KR20130038425A - Manufacture technology of fine printed electronics - Google Patents

Manufacture technology of fine printed electronics Download PDF

Info

Publication number
KR20130038425A
KR20130038425A KR1020110102258A KR20110102258A KR20130038425A KR 20130038425 A KR20130038425 A KR 20130038425A KR 1020110102258 A KR1020110102258 A KR 1020110102258A KR 20110102258 A KR20110102258 A KR 20110102258A KR 20130038425 A KR20130038425 A KR 20130038425A
Authority
KR
South Korea
Prior art keywords
substrate
light
metal particles
printing
contact
Prior art date
Application number
KR1020110102258A
Other languages
Korean (ko)
Inventor
장이운
Original Assignee
장이운
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장이운 filed Critical 장이운
Priority to KR1020110102258A priority Critical patent/KR20130038425A/en
Publication of KR20130038425A publication Critical patent/KR20130038425A/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1208Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods

Abstract

PURPOSE: A technology for manufacturing fine printed electronics is provided to contract a substrate by a non-contact method using light and heat after a circuit is formed in the substrate, and to form a fine line width and a structure. CONSTITUTION: Metal, dielectric, and semiconductor particles(3) are provided on a flexible substrate by using a contact and a non-contact method. A substrate(6) is contracted by providing a thermal process and light or removing pressure and mechanical force. Metal particles(4) are sintered by using the thermal process and the light. The sizes of the metal particles are in a range of 1nm to 500nm. The thicknesses of the metal particles are in a range of 1nm to 5000nm.

Description

미세 인쇄전자 제작 기술{Manufacture technology of fine printed electronics}Manufacture technology of fine printed electronics

본 발명은 미세 인쇄전자 기술에 관한 것으로, 더욱 상세하게는 늘어나거나 임계점 이상의 열 및 빛으로 수축되는 기판을 사용하고 접촉 및 비접촉으로 인쇄한 후 수축시켜 보다 미세한 선폭과 크기를 갖는 인쇄 전자 기술에 관한 것이다.
The present invention relates to a fine printed electronic technology, and more particularly, to a printed electronic technology having a finer line width and size by using a substrate that is stretched or contracted by heat and light above a critical point, and is printed after contact and non-contact shrinkage. will be.

어렸을 때 풍선을 불어 크게 부풀린 후 글씨를 쓴 다음 바람을 빼게 되면 원래 글씨 크기보다 훨씬 작게 줄어드는 것을 볼 수 있다. When you are a child, you can blow a balloon, inflate it greatly, write it, and then blow it off.

뿐만 아니라 노출된 전선을 감싸는 피복에도 수축되는 튜브가 사용되는데, 보통 전선 두께보다 두꺼운 지름의 수축튜브를 사용하고 피복할 부분에 위치시킨 후 열을 가하면 부피가 줄어들면서 전선을 꽉 조여주는 역할을 하는 것을 볼 수 있다.In addition, a shrinking tube is used to cover the exposed wire, which usually uses a shrinkage tube with a diameter thicker than the wire's thickness and is placed in the area to be covered, and when heated, it reduces the volume and serves to tighten the wire. You can see that.

요즘 다양한 곳에 고분자 및 저분자의 폴리머가 사용되고 있다. Nowadays, polymers and low molecular weight polymers are used in various places.

최근에 구부릴 수 있는 플렉서블한 기판으로써 태양전지, 발광소자, 디스플레이 제품 등에 사용되고 있다. 뿐만 아니라 인쇄전자 기판에도 사용이 되고 있다. Recently, a flexible substrate that can be bent has been used in solar cells, light emitting devices, display products, and the like. It is also used for printed electronic boards.

하지만 접촉 및 비접촉 방식의 한계로 현재 수 ?m의 선폭이 한계이며 이로 인해 저항 및 미세한 패턴 등에 영향이 미치는데 상기의 수축되는 기판을 사용할 경우 현재보다 월등히 미세하게 인쇄가 가능할 것으로 판단된다.
However, due to the limitations of contact and non-contact methods, the current line width is limited to several? M, which affects resistance and fine patterns. Therefore, when the shrinking substrate is used, it is possible to print much finer than the present.

종래의 기술은 고정된 크기의 얇은 플라스틱, 종이, 섬유 등의 소재에 접촉 및 비접촉 방식으로 인쇄하는 방법이지만, 본 발명에서는 인쇄 후에 열 및 빛으로 기판을 수축시켜 보다 미세한 선폭과 구조를 갖는 인쇄 방식을 제시한다.
Conventional technology is a method of contact and non-contact printing on a fixed size of thin plastic, paper, fiber, etc., but in the present invention, the printing method having a finer line width and structure by shrinking the substrate with heat and light after printing To present.

기본적으로 플라스틱, 종이, 섬유 등으로 사용된 기판은 늘어나거나 수축되지 않은 소재이다. Basically, the substrate used for plastic, paper, fiber, etc. is a material which is not stretched or shrunk.

이 기판 소재를 열 수축 튜브 및 필름에 사용되는 폴리염화 비닐이나 폴리에틸렌, 폴리프로필렌 등의 올레핀계 플라스틱 그리고 폴리스티렌, 폴리에스테르, 염화비닐리덴 필름 등으로 사용하거나 두 가지를 섞는 형태로 재가공하여 수축 기판을 제작하게 된다. This substrate material is used as polyvinyl chloride, olefin plastics such as polyethylene and polypropylene, polystyrene, polyester, and vinylidene chloride films used in heat shrinkable tubes and films, or reworked in a mixed form to form shrinkage substrates. Will be produced.

일반적으로 사용되는 접촉 방식 및 비접촉 방식을 사용하여 수축 기판에 회로를 인쇄하게 된다.Circuits are printed on a shrink board using contact and non-contact methods that are commonly used.

인쇄 후에 열이나 빛을 가하여 기판이 처음 크기보다 수축되게 만든다.After printing, heat or light is applied to cause the substrate to shrink beyond its initial size.

수축될 때 인쇄된 부분 또한 줄어들게 되며 수축되는 정도에 따라 수 ?m 이하의 선폭 및 해상도를 갖는 기술로 사용될 수 있다.
When shrinking, the printed portion is also reduced and can be used as a technique having a line width and resolution of several μm or less depending on the degree of shrinkage.

현재 인쇄전자 기술에서 최소 선폭은 약 수 ?m 정도이다.In current printed electronics, the minimum line width is about several micrometers.

하지만 수축되는 기판에 인쇄하면 수축 정도에 따라 sub-?m의 미세한 선폭 및 해상도를 갖는 인쇄전자 기술을 확립할 수 있다.However, printing on a shrinking substrate can establish a printed electronic technology having a fine line width and resolution of sub-? M depending on the degree of shrinkage.

수축된 정도에 따라 금속 입자들은 더 치밀하게 근접하며 어닐링 과정으로 더 나은 전도 특성을 나타낼 수 있다. 이에 따라 더 적은 양의 금속 잉크를 사용할 수 있다.
Depending on the degree of shrinkage, the metal particles are closer together and can exhibit better conductive properties through annealing. As a result, a smaller amount of metal ink can be used.

도 1은 이해를 돕기 위해 간략히 도식화된 신축성 기판을 사용한 인쇄 과정이다.
도 2는 기판에 인쇄를 한 후 열 및 빛을 가하여 수축시키고 보다 미세한 선폭의 인쇄와 해상도를 갖는 인쇄 방식을 나타낸다.
도 3은 요철로 제작된 점 및 선 형태의 기판을 평평하게 만들고 인쇄한 후 원 상태로 돌아오게 하는 인쇄 방식을 나타낸다.
도 4는 도3에 언급된 선 형태로 접힌 기판 및 요철 형태의 기판을 나타내며, 원 상태뿐만 아니라 육각형, 사각형 등의 다각형 모양으로 제작될 수 있다.
1 is a printing process using a stretched substrate briefly illustrated for ease of understanding.
Figure 2 shows the printing method having a printing and the resolution of finer line width after shrinking by applying heat and light after printing on the substrate.
Figure 3 shows a printing method for flattening the dot- and line-shaped substrate made of irregularities and returning to the original state after printing.
4 illustrates a substrate folded in a line shape and a concave-convex shape referred to in FIG. 3, and may be manufactured in a polygonal shape such as hexagon, rectangle, etc. as well as the original state.

본 발명은 첨부된 도면을 참고로 하여 설명하기 때문에 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.Since the present invention will be described with reference to the accompanying drawings, it should be understood that the preferred embodiments are described, and the present invention is not necessarily limited thereto.

본 발명에서 기판은 플라스틱, 섬유, 고무, 폴리머 기판을 말하지만 플렉서블하거나 고정된 기판이 아닌 수축되는 기판(1,5,7,9,10)으로 구성된다. In the present invention, the substrate refers to a plastic, fiber, rubber, and polymer substrate, but is composed of shrinking substrates 1, 5, 7, 9, 10, not flexible or fixed substrates.

인쇄하는 방식은 접촉식으로 롤투롤 방식 혹은 비접촉식으로 프린팅 방법 등으로 Ag, Au, Cu 등의 금속 입자를 원하는 크기 및 모양으로 인쇄하게 된다. The printing method is a contact roll-to-roll method or a non-contact printing method to print metal particles such as Ag, Au, Cu, etc. in a desired size and shape.

도 1에서의 경우, 늘어나고 수축되는 기판을 사용하며 진공 흡착하여 늘이거나 기계적으로 혹은 풍선처럼 공기를 주입하여 원래 면적보다 늘린 후 상기의 방식으로 인쇄하게 된다. 그리고 늘린 시편을 수축되게 만들면 일정한 면적만큼 줄어들게 되며 인쇄한 면적보다 미세한 선폭 및 형태를 갖도록 만들 수 있다. In the case of Figure 1, using the elongated and contracted substrate, the vacuum adsorption is extended or mechanically or inflated like a balloon to increase the original area and then printed in the above manner. When the stretched specimen is made to shrink, it can be reduced by a certain area and have a finer line width and shape than the printed area.

도 2의 경우, 늘릴 필요가 없는 기판이며 열을 가하거나 빛으로써 기판을 수축시킬 수 있는 기판이다. 수축시키기 전에 원하는 모양으로 인쇄를 한 후 수축시켜 더 미세한 인쇄 회로를 제작할 수 있다.In the case of FIG. 2, the substrate does not need to be stretched and can shrink the substrate by applying heat or light. Before shrinking, printing can be done in the desired shape and then shrinked to produce finer printed circuits.

도 3의 경우, 기판 자체를 주름이 가게 혹은 원형, 팔각형 등 다각형으로 엠보싱 형태로 제작한 후 기판을 늘린다. 늘어난 기판 위에 인쇄를 한 후 수축시키면 줄어든 면적 및 요철 부분은 상대적으로 밀착하게 됨으로 고밀도의 미세한 인쇄회로를 만들 수 있다. In the case of Figure 3, the substrate itself is wrinkled or fabricated in the form of embossed in a polygon, such as a circle, octagon, etc. and then increase the substrate. After printing on the stretched substrate and shrinking, the reduced area and irregularities become relatively close to each other, thereby making a high density and fine printed circuit.

도 4의 경우, 도 3의 예제로 선 형태로 주름이 간 기판의 경우 9를 나타내고 엠보싱 형태의 기판은 10을 나타낸다.In the case of FIG. 4, in the example of FIG. 3, 9 shows a wrinkled substrate and 10 shows an embossed substrate.

현재 기판에는 투명 플라스틱이나 그 외의 다양한 폴리머 기판, 종이, 섬유 등으로 응용되고 있으며, 이 수축 기판을 위해서 기존의 투명 플라스틱, 폴리머 기판을 올레핀계 플라스틱인 폴리염화 비닐, 폴리에틸렌, 폴리프로필렌 등으로 혹은 폴리스티렌, 폴리에스테르, 염화비닐리덴으로 사용하거나 이를 섞어 제작할 수 있다.
Currently, the substrate is applied to a transparent plastic or various polymer substrates, papers, fibers, and the like. For this shrinkage substrate, the existing transparent plastic and polymer substrates are made of olefin-based polyvinyl chloride, polyethylene, polypropylene, or polystyrene. It can be used as polyester, vinylidene chloride or mixed.

1: 기판
2: 1 기판이 흡착된 상태로 혹은 기계적으로 늘어난 상태.
3: 늘어난 기판 위에 접촉 및 비접촉 방식으로 인쇄된 금속, 비금속, 반도체 입자 및 박막.
4: 기판이 수축됨과 동시에 줄어든 인쇄된 입자 및 박막.
5: 수축 기판
6: 열 및 빛을 가하여 수축된 기판.
7: 요철 형태로 제작된 기판의 단면.
8: 힘을 가하여 평평하게 펴진 기판 7.
9: 선 형태의 7 기판.
10: 원 형태 및 다각형 형태의 7 기판.
1: substrate
2: 1 The substrate is adsorbed or mechanically stretched.
3: Metals, nonmetals, semiconductor particles and thin films printed in contact and non-contact manner on stretched substrates.
4: Printed particles and thin films shrink as the substrate shrinks.
5: shrink substrate
6: Substrate shrunk by applying heat and light.
7: The cross section of the board | substrate manufactured by the uneven | corrugated form.
8: flattened substrate by force 7.
9: 7 substrates in line form.
10: 7 substrates in the form of circles and polygons.

Claims (3)

a) 늘어나거나 수축이 가능한 기판에 금속(metal), 유전체(dielectric), 반도체(semiconductor) 입자를 접촉 및 비접촉 방식으로 제공하는 단계;
b) 열처리 및 빛(레이저, 발광 다이오드)을 제공하거나 압력 및 기계적인 힘을 제거함으로써 기판을 수축시키는 단계;
c) 열처리 및 빛(레이저, 발광 다이오드)를 이용하여 금속 입자를 신터링 (sintering)하는 단계;
를 포함하는 미세 인쇄 기술.
a) providing metal, dielectric, and semiconductor particles in contact and non-contact manner to a stretchable or shrinkable substrate;
b) shrinking the substrate by providing heat treatment and light (laser, light emitting diode) or removing pressure and mechanical forces;
c) sintering the metal particles using heat treatment and light (laser, light emitting diode);
Fine printing technology comprising a.
제 1항에 있어서, 수축이 가능한 기판으로 폴리염화 비닐, 폴리에틸렌, 폴리프로필렌, 폴리스티렌 (PS), 폴리에스테르, 염화비닐라덴, 아크릴, 불소수지 등의 플라스틱 필름, 폴리메틸메타크릴레이트 (PMMA), 폴리디메틸실록산(PDMS) 및 저분자 및 고분자 폴리머인 그라핀, 그라파이트, 카본나노튜브, 실리콘 수지, 폴리이미드 및 이들의 조합으로 이루어지는 군으로부터 선택되는 Ag, Au, Cu, Al, Ni 금속입자 및 TiO2, SnO2, ZrO2, SiO2, CIGS, CIS, CISSe 등의 반도체입자 및 이의 합금 또는 합성된 재료의 인쇄를 포함하는 미세 인쇄 기술.
The method of claim 1, wherein the shrinkable substrate is a plastic film such as polyvinyl chloride, polyethylene, polypropylene, polystyrene (PS), polyester, vinylladen chloride, acrylic, fluororesin, polymethyl methacrylate (PMMA), Ag, Au, Cu, Al, Ni metal particles and TiO2 selected from the group consisting of polydimethylsiloxane (PDMS) and graphene, graphite, carbon nanotubes, silicone resins, polyimides and combinations thereof, which are low molecular and high molecular polymers, A fine printing technique comprising printing semiconductor particles such as SnO 2, ZrO 2, SiO 2, CIGS, CIS, CISSe, and alloys or synthetic materials thereof.
제 1항 또는 2항에 있어서, 금속 입자의 크기는 1 내지 500nm 범위인 것을 특징으로 하며, 인쇄하고 수축된 후 선폭이 1 내지 9000 nm 범위인 것을 특징으로 하며, 두께는 1 내지 5000 nm 범위인 것을 특징으로 하는 미세 인쇄 기술.
The method according to claim 1 or 2, characterized in that the size of the metal particles range from 1 to 500 nm, the line width is from 1 to 9000 nm after printing and shrinking, and the thickness is from 1 to 5000 nm. Fine printing technology, characterized in that.
KR1020110102258A 2011-10-07 2011-10-07 Manufacture technology of fine printed electronics KR20130038425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110102258A KR20130038425A (en) 2011-10-07 2011-10-07 Manufacture technology of fine printed electronics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110102258A KR20130038425A (en) 2011-10-07 2011-10-07 Manufacture technology of fine printed electronics

Publications (1)

Publication Number Publication Date
KR20130038425A true KR20130038425A (en) 2013-04-17

Family

ID=48438945

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110102258A KR20130038425A (en) 2011-10-07 2011-10-07 Manufacture technology of fine printed electronics

Country Status (1)

Country Link
KR (1) KR20130038425A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107029565A (en) * 2017-05-25 2017-08-11 合肥工业大学 Optical drive double-layered compound film based on graphene oxide and preparation method and application
JP2021526316A (en) * 2018-07-06 2021-09-30 レイセオン カンパニー Adjusted conductive interconnect structure with microstructure supported by shrinkable polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107029565A (en) * 2017-05-25 2017-08-11 合肥工业大学 Optical drive double-layered compound film based on graphene oxide and preparation method and application
JP2021526316A (en) * 2018-07-06 2021-09-30 レイセオン カンパニー Adjusted conductive interconnect structure with microstructure supported by shrinkable polymer
US11638348B2 (en) 2018-07-06 2023-04-25 Raytheon Company Patterned conductive microstructures within a heat shrinkable substrate

Similar Documents

Publication Publication Date Title
JP5259368B2 (en) Conductive nanofiber sheet and method for producing the same
TWI610150B (en) Method for manufacturing conductive mesh pattern, mesh electrode manufactured by the method and laminate
TWI524361B (en) Transparent conductive film
US20150047885A1 (en) Patterned conductive film, method of fabricating the same, and application thereof
JP5207992B2 (en) Conductive nanofiber sheet and method for producing the same
CN109520411A (en) Graphene flexibility strain transducer based on pre-stretching and preparation method thereof
KR101436911B1 (en) Patterning method of graphene using hot embossing imprinting
JP2010044968A (en) Method of manufacturing conductive pattern-covered body, and conductive pattern covered body
Yoo et al. Recyclable patterning of silver nanowire percolated network for fabrication of flexible transparent electrode
JP2016502227A (en) Method for producing flexible embedded electrode film using thermal fusion transfer
Han et al. Photo-induced fabrication of Ag nanowire circuitry for invisible, ultrathin, conformable pressure sensors
JP5335534B2 (en) Conductive molded product and manufacturing method thereof
JP2015214053A (en) Laminate
Oh et al. Direct imprinting of thermally reduced silver nanoparticles via deformation-driven ink injection for high-performance, flexible metal grid embedded transparent conductors
Chen et al. Self-assembly, alignment, and patterning of metal nanowires
KR20130038425A (en) Manufacture technology of fine printed electronics
KR101675201B1 (en) Preparing method of transparent electrode having silver nanowires using support
WO2010120982A2 (en) Dynamic nano-inscribing for continuous and seamless metal and polymer nanogratings
KR101588290B1 (en) Method for fabrication pattern of nano material
KR20150109514A (en) Method for fabrication pattern of nano material
KR101588287B1 (en) Method for fabrication pattern of nano material
KR101775982B1 (en) METHOD FOR PROCESS IMPLEMENTING NANO PATTERN METAL MESH USING Ag NANOWIRE AND HYBRID METAL MESH
Liu et al. Precision patterning of conductive polymer nanocomposite using a laser-ablated thin film
KR101867156B1 (en) Flexible substrate structure and method of manufacturing the same
CN108021970A (en) A kind of transparent stealthy RFID tag material and preparation method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application