KR20130070263A - One-pot fabrication of silver nanoparticles decorated polypyrrole nanotubes by chemical oxidation polymeriztion - Google Patents

One-pot fabrication of silver nanoparticles decorated polypyrrole nanotubes by chemical oxidation polymeriztion Download PDF

Info

Publication number
KR20130070263A
KR20130070263A KR1020110137500A KR20110137500A KR20130070263A KR 20130070263 A KR20130070263 A KR 20130070263A KR 1020110137500 A KR1020110137500 A KR 1020110137500A KR 20110137500 A KR20110137500 A KR 20110137500A KR 20130070263 A KR20130070263 A KR 20130070263A
Authority
KR
South Korea
Prior art keywords
silver
silver nanoparticles
polypyrrole
template
polymerization
Prior art date
Application number
KR1020110137500A
Other languages
Korean (ko)
Inventor
장정식
송주영
김현영
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020110137500A priority Critical patent/KR20130070263A/en
Publication of KR20130070263A publication Critical patent/KR20130070263A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE: An one-pot fabrication method of silver nanoparticles embedded polypyrrole nanotubes is provided to obtain silver nanoparticles embedded polypyrrole nanotubes using silver ions as the oxidizer of chemical oxidation polymerization. CONSTITUTION: A fabrication method of polypyrrole nanotubes includes the following steps of: arranging an anodic aluminum oxide template in a silver cation and iron cation solution, and absorbing silver cations and iron cations on the anodic aluminum oxide template; polymerizing pyrrole monomer on the anodic oxide template by vapor deposition; reducing silver ions from the anodic aluminum oxide template, and generating silver nanoparticles; generating polypyrrole by the chemical oxidation polymerization of the pyrrole monomer; removing the anodic oxide aluminum template, washing the anodic oxide aluminum template with methanol, and collecting polypyrrole nanotubes containing silver nanoparticles.

Description

화학적 산화 중합법을 이용한 은 나노 입자가 박힌 폴리피롤 나노 튜브의 원-팟 제조방법 {One-pot fabrication of silver nanoparticles decorated polypyrrole nanotubes by chemical oxidation polymeriztion} One-pot fabrication of silver nanoparticles decorated polypyrrole nanotubes by chemical oxidation polymeriztion}

본 발명은 은 나노 입자가 박힌 폴리피롤 나노 튜브의 제조 방법에 관한 것으로, 화학적 산화 중합법을 이용하여 은 나노 입자를 함유한 폴리피롤 나노 튜브를 만드는 방법을 제시한다.The present invention relates to a method for producing polypyrrole nanotubes embedded with silver nanoparticles, and provides a method for producing polypyrrole nanotubes containing silver nanoparticles by chemical oxidation polymerization.

박테리아 및 미세 세균에 의한 감염성 질병이 증가하고 각종 생화학 테러에 대한 위험성이 증가하면서 항균 물질의 제조 및 항균제로의 응용에 관련된 연구가 주목받고 있다. 다양한 항균제 중에서도 널리 연구된 물질인 은 나노 입자는 표면에서부터 은 이온을 확산시켜, 확산 된 은 이온이 박테리아나 미세 세균의 세포벽에 들러붙어 세포의 단백질 변형을 유도하여 항균 능력을 발휘하는 물질이다. 특히 나노 크기의 은 입자는 표면 반응성의 증가로 인한 높은 항균력으로 인해 다양한 살균 과정에 적극 활용되어왔다.Increasing infectious diseases caused by bacteria and micro-bacteria and increasing the risk of various biochemical terrors, research on the production of antimicrobial materials and their application to antimicrobial agents has attracted attention. Among the various antimicrobial agents, silver nanoparticles are widely studied and diffuse silver ions from the surface, and the diffuse silver ions stick to the cell walls of bacteria or micro-bacteria to induce protein modification of cells and thus exhibit antimicrobial ability. In particular, nano-sized silver particles have been actively used in various sterilization processes due to the high antimicrobial activity due to increased surface reactivity.

은 이온을 치료제로 활용하면서, 은 이온이 매개 물질에서 할로겐과 같은 다른 음이온(anion)과 반응하여 검은색의 침전물을 만들어 항균력을 감소시키는 점이 중요한 문제점으로 제기되었다. 이러한 문제를 해결하기 위해 고분자와 같은 안정제를 사용하여 은 이온을 복합체 형태로 제조하여 안정성을 높이기 위한 다양한 방법들이 제시되어왔다.Using silver ions as a therapeutic agent, the important problem is that silver ions react with other anions such as halogens in the media to produce a black precipitate, which reduces the antibacterial activity. In order to solve this problem, various methods have been proposed to increase the stability by preparing silver ions in a complex form using a stabilizer such as a polymer.

다양한 형태의 고분자 매트릭스 중에서도 특히 나노 튜브 형태의 고분자 매트릭스가 항균력을 더욱 높일 수 있다는 연구 결과가 보고되었다. 나노 튜브 형태의 물질은 박테리아 표면에 접촉하여 일종의 빨대 역할로 작용하여, 박테리아 세포막에 인위적인 구멍(hole)을 유도하여 세포의 생장에 필요한 물질들이 밖으로 흘러나오게 함으로써 항균력을 나타내게 된다. 이러한 튜브 형태의 고분자 나노 입자를 얻기 위한 방법으로 옥틸트리메틸암모늄 브롬이나 테실트리메틸암모늄 브롬과 같은 계면 활성제를 이용해 미셀(micelle)을 형성시킨 후 단량체를 적가하여 중합하는 마이크로 유화 중합 방법이 연구되어 왔다. 하지만 이러한 마이크로 유화 중합 방법은 높은 제조 단가와 중합 시 사용된 계면활성제를 제거하는 공정을 수반하기 때문에 대량생산에는 한계를 지니고 있다. 또한 안정제를 사용하는 분산 중합 방법이 시도되고 있는데, 추가적으로 사용된 안정제를 제거하기가 힘들다는 단점을 지니고 있으며, 균일하게 나노 입자의 크기를 제어할 수 없다는 문제점 또한 갖고 있다.Among various types of polymer matrices, research results have been reported that nanotube type polymer matrices can further increase antimicrobial activity. The nanotube-like material acts as a straw in contact with the bacterial surface, inducing an artificial hole in the bacterial cell membrane, thereby exerting antimicrobial activity by letting out materials necessary for cell growth. As a method for obtaining such polymer nanoparticles in the form of tubes, a microemulsion polymerization method has been studied in which micelles are formed using a surfactant such as octyltrimethylammonium bromine or tesyltrimethylammonium bromine, followed by dropwise addition of a monomer. However, this microemulsion polymerization method has a limitation in mass production because it involves a high manufacturing cost and a process for removing the surfactant used in the polymerization. In addition, a dispersion polymerization method using a stabilizer has been attempted, and has a disadvantage in that it is difficult to remove the used stabilizer additionally, and also has a problem in that the size of the nanoparticles cannot be uniformly controlled.

따라서, 은 나노 입자를 함유하면서 균일한 크기를 갖는 고분자 나노 튜브를 제조할 수 있는 간단한 방법이 강력히 요구되고 있다.Therefore, there is a strong demand for a simple method for producing a polymer nanotube having a uniform size while containing silver nanoparticles.

본 발명의 목적은 이러한 종래 기술의 문제점들을 일거에 해결하고자, 은 나노입자의 전구체인 은 이온을 산화제로 화학적 산화 중합하여 은 나노입자가 함유된 폴리피롤 나노 튜브를 원-팟(one-pot)으로 제조하는 방법을 이용하여 은 나노입자의 안정성을 높이고 복잡한 공정 과정을 줄이며, 또한 높은 항균력을 지닌 물질을 제조 하는데에 있다.The object of the present invention is to solve these problems of the prior art at once, by chemically oxidizing the silver ion, a precursor of the silver nanoparticles with an oxidizing agent, the polypyrrole nanotubes containing the silver nanoparticles as one-pots. The method is used to increase the stability of silver nanoparticles, reduce the complexity of the process, and to produce materials with high antimicrobial activity.

본 발명자들은 수많은 실험과 심도있는 연구를 거듭한 끝에, 나노미터 구멍 을 가진 양극 산화 알루미늄 판을 중합 개시제에 담근 후 감압하고, 액상의 단량체를 첨가하여 기상으로 형성한 뒤, 기상의 단량체를 양극 산화 알루미늄 판 내부로 중합 반응을 유도하여 결과적으로 은 나노 입자가 박힌 나노 크기의 지름을 갖는 폴리피롤 튜브를 양극 산화 알루미늄 내부에 형성하였고, 제조된 은 나노 입자가 박힌 폴리피롤 나노 튜브의 항균력이 우수한 것을 확인하고 본 발명에 이르게 되었다.After numerous experiments and in-depth studies, the present inventors immersed the anodized aluminum oxide plate having a nanometer hole in a polymerization initiator, and then reduced the pressure, formed a gas phase by adding a liquid monomer, and then anodized the gas phase monomer. The polymerization reaction was induced inside the aluminum plate, and as a result, a polypyrrole tube having a nano-sized diameter embedded with silver nanoparticles was formed inside the anodized aluminum, and it was confirmed that the antimicrobial activity of the prepared polypyrrole nanotube embedded with silver nanoparticles was excellent. The present invention has been reached.

본 발명은 은 이온과 피롤 단량체의 산화, 환원 반응을 이용하여 화학적 산화 중합을 통해 원-팟(one-pot)으로 은 나노입자가 함유된 폴리피롤 나노 튜브를 제조하는 것을 내용으로 한다.The present invention relates to the production of polypyrrole nanotubes containing silver nanoparticles in one-pot through chemical oxidation polymerization using oxidation and reduction reactions of silver ions and pyrrole monomers.

본 발명에 따른 은 나노입자 함유 폴리피롤 나노 튜브의 제조방법은,Method for producing a polypyrrole nanotube containing silver nanoparticles according to the present invention,

(A) 양극산화알루미늄(anodic aluminum oxide, AAO) 템플릿을 은 양이온 및 철 양이온 용액에 담가 정전기적 인력에 의해 은 양이온 및 철 양이온을 양극산화알루미늄 템플릿에 흡착시키는 단계;(A) dipping an anodized aluminum oxide (AAO) template in a silver cation and iron cation solution to adsorb the silver cation and iron cation to the anodized template by electrostatic attraction;

(B) 양극산화알루미늄 템플릿에 피롤 단량체를 증기 증착에 의해 중합시키는 단계(vapor deposition polymerization, VDP); 및(B) polymerizing pyrrole monomers by vapor deposition on an anodized template (vapor deposition polymerization, VDP); And

(C) 양극산화알루미늄 템플릿 위에서 은 이온은 환원되고 피롤 단량체는 산화되면서, 은 나노입자가 생성되는 동시에 화학적산화중합에 의해 폴리피롤이 생성되어, 은 나노입자가 함유된 폴리피롤 나노 튜브가 원-팟으로 제조되는 단계; 및(C) The silver ions are reduced and the pyrrole monomer is oxidized on the anodized aluminum template, producing silver nanoparticles and polypyrrole by chemical oxidation polymerization, so that the polypyrrole nanotubes containing silver nanoparticles are transferred to the one-pot. Manufacturing step; And

(D) 중합이 일어난 양극산화알루미늄 막을 염산에 담가 양극산화알루미늄 템플릿을 제거하고 메탄올로 씻은 후, 은 나노입자가 함유된 폴리피롤 나노 튜브를 회수하는 단계로 구성되어 있다.(D) It is composed of a step of dipping the anodized aluminum film subjected to polymerization in hydrochloric acid to remove the anodized aluminum template, washing with methanol, and then recovering the polypyrrole nanotube containing the silver nanoparticles.

본 발명에 따른 화학적 산화 중합 방법을 이용하여 은 나노 입자가 함유된 폴리피롤 나노 튜브를 제조하는 방법은 이제껏 보고된 바가 없는 전혀 새로운 제조 방법으로, 은 이온을 은 나노입자의 전구체이자 화학적 산화중합의 산화제로 사용함으로써 은 나노 입자의 선처리 공정이나 추가적인 다단계의 공정 없이 간단한 한번의 과정으로 은 나노 입자를 만들면서 동시에 폴리피롤 나노 튜브를 제조하여 은 나노 입자가 폴리피롤 나노 튜브 내 함유되도록 제조하는 것이 가능하다. The production of polypyrrole nanotubes containing silver nanoparticles using the chemical oxidation polymerization method according to the present invention is a completely new production method that has not been reported so far, wherein silver ions are precursors of silver nanoparticles and an oxidizing agent of chemical oxidation polymerization. By using it, it is possible to prepare a polypyrrole nanotube at the same time to prepare the silver nanoparticles in a simple process without the pretreatment process or additional multi-step process of the silver nanoparticles so that the silver nanoparticles can be contained in the polypyrrole nanotube.

또한 이 복합체는 은 나노입자뿐만 아니라 튜브 형태의 항균 능력을 이용해 보다 뛰어난 항균 효과를 나타낼 뿐만 아니라, 나노 입자들이 폴리피롤 표면에서 안정화되어 장기간 사용이 가능한 항균물질로써 다양한 분야에 응용이 가능하다. In addition, the composite not only shows excellent antimicrobial effect using not only silver nanoparticles but also tube-type antimicrobial ability, and nanoparticles are stabilized on polypyrrole surface and can be used for various fields as an antimicrobial material that can be used for a long time.

도 1은 본 발명의 실시 예에 따라 제조된 은 나노 입자 함유 폴리피롤 나노 튜브의 투과 전자 현미경 사진으로, (a)은 나노입자가 함유되지 않은 폴리피롤 나노 튜브 (b) 5 질량퍼센트 질산은으로 만들어진 은 나노입자 함유 폴리피롤 나노 튜브 (c) 30 질량퍼센트 질산은으로 만들어진 은 나노입자 함유 폴리피롤 나노 튜브이고;
도 2는 본 발명의 실시 예에 따라 제조된 은 나노입자가 함유된 폴리피롤 나노 튜브의 퓨리에 변환 적외선 분광(FT-IR) 그래프이고;
도 3은 본 발명의 실시 예에 따라 제조된 은 나노입자가 함유된 폴리피롤 나노 튜브의 XRD 그래프이고;
도 4는 본 발명의 실시 예에 따라 제조된 은 나노입자가 함유된 폴리피롤 나노 튜브의 Kirby-Bauer 검사 사진이고;
도 5는 본 발명의 실시 예에 따라 제조된 은 나노입자가 함유된 폴리피롤 나노 튜브의 항균 효과를 위한 접촉 시간에 따른 균 농도변화 그래프이고;
1 is a transmission electron micrograph of a silver nanoparticle-containing polypyrrole nanotube prepared according to an embodiment of the present invention, (a) is a polypyrrole nanotube containing no nanoparticles (b) silver nano made of 5% by mass silver nitrate Particle-containing polypyrrole nanotubes (c) silver nanoparticle-containing polypyrrole nanotubes made of 30 mass percent silver nitrate;
2 is a Fourier transform infrared spectroscopy (FT-IR) graph of polypyrrole nanotubes containing silver nanoparticles prepared according to an embodiment of the present invention;
3 is an XRD graph of polypyrrole nanotubes containing silver nanoparticles prepared according to an embodiment of the present invention;
4 is a Kirby-Bauer test photograph of polypyrrole nanotubes containing silver nanoparticles prepared according to an embodiment of the present invention;
Figure 5 is a graph of the bacterial concentration change according to the contact time for the antimicrobial effect of the polypyrrole nanotubes containing silver nanoparticles prepared according to an embodiment of the present invention;

단계 (A)에서 사용되는 은 이온 및 철 이온은 특별히 한정된 것이 아니며, 질산은(AgNO3) 혹은 질산철(Fe(NO3)3)과 같이 수용액 상에서 은 이온 혹은 철 이온을 만들 수 있는 염이면 모두 사용가능하다. 용매 또한 특별히 한정된 것은 아니며, 은 이온과 철 이온을 녹일 수 있는 용매면 가능하다. 특히, 증류수, 에탄올 등이 바람직하다.The silver ions and iron ions used in step (A) are not particularly limited, and any salts capable of forming silver ions or iron ions in an aqueous solution such as silver nitrate (AgNO 3 ) or iron nitrate (Fe (NO 3 ) 3 ) are used. Can be used. The solvent is also not particularly limited, and may be any solvent that can dissolve silver ions and iron ions. In particular, distilled water, ethanol, etc. are preferable.

단계 (B)에서 필요한 진공도는 10 내지 10-6 torr의 압력 하에서 상기 반응이 진행될 수 있으나, 이들 범위에 제한되는 것은 아니며, 상기 범위보다 높거나 낮을 수 있다.The degree of vacuum required in step (B) may be carried out under a pressure of 10 to 10 −6 torr, but is not limited to these ranges, and may be higher or lower than the range.

상기 중합에 필요한 중합 온도로는 통상 30-200도가 바람직하나 이에 국한된 것은 아니며 중합 요건에 따라 상기 범위보다 높거나 낮을 수 있다.The polymerization temperature required for the polymerization is preferably 30-200 degrees, but is not limited thereto, and may be higher or lower than the above range depending on the polymerization requirements.

단계 (C)에서 중합에 필요한 고분자의 중합 시간으로는 6-24 시간이 바람직하나, 이에 국한되는 것은 아니며, 필요한 폴리피롤 나노 튜브의 두께에 따라 상기 범위보다 길거나 짧을 수 있다.The polymerization time of the polymer required for polymerization in step (C) is preferably 6 to 24 hours, but is not limited thereto, and may be longer or shorter than the above range depending on the thickness of the polypyrrole nanotubes required.

상기 중합에서 미반응 단량체 기체를 빼내는 방법으로 승온 상태에서 빼는 방법과 상온에서 미반응 기체를 빼는 방법이 있을 수 있으나 이에 국한되는 것은 아니며, 중합 조건에 따라 적당히 선택할 수 있다.As a method of removing the unreacted monomer gas from the polymerization, there may be a method of removing the unreacted gas at elevated temperature and a method of removing the unreacted gas at room temperature, but the present invention is not limited thereto and may be appropriately selected according to the polymerization conditions.

제조된 은 나노입자 함유 폴리피롤 나노 튜브의 은 이온 농도에 따른 항균 테스트를 측정하기 위하여 각기 다른 농도의 은 이온을 사용하여 은 나노입자 미함유 폴리피롤 나노 튜브와 각기 다른 농도의 은 나노입자를 함유한 폴리피롤 나노 튜브를 제조하였다. 제조된 은 나노입자 함유 폴리피롤 나노 튜브는 대표적인 그램음성균인 대장균(E. coli) 및 그램양성균인 포도상구균(S. aureus)에 대하여 항균 테스트를 진행하였다. In order to measure the antibacterial test according to the silver ion concentration of the prepared silver nanoparticle-containing polypyrrole nanotubes, polypyrrole containing no silver nanoparticle polypyrrole nanotubes and different concentrations of silver nanoparticles Nanotubes were prepared. The silver-containing nanoparticles prepared polypyrrole nanotubes was conducted the antibacterial testing of representative gram-negative bacteria E. coli (E. coli) and gram-positive bacteria is Staphylococcus aureus (S. aureus).

은 나노 입자 함유 폴리피롤 나노 튜브의 제조 결과는 퓨리에 변환 적외선 분광(FT-IR)장치를 통해 측정하였고, 나노 튜브 형태의 관찰을 위해 투과 전자 현미경을 사용하였다.The production results of the polypyrrole nanotubes containing the silver nanoparticles were measured by a Fourier transform infrared spectroscopy (FT-IR) apparatus, and a transmission electron microscope was used to observe the nanotube form.

이하, 실시예를 참조하여 본 발명의 구체적인 예를 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, specific examples of the present invention will be described with reference to Examples, but the scope of the present invention is not limited thereto.

평군 지름 100nm 의 구멍을 지닌 높이 60μm인 양극산화 알루미늄(anodic aluminum oxide) 막을 5 mg 의 질산은(AgNO3)과 5 mg 의 질산철(Fe(NO3)3) 이 녹아 있는 10 ml의 수용액에 5분 동안 담가, 은 양이온과 철 양이온을 음전하를 띠는 양극산화알루미늄 안쪽 구멍에 정전기적 인력으로 부착시킨 후, 진공오븐에서 상온 조건으로 5시간 동안 완전히 건조시킨다. A 60 μm high anodized aluminum oxide film with holes of 100 nm diameter was placed in a 10 ml aqueous solution containing 5 mg of silver nitrate (AgNO 3 ) and 5 mg of iron nitrate (Fe (NO 3 ) 3 ). After soaking for minutes, the silver cations and the iron cations were electrostatically attached to the negatively charged inner holes of the anodized aluminum oxide, and then completely dried in a vacuum oven for 5 hours at room temperature.

기상증착 초자에 건조된 은/철 양이온이 부착 양극산화 알루미늄 템플렛과 0.1g의 피롤 단량체를 넣고 섭씨 60도에서 10-2 Torr로 진공을 잡아 3시간 동안 기상증착중합을 시킨다. 이때 은 양이온이 환원되면서 은 나노입자가 생성되고, 피롤 단량체는 산화중합되어 은 나노입자 함유 폴리피롤 나노 튜브가 일거에 제조된다. 그 후, 일회용 흡착제를이용해 잔여 철/은 이온을 제거해 튜브 가장자리가 막히는 것을 방지한다.The silver / iron cation attached to the vapor deposition vaporizer was added to an anodized aluminum oxide template and 0.1 g of pyrrole monomer, followed by vacuum deposition at 10 -2 Torr at 60 degrees Celsius for 3 hours. At this time, silver cations are reduced, and silver nanoparticles are generated, and pyrrole monomers are oxidatively polymerized to prepare polypyrrole nanotubes containing silver nanoparticles. A disposable adsorbent is then used to remove residual iron / silver ions to prevent the tube edges from clogging.

중합이 일어난 양극산화 알루미늄 막을 섭씨 60도의 염산 용액에 1시간 정도 담가 양극산화 알루미늄 템플릿을 제거해 나노 튜브만 남기고, 메탄올로 여러 번 씻어 잔여 단량체와 개시제를 제거한다. The anodized aluminum oxide film was polymerized in an aqueous hydrochloric acid solution at 60 degrees Celsius for 1 hour to remove the anodized aluminum template, leaving only nanotubes and washing with methanol several times to remove residual monomers and initiators.

제조된 나노 입자의 형태를 확인하기 위해 투사 전자 현미경(도 1)을 통해 관찰한 결과, 15nm의 균일한 두께에 지름 100nm, 높이 60μm의 폴리피롤 나노 튜브에 평균 지름 7nm를 갖는 은 나노입자가 박힌 은 나노입자 함유 폴리피롤 나노 튜브가 제조된 것을 확인할 수 있었다.Observed through a projection electron microscope (FIG. 1) to confirm the shape of the prepared nanoparticles, silver embedded with nanoparticles having an average diameter of 7 nm in a polypyrrole nanotube having a diameter of 100 nm and a height of 60 μm at a uniform thickness of 15 nm It was confirmed that the nanoparticle-containing polypyrrole nanotubes were prepared.

은 나노입자의 생성과 고분자 중합을 확인하고자 퓨리에 변환 적외선 분광(FT-IR)장치를 통해 분석한 결과, 폴리피롤의 피크(peak)인 C-N, 공액(conjugated) C-N peak가 1548, 1473cm-1에서, C-H의 면내굽힘(in-plane bending) 피크가 1301, 1183cm-1에서 관찰되는 것을 확인하였다. 또한 질산은,질산철에서 나온 도핑된 NO3 - 피크가 1383 cm-1에서 강하게 나오며, 그 높이가 질산은, 질산철의 농도에 비례함을 확인하였다.Analysis of Fourier Transform Infrared Spectroscopy (FT-IR) to confirm the production of silver nanoparticles and polymer polymerization showed that the peaks of polypyrrole CN and conjugated CN peaks were 1548 and 1473 cm -1 . It was confirmed that the in-plane bending peak of CH was observed at 1301 and 1183 cm -1 . In addition, it was confirmed that the silver nitrate, the doped NO 3 - peak from iron nitrate was strong at 1383 cm -1 , and its height was proportional to the concentration of silver nitrate.

은 나노입자가 폴리피롤 나노 튜브에 결합된 것을 더욱 확실히 확인하고자 엑스선회절(X-ray diffraction) 패턴을 확인한 결과, 폴리피롤의 peak를 25도에서, 은 나노입자의 (111),(200),(220),(311),(222)면에 대한 peak를 38.2, 44.4, 64.5, 77.3, 81.5도에서 확인할 수 있었다. 이는 은 나노입자와 폴리피롤 나노 튜브가 제조된 것을 설명해준다.X-ray diffraction patterns were confirmed to more clearly confirm that the silver nanoparticles were bound to the polypyrrole nanotubes. As a result, the peaks of the polypyrrole were at 25 degrees, and the (111), (200), (220) ), (311), and (222) peaks were found at 38.2, 44.4, 64.5, 77.3, and 81.5 degrees. This explains the production of silver nanoparticles and polypyrrole nanotubes.

분석이 끝난 은 나노입자 함유 폴리피롤 나노 튜브의 항균력 측정을 위해 커비바우어(Kirby-Bauer) 항균 테스트를 진행하였다. 제조된 나노 입자 용액들을 거름종이에 적시고, 대표적 그램음성균인 대장균(E. coli)과 대표적 그램양성균인 포도상구균(S.aureus)이 각각 자라고 있는 배지 접시에 접촉시킨 후, 37 ℃의 온도에서 24 시간 동안 배양하였다. 배양이 끝난 후 각기 접시에서, 접촉된 거름종이로부터의 박테리아 억제 범위(inhibition zone)를 측정하였다. 그 결과, 대조군인 증류수와 폴리피롤 나노 튜브는 억제범위를 갖지 않는 것에 비해 은 나노입자 함유 폴리피롤 나노 튜브는 선명한 박테리아 억제 범위를 가지고 있음을 알 수 있었다.(도 4)The Kirby-Bauer antimicrobial test was conducted to determine the antimicrobial activity of the polypyrrole nanotubes containing silver nanoparticles. Soak the prepared nanoparticle solution to the filter paper, after the contact with the medium plate with a representative of gram-negative bacteria Escherichia coli (E. coli) and Gram-positive bacteria representative of Staphylococcus aureus (S.aureus), each grown at a temperature of 37 ℃ 24 Incubated for hours. After each incubation, each dish was measured for bacterial inhibition zones from contacted filter paper. As a result, it was found that the distilled water and the polypyrrole nanotubes as the control group did not have a suppression range, whereas the polypyrrole nanotubes containing silver nanoparticles had a clear bacterial suppression range (FIG. 4).

동적 (kinetic) 테스트 진행을 통한 항균력 측정도 하였는데, 테스트를 위해서 동일한 양의 나노 입자를 각각 그램음성균인 대장균(E. coli)과 그램양성균 포도상구균(S. aureus)을 담은 증류수에 첨가하고, 일정 시간이 지난 후 위 혼합액 중 일부를 고체 배지 접시에 각각 접촉시킨 후 37 ℃ 온도에서 24 시간 동안 배양하였다. 배양이 끝난 후 각 접시에서 자라난 균의 응집군(CFU)의 갯수로 항균력을 측정하였다. 그 결과, 두 균 모두에 대해 은 나노입자함유 폴리피롤 나노 튜브가 우수한 항균력을 갖고 있음을 알 수 있었다. (도 5)The antimicrobial activity was also measured through kinetic testing. For the test, the same amount of nanoparticles were added to distilled water containing E. coli and S. aureus , which are Gram-negative bacteria, respectively. After some time, a portion of the gastric mixture was contacted with each of the solid medium dish and incubated at 37 ° C. for 24 hours. After the incubation, the antimicrobial activity was measured by the number of aggregates (CFU) of bacteria grown in each dish. As a result, it was found that the polypyrrole nanotubes containing silver nanoparticles had excellent antibacterial activity against both bacteria. (Fig. 5)

또한 함유된 은 나노입자 농도에 따른 항균력 측정을 위해 최소저지농도(minimum inhibitory concentration) 테스트도 진행하였는데, 최소저지농도 테스트는 항균 효과를 가지기 위한 최저 농도를 제시하는 테스트로써, 제조 물질의 항균력을 다른 물질과 비교할 수 있다. 최소저지농도 테스트를 위해 함유된 은 나노입자의 농도가 다른 폴리피롤 나노 튜브들과 증류수를 비교물질로 사용하였으며, 그램음성균인 대장균과 그램양성균인 포도상구균을 대상으로 실험을 진행하였다. 실험 결과, 30wt% 은 이온용액을 사용한 은 나노입자함유 폴리피롤 나노 튜브는 5wt% 나노 튜브보다 2배 적은 최소저지농도를 가짐을 확인했으며, 이를 통해 항균력은 은 나노입자의 농도에 크게 의존함을 알 수 있었다.In addition, a minimum inhibitory concentration test was conducted to determine the antimicrobial activity according to the concentration of silver nanoparticles contained. The minimum inhibitory concentration test is a test showing the lowest concentration to have an antimicrobial effect. It can be compared with a substance. Polypyrrole nanotubes containing distilled water and distilled water with different concentrations of silver nanoparticles were used as a comparison material for the minimum concentration test, and experiments were carried out on E. coli and Gram-positive bacteria. As a result, it was confirmed that the polypyrrole nanotubes containing silver nanoparticles using 30wt% silver ion solution had a minimum inhibitory concentration of 2 times less than the 5wt% nanotubes, indicating that the antibacterial activity was highly dependent on the concentration of silver nanoparticles. Could.

실시예 1 에서 중합 시간을 24시간으로 늘린 후 실험을 진행하였다. 투과 전자 현미경을 통해서 확인한 결과, 실시예 1 에서의 결과보다 내벽의 두께가 더 두꺼워진 은 나노 입자 함유 폴리피롤 나노 튜브를 얻을 수 있었다.In Example 1, the experiment was performed after increasing the polymerization time to 24 hours. As a result of checking through a transmission electron microscope, it was possible to obtain a polypyrrole nanotube containing silver nanoparticles having a thicker inner wall thickness than the result of Example 1.

실시예 1 에서 중합 시간을 1시간으로 단축한 후 실험을 진행하였다. 투과 전자 현미경을 통해서 확인한 결과, 그 모양이 일정하지 않은 고분자를 확인할 수 있었으며, 이를 통해 중합 시간이 매우 짧을 경우에는 충분한 두께의 고분자 나노 튜브가 형성되지 않아서 그 구조가 무너지는 것을 알 수 있었다.In Example 1, the experiment was carried out after the polymerization time was shortened to 1 hour. As a result of the transmission electron microscopy, it was confirmed that the polymer having a non-uniform shape was found. When the polymerization time is very short, the polymer nanotubes having a sufficient thickness were not formed and the structure was collapsed.

실시예 1 에서 피롤 단량체의 양을 다섯배인 0.5g 으로 늘린 후, 실험을 진행하였다. 투과 전자 현미경을 통해서 확인한 결과, 실시예 1에서보다 내벽의 두께가 더 두꺼워진 폴리피롤 나노 튜브가 형성되는 것을 알 수 있었다.In Example 1, the amount of pyrrole monomer was increased to 0.5 g, which is five times, and then the experiment was conducted. As a result of the transmission electron microscopy, it was found that polypyrrole nanotubes having a thicker inner wall than in Example 1 were formed.

실시예 1에서 중합온도를 섭씨 100 도로 높인 후, 실험을 진행하였다. 중합 후, 투과 전자 현미경을 통해서 확인한 결과, 실시예 1에서와 마찬가지로 은 나노 입자 함유 폴리피롤 나노 튜브가 형성되는 것을 알 수 있었다.In Example 1, the polymerization temperature was increased to 100 degrees Celsius, and then the experiment was conducted. After the polymerization, it was confirmed by transmission electron microscopy that the silver nanoparticle-containing polypyrrole nanotubes were formed in the same manner as in Example 1.

실시예 1 에서 질산은의 양을 피롤 단량체 대비 30 질량퍼센트로 늘린 후, 실험을 진행하였다. 투과 전자 현미경으로 그 결과를 관찰하였고, 실시예 1에서 제조된 물질과 비교하였을 때, 더 많은 은 나노 입자가 함유된 폴리피롤 나노 튜브를 제조할 수 있었음을 확인하였다.In Example 1, the amount of silver nitrate was increased to 30% by mass relative to the pyrrole monomer, and then the experiment was conducted. The results were observed with a transmission electron microscope, and when compared with the material prepared in Example 1, it was confirmed that polypyrrole nanotubes containing more silver nanoparticles could be prepared.

실시예 1에서 질산은의 양을 피롤 단량체 대비 40 질량퍼센트로 늘린 후, 실험을 진행하였다. 투과 전자 현미경으로 그 결과를 관찰한 결과, 뭉친 은 입자가 관찰되었다. 이를 통해서 질산은 의 양은 피롤 단량체 대비 30 질량퍼센트를 넘을 시에 은 입자가 뭉치는 것을 알 수 있었다.In Example 1, the amount of silver nitrate was increased to 40% by mass relative to the pyrrole monomer, and then the experiment was performed. As a result of observing the result with a transmission electron microscope, the agglomerated silver particle was observed. This suggests that the silver particles aggregate when the amount of silver nitrate exceeds 30% by mass relative to the pyrrole monomer.

본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 가하는 것이 가능할 것이다.Those skilled in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above contents.

Claims (6)

양극산화알루미늄(anodic aluminum oxide, AAO) 템플릿을 은 양이온 및 철 양이온 용액에 담가 정전기적 인력에 의해 은 양이온 및 철 양이온을 양극산화알루미늄 템플릿에 흡착시키는 단계;
상기 양극산화알루미늄 템플릿에 피롤 단량체를 증기 증착에 의해 중합시키는 단계(vapor deposition polymerization, VDP); 및
상기 양극산화알루미늄 템플릿의 기공 내벽에서 은 이온이 환원되어 은 나노입자가 생성되는 동시에 피롤 단량체가 화학적산화중합에 의해 중합되어 폴리피롤이 생성되어, 은 나노입자가 함유된 폴리피롤 나노 튜브가 제조되는 단계; 및,
중합이 일어난 양극산화알루미늄 막을 염산에 담가 양극산화알루미늄 템플릿을 제거하고 메탄올로 씻은 후, 은 나노입자가 함유된 폴리피롤 나노 튜브를 회수하는 단계를 포함하는 것을 특징으로 하는 은 나노입자가 함유된 폴리피롤 나노 튜브의 제조방법.
Immersing the silver and iron cations in the anodized aluminum template by electrostatic attraction by immersing the anodized aluminum oxide (AAO) template in the silver cation and iron cation solution;
Polymerizing a pyrrole monomer to the aluminum anodization template by vapor deposition (vapor deposition polymerization, VDP); And
Preparing a polypyrrole nanotube containing silver nanoparticles by producing a polypyrrole by synthesizing the silver nanoparticles at the inner wall of the pores of the anodized aluminum template to produce silver nanoparticles and simultaneously polymerizing the pyrrole monomer by chemical oxidation polymerization; And
Immersing the anodized aluminum oxide film in hydrochloric acid to remove the anodized aluminum template and washing with methanol, and then recovering the polypyrrole nanotube containing the silver nanoparticles. Method of manufacturing the tube.
제1항에 있어서, 사용되는 단량체는 피롤 이외에도 삼가 철 이온을 개시제로 하여 산화 중합을 할 수 있으며, 은 이온을 은 나노입자로 환원시킬 수 있는 단량체로 하는 제조 방법.The production method according to claim 1, wherein the monomer to be used is a monomer capable of oxidative polymerization in addition to pyrrole, using trivalent iron ions as an initiator, and reducing silver ions to silver nanoparticles. 제1항에 있어서, 상기 질산은의 양은 피롤 단량체 대비 5 에서 30 질량퍼센트로 하는 제조 방법.The method of claim 1, wherein the amount of silver nitrate is 5 to 30 mass percent based on the pyrrole monomer. 제1항에 있어서, 상기 단량체의 양은 0.1g 에서 0.5g인 것을 특징으로 하는 제조 방법.The method of claim 1 wherein the amount of monomer is 0.1g to 0.5g. 제1항에 있어서, 상기 중합 온도는 섭씨 60도에서 100도인 것을 특징으로 하는 제조 방법.The method of claim 1 wherein the polymerization temperature is 60 degrees Celsius to 100 degrees. 제1항에서, 상기 중합 시간은 3시간에서 24시간인 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the polymerization time is 3 hours to 24 hours.
KR1020110137500A 2011-12-19 2011-12-19 One-pot fabrication of silver nanoparticles decorated polypyrrole nanotubes by chemical oxidation polymeriztion KR20130070263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110137500A KR20130070263A (en) 2011-12-19 2011-12-19 One-pot fabrication of silver nanoparticles decorated polypyrrole nanotubes by chemical oxidation polymeriztion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110137500A KR20130070263A (en) 2011-12-19 2011-12-19 One-pot fabrication of silver nanoparticles decorated polypyrrole nanotubes by chemical oxidation polymeriztion

Publications (1)

Publication Number Publication Date
KR20130070263A true KR20130070263A (en) 2013-06-27

Family

ID=48865103

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110137500A KR20130070263A (en) 2011-12-19 2011-12-19 One-pot fabrication of silver nanoparticles decorated polypyrrole nanotubes by chemical oxidation polymeriztion

Country Status (1)

Country Link
KR (1) KR20130070263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117238680A (en) * 2023-11-10 2023-12-15 江西五十铃汽车有限公司 Graphene oxide/polypyrrole composite electrode material and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117238680A (en) * 2023-11-10 2023-12-15 江西五十铃汽车有限公司 Graphene oxide/polypyrrole composite electrode material and preparation method and application thereof
CN117238680B (en) * 2023-11-10 2024-04-09 江西五十铃汽车有限公司 Graphene oxide/polypyrrole composite electrode material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Li et al. Halloysite nanotubes and Fe3O4 nanoparticles enhanced adsorption removal of heavy metal using electrospun membranes
Haider et al. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications
Xing et al. Bioinspired polydopamine sheathed nanofibers containing carboxylate graphene oxide nanosheet for high-efficient dyes scavenger
Zhang et al. Layered double hydroxide–carbon dot composite: high-performance adsorbent for removal of anionic organic dye
Luo et al. Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres
Fu et al. Hollow poly (cyclotriphosphazene-co-phloroglucinol) microspheres: An effective and selective adsorbent for the removal of cationic dyes from aqueous solution
Dong et al. Modifying Fe3O4-functionalized nanoparticles with N-halamine and their magnetic/antibacterial properties
Dong et al. Barbituric acid-based magnetic N-halamine nanoparticles as recyclable antibacterial agents
Zhou et al. One-step synthesis of robust amine-and vinyl-capped magnetic iron oxide nanoparticles for polymer grafting, dye adsorption, and catalysis
Yan et al. Immobilization of highly dispersed Ag nanoparticles on carbon nanotubes using electron-assisted reduction for antibacterial performance
Rusen et al. Design of antimicrobial membrane based on polymer colloids/multiwall carbon nanotubes hybrid material with silver nanoparticles
Youssef et al. Rational design and electrical study of conducting bionanocomposites hydrogel based on chitosan and silver nanoparticles
US9491947B1 (en) Method of synthesizing nanoparticles and a nanoparticle-polymer composite using a plant extract
Pinto et al. Antibacterial melamine foams decorated with in situ synthesized silver nanoparticles
Chen et al. Flexible design of carbon nanotubes grown on carbon nanofibers by PECVD for enhanced Cr (VI) adsorption capacity
Zeng et al. Polydopamine induced in-situ formation of metallic nanoparticles in confined microchannels of porous membrane as flexible catalytic reactor
Lee et al. Highly photocatalytic performance of flexible 3 dimensional (3D) ZnO nanocomposite
Thampi et al. Functionalization of fabrics with PANI/CuO nanoparticles by precipitation route for anti-bacterial applications
Amer et al. Acid-free synthesis of polyaniline nanotubes for dual removal of organic dyes from aqueous solutions
Khoshnood et al. Mussel-inspired surface modification of titania nanotubes as a novel drug delivery system
Yang et al. Controllable synthesis of mussel-inspired catechol-formaldehyde resin microspheres and their silver-based nanohybrids for catalytic and antibacterial applications
Shan et al. Flexible, mesoporous, and monodispersed metallic cobalt-embedded inorganic nanofibrous membranes enable ultra-fast and high-efficiency killing of bacteria
Xiong et al. Nanohybrids of silver nanoparticles grown in-situ on a graphene oxide silver ion salt: Simple synthesis and their enhanced antibacterial activity
Yu et al. Self-template etching synthesis of urchin-like Fe3O4 microspheres for enhanced heavy metal ions removal
Szymański et al. Novel polyethersulfone ultrafiltration membranes modified with Cu/titanate nanotubes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application