KR20130096457A - A method for the three-dimensional visualization of underwater geo-spatial information using underwater sounding characteristic parameters - Google Patents

A method for the three-dimensional visualization of underwater geo-spatial information using underwater sounding characteristic parameters

Info

Publication number
KR20130096457A
KR20130096457A KR1020120017918A KR20120017918A KR20130096457A KR 20130096457 A KR20130096457 A KR 20130096457A KR 1020120017918 A KR1020120017918 A KR 1020120017918A KR 20120017918 A KR20120017918 A KR 20120017918A KR 20130096457 A KR20130096457 A KR 20130096457A
Authority
KR
South Korea
Prior art keywords
underwater
information
underwater sound
wave measuring
sound wave
Prior art date
Application number
KR1020120017918A
Other languages
Korean (ko)
Inventor
오정환
김정욱
김수기
Original Assignee
(주)지오투정보기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)지오투정보기술 filed Critical (주)지오투정보기술
Priority to KR1020120017918A priority Critical patent/KR20130096457A/en
Publication of KR20130096457A publication Critical patent/KR20130096457A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/02Prospecting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE: A method for visualizing three-dimensional (3D) submarine topography information by mounting an underwater sound characteristics parameter sensor of an underwater sound probe is provided to produce the resolution of accurate topography information using echo sounder data. CONSTITUTION: Submarine topography information is extracted from an underwater sound wave measuring device (S510). An underwater sound characteristics parameter sensor is attached to the underwater sound wave measuring device. The Salinity of a sound wave measuring point is measured from the underwater sound characteristics parameter sensor (S530). A parameter is calculated using information which is obtained by the underwater sound characteristics parameter sensor (S540). The submarine topography information is corrected by applying the parameter (S550). [Reference numerals] (AA) Start; (BB) Finish; (S510) Extract submarine topography information from an underwater sound wave measuring device; (S520) Measure the temperature of a sound wave measuring point by using a temperature sensor of the underwater sound wave measuring device; (S530) Measure the salinity of the sound wave measuring point by using a salinity sensor of the underwater sound wave measuring device; (S540) Calculate an underwater sound characteristic parameter based on the information obtained by the underwater sound wave measuring device; (S550) Correct the underwater sound characteristic parameter in which the temperature, the salinity, and the underwater sound characteristic parameter are applied to the submarine topography information; (S560) Generate three-dimensional topography information by using the corrected submarine topography information

Description

수중음향탐측기의 수중 음향특성 파라메타 센서를 장착하여 3차원 해저지형정보를 가시화하는 방법{A METHOD FOR THE THREE-DIMENSIONAL VISUALIZATION OF UNDERWATER GEO-SPATIAL INFORMATION USING UNDERWATER SOUNDING CHARACTERISTIC PARAMETERS}A method for visualizing three-dimensional subterranean topographical information by attaching an underwater acoustic characteristic parameter sensor of an underwater acoustic detector.

본 발명은 수중 음향특성 파라메타를 이용하여 3차원 해저지형정보를 생성하는 방법에 관한 것이다.The present invention relates to a method for generating three-dimensional seabed topographical information using underwater acoustic characteristic parameters.

최근 해양지질, 영해 관리 등 해양자원관리의 필요성과 중요성이 증가함에 따라 신속하고 정확한 해양 공간정보를 취득하기 위한 기술이 고도화되고 있으며, 취득된 해양공간정보는 해양지질도 및 국가 해양기본도, 해저지형 등을 구축하여 활용되어지고 있다. Recently, as the necessity and importance of marine resource management such as marine geology and territorial sea management have increased, technologies for acquiring rapid and accurate marine spatial information have been advanced. It is being used to build.

해양 공간정보를 이용하는 분야는 육상 공간정보만큼이나 관심이 대두되고 있으며 이를 이용하여 구글 및 마이크로소프트 사에서는 인터넷 기반의 3차원 해저지형 지도서비스를 제공하고 있다. 또한 음향 또는 레이저를 이용하여 취득된 해양 공간정보를 처리할 수 있는 소프트웨어 산업시장은 다양성 및 전문성을 접목하여 공간정보 기반기술의 응용 분야를 창출하는데 기여하고 있다.The field of using marine spatial information is as much interest as land and spatial information, and using this, Google and Microsoft provide internet-based three-dimensional undersea map service. In addition, the software industry market that can process marine spatial information acquired by using acoustic or laser is contributing to creating applications of spatial information-based technology by combining diversity and expertise.

이러한 해양 공간정보의 기초 자료인 해저지형측량 측량 데이터, 해양지층탐사 정보, 항공 레이저 측량 정보, 수중 음파 시스템 정보 등에 대해 보다 정확히 취득하고 분석하기 위한 툴들을 이용하여 효과적으로 실감있고 정확한 공간정보를 생성하기 위하여 멀티빔을 이용한 분석 기법들이 증가하고 있는 실정이다. To create realistic and accurate spatial information effectively by using tools for more accurate acquisition and analysis of subterranean geodetic survey data, marine geological survey information, aerial laser survey information, underwater sound system information, etc. For this purpose, analytical techniques using multibeams are increasing.

멀티빔은 해저면에 대한 정확한 정보를 제공하지만 해양 수중에서 멀티빔을 이용하여 해저면을 취득하면서 발생되는 오차를 소거하여 보다 정확한 해저 공간정보를 최적화할 필요가 있다.Although multibeam provides accurate information on the seabed, it is necessary to optimize more accurate seafloor spatial information by eliminating errors generated while acquiring the seabed using the multibeam in the sea.

본 발명에서는 멀티빔 음향 측심기가 온도, 염분도 등 수중 음향특성 파라메타를 감지할 수 있는 센서를 구비함으로써, 신호지연으로 인해 발생되는 오차를 보정할 수 있도록 한다.In the present invention, the multi-beam acoustic echo sounder is provided with a sensor capable of detecting underwater acoustic characteristic parameters such as temperature and salinity, thereby correcting errors caused by signal delay.

또한, 본 발명은, 음향 측심기 데이터를 이용하여 보다 정확하고 신속하며, 효율적으로 해저지형 자료를 생성하고자 한다.In addition, the present invention intends to generate subterranean terrain data more accurately, quickly and efficiently by using echo sounder data.

또한, 본 발명은, 사용자 필요에 따라 해저지형의 정보를 3차원으로 구축하고자 한다.In addition, the present invention seeks to construct information on the seabed topography in three dimensions according to user needs.

또한, 본 발명은, 해저지형 정보의 후처리 과정을 통해 사용자가 요구하는 3차원 지형정보의 해상도를 획득하고자 한다.In addition, the present invention, to obtain the resolution of the three-dimensional terrain information required by the user through the post-processing of the seabed terrain information.

이러한 기술적 과제를 달성하기 위하여, 본 발명은 온도 센서(S611)를 포함하는 음향 측심기(S600)를 이용하여 수심을 측정하는 장치에서와 염분도 센서(S612)을 이용하여 염분을 측정하고, 수압 센서(S613)를 이용하여 수압을 측정하는 장치를 포함하며, 측정된 해양특성인자를 이용하여 상기 음향 측심기 주변의 온도 센서(S611)로부터 측정된 값에 따라 다음 수학식,

Figure pat00001
(여기서, 'C'는 음파의 속도를 나타내고, 'r' 은 일정한 압력에서의 특정 온도 가열계수, 'ρ'는 밀도를 나타내며, 'B'는 등온체적에서의 탄성계수이며, 일반적으로 20℃ 증류수의 경우 대기압에서 γ=1.004, B=2.18 ㅧ 109 N/㎥, ρ=998kg/㎥이며 음속은 1481m/s을 이용하여 상기 음향 측심기의 오차값을 보정하는 오차보정부(S630); γ, B 및 ρ는 해수온도 T와 압력 P에 따라 달라지며 해수의 매질의 화학적 성분인 염분도 S또는 전기적 전도도 G에 의해 나타낼 수 있으므로 음파의 속도는 C=f(T,P,S)로 연산하는 연산부(S640)를 제공한다.In order to achieve this technical problem, the present invention is to measure the salinity using the salinity sensor (S612) and in the device for measuring the water depth using the acoustic echo sounder (S600) including a temperature sensor (S611), S613) includes a device for measuring the water pressure, and according to the value measured from the temperature sensor (S611) around the sound echo sounder using the measured marine characteristic factor,
Figure pat00001
Where 'C' is the velocity of sound waves, 'r' is the specific temperature heating coefficient at constant pressure, 'ρ' is the density, and 'B' is the elastic modulus in the isothermal volume, typically 20 ° C. Distilled water at atmospheric pressure, γ = 1.004, B = 2.18 ㅧ 10 9 N / ㎥, ρ = 998kg / ㎥ and sound speed using 1481m / s to correct the error value of the sound echo sounder (S630); , B and ρ depend on the seawater temperature T and pressure P and the salinity, the chemical component of the medium of the seawater, can be represented by S or the electrical conductivity, G. An operation unit S640 is provided.

연산부(S640)에서 음파의 속도 C를 구하기 위하여 BENCHMA 방정식

Figure pat00002
로 여기에서, K1=5.01132, K2=-1.266383E-2, K3=2.062107E-8, K4=-1.052396E-8, K5=-5.513036E-2, K6=9.513664E-5, K7=2.221008E-4, K8=1.332947, K9=1.605336E-2, K10=2.12448E-7, K11=2.183988E-13, K12=-2.253828E-13이며, 압력 P는
Figure pat00003
으로 산출되며, 염분도 S와 전분도 G와의 관계에 의하여 COLLOAS방정식으로부터 염분도
Figure pat00004
을 연산부(S640)에서 연산한다. BENCHMA equation for calculating the velocity C of the sound wave in the calculating unit (S640)
Figure pat00002
Where K 1 = 5.01132, K 2 = -1.266383E-2, K 3 = 2.062107E-8, K 4 = -1.052396E-8, K 5 = -5.513036E-2, K 6 = 9.513664E- 5, K 7 = 2.221008E-4, K 8 = 1.332947, K 9 = 1.605336E-2, K 10 = 2.12448E-7, K 11 = 2.183988E-13, K 12 = -2.253828E-13, pressure P is
Figure pat00003
The salinity is calculated from the COLLOAS equation by the relationship between salinity S and starch G.
Figure pat00004
Is calculated by the operation unit (S640).

또한 발명에서, 3차원 해저지형정보를 고정밀해상도로 가시화 하기 위해 오차보정부(S630)과 연산부(S640)에서 산출된 수중음향특성 파라메타를 적용한 해저 지형정보의 보정값을 3차원으로 보여주는 것을 특징으로 한다.In addition, in the present invention, in order to visualize the three-dimensional seabed topographical information with high precision resolution, it is characterized in that the correction value of the seabed topographical information applied by the underwater acoustic characteristic parameters calculated by the error correction unit (S630) and the calculation unit (S640) in three dimensions do.

본 발명에 따르면, 수중음향측정기가 온도, 염분도 및 수압 등 수중 음향특성 파라메타 정보를 감지할 수 있는 센서를 구비함으로써, 신호 지연으로 인한 오차를 보정할 수 있다. 또한, 센서를 통해서 획득된 수중 음향특성 파라메타 정보를 이용하여 오차값을 보정함으로써, 수중음향측정기가 보다 정밀하게 3차원 해저 지형정보를 측정할 수 있다. According to the present invention, the hydroacoustic measuring instrument is provided with a sensor capable of detecting underwater acoustic characteristic parameter information such as temperature, salinity and water pressure, thereby correcting errors due to signal delay. In addition, by correcting the error value by using the underwater acoustic characteristic parameter information obtained through the sensor, the underwater acoustic measuring instrument can more accurately measure the three-dimensional underwater terrain information.

도 1은 본 발명이 적용되는 일실시예로서, 수중음향측정기를 이용한 해저 지형정보를 측정하는 과정을 나타낸다.
도 2은 본 발명이 적용되는 실시예로서, 수중음향측정기에서 음향특성 파라메타를 취득하기 위하여 센서를 설명하기 위해 나타낸 것이다.
도 3는 본 발명이 적용되는 실시예로서, 수증음향측정기(S600)에서 센서부(S610)에서 측정된 수중음향측정기 파라메타 센서를 이용하여 수중 지형정보를 처리하는 장치를 설명하기 위해 나타낸 도면이다.
1 is a diagram illustrating a process of measuring topographical information of an ocean floor using a hydroacoustic instrument as an embodiment to which the present invention is applied.
FIG. 2 is an embodiment to which the present invention is applied and is shown to explain a sensor for acquiring acoustic characteristic parameters in a hydroacoustic instrument.
3 is an embodiment to which the present invention is applied and is a view showing an apparatus for processing underwater terrain information using the hydroacoustic measuring instrument parameter sensor measured by the sensor unit S610 in the hydroacoustic acoustic measuring apparatus S600.

이하, 첨부된 도면을 참조하여 본 발명의 실시예의 작용을 설명하며, 도면에 의해서 설명되는 본 발명의 작용은 하나의 실시예로서 설명되는 것이며, 이것에 의해서 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한되지는 않는다.Hereinafter, the operation of the embodiments of the present invention will be described with reference to the accompanying drawings, and the operation of the present invention described by the drawings will be described as one embodiment, whereby the technical idea of the present invention and its core configuration and The action is not limited.

아울러, 본 발명에서 사용되는 용어는 가능한 한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어를 사용하여 설명한다. 그러한 경우에는 해당 부분의 상세 설명에서 그 의미를 명확히 기재하므로, 본 발명의 설명에서 사용된 용어의 명칭만으로 단순 해석되어서는 안 될 것이며 그 해당 용어의 의미까지 파악하여 해석되어야 함을 밝혀두고자 한다.In addition, the terminology used in the present invention was selected as a general term widely used as possible now, in a specific case will be described using terms arbitrarily selected by the applicant. In such a case, the meaning is clearly stated in the detailed description of the relevant part, so it should be understood that the name of the term used in the description of the present invention should not be simply interpreted and that the meaning of the corresponding term should be understood and interpreted .

일반적으로 해저지형측량이란, 해역 및 수로의 수저면(水底面)을 구성하고 있는 형상을 묘사하기 위해 해상 위치 측량 및 수심측량작업을 의미하며, 수면 또는 육상에서 서로 다른 위치에 있는 점 사이의 상대적 위치관계를 구하는 것으로서, 지구표면에 있는 모든 점의 관계위치를 결정하고, 어떤 부분의 위치ㆍ형상ㆍ면적을 측정한 후, 각 점의 위치관계 또는 기타 자료를 기초로 하여 해안 및 연안 지도 등을 제작하거나 해저지형을 구하여 도시(圖示) 하는 것을 뜻한다. 또한, 이러한 측량의 종류에 음향 또는 음파를 이용하여 수중의 지형정보를 측정하고 있다. 그리고, 수중음향측정기, 멀티빔을 이용하여 수중 지형정보를 취득하여 3차원 지형정보를 가시화 한다.In general, seabed topography means sea position surveying and depth surveying operations to describe the shape constituting the bottom surface of sea areas and waterways, and means the relative between points at different locations on the surface of water or on land. To determine the positional relationship, determine the relative position of all points on the earth's surface, measure the position, shape, and area of a part, and then map the coastal and coastal maps based on the positional relationship or other data of each point. It means making or drawing seabed topography. In addition, the terrain information in the water is measured using acoustic or sound waves for this type of surveying. Then, the underwater acoustic information is acquired using the underwater acoustic measuring instrument and the multi-beam to visualize the 3D terrain information.

본 발명의 일실시예에 따른 수중 음향특성 파라메타를 이용하여 3차원 지형공간정보를 가시화하는 방법에 관하여 도면을 참좋하여 설명하면 다음과 같다.The method for visualizing 3D geospatial information using underwater acoustic characteristic parameters according to an embodiment of the present invention will be described below with reference to the drawings.

도 1은 본 발명이 적용되는 일실시예로서, 수중 음향특성 파라메타를 이용하여 3차원 지형공간정보를 가시화하는 방법을 나타낸다.1 is a view illustrating a method of visualizing 3D geospatial information using an underwater acoustic characteristic parameter as an embodiment to which the present invention is applied.

그리고 도 2는 수중 음향측정기(S600)에 부착된 수중 음향특성 파라메타 센서를 나타낸 것으로 온도센서(S611), 염분도 센서(S612) 및 수압 센서(S613)을 포함한다.2 shows an underwater acoustic characteristic parameter sensor attached to the underwater acoustic sensor S600, and includes a temperature sensor S611, a salinity sensor S612, and a water pressure sensor S613.

먼저, 상기 수중 음향측정기(S600)에 부착된 수중 음향특성 파라메타 센서부(S610)로부터 취득된 데이터를 데이터 저장부(S620), 상기 저장된 정보를 보정하여 오차를 최소화 하는 오차 보정부(S630), 보정된 해저 지형정보를 이용하여 3차원 가시화 하기 위한 연산부(S640)으로 구성된다.First, a data storage unit S620, an error correction unit S630 that minimizes an error by correcting the stored information with data acquired from the underwater acoustic characteristic parameter sensor unit S610 attached to the underwater acoustic measurement device S600, It is composed of a calculation unit (S640) for three-dimensional visualization by using the corrected seabed terrain information.

Claims (1)

수중음파측정기에 부착된 수중 음향특성 파라메타 센서로부터 수중의 온도를 측정하는 단계;
상기 수중음파측정기에 부착된 수중 음향특성 파라메타 센서로부터 음파측정지점의 염분도를 측정하는 단계;
상기 수중음파측정기에 부착된 수중 음향특성 파라메타 센서로부터 음파측정지점의 수압을 측정하는 단계;
수중 음향특성 파라메타 센서로 취득된 정보를 이용하여 오차를 소거한 파라메타를 산출하는 단계;
상기 오차를 소거한 수중 음향특성 파라메타를 적용하여 해저 지형정보를 보정하는 단계;
상기 해저 지형정보의 보정된 값을 이용하여 3차원 해저지형정보를 획득하는 단계를 포함하되,
상기 3차원 해저지형정보는 수중 음향특성 파라메타를 적용하여 지형정보를 취득 시에 수중 환경을 고려하여 획득된 것을 특징으로 하는 3차원 해저지형정보 생성방법.
Measuring the temperature of the water from an underwater acoustic parameter sensor attached to the sonar;
Measuring the salinity of the sonic measurement point from the underwater acoustic parameter sensor attached to the sonic analyzer;
Measuring water pressure at an acoustic measurement point from an underwater acoustic characteristic sensor attached to the sonar;
Calculating an error canceled parameter using information acquired by the underwater acoustic characteristic parameter sensor;
Correcting the seafloor topographical information by applying the underwater acoustic characteristic parameter that eliminates the error;
Acquiring three-dimensional undersea landform information by using the corrected value of the undersea terrain information,
The three-dimensional seabed topographical information is obtained by considering the underwater environment when acquiring the topographical information by applying the underwater acoustic characteristics parameters.
KR1020120017918A 2012-02-22 2012-02-22 A method for the three-dimensional visualization of underwater geo-spatial information using underwater sounding characteristic parameters KR20130096457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120017918A KR20130096457A (en) 2012-02-22 2012-02-22 A method for the three-dimensional visualization of underwater geo-spatial information using underwater sounding characteristic parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120017918A KR20130096457A (en) 2012-02-22 2012-02-22 A method for the three-dimensional visualization of underwater geo-spatial information using underwater sounding characteristic parameters

Publications (1)

Publication Number Publication Date
KR20130096457A true KR20130096457A (en) 2013-08-30

Family

ID=49219330

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120017918A KR20130096457A (en) 2012-02-22 2012-02-22 A method for the three-dimensional visualization of underwater geo-spatial information using underwater sounding characteristic parameters

Country Status (1)

Country Link
KR (1) KR20130096457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128617A (en) * 2022-05-31 2022-09-30 青岛海洋地质研究所 High-precision seabed imaging method suitable for deep-sea mineral resource exploration area

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128617A (en) * 2022-05-31 2022-09-30 青岛海洋地质研究所 High-precision seabed imaging method suitable for deep-sea mineral resource exploration area
CN115128617B (en) * 2022-05-31 2024-04-05 青岛海洋地质研究所 High-precision submarine imaging method suitable for deep sea mineral resource exploration area

Similar Documents

Publication Publication Date Title
Chen et al. Review of AUV underwater terrain matching navigation
EP3078991B1 (en) Method for swell effect and mis-tie correction in high-resolution seismic data using multi-beam echo sounder data
JP4651739B2 (en) Streamer electrical resistivity exploration system and riverbed ground structure analysis method using the same
US10520631B2 (en) Magnetic field measurement via streamer cables
JP2007292729A (en) Underwater sailing body and positioning method of underwater sailing body
MX2011008293A (en) Particle motion sensor-based streamer positioning system.
Lecours et al. Artefacts in marine digital terrain models: A multiscale analysis of their impact on the derivation of terrain attributes
AU2020200040B2 (en) Seismic streamer shape correction using derived compensated magnetic fields
CN111220146B (en) Underwater terrain matching and positioning method based on Gaussian process regression learning
CN110926459A (en) Method and equipment for processing multi-beam data and storage medium thereof
Grządziel et al. Estimation of effective swath width for dual-head multibeam echosounder
US20130046472A1 (en) Method of determining the relative position of two detectors at the bottom of the sea
Lucieer et al. Seafloor mapping field manual for multibeam sonar
US9423521B2 (en) Method of determining the position of a detector disposed at the bottom of the sea
KR20130096457A (en) A method for the three-dimensional visualization of underwater geo-spatial information using underwater sounding characteristic parameters
Fernandes et al. Modeling positional uncertainty for hydrographic surveys with AUV
Henley et al. Performance of 3D forward looking sonar for bathymetric survey
CN102901472A (en) Detection method of single-wave-beam depth sounder
Song et al. Underwater slope measurement using a tilted multibeam sonar head
CN111948676A (en) Method for acquiring position of reference element in real time in long baseline positioning system of floating buoy
Willumsen et al. Filtering depth measurements in underwater vehicles for improved seabed imaging
Brisson et al. Multiphase echosounder to improve shallow-water surveys
de Souza et al. Reservoir monitoring using a multi-phase echo sounder: A case study
Tauriello Advancing a Design for Trusted Community Bathymetry
Ma et al. A rigorous real-time acoustic positioning method for ocean bottom seismic exploration

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid