KR20130029604A - The manufacturing and improving methods of the properties of nano spherical fiber lithium titanium oxide that use titanium cloride precursor - Google Patents

The manufacturing and improving methods of the properties of nano spherical fiber lithium titanium oxide that use titanium cloride precursor Download PDF

Info

Publication number
KR20130029604A
KR20130029604A KR1020110092961A KR20110092961A KR20130029604A KR 20130029604 A KR20130029604 A KR 20130029604A KR 1020110092961 A KR1020110092961 A KR 1020110092961A KR 20110092961 A KR20110092961 A KR 20110092961A KR 20130029604 A KR20130029604 A KR 20130029604A
Authority
KR
South Korea
Prior art keywords
titanate
lithium
spherical
nanofiber
nano
Prior art date
Application number
KR1020110092961A
Other languages
Korean (ko)
Other versions
KR101310144B1 (en
Inventor
최병현
지미정
김은경
정성헌
안용태
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020110092961A priority Critical patent/KR101310144B1/en
Publication of KR20130029604A publication Critical patent/KR20130029604A/en
Application granted granted Critical
Publication of KR101310144B1 publication Critical patent/KR101310144B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/12Particle morphology extending in one dimension, e.g. needle-like with a cylindrical shape

Abstract

PURPOSE: A method for manufacturing nanospherical fiber lithium titanate using titanium tetrachloride is provided to improve electric conductivity and to enhance specific surface and energy density. CONSTITUTION: A method for manufacturing nanospherical fiber lithium titanate using titanium tetrachloride comprises: a step of preparing anatase titanium dioxide(TiO2) using titanium tetrachloride; a step of mixing anatase titanium dioxide and sodium hydroxide and synthesizing sodium titanate by hydrothermal synthesis; a step of performing ion exchange of sodium into hydrochloric acid and preparing titanate nanofiber; a step of mixing lithium hydroxide or lithium carbonate to the hydrogen titanate nanofiber and preparing Li1.81H0.19Ti2O5·2H2O; a step of dispersing Li1.81H0.19Ti2O5·2H2O in acetone and coating oleic acid; and a step of performing thermal treatment. [Reference numerals] (AA) Fig 1: scanning microscopic image of titania

Description

사염화 티타늄을 이용한 나노 구형 화이버 티탄산리튬의 제조 및 성능 향상방법{The manufacturing and Improving methods of the properties of nano spherical fiber lithium titanium oxide that use titanium cloride precursor}The manufacturing and improving methods of the properties of nano spherical fiber lithium titanium oxide that use titanium cloride precursor}

본 발명은 리튬이온이차전지용 음극으로 고출력, 장수명, 고용량 성능을 획기적 개선할 수 있게끔 하기위해서는 소재를 1차원적 구조로(화이버) 하여 비표면적을 크게 하고 agglomeration 현상을 분산제를 사용하여 잘 분산시킴으로서 전극과 전해질의 접촉 면적을 최대한 크게하며 또한 이를 구형으로 과립화하여 에너지 밀도(특히 합제밀도)를 향상시키고, 이를 카본코팅 하여 전기전도도를 증가시키는 것이다.
The present invention is a negative electrode for a lithium ion secondary battery, in order to significantly improve the high output, long life, and high capacity performance of the material in a one-dimensional structure (fiber) to increase the specific surface area and disperse the agglomeration phenomenon by using a dispersant well electrode The contact area between the electrolyte and the electrolyte is maximized and the granules are spherical to improve the energy density (particularly the mixture density), and the carbon coating is used to increase the electrical conductivity.

최근 전기자동차의 상용화 및 전력저장장치가 크게 부각되면서 고용량, 고출력, 고안정성의 성능을 갖는 리튬이온이차전지가 필요하게 되었다. 이러한 리튬이온이차전지의 성능을 좌우하는 구성성분으로는 양극, 음극, 전해질, 분리막 등이 있는데, 특히 양극과 음극소재의 성능에 따라 전지 특성에 크게 영향을 미친다. Recently, as commercialization of electric vehicles and power storage devices have been highlighted, lithium ion secondary batteries having high capacity, high output, and high stability performance have been needed. Components that influence the performance of the lithium ion secondary battery include a positive electrode, a negative electrode, an electrolyte, a separator, and the like, in particular, depending on the performance of the positive electrode and negative electrode material greatly affects the battery characteristics.

현재 사용되고 있는 소형, 중형 리튬이온이차전지에는 주로 양극으로 리튬코발트산화물, 리튬니켈산화물, 리튬망간산화물, 음극에는 흑연계가 주로 사용되고 있으나, 대형전지인 전기자동차나 전력저장용으로서는 양극은 고가이면서 작동전압이 적고, 형상이 불규칙하여 고밀도화가 어렵고 비표면적 또한 작아 충방전 용량이나 고출력, 장수명하기 어렵다. 음극은 이론밀도가 약 2g/cm3 정도로 낮고 비가역용량이 크므로 초기 충방전 효율이 낮고, 용량이 감소되는 문제점이 있다. 그리고, 과충전시 탄소의 표면에 리튬이 석출되어 안전성에 있어서 문제가 발생하므로 적합하지 않다.Graphite is mainly used for lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and negative electrode as small- and medium-sized lithium-ion secondary batteries that are currently used, but anodes are expensive and operate for electric vehicles or power storage, which are large batteries. Low voltage, irregular shape, high density, small specific surface area, low charge / discharge capacity, high output, and long life. Cathode has a theoretical density of about 2 g / cm 3 As low as possible and large irreversible capacity, the initial charge and discharge efficiency is low, there is a problem that the capacity is reduced. In addition, lithium is precipitated on the surface of the carbon during overcharging, which causes problems in safety.

따라서 위에서 설명한 바와 같이 흑연을 대체할 수 있는 소재로서 티탄산리튬(Li4Ti5O12)이 크게 부각되고 있다. 티탄산리튬은 음극으로 작동전압이 작동 전압이 1.3 ~ 1.6 V 로 기존의 탄소계 음극재에 비해 높고 가역 용량은 170 mAh/g 정도이며 이론 밀도가 3.5 g/㎤ 정도이어서 탄소 물질과 유사하며, 고속 충방전이 가능하고 비가역 반응이 거의 존재하지 않으며(초기 효율 95% 이상), 반응열이 매우 낮아 안전성이 우수하나 전기전도성이 낮은 문제점이 있다. Therefore, as described above, lithium titanate (Li 4 Ti 5 O 12 ) as a material capable of replacing graphite is greatly highlighted. Lithium titanate is a cathode, and its operating voltage is 1.3 ~ 1.6 V, which is higher than the conventional carbon-based anode material, its reversible capacity is about 170 mAh / g, and its theoretical density is about 3.5 g / cm 3, which is similar to carbon material. Charging and discharging is possible, there is almost no irreversible reaction (at least 95% of initial efficiency), and the heat of reaction is very low, so it is excellent in safety but has low electrical conductivity.

현재 상업화된 티탄산리튬 화이버는 통상적으로 티탄산리튬은 티탄산리튬을 수산화리튬과 혼합하여 수열합성 등으로 합성한다. 이렇게 제조된 티탄산리튬 화이버는 대부분 agglomeration 현상이 많은 형태로 제조된다. 이런 agglomeration 현상을 갖고 있는 화이버는 응집에 따른 유동성 부족과 화이버 사이사이 공극으로 인하여 밀도가 낮다. 이런 이유로 티탄산리튬 화이버의 밀도가 낮아 리튬이온이차전지의 에너지 밀도가 낮아지는 문제가 있다.  Commercially available lithium titanate fibers are generally synthesized by lithium titanate by hydrothermal synthesis by mixing lithium titanate with lithium hydroxide. Lithium titanate fibers thus prepared are mostly manufactured in agglomeration type. Fibers with this agglomeration phenomenon have low density due to lack of fluidity due to cohesion and voids between the fibers. For this reason, there is a problem that the energy density of the lithium ion secondary battery is low due to the low density of lithium titanate fibers.

이에 반해 agglomeration 현상을 해소하여 화이버를 과립화(granule) 하게되면 화이버의 흐름성이 양호하게 되고 화이버들로 연결되는 접촉면이 적어 (비표면적이 커짐) 공극이 적으며 불규칙하고 agglomeration 현상이 있는 입자들 보다 우수한 밀도를 갖게 된다. 또한 저온에서 수열합성으로 입자형상을 균일하게 제어하면, 분산이 양호해서 리튬이온 확산이 빠를 뿐만 아니라 불균일한 전하전도가 높아 율속특성이 향상된다. 그러므로 고밀도이면서 균일 탄산리튬 화이버를 얻기 위해서는 화이버를 잘 분산시켜 구형으로 과립화하는 것이 효과적인 방법이라 할 수 있다.On the other hand, when granulating the fibers by solving the agglomeration phenomenon, the flow of the fibers is improved and the contact surface connected to the fibers is small (larger surface area), so there are few voids and irregular and agglomeration particles. It will have a better density. In addition, when the particle shape is uniformly controlled by hydrothermal synthesis at low temperature, the dispersion is good, so that the lithium ion diffusion is not only fast, but the uneven charge conductivity is high, thereby improving the rate characteristic. Therefore, in order to obtain a high density and uniform lithium carbonate fiber, it is an effective method to disperse the fibers and granulate them into a spherical shape.

티탄산리튬을 구형으로 과립한 화이버를 얻기 위한 방법은 저가의 사염화티탄과 수산화 리튬 또는 탄산리튬으로 수열 합성하기에는 리튬이온과 티탄산이온의 침전 영역이 상이하여 합성이 어려우므로 통상적으로 사염화 티탄을 암모니아수를 사용하여 구형의 수산화티탄 또는 티타니아로 전구체를 제조한 후, 이 전구체와 수산화나트륨을 혼합하여 수산화티탄산나트륨을 제조한 다음 수산화 티탄산 나트륨을 염산으로 이온치환하여 하이드로겐 수산화 티탄을 얻는 방법을 사용하고 있다.
The method for obtaining fibers granulated with lithium titanate in spherical form is generally difficult to synthesize due to different precipitation areas of lithium ions and titanate ions for hydrothermal synthesis with low-cost titanium tetrachloride and lithium hydroxide or lithium carbonate. After preparing a precursor from spherical titanium hydroxide or titania, the precursor and sodium hydroxide were mixed to prepare sodium hydroxide, and then ion-substituted sodium hydroxide with hydrochloric acid to obtain hydrogen titanium hydroxide.

본 발명의 목적은 저가의 사염화티탄을 이용 나노구형 화이버 티탄산리튬을 제조방법과 나노구형 화이버 티탄산리튬의 성능을 향상시키는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing nanospherical fiber lithium titanate using inexpensive titanium tetrachloride and a method for improving the performance of nanospherical fiber lithium titanate.

또한, 본 발명은 나노 구형 화이버 티탄산리튬 제조방법으로는 아나타제형 티타니아 구형 전구체 제조방법과 수열법으로 티타니아 전구체 화이버를 제조하는 방법의 발명이며 나노구형 화이버 티탄산 리튬의 성능 향상에 있어서는 agglomeration 현상이 심한 화이버를 잘 분산시키는것과 잘 분산된 화이버를 과립화 하는 방법 그리고 과립화된 화이버를 카본코팅하여 성능을 향상시키는 방법을 제공하는 것이다.
In addition, the present invention is a method for producing nano-spherical fiber lithium titanate, the invention of the anatase-type titania spherical precursor manufacturing method and the method of producing a titania precursor fiber by hydrothermal method, and agglomeration phenomenon severe in the performance improvement of nano-spherical fiber lithium titanate It is to provide a method for dispersing well, granulating well dispersed fibers and improving the performance by carbon coating the granulated fibers.

본 발명은 리튬이온이차전지의 출력, 고용량, 장수명등을 향상시키기 위해 나노 구형 화이버 티탄산리튬을 제조하는 방법과 그 성능을 향상시키고자 하는 것으로 티탄산리튬 화이버를 저가의 TiCl4를 이용 전구체로서 아나타제티타니아 합성시 첨가제의 종류 및 양을 조절하여 구형의 입자 크기를 최적화함과 동시에 티타니아 전구체 이용 나노화이버 하이드로겐 티타네이트 수열 합성 할 수산화나트륨 양, 합성온도, 합성시간 등과 이온치환 용액 및 제조등을 최적화 시킨 후 수산화 리튬을 첨가후 다시 수열합성할 때 합성조건, 수산화 리튬의 몰수, 농도등의 조건을 최적화 한 후 agglomeration 입자를 분산시키기 위한 용매 선정 분산 방법등에 관한 공정, 분산입자 수십, 수백개를 과립화하여 구형으로 만드는 방법과 조건을 최적화 시키는것과 전기전도성을 향상시키기 위해 저온에서(400도 미만) The present invention is to improve the performance of the nano-spherical fiber lithium titanate in order to improve the output, high capacity, long life, and the like of the lithium ion secondary battery, and to improve the performance of the lithium titanate fiber as a precursor using a low-cost TiCl 4 as anataze titania By optimizing the spherical particle size by controlling the type and amount of additives in the synthesis, the nanofiber hydrogen titanate hydrothermal synthesis using the titania precursor is optimized by the amount of sodium hydroxide, the synthesis temperature, the synthesis time, and the ion exchange solution and production. After the addition of lithium hydroxide and then hydrothermal synthesis again, the process of solvent selection and dispersion method for dispersing agglomeration particles after optimizing the conditions such as the synthesis conditions, the number of moles of lithium hydroxide, concentration, etc., granulating dozens, hundreds of dispersed particles To optimize the method and condition of the sphere At low temperatures (less than 400 degrees) to improve properties

탄소코팅이 가능해야만 하는 코팅제, 코팅방법 그리고 코팅 후 열처리등에 관한 것을 발명하여 전극으로서 특성을 획기적으로 발현해주는 것을 과제해결 수단으로 한다. 이와 같은 소재가 개발되면, 제 특성을 효과적으로 발휘하여 단시간에 충전할 수 있으며 에너지 밀도 향상을 통해 플러그인 하이브리드 자동차 또는 전기자동차 저장장치로 사용될 것이다.
It is a problem solving means to invent a coating agent, a coating method, and a heat treatment after coating, which should be capable of carbon coating, to express the characteristics as an electrode dramatically. If such materials are developed, they will be able to be effectively used in a short time and can be used as a plug-in hybrid vehicle or electric vehicle storage device through improved energy density.

본 발명에 의해서 1D structure의 문제점인 응집현상을 해결할 수 있고, 화이버가 갖는 낮은 밀도를 과립 가공하여 구형화 함으로써 고에너지 밀도를 갖는 물질을 제조할 수 있다. 음극 활물질인 티탄산 리튬 소재를 제조함으로써 합제밀도, 용량감소로 인해 사용하기 어려운 흑연을 대체할 음극소재로 자동차 전지에 적용할 수 있는 효과가 있다.
According to the present invention, it is possible to solve the aggregation phenomenon, which is a problem of the 1D structure, and to produce a material having a high energy density by granulating a low density of fiber and sphering it. By preparing a lithium titanate material, which is a negative electrode active material, there is an effect that can be applied to an automotive battery as a negative electrode material to replace graphite, which is difficult to use due to a decrease in mixture density and capacity.

도 1은 구상 티타니아 주사현미경 사진
도 2 나노 화이버 하이드로겐 티타네이트 주사현미경 사진 및 X-선 회절 분석
도 3 나노 화이버 (a) 수산화 하이드로겐 티탄산 리튬과 (b) 티탄산리튬 주사현미경 사진 & X-선 회절 분석
도 4 나노 구형 화이버 티탄산리튬 주사현미경 사진
도 5 카본코팅 나노 구형 화이버 티탄산리튬
1 is a spherical titania scanning microscope photograph
Figure 2 Nanofiber hydrogen titanate scanning micrograph and X-ray diffraction analysis
FIG. 3 Nanofiber (a) lithium hydroxide lithium titanate and (b) lithium titanate scanning micrograph & X-ray diffraction analysis
Figure 4 Nano-spherical fiber lithium titanate scanning micrograph
Figure 5 Carbon coating nano spherical fiber lithium titanate

통상적으로 활물질 (음극)에서 입자가 화이버가 되면 비표면적이 증가하여 율속(rate) 특성은 우수해지나 전극의 밀도가 낮아 부피당 발형 가능한 용량이 작아지는 문제점이 있다.In general, when the particles become fibers in the active material (cathode), the specific surface area is increased, so that the rate characteristic is excellent, but the density of the electrode is low, so that the capacity that can be formed per volume is reduced.

특히 나노 화이버의 경우 비표면적이 크나 agglomeration되어 있어 제특성을 다 발휘하지 못하여 c-rate 특성이 떨어지게 된다. 반대로 비표면적이 너무 크면 부피당 에너지 밀도가 낮기 때문에 상용화하는데 문제점이 있다. 또한 Li4Ti5O12 물질 특성상 전기전도도가 낮은 문제점이 있다.In particular, in the case of nanofibers, the specific surface area is large, but agglomeration results in poor performance, resulting in poor c-rate properties. On the contrary, if the specific surface area is too large, there is a problem in commercialization because the energy density per volume is low. Also Li 4 Ti 5 O 12 Due to the material properties, there is a problem of low electrical conductivity.

그러므로, 본 발명에서는 사염화티타늄을 이용하여 아나타제형 이산화티타늄을 제조하여 이를 출발물질로 수열합성을 하여 1차 합성 하이드로겐 티타네이트 나노 화이버를 제조한 뒤 리튬수화물을 첨가하여 수산화하이드로겐 티티나산 리튬을 제조하고 나노 화이버가 유지되는 온도에서 열처리하여 Li4Ti5O12를 합성함으로써 비표면적이 큰 나노화이버를 제조하였다. 이를 등가압성형하여 구형화 한 뒤 카본으로 코팅하여 최종 물질을 얻었다. 비표면적이 크고 구형화 된 카본이 코팅 된 Li4Ti5O12 를 리튬이온이차전지용 음극 활물질로 사용할 경우, 속도 특성과 에너지 밀도 상승된 우수한 전기전도도로 인해 우수한 전지를 얻을 수 있다.Therefore, in the present invention, anatase-type titanium dioxide is prepared using titanium tetrachloride and hydrothermally synthesized as a starting material to prepare a primary synthetic hydrogen titanate nanofiber, and then lithium hydride is added to lithium hydroxide hydrogen titinate. Nanofibers having a large specific surface area were prepared by synthesizing Li 4 Ti 5 O 12 by heat treatment at a temperature at which the nanofibers were maintained. This was molded by equivalent pressure molding and then coated with carbon to obtain a final material. When Li 4 Ti 5 O 12 coated with spherical carbon having a large specific surface area is used as a negative electrode active material for a lithium ion secondary battery, an excellent battery can be obtained due to the excellent electrical conductivity with improved speed characteristics and energy density.

본 발명에 있어서, 우선 티탄산염 수용액에 분산제인 하이드록시프로필셀룰로오즈를 투입하여 티탄산염을 원활히 분산시키는 것이 중요하다. 이때 혼합 용액에는 침전물 형성이 없도록 주의하여야 한다. 이를 위해서 하이드록시프로필셀룰로오즈의 농도와 투입속도가 중요한 인자로 이의 조절을 통하여 침전물 형성을 억제시킬 수 있다. 여기서 하이드록시프로필셀룰로오즈의 농도는 전체 수용액 1000㎖에 대해서 0.64×10-3g/㎤ 정도의 양이 되도록 첨가하는 것이 좋으며, 이때의 온도는 5 ~ 10 ℃로 조절하는 것이 좋다. 하이드록시프로필셀룰로오즈의 투입량이 많으면 생성된 수산화티타늄 내에 잔류하는 하이드록시프로필셀룰로오즈가 여과, 세척 공정에서 완전하게 제거되지 못하여 잔류할 우려가 있으며, 하이드록시프로필셀룰로오즈 투입량이 0.64×10-3g/㎤ 이하의 경우에는 밀도가 높은 수산화티타늄를 생성하기 곤란하다. 그리고, 혼합 시의 온도가 너무 높으면 티타늄 착염 생성속도가 너무 빨라 침전물을 생성할 수 있으므로 5 ~ 10 ℃의 온도를 유지하는 것이 바람직하다. In the present invention, it is important to first disperse the titanate by introducing hydroxypropyl cellulose which is a dispersant into the titanate aqueous solution. Care should be taken to ensure that the mixed solution does not form precipitates. For this purpose, the concentration of hydroxypropyl cellulose and the rate of introduction are important factors, which can suppress the formation of precipitates through its control. The concentration of hydroxypropyl cellulose is preferably added in an amount of about 0.64 × 10 −3 g / cm 3 with respect to 1000 ml of the total aqueous solution, and the temperature at this time may be adjusted to 5 to 10 ° C. If the amount of hydroxypropyl cellulose is added, the amount of hydroxypropyl cellulose remaining in the produced titanium hydroxide may not be completely removed in the filtration and washing process.Therefore, the amount of hydroxypropyl cellulose added may be 0.64 × 10 -3 g / cm 3. In the following cases, it is difficult to produce high density titanium hydroxide. In addition, if the temperature at the time of mixing is too high, since the formation rate of titanium complex salt is too fast, it is preferable to maintain the temperature of 5 ~ 10 ℃.

다음으로, 밀폐된 반응조에 처음에는 물과 티탄산염을 투입하여 교반하며 미리 설정한 값으로 온도를 맞추고, 분산제인 1-프로패놀에 적정량의 하이드록시프로필셀룰로오즈를 용해한 용액을 동시에 연속으로 투입하여 구형의 수산화티타늄을 제조한다. 또한 온도는 5 ~ 10℃의 범위중 특정 값으로 유지하며 통상적으로 그 허용범위는 2℃ 정도로 유지하는 것이 바람직하다. 또한 상기 반응이 끝난 후 상기의 수용액을 50 ~ 90℃범위 중 특정한 값으로 유지하여 1시간 동안 숙성 한다. 숙성을 끝낸 수용액에 알칼리수산화물을 정량펌프를 통하여 연속으로 투입하여 pH를 7 ~ 10으로 맞추어준다. Next, water and titanate were first added to the sealed reactor and stirred to adjust the temperature to a predetermined value, and a solution in which an appropriate amount of hydroxypropyl cellulose was dissolved in 1-propanol as a dispersant was continuously added simultaneously. Titanium hydroxide is prepared. In addition, the temperature is maintained at a specific value in the range of 5 ~ 10 ℃ and usually the allowable range is preferably maintained at about 2 ℃. In addition, after the reaction is over, the aqueous solution is maintained at a specific value in the range of 50 ~ 90 ℃ aging for 1 hour. Alkaline hydroxide is continuously added to the aqueous solution after aging through a metering pump to adjust the pH to 7-10.

본 발명으로 제조된 수산화티타늄은 레이저 입도분석기와 주사전자현미경으로 분석, 관찰한 결과 700 ~ 1000 ㎚의 범위 내에서 비교적 입도분포 폭이 좁으며, 미세한 입자들이 단단히 뭉쳐진 치밀한 구형의 형상을 나타낸다. 입자크기와 입도분포의 조절은 하이드록시프로필셀룰로오즈의 첨가 비율, 반응조에서의 유지시간, 숙성온도 및 시간 등의 조정으로 가능하다.Titanium hydroxide prepared by the present invention is analyzed by a laser particle size analyzer and a scanning electron microscope, and as a result, the particle size distribution width is relatively narrow within the range of 700 ~ 1000 ㎚, and shows a dense spherical shape in which fine particles are firmly aggregated. The particle size and particle size distribution can be controlled by adjusting the addition ratio of hydroxypropyl cellulose, the holding time in the reactor, the aging temperature and the time.

본 발명에 있어서, 하이드로겐 티타네이트 나노화이버는 합성온도와 합성시간에 따라 비표면적의 크기가 달라지며, 110~150℃의 범위에서 24~48시간의 합성 조건 아래 최적온도와 시간은 130℃에서 48시간이다.
In the present invention, the hydrogen titanate nanofiber has a specific surface area size that varies depending on the synthesis temperature and the synthesis time, and the optimum temperature and time under the synthesis conditions of 24 to 48 hours in the range of 110 to 150 ° C is 130 ° C. 48 hours.

(실시 예 1)(Example 1)

본 발명의 실시 예1과 관련한 수산화티타늄의 제조방법은 TiCl4를 희석한 0.05mole의 TiOCl2 수용액 50㎖와 증류수 200㎖를 1ℓ의 반응조에 넣고 항온조를 이용하여 10℃로 온도를 유지시킨 상태로 교반하여준다. 그리고 1-프로패놀 800㎖ 용매에 하이드록시프로필셀룰로오즈를 0.64×10-3g/㎤만큼 투입시켜 용해한 용매를 반응조에 투입 후 6시간 동안 교반하여 준다.In the method for preparing titanium hydroxide according to Example 1 of the present invention, 50 ml of 0.05 mole TiOCl 2 aqueous solution diluted with TiCl 4 and 200 ml of distilled water were placed in a 1 liter reactor, and the temperature was maintained at 10 ° C. using a thermostat. Stir it. Then, hydroxypropyl cellulose was added in an amount of 0.64 × 10 −3 g / cm 3 to 800 ml of 1-propanol, and the dissolved solvent was added to the reactor and stirred for 6 hours.

그리고 상기 6시간동안 교반해 놓은 용매를 항온조를 이용하여 70℃에서 1시간동안 숙성하여준다. 1시간동안의 숙성 과정이 종료된 후 4mol의 NH4OH 수용액 250㎖를 2㎖/min의 속도로 투입시키며 pH를 10으로 맞추어 용매를 중화시켜주었다. 상기 작업이 끝난 후 여과기를 이용하여 세척하여 주었으며 세척 후 진공건조기를 이용하여 60℃에서 24시간 동안 건조시켜 수산화티타늄 분말을 얻었다.And the solvent stirred for 6 hours is aged for 1 hour at 70 ℃ using a thermostat. After completion of the 1 hour aging process, 250 ml of 4 mol of NH 4 OH aqueous solution was added at a rate of 2 ml / min, and the solvent was neutralized by adjusting the pH to 10. After the end of the work it was washed using a filter, and after washing it was dried for 24 hours at 60 ℃ using a vacuum dryer to obtain titanium hydroxide powder.

얻어진 수산화티타늄 분말은 평균입경이 800㎚ 이며, 입도 분포는 도 1에서 보는 바와 같이 좁은 것을 알 수 있었다. 상기 구형 수산화티타늄의 주사전자현미경 사진은 도 1에 나타내고 있다.
The obtained titanium hydroxide powder had an average particle diameter of 800 nm, and it turned out that the particle size distribution is narrow as shown in FIG. The scanning electron micrograph of the said spherical titanium hydroxide is shown in FIG.

(실시 예 2)(Example 2)

본 발명의 실시 예2와 관련한 나노 화이버 티타니아의 제조방법은 상기 실시 예1에서 제조된 티타늄 전구체와 수산화타나트륨을 혼합하여 130℃에서 48시간 수열합성법으로 티탄산나트륨으로 합성한 후 나트륨을 0.1M의 염산으로 이온교환하여 증류수와 에탄올로 충분히 세척 한 뒤 80℃에서 24시간 건조하여 하이드로겐 티타네이트 나노화이버를제조하였다. 상기 하이드로겐 티타네이트 나노화이버의 주사전자현미경 사진과 X-선 회절분석은 도 2에 나타내고 있다.
In the method for preparing nanofiber titania according to Example 2 of the present invention, the titanium precursor prepared in Example 1 is mixed with sodium hydroxide, synthesized with sodium titanate by hydrothermal synthesis at 130 ° C. for 48 hours, and sodium is added at 0.1 M. After ion exchange with hydrochloric acid, the mixture was washed with distilled water and ethanol sufficiently and dried at 80 ° C. for 24 hours to prepare hydrogen titanate nanofiber. Scanning electron micrographs and X-ray diffraction analysis of the hydrogen titanate nanofibers are shown in FIG. 2.

(실시 예 3)(Example 3)

본 발명의 실시 예3과 관련한 나노 구형 화이버 티탄산리튬(Li4Ti5O12)의 제조방법은 상기 실시 예2에서 제조된 하이드로겐 티타네이트 나노화이버와 리튬수화물을 5:4의 정량적인 비율로 130℃에서 24시간 수열합성 한 후 수산화하이드로겐 티탄산리튬(Li1.81H0.19Ti2O2H2O)을 제조 한 뒤, 이를 아세톤의 분산제를 사용, 2000barr의 압력으로 1시간 등가압 성형하여 건조 시킨 뒤 400℃에서 2시간 열처리하여 Li4Ti5O12의 물질을 합성하였다. Nano spherical fiber lithium titanate (Li 4 Ti 5 O 12 ) in accordance with Example 3 of the present invention is the hydrogen titanate nanofiber prepared in Example 2 and lithium hydrate in a quantitative ratio of 5: 4 After hydrothermal synthesis at 130 ° C. for 24 hours, lithium hydroxide hydrogen titanate (Li 1.81 H 0.19 Ti 2 O 5 · 2H 2 O) was prepared, and was then subjected to equivalent pressure molding at a pressure of 2000 barr for 1 hour using acetone dispersant. After drying, heat treatment was performed at 400 ° C. for 2 hours to synthesize a material of Li 4 Ti 5 O 12 .

열처리한 나노 구형 화이버 티탄산리튬(Li4Ti5O12)은 크기가 5 ~ 7um 이며, 상기 나노 구형 화이버 티탄산리튬의 주사전자현미경 사진과 X-선 회절분석은 도 3과 4에 나타내었다.
The heat treated nano spherical fiber lithium titanate (Li 4 Ti 5 O 12 ) has a size of 5 to 7 μm, and scanning electron micrographs and X-ray diffraction analysis of the nano spherical fiber lithium titanate are shown in FIGS. 3 and 4.

(실시 예 4)(Example 4)

본 발명의 실시 예4와 관련한 카본코팅 된 나노 구형 화이버 티탄산리튬(Li4Ti5O12)의 제조방법은 상기 실시 예3에서 제조된 나노 구형 화이버 티탄산리튬를 아세톤에 5wt%의 올레산을 분산 시킨 용매에 투입하여 혼합한 뒤 이를 질소분위기에서 400℃ 1시간 열처리를 진행하였다. In the manufacturing method of the carbon-coated nano-spherical fiber lithium titanate (Li 4 Ti 5 O 12 ) according to Example 4 of the present invention is a solvent in which the nano-spherical fiber lithium titanate prepared in Example 3 is dispersed in 5% by weight of oleic acid in acetone The mixture was added to the mixture and then heat-treated at 400 ° C. for 1 hour in a nitrogen atmosphere.

카본코팅 된 나노 구형 화이버 티탄산리튬(Li4Ti5O12)은 크기가 5 ~ 7um 이며, 코팅 두께는 약 1nm정도 였다. 상기 카본코팅 된 나노 구형 화이버 티탄산리튬의 투과전자현미경 사진은 도 5에 나타내었다.
Carbon coated nano spherical fiber lithium titanate (Li 4 Ti 5 O 12 ) was 5 ~ 7um in size, the coating thickness was about 1nm. A transmission electron micrograph of the carbon coated nano spherical fiber lithium titanate is shown in FIG. 5.

(실시 예 5) (Example 5)

본 발명의 실시 예4와 관련한 Li4Ti5O12의 전기화학적 특성을 측정하기 위하여, 열처리 한 Li4Ti5O12 분말 80 중량%, 도전재로서 카본블랙 10 중량%, 결합재로서 10 중량%의 PVDF를 N-methyl- 2pyrrolidone(NMP)용매에 용해시키고 초음파분쇄 및 교반하여 리튬 이차전지 음극용 페이스트를 제조하였다. 상기 페이스트를 니켈 호일(foil)에 도포시키고 진공 건조한 뒤 압착하여 리튬 이차전지 음극을 형성하였다. 측정용 셀(cell)은 코인 전지(Coin cell(type 2016)) 형을 이용하였으며 기준전극(reference electrode)으로는 리튬금속을 사용하였으며, 전해질은 1M의 LiPF6와 에틸렌카보네이트-디메틸카보네이트를 부피비로 1:1 혼합한 혼합액을 사용하였다. 충방전실험은 WBCS3000((주) 원아텍)을 사용하였고, 충방전은 0.2mA/㎠, 0.01V-2.5V(Li/Li+)의 조건에서 충방전실험을 행하였고 용량변화를 측정하였다. 초기 방전 용량은 141mAh/g 으로 약 90%의 방전효율을 나타내는 것을 확인 할 수 있었다. 상기제품의 주사전지현미경 사진은 도 6에서 나타내었다.
In order to measure the electrochemical properties of Li 4 Ti 5 O 12 in accordance with Example 4 of the present invention, the heat treatment Li 4 Ti 5 O 12 A powder for 80% by weight of powder, 10% by weight of carbon black as a conductive material, and 10% by weight of PVDF as a binder were dissolved in an N-methyl-2pyrrolidone (NMP) solvent, and then pulverized and stirred to prepare a lithium secondary battery negative electrode paste. The paste was applied to a nickel foil, vacuum dried, and pressed to form a lithium secondary battery negative electrode. Coin cell (type 2016) was used as the measuring cell, and lithium metal was used as the reference electrode, and the electrolyte was 1M LiPF 6 and ethylene carbonate-dimethyl carbonate in volume ratio. A mixed solution mixed 1: 1 was used. The charge / discharge test was performed using WBCS3000 (Won A Tech Co., Ltd.). Charge and discharge test was performed under the conditions of 0.2 mA / cm 2 and 0.01 V-2.5 V (Li / Li + ), and the capacity change was measured. Initial discharge capacity was 141mAh / g it was confirmed that the discharge efficiency of about 90%. The scanning cell micrograph of the product is shown in FIG.

Claims (7)

사염화티타늄을 이용하여 산화티탄전구체를 합성한 후 이를 이용 1차원구조인 나노크기 화이버(Li1.81Hi0.19Ti2O52H2O)합성한 뒤 분산제로 분산, 구형화 한 뒤, 저온 열처리를 통해 1차원 구조인 나노구형 화이버 티타산리튬을 (Li5Ti5O12) 합성하는 제조방법.
Titanium oxide precursors were synthesized using titanium tetrachloride, synthesized using nano-size fibers (Li 1.81 Hi 0.19 Ti 2 O 5 2H 2 O) as a one-dimensional structure, dispersed, spheronized with a dispersant, and then subjected to low temperature heat treatment. A method for synthesizing (Li 5 Ti 5 O 12 ) nanospherical fiber lithium titanate as a one-dimensional structure.
제 1항에 있어서,
사염화티타늄(TiCl4)을 이용하여 구형의 수산화티타늄(Ti(OH)4)을 제조하고, 상기 수산화티타늄(Ti(OH)4)을 열처리 하여 제조된 구상 티타니아.
The method of claim 1,
Titanium tetrachloride (TiCl 4) to use to prepare a spherical titanium hydroxide (Ti (OH) 4), and the titanium hydroxide (Ti (OH) 4) The spherical titania prepared by heating.
제 2항에 있어서 구형 산화티타늄 전구체에 수산화나트륨을 첨가하여 수열합성 방법으로 나노 화이버를 제조한 후 나트륨을 이온 치환하기 위해 염산처리하여 나노화이버 하이드로겐 티타네이트를 제조하는 방법.
The method of claim 2, wherein the nanofibers are prepared by adding sodium hydroxide to a spherical titanium oxide precursor to prepare nanofibers by hydrothermal synthesis, followed by hydrochloric acid for ion substitution of sodium to prepare nanofiber hydrogen titanate.
제 3항의 나노화이버 하이드로겐 티타네이트에 수산화리튬 또는 탄산리튬을 혼합하여 나노화이버 (Li1.81H0.19Ti2O52H2O)을 제조 또는 열처리하여 나노화이버 티탄산리튬(Li4Ti5O12)을 제조하는 방법.
The nanofiber lithium titanate (Li 4 Ti 5 O 12 ) by preparing or heat-treating nanofiber (Li 1.81 H 0.19 Ti 2 O 5 2H 2 O) by mixing lithium hydroxide or lithium carbonate to the nanofiber hydrogen titanate of claim 3 How to prepare.
잘 분산된 나노화이버 티탄산리튬을 구형화 할 수 있는 성형방법으로 등가압성형을 하는 방법.
A method of equivalent pressure molding by a molding method capable of sphering well dispersed nanofiber lithium titanate.
제 5항의 나노 구형 화이버 티탄산리튬을 전기전도도 향상을 위해 올레산으로 코팅하여 나노구형화이버 티탄산리튬의 표면에 올레산이 코팅되는 방법.
The method of claim 5, wherein the nano-spherical fiber lithium titanate is coated with oleic acid to improve electrical conductivity, so that the oleic acid is coated on the surface of the nano-spherical fiber lithium titanate.
제 6항의 카본이 코팅된 나노구형화이버 산화리튬티타네이트를 저온 열처리하여 1차원 구조를 갖는 탄소가 코팅된 나노 구형 화이버 티탄산리튬을 제조하는 방법.

A method of preparing carbon-coated nano-spherical fiber lithium titanate having a one-dimensional structure by low temperature heat treatment of the carbon-coated nano-spherical fiber lithium oxide titanate of claim 6.

KR1020110092961A 2011-09-15 2011-09-15 The manufacturing and Improving methods of the properties of nano spherical fiber lithium titanium oxide that use titanium cloride precursor KR101310144B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110092961A KR101310144B1 (en) 2011-09-15 2011-09-15 The manufacturing and Improving methods of the properties of nano spherical fiber lithium titanium oxide that use titanium cloride precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110092961A KR101310144B1 (en) 2011-09-15 2011-09-15 The manufacturing and Improving methods of the properties of nano spherical fiber lithium titanium oxide that use titanium cloride precursor

Publications (2)

Publication Number Publication Date
KR20130029604A true KR20130029604A (en) 2013-03-25
KR101310144B1 KR101310144B1 (en) 2013-10-14

Family

ID=48179464

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110092961A KR101310144B1 (en) 2011-09-15 2011-09-15 The manufacturing and Improving methods of the properties of nano spherical fiber lithium titanium oxide that use titanium cloride precursor

Country Status (1)

Country Link
KR (1) KR101310144B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101486649B1 (en) * 2013-05-24 2015-01-29 세종대학교산학협력단 Negative Electrode Material for Sodium-Ion Batteries and Sodium-Ion Battery Having the Same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148876A (en) * 2018-08-14 2019-01-04 厦门大学 Anode material of lithium-ion battery sodium titanate hierarchical structure and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101486649B1 (en) * 2013-05-24 2015-01-29 세종대학교산학협력단 Negative Electrode Material for Sodium-Ion Batteries and Sodium-Ion Battery Having the Same

Also Published As

Publication number Publication date
KR101310144B1 (en) 2013-10-14

Similar Documents

Publication Publication Date Title
Shi et al. Rapid self-assembly spherical Li1. 2Mn0. 56Ni0. 16Co0. 08O2 with improved performances by microwave hydrothermal method as cathode for lithium-ion batteries
US6395250B2 (en) Lithium/nickel/cobalt composite oxide, process for preparing the same, and cathode active material for rechargeable battery
TWI627783B (en) Electrode material for lithium ion secondary battery, manufacturing method of the electrode material, and lithium ion secondary battery
CN111418094A (en) Manganese spinel doped with magnesium, cathode material comprising same, method for preparing same and lithium ion battery comprising such spinel
CN107910543A (en) A kind of high-capacity lithium ion cell tertiary cathode modified material and preparation method thereof
JP4798507B2 (en) Method for producing single-crystal LiMn2O4 nanowire and high-rate Li-ion battery using single-crystal LiMn2O4 nanowire
KR101856994B1 (en) Preparing method of lithium titanium oxide for anode materials of Lithium ion battery
Lu et al. Co-precipitation preparation of LiNi0. 5Mn1. 5O4 hollow hierarchical microspheres with superior electrochemical performance for 5 V Li-ion batteries
CN113072049A (en) Preparation method of high-compaction-density lithium manganese iron phosphate/carbon composite positive electrode material
CN102225753B (en) Preparation method for lithium ion battery cathode materials
CN105576236A (en) Lithium ion battery 442 ternary anode modified material and preparing method thereof
KR101795977B1 (en) Method for producing titanium oxide using porous titanium compound impregnated with solution
TWI651272B (en) Process for producing lr-lnmo composite materials and use the same
CN106207154A (en) Method for preparing anode material, positive electrode and battery
CN105161678A (en) Multi-layer composite titanium dioxide nanotube material for lithium battery electrode
Du et al. Lithium storage performance of {010}-faceted and [111]-faceted anatase TiO2 nanocrystals
CN106340642A (en) Long-circulation and high-capacity lithium battery positive electrode material and preparing method
KR101310144B1 (en) The manufacturing and Improving methods of the properties of nano spherical fiber lithium titanium oxide that use titanium cloride precursor
JP6178554B2 (en) Method for producing composite material of metal oxide and conductive carbon
KR101153888B1 (en) The manufacturing methods of nano spherical lithium titanium oxide that use titanium precursor
CN104393289B (en) The preparation method of a kind of lithium manganese phosphate Nano microsphere and product
CN108417830B (en) Lithium nickel manganese oxide positive electrode material and preparation method thereof
KR101046432B1 (en) Preparation of novel nanostructured titanium oxide nano-composite and its electrode application for charge storage devices
KR101261383B1 (en) METHOD OF SYNTHESIZING Ti(OH)2 PRECURSOR AND Li4Ti5O12 USING THEREOF
KR102273771B1 (en) Cathode active materials for lithium secondary batteries and lithium secondary batteries comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160902

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170912

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180910

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190909

Year of fee payment: 7