 제어하고 활성탄소나노튜브의 튜브 속 삽입 및 튜브간 웹 안에 고분산으로 고정시키기 위해, 금속이온화합물과 함께 환원성 용매가 혼합된 활성탄소나노튜브를 초음파기기를 이용하여 1분 내지 24시간 처리하는 것을 특징으로 하는 제조방법.
8. The method of claim 7,
In order to control the size of the metal fine particles and to insert the activated carbon nanotubes into the tube and to fix the highly dispersed in the web between the tubes, the activated carbon nanotubes containing the metal ion compound and the reducing solvent were mixed for 1 minute to 24 minutes using an ultrasonic apparatus. Process for producing a time characterized in that.
제 7항에 있어서,
상기 3) 단계 이후,
이종합금이 담지된 활성탄소나노튜브를 멤브레인 필러를 이용하여 여과한 다음, 휘발성 용매로 세척하여 잔존하는 불순물이나 미합성 유기물질을 제거하고, 진공오븐을 이용하여 100 내지 150℃에서 24 내지 72시간 건조시키는 단계;를 더 포함하는 것을 특징으로 하는 제조방법.
8. The method of claim 7,
After step 3),
Activated carbon nanotubes loaded with different alloys were filtered using a membrane filler, and then washed with a volatile solvent to remove residual impurities or unsynthetic organic substances, and dried at 100 to 150 ° C. for 24 to 72 hours using a vacuum oven. The manufacturing method characterized in that it further comprises.
KR1020120084846A 2012-08-02 2012-08-02 Preparation of bimetallic alloys loaded activated carbon nanotubes as anode materials for secondary batteries KR101414536B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120084846A KR101414536B1 (en) 2012-08-02 2012-08-02 Preparation of bimetallic alloys loaded activated carbon nanotubes as anode materials for secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120084846A KR101414536B1 (en) 2012-08-02 2012-08-02 Preparation of bimetallic alloys loaded activated carbon nanotubes as anode materials for secondary batteries

Publications (2)

Publication Number Publication Date
KR20140018569A true KR20140018569A (en) 2014-02-13
KR101414536B1 KR101414536B1 (en) 2014-07-04

Family

ID=50266541

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120084846A KR101414536B1 (en) 2012-08-02 2012-08-02 Preparation of bimetallic alloys loaded activated carbon nanotubes as anode materials for secondary batteries

Country Status (1)

Country Link
KR (1) KR101414536B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268817A (en) * 2016-07-18 2017-01-04 华中科技大学 A kind of preparation method of non-precious metal catalyst and products thereof
CN114472902A (en) * 2022-01-28 2022-05-13 武汉科技大学 Two-dimensional layered antimony negative electrode material, two-dimensional antimonene material, and preparation method and application thereof
WO2022114694A1 (en) 2020-11-25 2022-06-02 주식회사 엘지에너지솔루션 Active carbon and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016126440A1 (en) * 2015-02-05 2016-08-11 Board Of Regents, The University Of Texas System Bismuth-antimony anodes for lithium or sodium ion batteries

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268817A (en) * 2016-07-18 2017-01-04 华中科技大学 A kind of preparation method of non-precious metal catalyst and products thereof
CN106268817B (en) * 2016-07-18 2019-04-12 华中科技大学 A kind of preparation method of non-precious metal catalyst and products thereof
WO2022114694A1 (en) 2020-11-25 2022-06-02 주식회사 엘지에너지솔루션 Active carbon and manufacturing method therefor
KR20220072145A (en) 2020-11-25 2022-06-02 주식회사 엘지에너지솔루션 Activated carbon and method for preparing the same
CN114472902A (en) * 2022-01-28 2022-05-13 武汉科技大学 Two-dimensional layered antimony negative electrode material, two-dimensional antimonene material, and preparation method and application thereof
CN114472902B (en) * 2022-01-28 2024-01-26 武汉科技大学 Two-dimensional layered antimony cathode material, two-dimensional antimony alkene material, and preparation methods and applications thereof

Also Published As

Publication number Publication date
KR101414536B1 (en) 2014-07-04

Similar Documents

Publication Publication Date Title
US20200028150A1 (en) Cathode active material for lithium-ion secondary battery and preparation method thereof, cathode pole piece for lithium-ion secondary battery, and lithium-ion secondary battery
Zhang et al. Metal–organic framework-assisted synthesis of compact Fe 2 O 3 nanotubes in Co 3 O 4 host with enhanced lithium storage properties
Zhang et al. SnO2@ PANI core–shell nanorod arrays on 3D graphite foam: a high-performance integrated electrode for lithium-ion batteries
Zhang et al. Nature-inspired design of NiS/carbon microspheres for high-performance hybrid supercapacitors
Yang et al. ZnO nanoparticles filled tetrapod-shaped carbon shell for lithium-sulfur batteries
Li et al. Preparation of promising anode materials with Sn-MOF as precursors for superior lithium and sodium storage
JP2016526262A5 (en)
CN113161533B (en) MOF-derived ZnO@C composite material and application thereof
KR101414536B1 (en) Preparation of bimetallic alloys loaded activated carbon nanotubes as anode materials for secondary batteries
CN111943256A (en) Preparation method and application of flexible self-supporting tin-based sulfide-carbon composite material
CN111668453A (en) Flexible self-supporting positive electrode material and preparation method and application thereof
Ganesan et al. Robust nanocube framework CoS2-based composites as high-performance anodes for Li-and Na-ion batteries
JP2018523280A (en) Lithium sulfide electrode and method
CN111485280A (en) Single crystal mesoporous Mo for lithium sulfur battery anode material3N2Preparation method and application thereof
Xiang et al. Synergistic capture and conversion of polysulfides in cathode composites with multidimensional framework structures
Wang et al. NiSe2 nanoparticles encapsulated in CNTs covered and N-doped TiN/carbon nanofibers as a binder-free anode for advanced sodium-ion batteries
Xie et al. Fe3C encapsulated in N-doped carbon as potassium ion battery anode with high capacity and long-term cycling performance
He et al. Composite of Ge and α-MnSe in carbon nanofibers as a high-performance anode material for LIBs
He et al. Self-supporting ZnP2@ N, P co-doped carbon nanofibers as high-performance anode material for lithium-ion batteries
Choi et al. MOF-derived carbon/ZnS nanoparticle composite interwoven with structural and conductive CNT scaffolds for ultradurable K-ion storage
Chen et al. Using amorphous CoSx hollow nanocages as cathodes for high-performance magnesium-lithium dual-ion batteries
Zhang et al. Composite cathodes and modified separators based on corn-silk-based porous carbon for high performance lithium–sulfur batteries
CN113506860A (en) Carbon nanotube-in-tube @ selenium composite material and preparation method and application thereof
Ma et al. Three-dimensional bacterial cellulose and MOF-74 derivatives as anode for high performance potassium-ion batteries
He et al. Tailoring sodium iron hexacyanoferrate/carbon nanotube arrays with 3D networks for efficient sodium ion storage

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170223

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190408

Year of fee payment: 6