KR20130027787A - Polyamide nanofiltration composite membrane and manufacturing method thereof - Google Patents

Polyamide nanofiltration composite membrane and manufacturing method thereof Download PDF

Info

Publication number
KR20130027787A
KR20130027787A KR1020110091237A KR20110091237A KR20130027787A KR 20130027787 A KR20130027787 A KR 20130027787A KR 1020110091237 A KR1020110091237 A KR 1020110091237A KR 20110091237 A KR20110091237 A KR 20110091237A KR 20130027787 A KR20130027787 A KR 20130027787A
Authority
KR
South Korea
Prior art keywords
polyamide
nanocomposite membrane
polyamide nanocomposite
amine
weight
Prior art date
Application number
KR1020110091237A
Other languages
Korean (ko)
Other versions
KR101317643B1 (en
Inventor
이규호
김인철
Original Assignee
한국화학연구원
웅진케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 웅진케미칼 주식회사 filed Critical 한국화학연구원
Priority to KR1020110091237A priority Critical patent/KR101317643B1/en
Publication of KR20130027787A publication Critical patent/KR20130027787A/en
Application granted granted Critical
Publication of KR101317643B1 publication Critical patent/KR101317643B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21827Salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21834Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02831Pore size less than 1 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A polyamide nanocomposite film, and a producing method thereof are provided to improve the efficiency of a water treatment process, and processing capacity per unit time of the nanocomposite film. CONSTITUTION: A polyamide nanocomposite film contains a porous support, and a polyamide active layer formed on the porous support. The polyamide active layer is obtained by the interfacial polymerization between a multifunctional amine containing aqueous solution, and a multifunctional acyl halide containing organic solution. The organic solution contains organophosphate denoted by chemical formula 1. In the chemical formula 1, R1, R2, and R3 are hydrogen, a C1-5 alkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group, and a phenyl group, independently.

Description

폴리아미드 나노복합막 및 그 제조방법{POLYAMIDE NANOFILTRATION COMPOSITE MEMBRANE AND MANUFACTURING METHOD THEREOF} POLYAMIDE NANOFILTRATION COMPOSITE MEMBRANE AND MANUFACTURING METHOD THEREOF

본 발명은 폴리아미드 나노복합막 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 다공성 지지체 상에 다관능성 아민 함유 수용액과 다관능성 아실 할라이드함유 유기용액간의 계면중합시, 상기 유기용액에 유기 인산염이 더 함유되어 형성된 폴리아미드 활성층으로 이루어짐으로써, 나노여과막 또는 역삼투막 분야에서 요구하는 염배제율 수준을 유지하면서 투과유량이 향상된 폴리아미드 나노복합막 및 그 제조방법에 관한 것이다. The present invention relates to a polyamide nanocomposite membrane and a method for manufacturing the same, and more particularly, an organic phosphate is added to the organic solution when interfacial polymerization between the polyfunctional amine-containing aqueous solution and the polyfunctional acyl halide-containing organic solution on the porous support. The present invention relates to a polyamide nanocomposite membrane and a method for producing the same, comprising a polyamide active layer formed therein and having an improved permeation flow rate while maintaining a salt rejection level required in the field of nanofiltration membranes or reverse osmosis membranes.

분리막은 공경에 따라 정밀여과막(Micro filtration; MF), 한외여과막(Ultra filtration; UF), 나노여과막(Nano filtaration; NF) 및 역삼투막(Reverse osmosis; RO) 등으로 분류된다.Separation membranes are classified into microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), and the like according to pore size.

일반적으로, 나노여과막은 역삼투막(RO)과 한외여과막(UF)의 처리범위의 중간 범위인 수백에서 수천인 분자량을 갖는 물질에 대해 분리능을 가진 분리막으로서, 통상 분획분자량 1000 미만의 물질을 분리하는 성능을 가지며, 조작압력이 역삼투 공정의 1/4 내지 1/2 수준이면서 2가 이온에 대하여 90% 이상의 높은 염배제율을 갖기 때문에, 음용수 생산, 폐수 및 정수 처리, 해수담수화 전처리, 식품공정 및 경수의 연수화 등 다양한 공정에 응용 가능하다.In general, the nanofiltration membrane is a separation membrane having a separation ability for a substance having a molecular weight of several hundred to thousands, which is in the middle of the treatment range of the reverse osmosis membrane (RO) and the ultrafiltration membrane (UF), and is usually capable of separating substances having a fraction molecular weight of less than 1000. Since the operating pressure is 1/4 to 1/2 of reverse osmosis process and has a high salt rejection ratio of 90% or more for divalent ions, drinking water production, wastewater and water purification treatment, seawater desalination pretreatment, food process and It is applicable to various processes such as softening of hard water.

일반적으로 담수화 공정을 포함하는 막 공정에 가해지는 압력은 다량의 염을 함유한 처리수가 갖는 삼투압 이상의 수압이 제공되어야 한다. 또한, 대량으로 처리할 경우, 에너지의 효율을 높이기 위해서는 저압에서도 높은 투과성능을 나타내어야 한다. In general, the pressure exerted on membrane processes, including desalination processes, should be provided with a pressure above the osmotic pressure of the treated water containing a large amount of salt. In addition, in the case of a large amount of processing, in order to increase the energy efficiency, high permeability should be shown even at low pressure.

종래 폴리아미드 활성층을 포함하는 역삼투막의 경우, 90% 이상의 높은 염배제율을 가지나, 투과성능이 상대적으로 매우 낮기 때문에, 적용에 극히 제한적이었다. In the case of the conventional reverse osmosis membrane including the polyamide active layer, it has a high salt rejection ratio of 90% or more, but is extremely limited in application because of its relatively low permeability.

따라서, 적용범위와 경제성을 높이기 위한 일환으로서, 역삼투막은 염배제율을 40~90% 수준을 충족하는 적정범위의 제거율을 가지면서 투과성능을 향상시킬 수 있도록 제안되고 있다. Therefore, as part of increasing the scope of application and economical efficiency, the reverse osmosis membrane has been proposed to improve the permeability while having a proper range of removal rate that satisfies the 40 to 90% salt rejection rate.

일반적으로 나노여과막 또는 역삼투막은 다공성 지지체와 폴리아미드 활성층으로 구성되며, 이때, 폴리아미드 활성층은 다관능성 아민과 다관능성 아실 할라이드의 계면중합에 의해 형성된다. Generally, the nanofiltration membrane or the reverse osmosis membrane is composed of a porous support and a polyamide active layer, wherein the polyamide active layer is formed by interfacial polymerization of a polyfunctional amine and a polyfunctional acyl halide.

그 일례로서, 미국특허 제4,872,984호에서는 미세 다공성 지지체 상에 계면 중합을 통해 활성층을 형성하기 위하여 (a) 아민염을 함유하는 최소 두 개 이상의 아민 관능기를 지닌 방향족 폴리아민 반응물 수용액과 (b) 평균 반응 분자당 최소 2.2개의 아실 할라이드 관능기를 갖는 다관능성 방향족 아실 할라이드 또는 그 혼합물을 함유하는 유기용액을 사용하여 제조된 폴리아미드 복합막을 제시한 바 있다. 상기 제조된 폴리아미드 복합막은 염배제율이 99%로 매우 높지만, 투과유량이 상대적으로 매우 낮아 바람직하지 않다. As an example, US Pat. No. 4,872,984 discloses (a) an average reaction of an aqueous solution of an aromatic polyamine reactant having at least two or more amine functional groups containing an amine salt to form an active layer via interfacial polymerization on a microporous support. A polyamide composite membrane prepared using an organic solution containing a polyfunctional aromatic acyl halide or a mixture thereof having at least 2.2 acyl halide functional groups per molecule has been presented. Although the prepared polyamide composite membrane has a very high salt excretion rate of 99%, the permeation flow rate is relatively low, which is not preferable.

또한, 대한민국 특허공개 제2011-9965호에서는 아미노기 또는 알킬화된 아미노기가 치환된 피페리딘계 모노머 및 친수성 고분자가 함유된 다관능성 아민 수용액과 다관능성 산할로겐화합물 함유 유기용액이 계면중합되어 형성된 폴리아미드층을 포함하는 폴리아미드 나노분리막이 제시된 바 있다. In addition, Korean Patent Publication No. 2011-9965 discloses a polyamide layer formed by interfacial polymerization of a polyfunctional amine aqueous solution containing a piperidine-based monomer substituted with an amino group or an alkylated amino group and a hydrophilic polymer and an organic solution containing a polyfunctional acid halogenide compound. Polyamide nano separation membrane comprising a has been presented.

그러나 상기 나노분리막은 상당 수준의 염배제율을 가지나, 투과유량 측면에서는 나노여과막 또는 역삼투막 분야에서 요구되는 수준까지 충족시키기에는 미흡한 상황이다.However, the nano separation membrane has a considerable level of salt rejection, but in terms of permeate flow rate, it is insufficient to meet the required level in the field of nanofiltration membrane or reverse osmosis membrane.

이에, 본 발명자들은 나노여과막 또는 역삼투막 분야에서 요구되는 적정범위의 염배제율을 충족하면서 투과성능이 향상된 폴리아미드 나노복합막을 얻고자 노력한 결과, 다공성 지지체 상에서 계면중합시 유기용액에 유기 인산염이 더 첨가되어 폴리아미드 활성층이 형성된 폴리아미드 나노복합막을 제공함으로써, 본 발명을 완성하였다. Accordingly, the present inventors have tried to obtain a polyamide nanocomposite membrane having improved permeability while satisfying the salt excretion ratio of the appropriate range required in the field of nanofiltration membrane or reverse osmosis membrane, and thus, organic phosphate is added to the organic solution during interfacial polymerization on the porous support The present invention was completed by providing a polyamide nanocomposite membrane having a polyamide active layer formed thereon.

본 발명의 목적은 나노여과막 또는 역삼투막 분야에서 요구하는 염배제율을 충족하면서 투과성능이 향상된 폴리아미드 나노복합막을 제공하는 것이다. An object of the present invention is to provide a polyamide nanocomposite membrane having improved permeability while meeting the salt rejection rate required in the field of nanofiltration membrane or reverse osmosis membrane.

본 발명의 다른 목적은 나노여과 수준의 고유량을 구현하는 폴리아미드 나노복합막의 제조방법을 제공하는 것이다.It is another object of the present invention to provide a method for producing a polyamide nanocomposite membrane that realizes a high flow rate of nanofiltration.

상기 목적을 달성하기 위하여, 본 발명은 다공성 지지체 상에, 다관능성 아민함유 수용액과 다관능성 아실 할라이드함유 유기용액간의 계면중합시 상기 유기용액에 하기 화학식 1로 표시되는 유기 인산염이 더 함유되어 계면중합된 폴리아미드 활성층;으로 이루어진 폴리아미드 나노복합막을 제공한다.In order to achieve the above object, the present invention is an interfacial polymerization of a polyfunctional amine-containing aqueous solution and a polyfunctional acyl halide-containing organic solution on the porous support further contains an organic phosphate represented by the formula (1) in the organic solution It provides a polyamide nanocomposite film consisting of; a polyamide active layer.

Figure pat00001
Figure pat00001

(상기에서 R1, R2 및 R3는 각각 독립적으로 수소, C1~C6 알킬기, C2~C6 알케닐기, C2~C6 알키닐기, 페닐기이며, R1, R2 및 R3 중 적어도 하나는 수소가 아니다.)(In the above, R 1 , R 2 and R 3 are each independently hydrogen, C 1 -C 6 alkyl group, C 2 -C 6 alkenyl group, C 2 -C 6 alkynyl group, phenyl group, R 1 , R 2 and R At least one of 3 is not hydrogen.)

본 발명의 폴리아미드 나노복합막은 40~90%의 염배제율을 가지면서 동시에 40~90 GFD의 물 투과유량을 충족한다.The polyamide nanocomposite membrane of the present invention has a salt rejection ratio of 40 to 90% and at the same time satisfies the water permeation flow rate of 40 to 90 GFD.

구체적으로, 본 발명의 폴리아미드 나노복합막은 1~500nm의 공경을 가지는 다공성 지지체 및 0.1~1nm의 공경을 가지는 폴리아미드 활성층으로 이루어진 것을 특징으로 한다.Specifically, the polyamide nanocomposite membrane of the present invention is characterized by consisting of a porous support having a pore size of 1 to 500 nm and a polyamide active layer having a pore size of 0.1 to 1 nm.

본 발명의 폴리아미드 나노복합막은 나노여과 수준의 고유량을 구현하므로 정수기, 해수담수화 공정의 전처리 장치, 연수기, 정수 처리장치, 폐수 처리장치 또는 식품 정제장치에서 선택되는 어느 하나에 적용될 수 있다.Since the polyamide nanocomposite membrane of the present invention implements a high flow rate of nanofiltration, it can be applied to any one selected from a water purifier, a pretreatment device of a seawater desalination process, a water softener, a water treatment device, a wastewater treatment device, or a food purification device.

본 발명은 상기 폴리아미드 나노복합막의 제조방법을 제공한다. 더욱 구체적으로는The present invention provides a method for producing the polyamide nanocomposite membrane. More specifically,

1) 다공성 지지체 상에 다관능성 아민 함유 수용액을 접촉시키는 단계 및 1) contacting the polyfunctional amine-containing aqueous solution on the porous support, and

2) 하기 화학식 1로 표시되는 유기 인산염이 더 함유된 다관능성 아실할라이드 함유 유기용액을 연속 접촉에 의해 계면중합시켜 폴리아미드 활성층을 형성하는 단계로 수행된다. 2) The polyfunctional acyl halide-containing organic solution further containing the organic phosphate represented by the following Formula 1 is interfacially polymerized by continuous contact to form a polyamide active layer.

화학식 1Formula 1

Figure pat00002
Figure pat00002

(상기에서 R1, R2 및 R3는 각각 독립적으로 수소, C1~C6 알킬기, C2~C6 알케닐기, C2~C6 알키닐기, 페닐기이며, R1, R2 및 R3 중 적어도 하나는 수소가 아니다.)(In the above, R 1 , R 2 and R 3 are each independently hydrogen, C 1 -C 6 alkyl group, C 2 -C 6 alkenyl group, C 2 -C 6 alkynyl group, phenyl group, R 1 , R 2 and R At least one of 3 is not hydrogen.)

본 발명의 폴리아미드 나노복합막의 제조방법에 있어서, 상기 유기 인산염으로서, 더욱 바람직하게는 3차 알킬 인산염 또는 방향족 인산염이며, 그 구체적인 일례로는 트리부틸인산, 트리페닐인산 및 트리에틸인산으로 이루어진 군에서 선택되는 어느 하나를 사용하는 것이다.In the method for producing a polyamide nanocomposite membrane of the present invention, the organic phosphate is more preferably tertiary alkyl phosphate or aromatic phosphate, and specific examples thereof include tributyl phosphate, triphenyl phosphate and triethyl phosphate. It is to use any one selected from.

또한, 본 발명의 제조방법에 사용되는 유기 인산염의 바람직한 함량은 0.1 내지 5중량%가 함유되는 것이다.In addition, the preferred content of the organic phosphate used in the production method of the present invention is 0.1 to 5% by weight.

본 발명의 폴리아미드 나노복합막의 제조방법에서, 다관능성 아민 함유 수용액이라 함은 1급 아민 또는 2급 아민에서 선택되는 아민 0.1 내지 10 중량%, 아민염 0.1 내지 10 중량% 및 극성용매 0.01~3중량%가 함유된 수용액을 사용하는 것이다.In the method for producing a polyamide nanocomposite membrane of the present invention, the polyfunctional amine-containing aqueous solution is 0.1 to 10% by weight of amine selected from primary amine or secondary amine, 0.1 to 10% by weight amine salt and 0.01 to 3 polar solvent. An aqueous solution containing% by weight is used.

이때, 아민염은 강산과 알킬 아민이 1:0.5 ~1:2의 중량비로 첨가된 반응에 의해 형성되는 것이다.At this time, the amine salt is formed by a reaction in which a strong acid and an alkyl amine are added in a weight ratio of 1: 0.5 to 1: 2.

또한, 극성용매는 디메틸술폭사이드, 부틸 술폭사이드 및 테트라메틸렌술폭사이드를 포함하는 술폭사이드 유도체; 1,3-헵탄디올, 2-에틸-1,1-헥산디올, 1,3-헥산디올 및 1,3-펜탄디올을 포함하는 1,3-프로판디올 유도체; 및 1차 알코올;로 이루어진 군에서 선택되는 1종 이상을 사용한다.In addition, polar solvents include sulfoxide derivatives including dimethyl sulfoxide, butyl sulfoxide and tetramethylene sulfoxide; 1,3-propanediol derivatives including 1,3-heptanediol, 2-ethyl-1,1-hexanediol, 1,3-hexanediol and 1,3-pentanediol; And primary alcohol; at least one selected from the group consisting of.

본 발명에 따라, 나노여과막 또는 역삼투막 분야에서 요구되는 염배제율을 가지면서 높은 투과유량 성능을 보유한 폴리아미드 나노복합막을 제공할 수 있다. 이에, 본 발명의 폴리아미드 나노복합막은 나노여과 수준의 고유량을 구현하게 됨으로써 단위시간당 처리용량이 증가하게 되며 수처리 공정상의 효율성을 높일 수 있어 경제적으로 유리하다. According to the present invention, it is possible to provide a polyamide nanocomposite membrane having high permeation flux performance while having a salt rejection rate required in the field of nanofiltration membranes or reverse osmosis membranes. Accordingly, the polyamide nanocomposite membrane of the present invention is economically advantageous because it realizes a high flow rate of the nanofiltration level, thereby increasing the treatment capacity per unit time and increasing the efficiency of the water treatment process.

따라서, 본 발명의 폴리아미드 나노복합막은 다양한 나노여과 공정에 적용가능하며, 특히 음용수용, 경수의 연수화, 해수담수화의 전처리용, 식품제조공정 등과 같은 분야에 적용할 수 있다.Therefore, the polyamide nanocomposite membrane of the present invention is applicable to various nanofiltration processes, and in particular, it is applicable to fields such as drinking water, softening soft water, pretreatment of seawater desalination, food manufacturing process, and the like.

또한, 본 발명은 나노여과 수준의 고유량을 구현할 수 있도록 최적화된 제조방법을 제공함으로써, 종래의 역삼투 분리막 제조공정에 응용 가능하다.In addition, the present invention can be applied to the conventional reverse osmosis membrane manufacturing process by providing a manufacturing method optimized to implement a high flow rate of the nanofiltration level.

이하 본 발명을 상세히 설명하고자 한다. Hereinafter, the present invention will be described in detail.

본 발명은 다공성 지지체 상에, The present invention on a porous support,

다관능성 아민함유 수용액과 다관능성 아실 할라이드함유 유기용액간의 계면중합시 상기 유기용액에 하기 화학식 1로 표시되는 유기 인산염이 더 함유되어 계면중합된 폴리아미드 활성층;으로 이루어진 폴리아미드 나노복합막을 제공한다.When interfacial polymerization between a polyfunctional amine-containing aqueous solution and a polyfunctional acyl halide-containing organic solution, the organic solution further contains an organic phosphate represented by the following Chemical Formula 1 to provide a polyamide nanocomposite layer consisting of a polyamide active layer interfacially polymerized.

화학식 1Formula 1

Figure pat00003
Figure pat00003

(상기에서 R1, R2 및 R3는 각각 독립적으로 수소, C1~C6 알킬기, C2~C6 알케닐기, C2~C6 알키닐기, 페닐기이며, R1, R2 및 R3 중 적어도 하나는 수소가 아니다.)(In the above, R 1 , R 2 and R 3 are each independently hydrogen, C 1 -C 6 alkyl group, C 2 -C 6 alkenyl group, C 2 -C 6 alkynyl group, phenyl group, R 1 , R 2 and R At least one of 3 is not hydrogen.)

상기 화학식 1로 표시되는 유기 인산염은 양친성 구조로 인하여, 친수성을 띄는 산소원자(O)와의 결합부분은 수용액을 향하며, 유기 치환기(R1, R2 및 R3)가 결합된 부분은 유기용액상을 향하게 된다. Due to the amphiphilic structure, the organic phosphate represented by Chemical Formula 1 has a bonding portion with an oxygen atom (O) showing hydrophilicity toward an aqueous solution, and the portion where the organic substituents (R 1 , R 2 and R 3 ) are bonded is an organic solution. Face up.

이때, 상기 유기 인산염에 존재하는 에테르 결합의 산소원자(O)와 아실 할라이드 분자 내 아실기의 산소원자간의 쌍극자 모멘트에 의하여, 배향된 유기 인산염과 아실 할라이드의 분자간에 약한 결합이 형성된다. 이에 따라 더욱 조밀한 폴리아미드의 형성이 가능하게 되어 표면적은 증가하게 되어 투과성능이 크게 향상된다. 반면에, 유기 인산염이 유기용액에 함유된 아실 할라이드 단량체와 수용액 상에 함유된 아민 단량체간의 직접적인 접촉을 방해하므로, 폴리아미드 나노복합막의 염제거율은 일정량 감소하게 된다[표 1].At this time, a weak bond is formed between the molecules of the oriented organic phosphate and acyl halide by the dipole moment between the oxygen atom (O) of the ether bond present in the organic phosphate and the oxygen atom of the acyl group in the acyl halide molecule. As a result, a more compact polyamide can be formed, thereby increasing the surface area, thereby greatly improving the permeation performance. On the other hand, since the organic phosphate prevents direct contact between the acyl halide monomer contained in the organic solution and the amine monomer contained in the aqueous solution, the salt removal rate of the polyamide nanocomposite membrane is reduced by a certain amount [ Table 1 ].

즉, 상기 유기 인산염이 폴리아미드 활성층에서 발견되는 구조(ridge and valley)를 더욱 날카롭게 형성하도록 도와 폴리아미드 활성층의 표면적을 증가시켜 막의 투과성능을 향상시키는 반면에 염배제율을 감소시키는 역할을 한다.That is, the organic phosphate helps to form the ridge and valley found in the polyamide active layer more sharply, thereby increasing the surface area of the polyamide active layer, thereby improving the permeability of the membrane while reducing the salt rejection rate.

이에, 본 발명의 폴리아미드 나노복합막은 나노여과막 또는 역삼투막 분야에서 요구하는 수준의 염배제율인40~90%을 가지면서 동시에 물 투과유량이 40~90 GFD로 구현되어 향상된 투과유량을 구현한다.Accordingly, the polyamide nanocomposite membrane of the present invention has a salt rejection ratio of 40 to 90% of the level required in the field of nanofiltration membranes or reverse osmosis membranes, and at the same time, the water permeation flow rate is implemented as 40 to 90 GFD to realize an improved permeate flow rate.

상기 화학식 1로 표시되는 유기 인산염으로서 바람직하게는 3차 알킬 인산염 또는 방향족 인산염을 사용하며, 더욱 바람직한 일례로는 트리부틸인산, 트리페닐인산 및 트리에틸인산으로 이루어진 군에서 선택되는 어느 하나를 사용하는 것이다.As the organic phosphate represented by Formula 1, tertiary alkyl phosphate or aromatic phosphate is preferably used, and more preferably, any one selected from the group consisting of tributyl phosphate, triphenyl phosphate and triethyl phosphate is used. will be.

또한, 유기 인산염의 바람직한 함량은 상기 다관능성 아실 할라이드 함유 유기 용액에 0.1~5중량%가 함유되는 것이며, 더욱 바람직하게는 0.1~2중량%, 가장 바람직하게는 0.2~1중량%로 함유되는 것이다. 이때, 상기 유기 인산염 함량이 0.1 중량% 미만이면, 투과유량을 증가시키지 못하는 문제가 있고, 5중량%를 초과하면, 염배제율이 급격히 감소하여 바람직하지 않다. The preferred content of the organic phosphate is 0.1 to 5% by weight in the polyfunctional acyl halide-containing organic solution, more preferably 0.1 to 2% by weight, most preferably 0.2 to 1% by weight. . At this time, if the organic phosphate content is less than 0.1% by weight, there is a problem that does not increase the permeate flow rate, if it exceeds 5% by weight, the salt excretion rate is rapidly reduced is not preferable.

본 발명의 폴리아미드 나노복합막에 있어서, 다공성 지지체는 통상의 나노여과막 또는 역삼투복합막에서 막의 기계적 강도를 유지하기 위한 목적으로 사용된다. In the polyamide nanocomposite membrane of the present invention, the porous support is used for the purpose of maintaining the mechanical strength of the membrane in a conventional nanofiltration membrane or reverse osmosis composite membrane.

이때, 바람직한 다공성 지지체의 소재로는 폴리술폰, 폴리이서술폰(Polyethersulfone), 폴리에틸렌(PE), 폴리아크릴로나이트릴(PAN) 및 폴리비닐리덴 플로라이드로 이루어진 군에서 선택되는 어느 하나를 사용하는 것이다. At this time, the material of the preferred porous support is to use any one selected from the group consisting of polysulfone, polyethersulfone, polyethylene (PE), polyacrylonitrile (PAN), and polyvinylidene fluoride. .

이때, 본 발명의 실시예에서는 바람직한 실시형태로서, 부직포 상에 방향족 폴리술폰이 포함된 용액이 캐스팅되어 제조된 다공성 지지체에 대하여 설명하고 있다. At this time, in the embodiment of the present invention, a porous support prepared by casting a solution containing an aromatic polysulfone on a nonwoven fabric is described as a preferred embodiment.

또한, 본 발명은 상기 다공성 지지체가 1~500nm의 공경을 가지고, 상기 폴리아미드 활성층이 0.1~1nm의 공경을 가지는 것으로 이루어진 폴리아미드 나노복합막을 제공한다. The present invention also provides a polyamide nanocomposite membrane comprising the porous support having a pore size of 1 to 500 nm and the polyamide active layer having a pore size of 0.1 to 1 nm.

나아가, 이러한 폴리아미드 나노복합막은 나노여과 수준의 고유량을 구현하므로 정수기, 해수담수화 공정의 전처리 장치, 연수기, 정수 처리장치, 폐수 처리장치 또는 식품 정제장치에서 선택되는 어느 하나에 적용될 수 있다.Furthermore, since the polyamide nanocomposite membrane implements a high flow rate at the nanofiltration level, the polyamide nanocomposite membrane may be applied to any one selected from a water purifier, a pretreatment device of a seawater desalination process, a water softener, a water treatment device, a wastewater treatment device, or a food purification device.

또한, 본 발명은 In addition,

1) 다공성 지지체 상에 다관능성 아민 함유 수용액을 접촉시키는 단계 및 1) contacting the polyfunctional amine-containing aqueous solution on the porous support, and

2) 하기 화학식 1로 표시되는 유기 인산염이 더 함유된 다관능성 아실할라이드 함유 유기용액을 연속 접촉에 의해 계면중합시켜 폴리아미드 활성층을 형성하는 단계로 수행되는 폴리아미드 나노복합막의 제조방법을 제공한다. 2) It provides a method for producing a polyamide nanocomposite membrane which is carried out by interfacial polymerization of a polyfunctional acyl halide-containing organic solution further containing an organic phosphate represented by the formula (1) by continuous contact to form a polyamide active layer.

화학식 1Formula 1

Figure pat00004
Figure pat00004

(상기에서 R1, R2 및 R3는 각각 독립적으로 수소, C1~C6 알킬기, C2~C6 알케닐기, C2~C6 알키닐기, 페닐기이며, R1, R2 및 R3 중 적어도 하나는 수소가 아니다.)
(In the above, R 1 , R 2 and R 3 are each independently hydrogen, C 1 -C 6 alkyl group, C 2 -C 6 alkenyl group, C 2 -C 6 alkynyl group, phenyl group, R 1 , R 2 and R At least one of 3 is not hydrogen.)

이하, 상기 제조방법의 각 단계별로 상세히 설명한다. Hereinafter, each step of the manufacturing method will be described in detail.

본 발명의 폴리아미드 나노복합막의 제조방법에 있어서, 단계 1)의 다관능성 아민 함유 수용액은 1급 아민 또는 2급 아민에서 선택되는 아민 0.1 내지 10 중량%; 아민염 0.1 내지 10 중량%; 및 극성용매 0.01~3중량%;가 함유된 수용액이다.In the method for producing a polyamide nanocomposite membrane of the present invention, the multifunctional amine-containing aqueous solution of step 1) comprises 0.1 to 10% by weight of an amine selected from primary or secondary amines; 0.1 to 10% by weight of amine salts; And 0.01-3% by weight of a polar solvent.

이때, 다관능성 아민은 메타페닐렌디아민, 파라페닐렌디아민 등의 방향족 1급 디아민; 알리파틱 1급 디아민, 사이클로헥센디아민과 같은 사이클로알리파틱 1급 디아민; 피페라진과 같은 사이클로알리파틱 2급 아민, 방향족 2급 아민 등이 사용될 수 있으며, 이상의 1급 또는 2급 아민은 단량체 당 2~3개의 아민 관능기를 가지는 것이 바람직하며, 다만 이에 제한되는 것은 아니다.At this time, the polyfunctional amine is aromatic primary diamine such as metaphenylenediamine and paraphenylenediamine; Cycloaliphatic primary diamines such as aliphatic primary diamine, cyclohexenediamine; Cycloaliphatic secondary amines such as piperazine, aromatic secondary amines, and the like may be used, and the primary or secondary amines above preferably have 2-3 amine functional groups per monomer, but are not limited thereto.

상기의 다관능성 아민의 바람직한 함량은 수용액에 0.1~10중량%, 더욱 바람직하게는 0.5~5중량%로 함유되는 것이다. 이때, 상기 다관능성 아민의 함량을 벗어나면, 상기 다관능성 아민과 다관능성 산 할로겐 화합물간의 계면중합에 의한 생성물인 폴리아미드 중합도가 저하되는 문제가 있다.The content of the polyfunctional amine is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight in an aqueous solution. At this time, if the content of the polyfunctional amine is out of content, there is a problem that the degree of polyamide polymerization, which is a product by interfacial polymerization between the polyfunctional amine and the polyfunctional acid halogen compound, is lowered.

상기 단계 1)의 다관능성 아민 함유 수용액에 함유되는 아민염은 산 받게(acid accepter)로서의 역할을 수행하여, 계면중합이 원활히 진행되도록 하는 동시에 폴리아미드 활성층의 기공을 형성하여 막의 투과유량을 증가시키는 역할을 수행한다. The amine salt contained in the multifunctional amine-containing aqueous solution of step 1) acts as an acid acceptor to facilitate the interfacial polymerization and to form pores of the polyamide active layer to increase permeate flow rate of the membrane. Play a role.

이때, 아민염은 강산과 알킬 아민과의 반응 생성물로서, 바람직하게는 수용액에 0.1~10중량%, 더욱 바람직하게는 1~5중량%를 함유하는 것이다. At this time, the amine salt is a reaction product of a strong acid and an alkyl amine, and preferably contains 0.1 to 10% by weight, more preferably 1 to 5% by weight in an aqueous solution.

상기에서 강산은 방향족 술폰산, 지방족 술폰산, 고리형 지방족 술폰산, 캄파술포닉산, 트리플루오르아세트산, 질산, 염산, 황산 및 그들의 혼합물로 이루어진 군에서 선택되는 어느 하나를 사용할 수 있으나, 이에 한정되는 것은 아니다.The strong acid may be any one selected from the group consisting of aromatic sulfonic acid, aliphatic sulfonic acid, cyclic aliphatic sulfonic acid, camphorsulfonic acid, trifluoroacetic acid, nitric acid, hydrochloric acid, sulfuric acid, and mixtures thereof, but is not limited thereto.

또한, 알킬 아민으로는 3차 알킬아민, N-알킬 고리형 지방족 아민 또는 N,N-디알킬아민에서 선택 사용할 수 있으며, 더욱 바람직한 일례로는 트리메틸아민, 트리에틸아민, 트리프로필아민, N-메틸피페리딘, N,N-디메틸에틸아민, N,N-디에틸메틸아민 및 그들의 혼합물로 이루어진 군에서 선택되는 어느 하나를 사용할 수 있으나, 이에 한정되는 것은 아니다. In addition, the alkyl amine may be selected from tertiary alkylamine, N-alkyl cyclic aliphatic amine or N, N-dialkylamine, and more preferably, trimethylamine, triethylamine, tripropylamine, N- Any one selected from the group consisting of methyl piperidine, N, N-dimethylethylamine, N, N-diethylmethylamine, and mixtures thereof may be used, but is not limited thereto.

상기의 강산과 알킬 아민의 함량에 따라, 아민염이 포함되는 함량이 조절될 수 있으며, 바람직하게는 강산과 알킬 아민이 1:0.5 ~1:2의 중량비로 첨가되는 것이다.According to the content of the strong acid and the alkyl amine, the content of the amine salt may be adjusted, and preferably, the strong acid and the alkyl amine are added in a weight ratio of 1: 0.5 to 1: 2.

또한, 단계 1)의 다관능성 아민 함유 수용액에는 극성용매가 더 함유되는 것이 바람직하다.In addition, the polyfunctional amine-containing aqueous solution of step 1) preferably further contains a polar solvent.

그의 바람직한 일례로는 디메틸술폭사이드, 부틸 술폭사이드 및 테트라메틸렌술폭사이드를 포함하는 술폭사이드 유도체; 1,3-헵탄디올, 2-에틸-1,1-헥산디올, 1,3-헥산디올 및 1,3-펜탄디올을 포함하는 1,3-프로판디올 유도체; 및 1차 알코올;로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다. Preferred examples thereof include sulfoxide derivatives including dimethyl sulfoxide, butyl sulfoxide and tetramethylene sulfoxide; 1,3-propanediol derivatives including 1,3-heptanediol, 2-ethyl-1,1-hexanediol, 1,3-hexanediol and 1,3-pentanediol; And primary alcohol; may be used one or more selected from the group consisting of.

이때, 극성용매는 수용액에 0.01~3중량%, 더욱 바람직하게는 0.05~2중량%로 함유되는 것이며, 상기 0.01중량% 미만으로 함유되면, 계면활성이 미약하여 바람직하지 않고, 반면에, 2중량%를 초과 함유되면, 염제거능이 감소된다.At this time, the polar solvent is contained in an aqueous solution of 0.01 to 3% by weight, more preferably 0.05 to 2% by weight, and when contained in less than 0.01% by weight, the surfactant is not preferable because of poor surface activity, on the other hand, 2% by weight If it contains more than%, the salt removal ability is reduced.

본 발명의 제조방법에서, 단계 1)에서, 다공성 지지체가 다관능성 아민 함유 수용액과 접촉하는 시간은 5초~10분간이 바람직하며, 30초에서 3분 동안 수행되는 것이 더욱 바람직하다. 이때, 접촉시간이 상기 범위를 벗어나면, 계면에서 상기 다관능성 아민과 중합반응되는 다관능성 산 할로겐 화합물간의 생성물인 폴리아미드 중합도가 저하된다.In the production method of the present invention, in step 1), the time for contacting the porous support with the aqueous solution containing the polyfunctional amine is preferably 5 seconds to 10 minutes, more preferably 30 seconds to 3 minutes. At this time, when the contact time is out of the above range, the degree of polyamide polymerization which is a product between the polyfunctional amine and the polyfunctional acid halogen compound polymerized at the interface is lowered.

또한, 단계 1)의 다관능성 아민 함유 수용액이 접촉된 후, 과잉의 수용액은 제거한 후 다음 단계를 수행하는 것이 바람직하다.In addition, after the aqueous solution containing the polyfunctional amine of step 1) is contacted, it is preferable to remove the excess aqueous solution and then perform the next step.

이하, 본 발명의 제조방법 중, 단계 2)에 사용되는 다관능성 아실할라이드 함유 유기용액은 사용될 수 있는 아실 할라이드로서 트리메조일클로라이드, 이소프탈로일클로라이드, 테레프탈로일클로라이드 등에서 선택할 수 있으며, 더욱 바람직하게는 트리메조일클로라이드를 사용한다. Hereinafter, in the preparation method of the present invention, the polyfunctional acyl halide-containing organic solution used in step 2) may be selected from trimezoyl chloride, isophthaloyl chloride, terephthaloyl chloride, and the like as the acyl halide that can be used, and more preferably. Preferably trimezoyl chloride.

이때, 다관능성 아실 할라이드의 함량은 유기용액에 0.01~2중량%, 더욱 바람직하게는 0.05~1중량%가 함유되는 것이다. At this time, the content of the polyfunctional acyl halide is 0.01 to 2% by weight, more preferably 0.05 to 1% by weight in the organic solution.

또한, 상기 유기용액은 상기 다관능성 아실 할라이드가 바람직하게는 파라핀계 유기용매에 용해된 것이다. In the organic solution, the polyfunctional acyl halide is preferably dissolved in a paraffin organic solvent.

본 발명의 제조방법은 단계 2)에 사용되는 다관능성 아실할라이드 함유 유기용액에 유기 인산염을 더 함유하는 것을 특징으로 한다. The production method of the present invention is characterized in that it further comprises an organic phosphate in the polyfunctional acyl halide-containing organic solution used in step 2).

이때, 유기 인산염은 하기 화학식 1로 표시되는 화합물이며, 더욱 바람직하게는 3차 알킬 인산염 또는 방향족 인산염을 사용하는 것이다. At this time, the organic phosphate is a compound represented by the following formula (1), and more preferably tertiary alkyl phosphate or aromatic phosphate.

화학식 1Formula 1

Figure pat00005
Figure pat00005

(상기에서 R1, R2 및 R3는 각각 독립적으로 수소, C1~C6 알킬기, C2~C6 알케닐기, C2~C6 알키닐기, 페닐기이며, R1, R2 및 R3 중 적어도 하나는 수소가 아니다.)(In the above, R 1 , R 2 and R 3 are each independently hydrogen, C 1 -C 6 alkyl group, C 2 -C 6 alkenyl group, C 2 -C 6 alkynyl group, phenyl group, R 1 , R 2 and R At least one of 3 is not hydrogen.)

또한, 구체적인 일례로서 트리부틸인산, 트리페닐인산 및 트리에틸인산으로 이루어진 군에서 선택되는 어느 하나를 사용하는 것이다.As a specific example, any one selected from the group consisting of tributyl phosphoric acid, triphenyl phosphoric acid and triethyl phosphoric acid is used.

또한, 본 발명의 제조방법에 사용되는 유기 인산염의 바람직한 함량은 유기용액에 0.1~5중량%, 더욱 바람직하게는 0.1~2중량%, 가장 바람직하게는 0.2~1중량%로 함유되는 것이다. 이때, 상기 유기 인산염 함량이 0.1 중량% 미만이면, 투과유량을 증가시키지 못하는 문제가 있고, 5중량%를 초과하면, 염배제율이 급격히 감소하여 바람직하지 않다. 이어서, 본 발명의 제조방법에서, 단계 2)의 유기 인산염이 더 함유된 다관능성 아실 할라이드 함유 유기용액을 연속적으로 접촉함에 있어서, 접촉 시간은 5초 내지 10분, 더욱 바람직하게는 20초 내지 3분 동안 수행하는 것이다. The preferred content of the organic phosphate used in the production method of the present invention is 0.1 to 5% by weight, more preferably 0.1 to 2% by weight, most preferably 0.2 to 1% by weight in the organic solution. At this time, if the organic phosphate content is less than 0.1% by weight, there is a problem that does not increase the permeate flow rate, if it exceeds 5% by weight, the salt excretion rate is rapidly reduced is not preferable. Subsequently, in the method of the present invention, in the continuous contact of the polyfunctional acyl halide-containing organic solution further containing the organic phosphate of step 2), the contact time is 5 seconds to 10 minutes, more preferably 20 seconds to 3 To perform for minutes.

이상에서와 같이, 다공성 지지체상에 폴리아미드 활성층을 형성한 이후에는 30 내지 120℃ 온도에서 10초 내지 10분간 건조시킴으로써, 폴리아미드 나노복합막의 제조를 완성한다.
As described above, after the polyamide active layer is formed on the porous support, the polyamide nanocomposite membrane is completed by drying for 10 seconds to 10 minutes at a temperature of 30 to 120 ° C.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.This embodiment is intended to illustrate the present invention in more detail, and the scope of the present invention is not limited to these examples.

<실시예 1> 폴리아미드 나노복합막의 제조 1Example 1 Preparation of Polyamide Nanocomposite Membrane 1

부직포 상에, 캐스팅된 30nm크기의 기공을 가지는 다공성 폴리술폰 지지체를 3 중량%의 메타페닐렌디아민(MPD)과 3 중량%의 트리에틸아민(TEA), 2 중량%의 캄파술폰산(Camphor sulfonic acid; CSA), 1 중량%의 디메틸술폭사이드(DMSO) 극성 용매 및 0.2 중량%의 에틸헥산디올(2-ethyl-1,3-hexanediol; EHD)을 용해시켜 준비한 다관능성 아민 수용액 500㎖에 2분간 침지하였다. On the nonwoven fabric, a porous polysulfone scaffold with 30 nm sized pores cast was prepared with 3% by weight of metaphenylenediamine (MPD) and 3% by weight of triethylamine (TEA) and 2% by weight of camphor sulfonic acid. CSA), 1% by weight of a dimethyl sulfoxide (DMSO) polar solvent and 0.2% by weight of ethyl hexanediol (2-ethyl-1,3-hexanediol; EHD) prepared by dissolving in a 500 ml polyfunctional amine aqueous solution for 2 minutes. It was immersed.

이후 다공성 폴리술폰 지지체 상에 잔류하는 과잉의 다관능성 아민 수용액을 제거한 후, 유기용액인 0.1 중량%의 트리메조일클로라이드(TMC)와 0.3 중량%의 트리부틸인산(TBP)을 탄화수소계 용매(Isol-C)에 용해시켜 준비한 유기용액 500㎖에 1분간 침지하였다. 침지 이후, 60℃에서 10분간 건조하여 폴리아미드 나노복합막을 제조하였다.After removing the excess polyfunctional amine solution remaining on the porous polysulfone support, the organic solution of 0.1% by weight of trimezoyl chloride (TMC) and 0.3% by weight of tributyl phosphate (TBP) in a hydrocarbon solvent (Isol It was immersed in 500 ml of the organic solution prepared by dissolving in -C) for 1 minute. After immersion, it was dried for 10 minutes at 60 ℃ to prepare a polyamide nanocomposite membrane.

<실시예 2> 폴리아미드 나노복합막의 제조 2Example 2 Preparation of Polyamide Nanocomposite Membrane 2

상기 실시예 1의 유기용액 중, 트리부틸인산(TBP) 0.6 중량%가 첨가된 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 폴리아미드 나노복합막을 제조하였다.Polyamide nanocomposite membranes were prepared in the same manner as in Example 1, except that 0.6 wt% of tributyl phosphate (TBP) was added to the organic solution of Example 1.

<실시예 3> 폴리아미드 나노복합막의 제조 3Example 3 Preparation of Polyamide Nanocomposite Membrane 3

상기 실시예 1의 유기용액 중, 트리부틸인산(TBP) 0.9 중량%가 첨가된 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 폴리아미드 나노복합막을 제조하였다.The polyamide nanocomposite membrane was prepared in the same manner as in Example 1, except that 0.9 wt% of tributyl phosphate (TBP) was added to the organic solution of Example 1.

<실시예 4> 폴리아미드 나노복합막의 제조 4Example 4 Preparation of Polyamide Nanocomposite Membranes 4

상기 실시예 1의 유기용액 중, 트리부틸인산(TBP) 1.2 중량%가 첨가된 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 폴리아미드 나노복합막을 제조하였다.Polyamide nanocomposite membranes were prepared in the same manner as in Example 1, except that 1.2 wt% of tributyl phosphate (TBP) was added to the organic solution of Example 1.

<실시예 5> 폴리아미드 나노복합막의 제조 5Example 5 Preparation of Polyamide Nanocomposite Membranes 5

부직포 상에, 캐스팅된 30nm크기의 기공을 가지는 다공성 폴리술폰 지지체를 2 중량%의 메타페닐렌디아민(MPD)과 1 중량%의 트리에틸아민(TEA), 1 중량%의 캄파술폰산(Camphor sulfonic acid; CSA), 1 중량%의 디메틸술폭사이드(DMSO) 극성 용매 및 0.2 중량%의 에틸헥산디올(2-ethyl-1,3-hexanediol; EHD)을 용해시켜 준비한 다관능성 아민 수용액 500㎖에 2분간 침지하였다.On the nonwoven fabric, a porous polysulfone support having casted 30 nm-sized pores was prepared by 2% by weight of metaphenylenediamine (MPD) and 1% by weight of triethylamine (TEA) and 1% by weight of camphor sulfonic acid. CSA), 1% by weight of a dimethyl sulfoxide (DMSO) polar solvent and 0.2% by weight of ethyl hexanediol (2-ethyl-1,3-hexanediol; EHD) prepared by dissolving in a 500 ml polyfunctional amine aqueous solution for 2 minutes. It was immersed.

이후 다공성 폴리술폰 지지체 상에 잔류하는 과잉의 다관능성 아민 수용액을 제거한 후, 유기용액인 0.1 중량%의 트리메조일클로라이드(TMC)와 0.9 중량%의 트리부틸인산(TBP)을 탄화수소계 용매(Isol-C)에 용해시켜 준비한 유기용액 500㎖에 1분간 침지하였다. 침지 이후, 60℃에서 10분간 건조하여 폴리아미드 나노복합막을 제조하였다.After removing the excess polyfunctional amine solution remaining on the porous polysulfone support, the organic solution of 0.1% by weight of trimezoyl chloride (TMC) and 0.9% by weight of tributyl phosphate (TBP) in a hydrocarbon solvent (Isol It was immersed in 500 ml of the organic solution prepared by dissolving in -C) for 1 minute. After immersion, it was dried for 10 minutes at 60 ℃ to prepare a polyamide nanocomposite membrane.

<비교예 1>&Lt; Comparative Example 1 &

상기 실시예 1의 유기용액 중, 트리부틸인산(TBP)이 첨가되지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 폴리아미드 나노복합막을 제조하였다.The polyamide nanocomposite membrane was prepared in the same manner as in Example 1, except that tributyl phosphoric acid (TBP) was not added to the organic solution of Example 1.

<비교예 2>Comparative Example 2

상기 실시예 5의 유기용액 중, 트리부틸인산(TBP)이 첨가되지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 폴리아미드 나노복합막을 제조하였다. The polyamide nanocomposite membrane was prepared in the same manner as in Example 1, except that tributyl phosphate (TBP) was not added in the organic solution of Example 5.

<실험예 1> 막의 물성 측정Experimental Example 1 Measurement of Properties of Membrane

상기 실시예 1~5 및 비교예 1~2에서 제조된 폴리아미드 나노복합막에 대하여, 25℃ 온도 및 225psi압력 조건하에서 2,000ppm 염화나트륨 수용액을 이용하여 막의 물성을 측정하였다. 그 결과를 하기 표 1에 기재하였다. Prepared in Examples 1 to 5 and Comparative Examples 1 and 2 For the polyamide nanocomposite membrane, the physical properties of the membrane were measured using an aqueous 2,000 ppm sodium chloride solution at 25 ° C. and 225 psi pressure. The results are shown in Table 1 below.

Figure pat00006
Figure pat00006

상기 표 1의 결과로부터, 통상의 폴리아미드 복합막 제조공정에서, 다관능성 산할로겐화합물 함유 유기용액에 유기 인산염을 함유하여 제조된 실시예 1 내지 실시예 5의 폴리아미드 복합막은 나노여과막 또는 역삼투막 분야에서 요구하는 40~90% 수준의 염배제율을 충족하면서, 막의 투과유량이 40 GFD이상으로 향상되었다.From the results of Table 1, in the conventional polyamide composite membrane manufacturing process, the polyamide composite membrane of Examples 1 to 5 prepared by containing an organic phosphate in an organic solution containing a polyfunctional acid halide compound is in the field of nanofiltration membrane or reverse osmosis membrane. The permeate flux of the membrane was improved to 40 GFD or more, while satisfying the salt rejection ratio of 40-90%.

반면에, 유기 인산염이 첨가되지 않은 다관능성 산할로겐화합물 함유 유기용액을 사용하여 제조된 비교예 1 및 비교예 2의 폴리아미드 나노복합막의 경우, 90% 이상의 우수한 염배제율을 보이나, 막의 투과유량은 35 GFD수준의 낮은 투과유량을 보였다. On the other hand, the polyamide nanocomposite membranes of Comparative Examples 1 and 2 prepared using a polyfunctional acid halogenated compound containing no organic phosphate showed an excellent salt rejection ratio of 90% or more. Showed a low flux of 35 GFD.

상기에서 살펴본 바와 같이, 본 발명은 나노여과막 또는 역삼투막 분야에서 요구되는 염배제율 40~90% 수준을 유지하면서 동시에 40~90 GFD의 높은 투과유량 성능을 보유한 폴리아미드 나노복합막을 제공하였다. As described above, the present invention provided a polyamide nanocomposite membrane having a high permeation flux performance of 40-90 GFD while maintaining a 40 to 90% salt rejection rate required in the field of nanofiltration membranes or reverse osmosis membranes.

이에, 본 발명의 폴리아미드 나노복합막은 나노여과 수준의 고유량을 구현하게 됨으로써, 다양한 나노여과 공정에 적용 가능하며, 특히, 단위시간당 처리용량이 증가하게 되며 수처리 공정상의 효율성을 높일 수 있어 경제적으로 유리하다. 따라서, 본 발명의 폴리아미드 나노복합막은 정수기, 해수담수화 공정의 전처리 장치, 연수기, 정수 처리장치, 폐수 처리장치 또는 식품 정제장치에서 선택되는 어느 하나에 적용될 수 있다Accordingly, the polyamide nanocomposite membrane of the present invention can be applied to various nanofiltration processes by implementing a high flow rate of nanofiltration, and in particular, the treatment capacity per unit time increases and the efficiency of the water treatment process can be improved economically. It is advantageous. Therefore, the polyamide nanocomposite membrane of the present invention can be applied to any one selected from a water purifier, a pretreatment apparatus of a seawater desalination process, a water softener, a water treatment apparatus, a wastewater treatment apparatus, or a food purification apparatus.

또한, 본 발명은 다공성 지지체 상에 다관능성 아민 함유 수용액과 다관능성 아실 할라이드함유 유기용액간의 계면중합시, 상기 유기용액에 유기 인산염이 더 함유되는 최적화된 제조방법을 제공하였다. In addition, the present invention provides an optimized production method in which the organic solution further contains an organic phosphate in the interfacial polymerization between the polyfunctional amine-containing aqueous solution and the polyfunctional acyl halide-containing organic solution on the porous support.

이에, 본 발명의 폴리아미드 나노복합막의 제조방법은 종래의 역삼투 분리막 제조공정에도 응용 가능하다.
Thus, the method for producing a polyamide nanocomposite membrane of the present invention can be applied to a conventional reverse osmosis membrane production process.

이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (11)

다공성 지지체 상에,
다관능성 아민함유 수용액과 다관능성 아실 할라이드함유 유기용액간의 계면중합시 상기 유기용액에 하기 화학식 1로 표시되는 유기 인산염이 더 함유되어 계면중합된 폴리아미드 활성층;으로 이루어진 폴리아미드 나노복합막:
화학식 1
Figure pat00007

상기에서 R1, R2 및 R3는 각각 독립적으로 수소, C1~C6 알킬기, C2~C6 알케닐기, C2~C6 알키닐기, 페닐기이며, R1, R2 및 R3 중 적어도 하나는 수소가 아니다.
On the porous support,
A polyamide nanocomposite membrane comprising: a polyamide active layer, in which the organic solution further contains an organic phosphate represented by the following Formula 1 in the interfacial polymerization between the polyfunctional amine-containing aqueous solution and the polyfunctional acyl halide-containing organic solution:
Formula 1
Figure pat00007

In the above, R 1 , R 2 and R 3 are each independently hydrogen, C 1 -C 6 alkyl group, C 2 -C 6 alkenyl group, C 2 -C 6 alkynyl group, phenyl group, R 1 , R 2 and R 3 At least one of is not hydrogen.
제1항에 있어서, 상기 폴리아미드 나노복합막이 40~90%의 염배제율 및 40~90 GFD의 물 투과유량이 충족되는 것을 특징으로 하는 상기 폴리아미드 나노복합막.The polyamide nanocomposite membrane of claim 1, wherein the polyamide nanocomposite membrane satisfies a salt rejection ratio of 40 to 90% and a water permeation flow rate of 40 to 90 GFD. 제1항에 있어서, 상기 폴리아미드 나노복합막이
1~500nm의 공경을 가지는 다공성 지지체 및 0.1~1nm의 공경을 가지는 폴리아미드 활성층으로 이루어진 것을 특징으로 하는 상기 폴리아미드 나노복합막.
According to claim 1, wherein the polyamide nanocomposite membrane
The polyamide nanocomposite membrane comprising a porous support having a pore size of 1 to 500 nm and a polyamide active layer having a pore size of 0.1 to 1 nm.
제1항 내지 제3항 중 어느 한 항에 있어서, 상기 폴리아미드 나노복합막이 정수기, 해수담수화 공정의 전처리 장치, 연수기, 정수 처리장치, 폐수 처리장치 또는 식품 정제장치에서 선택되는 어느 하나에 구비되는 것을 특징으로 하는 상기 폴리아미드 나노복합막.The polyamide nanocomposite membrane according to any one of claims 1 to 3, wherein the polyamide nanocomposite membrane is provided in any one selected from a water purifier, a pretreatment apparatus of a seawater desalination process, a water softener, a water purification apparatus, a wastewater treatment apparatus, or a food purification apparatus. The polyamide nanocomposite membrane, characterized in that. 1) 다공성 지지체 상에 다관능성 아민 함유 수용액을 접촉시키는 단계 및
2) 하기 화학식 1로 표시되는 유기 인산염이 더 함유된 다관능성 아실할라이드 함유 유기용액을 연속 접촉에 의해 계면중합시켜 폴리아미드 활성층을 형성하는 단계로 수행되는 제1항의 폴리아미드 나노복합막의 제조방법:
화학식 1
Figure pat00008

상기에서 R1, R2 및 R3는 각각 독립적으로 수소, C1~C6 알킬기, C2~C6 알케닐기, C2~C6 알키닐기, 페닐기이며, R1, R2 및 R3 중 적어도 하나는 수소가 아니다.
1) contacting the polyfunctional amine-containing aqueous solution on the porous support, and
2) A method for preparing the polyamide nanocomposite membrane according to claim 1, which is performed by interfacial polymerization of a polyfunctional acyl halide-containing organic solution further containing an organic phosphate represented by Chemical Formula 1 by continuous contact to form a polyamide active layer:
Formula 1
Figure pat00008

In the above, R 1 , R 2 and R 3 are each independently hydrogen, C 1 -C 6 alkyl group, C 2 -C 6 alkenyl group, C 2 -C 6 alkynyl group, phenyl group, R 1 , R 2 and R 3 At least one of is not hydrogen.
제5항에 있어서, 상기 유기 인산염이 3차 알킬 인산염 또는 방향족 인산염인 것을 특징으로 하는 상기 폴리아미드 나노복합막의 제조방법.The method of claim 5, wherein the organic phosphate is tertiary alkyl phosphate or aromatic phosphate. 제5항에 있어서, 상기 유기 인산염이 트리부틸인산, 트리페닐인산 및 트리에틸인산으로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 상기 폴리아미드 나노복합막의 제조방법. The method for producing the polyamide nanocomposite membrane according to claim 5, wherein the organic phosphate is any one selected from the group consisting of tributyl phosphoric acid, triphenyl phosphoric acid and triethyl phosphoric acid. 제5항에 있어서, 상기 유기 인산염이 0.1 내지 5중량% 함유되는 것을 특징으로 하는 상기 폴리아미드 나노복합막의 제조방법.The method for producing the polyamide nanocomposite membrane according to claim 5, wherein the organic phosphate is contained in an amount of 0.1 to 5% by weight. 제5항에 있어서, 상기 다관능성 아민 함유 수용액이
1급 아민 또는 2급 아민에서 선택되는 아민 0.1 내지 10 중량%,
아민염 0.1 내지 10 중량% 및
극성용매 0.01~3중량%가 함유된 수용액인 것을 특징으로 하는 상기 폴리아미드 나노복합막의 제조방법.
The method of claim 5, wherein the polyfunctional amine-containing aqueous solution
0.1 to 10% by weight of an amine selected from primary or secondary amines,
0.1 to 10% by weight of amine salts and
Method for producing the polyamide nanocomposite membrane, characterized in that the aqueous solution containing 0.01 to 3% by weight of a polar solvent.
제9항에 있어서, 상기 아민염이 강산과 알킬 아민이 1:0.5 ~1:2의 중량비로 첨가된 반응에 의해 형성된 것을 특징으로 하는 상기 폴리아미드 나노복합막의 제조방법.10. The method for producing the polyamide nanocomposite membrane according to claim 9, wherein the amine salt is formed by a reaction in which a strong acid and an alkyl amine are added in a weight ratio of 1: 0.5 to 1: 2. 제9항에 있어서, 상기 극성용매가 디메틸술폭사이드, 부틸 술폭사이드 및 테트라메틸렌술폭사이드를 포함하는 술폭사이드 유도체; 1,3-헵탄디올, 2-에틸-1,1-헥산디올, 1,3-헥산디올 및 1,3-펜탄디올을 포함하는 1,3-프로판디올 유도체; 및 1차 알코올;로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 상기 폴리아미드 나노복합막의 제조방법.The method of claim 9, wherein the polar solvent is a sulfoxide derivative comprising dimethyl sulfoxide, butyl sulfoxide and tetramethylene sulfoxide; 1,3-propanediol derivatives including 1,3-heptanediol, 2-ethyl-1,1-hexanediol, 1,3-hexanediol and 1,3-pentanediol; And primary alcohols; method for producing the polyamide nanocomposite membrane, characterized in that at least one selected from the group consisting of.
KR1020110091237A 2011-09-08 2011-09-08 Polyamide nanofiltration composite membrane and manufacturing method thereof KR101317643B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110091237A KR101317643B1 (en) 2011-09-08 2011-09-08 Polyamide nanofiltration composite membrane and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110091237A KR101317643B1 (en) 2011-09-08 2011-09-08 Polyamide nanofiltration composite membrane and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20130027787A true KR20130027787A (en) 2013-03-18
KR101317643B1 KR101317643B1 (en) 2013-10-15

Family

ID=48178552

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110091237A KR101317643B1 (en) 2011-09-08 2011-09-08 Polyamide nanofiltration composite membrane and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101317643B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522681B1 (en) * 2013-10-29 2015-05-26 한국화학연구원 Preparation method of nanofiltration composite membrane impregnated graphene oxide and the nanofiltration composite membrane thereby
WO2016052880A1 (en) * 2014-09-30 2016-04-07 주식회사 엘지화학 Method for manufacturing polyamide-based water-treatment separator having excellent permeation flux characteristics and water-treatment separator manufactured by same
KR20200044501A (en) * 2018-10-19 2020-04-29 주식회사 엘지화학 Separation membrane, composition for active layer of separation membrane, and method for separation membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101958996B1 (en) * 2016-04-20 2019-03-15 한국화학연구원 A method for preparing membrane having nano-sized pore for water treatment and membrane prepared using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100516209B1 (en) * 2003-12-22 2005-09-23 한국화학연구원 Method for preparation of highly permeable composite polyamide nanofiltration membranes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522681B1 (en) * 2013-10-29 2015-05-26 한국화학연구원 Preparation method of nanofiltration composite membrane impregnated graphene oxide and the nanofiltration composite membrane thereby
WO2016052880A1 (en) * 2014-09-30 2016-04-07 주식회사 엘지화학 Method for manufacturing polyamide-based water-treatment separator having excellent permeation flux characteristics and water-treatment separator manufactured by same
US10479864B2 (en) 2014-09-30 2019-11-19 Lg Chem, Ltd. Method for manufacturing polyamide-based water-treatment separator having excellent permeation flux characteristics and water-treatment separator manufactured by same
KR20200044501A (en) * 2018-10-19 2020-04-29 주식회사 엘지화학 Separation membrane, composition for active layer of separation membrane, and method for separation membrane

Also Published As

Publication number Publication date
KR101317643B1 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
KR101432218B1 (en) Reveres osmosis membrane having properties of high salt rejection and high flux and manufacturing method thereof
KR101893239B1 (en) Polyamide water-treatment membranes having an excellent antifouling property and manufacturing method thereof
KR101692784B1 (en) Method of Preparing Membrane Using Active Layer Prepared by Support-free Interfacial Polymerization in Free Surface
KR20160027196A (en) Multiple channel membranes
EP2859938B1 (en) Highly permeable carbodiimide comprising reverse osmosis membrane and method for preparing same
KR101522681B1 (en) Preparation method of nanofiltration composite membrane impregnated graphene oxide and the nanofiltration composite membrane thereby
KR101105199B1 (en) Polyamide nanofiltration membrane having high flux property for water purification and manufacturing method thereof
JP6642860B2 (en) Water treatment separation membrane and method for producing the same
KR102097849B1 (en) Composition for interfacial polymerizing polyamide, method for manufacturing reverse osmosis membrane using the same
KR101103384B1 (en) High chlorine resistant and hydrophilic reverse osmosis membrane and method of preparing the same
KR101317643B1 (en) Polyamide nanofiltration composite membrane and manufacturing method thereof
KR101517653B1 (en) High Flux Reverse Osmosis Membrane Comprising Xanthene Compound And Manufacturing Method Thereof
KR101487764B1 (en) Preparation method of polyamide nanofiltration composite membrane and the polyamide nanofiltration composite membrane thereby
KR101477848B1 (en) Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same
KR102101061B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module
KR101790174B1 (en) A PVA coated hollow fiber mambrane and a preparation method thereof
CN110385046B (en) Method for preparing high-flux reverse osmosis membrane by replacing cyclic macromolecules with polyacyl chloride
KR20120077997A (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
KR20190055664A (en) A polyamide composite membrane having improved salt and boron rejection and method for preparation thereof
KR101403345B1 (en) Reverse osmosis composite membrane for boron rejection and manufacturing method thereof
KR20150087579A (en) Manufacturing method for polyamide-based reverse osmosis membrane
KR20190065655A (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured by thereby
KR102157931B1 (en) Method for manufacturing water-treatment separation membrane, water-treatment separation membrane manufactured by thereof, and composition for manufacturing water-treatment separation membrane
KR102212132B1 (en) Separation membrane, composition for active layer of separation membrane, and method for separation membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161007

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171002

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181004

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191007

Year of fee payment: 7