KR20130012634A - Optical transceiver module integrated wdm-coupler and bi-directional optical sub-assembly - Google Patents

Optical transceiver module integrated wdm-coupler and bi-directional optical sub-assembly Download PDF

Info

Publication number
KR20130012634A
KR20130012634A KR1020110073888A KR20110073888A KR20130012634A KR 20130012634 A KR20130012634 A KR 20130012634A KR 1020110073888 A KR1020110073888 A KR 1020110073888A KR 20110073888 A KR20110073888 A KR 20110073888A KR 20130012634 A KR20130012634 A KR 20130012634A
Authority
KR
South Korea
Prior art keywords
optical
wavelength
lens
filter
light
Prior art date
Application number
KR1020110073888A
Other languages
Korean (ko)
Other versions
KR101283678B1 (en
Inventor
고한준
양광진
최재영
Original Assignee
주식회사 피엔에스
(주)옵토위즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 피엔에스, (주)옵토위즈 filed Critical 주식회사 피엔에스
Priority to KR1020110073888A priority Critical patent/KR101283678B1/en
Publication of KR20130012634A publication Critical patent/KR20130012634A/en
Application granted granted Critical
Publication of KR101283678B1 publication Critical patent/KR101283678B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/298Two-way repeaters, i.e. repeaters amplifying separate upward and downward lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0216Bidirectional architectures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE: A wavelength dividing device and a bidirectional optical transceiving device integrated optical transceiver module are provided to decrease the number of components and to simplify an assembly process by integrating an existing WDM-coupler into a BOSA. CONSTITUTION: An input fiber(1) converts input light to collimated light through a dual core capillary(3) and a GRIN lens(4). A WDM filter(6) transfers transmitting light to an optical reception unit, an optical transmission unit and lets reflected light return to an optical output fiber through a GRIN lens. Collimated light output from the WDM filter is converted to a focused light after through an additional collimation lens(7) and reflected light by a dividing filter(8) enters into a photodiode(5).

Description

파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈{Optical transceiver Module Integrated WDM-Coupler and Bi-directional Optical Sub-Assembly}Optical transceiver module Integrated WDM-Coupler and Bi-directional Optical Sub-Assembly

본 발명은 파장분할소자(WDM-Coupler, Wavelength Division Multiplexing Coupler)와 양방향 광송수신모듈(BOSA, Bi-directional Optical Sub-Assembly)을 결합한 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈에 관한 것으로, 특히 dual core fiber와 GRIN rod lens 앞단에 WDM filter를 설치한 구조물을 기존의 BOSA 광모듈에 내장하여 구조를 단순화 하고 외부크기도 기존에 사용되는 SFP(Small Form Factor Pluggable) 기구물에 장착할 수 있으며 광수신부와 광송신부의 광고립도(Optical isolation)와 레이져다이오드 출력 및 WDM-coupler 특성의 저하 없이 저가격화를 이루는 것을 특징으로 하는 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈에 관한 것이다. The present invention relates to a wavelength division device combining a wavelength division element (WDM-Coupler, Wavelength Division Multiplexing Coupler) and a bidirectional optical sub-assembly (BOSA) and an optical transmission / reception module in which a bidirectional optical transmission / reception element is integrated. In particular, the structure with WDM filter installed in front of dual core fiber and GRIN rod lens can be built in the existing BOSA optical module to simplify the structure and external size can be mounted on existing Small Form Factor Pluggable (SFP) equipment. The present invention relates to an optical transmission / reception module integrating a wavelength division device and a bi-directional optical transmission / reception device, wherein the optical splitter and the bidirectional optical transmission / reception device are integrated at a low price without degrading optical isolation, laser diode output, and WDM-coupler characteristics. .

본 발명에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈은 하나의 광섬유를 통하여 유선광통신인 FTTH, CATV 등과 무선광통신인 WiBro, WiFi 등 디지털 및 아나로그 광송수신을 수용하는 ITU-R G.983.3 규격에 따르는 WDM-Coupler와 결합된 광송수신모듈을 제공할 수 있게 된다. The optical transmitting / receiving module in which the wavelength splitting element and the bidirectional optical transmitting / receiving element are integrated according to the present invention is an ITU-R for receiving digital and analog optical transmitting / receiving such as FTTH, CATV and wireless optical communication such as WiBro and WiFi through one optical fiber. It is possible to provide an optical transmission / reception module combined with a WDM-Coupler according to G.983.3.

종래의 파장분리형 양방향 광송수신모듈은 도 2와 같이 WDM-coupler와 BOSA가 분리된 형태로 두 소자의 광황이버(optical fiber)를 융착접합(Fusion splicing)하여 결합하는 형태로 이용되었고 두 소자가 분리됨에 따라 모듈장착 시 광화이버와 융착접합부의 여장처리를 위한 추가적인 공간이 필요하고 이에 따른 비용이 발생한다. WDM-coupler의 내부는 입력부의 dual core fiber, GRIN 렌즈, WDM filter와 출력부의 dual core fiber와 GRIN 렌즈로 구성된다.Conventional wavelength-separated bidirectional optical transmitting and receiving module was used in the form of fusion splicing optical fiber of the two devices in the form of WDM-coupler and BOSA separated as shown in Figure 2 and the two devices are separated Therefore, when the module is mounted, additional space is required for the fiber processing of the optical fiber and the fusion splicing part, which incurs a cost. The interior of the WDM-coupler consists of dual core fiber, GRIN lens at the input, dual core fiber and GRIN lens at the WDM filter and output.

기존 WDM-coupler와 BOSA를 결합한 형태로 한국공개특허 제10-0029088호에 개시되어 있다. 이 문헌에서는 WDM-Coupler를 BOSA와 결합하기 위해서 통상적인 dual core fiber 앞 부분에 GRIN lens를 사용하는 대신에 평행광 렌즈 (Collimating lens)를 사용하였고 레이져다이오드 부분의 평행광 렌즈와 결합하는 광학계를 구성한다. 그러나 WDM-Coupler의 기본적인 특성을 만족하기 위해서 dual core fiber 앞 부분에 평행광 렌즈를 정렬하기 위해서 추가적인 공정비용이 발생하고 또한 평행광의 유효직경(effective beam diameter, 1/e2)을 줄이는데 한계가 있기 때문에 optical isolator와 splitting filter의 크기(clear aperture)가 증가해야 하고 또한 포토다이오드(PD, Photo diode) 부분의 렌즈의 크기도 증가해야 한다. 또한, 상기 문헌에 개시된 기술은 평행광의 유효경이 커짐에 따라서 소요되는 광부품들의 크기가 증가하므로 통상적인 광통신모듈에 사용되는 표준부품을 사용하지 못하고 또한 레이져다이오드와 포토다이오드 모두 평행광렌즈를 채용해야 하는 단점이 있다. It is disclosed in Korea Patent Publication No. 10-0029088 in the form of combining the existing WDM-coupler and BOSA. In this document, instead of using a GRIN lens in front of a conventional dual core fiber to combine WDM-Coupler with BOSA, a collimating lens is used and an optical system is combined with the parallel light lens of the laser diode part. do. However, in order to satisfy the basic characteristics of the WDM-Coupler, additional processing costs are incurred to align the parallel light lens in front of the dual core fiber, and there is a limit in reducing the effective beam diameter (1 / e 2 ) of the parallel light. Therefore, the size of the optical isolator and the splitting filter (clear aperture) should be increased, and the size of the lens of the photodiode (PD) part should also be increased. In addition, the technique disclosed in the document increases the size of the optical components required as the effective diameter of the parallel light increases, so that the standard components used in the general optical communication module cannot be used, and both the laser diode and the photodiode must employ parallel optical lenses. There is a disadvantage.

또한, 한국등록특허 제10-0418204호, 제10-0559935호에는 WDM-coupler와 포토다이오드를 결합한 형태의 기술이 개시되어 있다. 이들 문헌에 개시된 기술에서는 WDM-coupler와 포토다이오드를 일체형으로 결합하는 구조를 사용하여 집적화에 따른 재료비의 절감과 생산성증대 및 전체 시스템구성 시 공정의 간소화를 이루는 이점이 있다. 또한 추가적인 굴절렌즈를 사용해서 광수신부로 입사되는 입사각을 가변시켜 포토다이오드의 수광효율을 증가시키는 특징을 가지고 있다.In addition, Korean Patent Nos. 10-0418204 and 10-0559935 disclose a technique of combining a WDM-coupler and a photodiode. In the technique disclosed in these documents, there is an advantage of using a structure in which the WDM-coupler and the photodiode are integrally combined to reduce the material cost, increase productivity, and simplify the process in the overall system configuration. In addition, an additional refractive lens is used to vary the angle of incidence incident on the light receiving unit to increase the light receiving efficiency of the photodiode.

그러나 상기 기술은 양방향 광송수신모듈 (BOSA) 특히 레이져다이오드와 WDM-Coupler를 결합할 경우에 있어서는 이 특허에서 제시한 방식은 적용할 수 없으며 본 발명과 같은 별도의 정밀한 광학계가 필요하다.However, the above technique cannot be applied to the bidirectional optical transmitting / receiving module (BOSA), especially the laser diode and the WDM-Coupler, and a separate precise optical system like the present invention is required.

본 발명은 상기와 같은 문제점을 인식하여 안출된 것으로 본 발명의 목적은 기존 WDM-coupler를 BOSA 내부에 집적화하여 소요되는 부품수를 감소하고 조립공정을 단순화하여 모듈의 저가격화를 이루고 전체 시스템구축 시 공정의 간소화를 이룰 수 있는 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈을 제공하기 위한 것이다.The present invention has been made in view of the above problems, the object of the present invention is to reduce the number of parts required by integrating the existing WDM-coupler inside the BOSA and to simplify the assembly process to achieve low cost of the module and to build the whole system An object of the present invention is to provide an optical transmission / reception module in which a wavelength division device and a bidirectional optical transmission / reception device are integrated to simplify the process.

또한, 본 발명의 목적은 기존의 분리된 WDM-Coupler와 BOSA에 사용되는 원재료인 LD, PD, isolator, filter, GRIN lens, aspheric lens 등 표준 부품들을 수정하지 않고 그대로 사용할 수 있는 광학계를 채용함으로써 제조원가를 절감할 수 있으며, 집속화로 출력부의 dual core fiber, GRIN 렌즈, WDM-coupler 외장부 및 융착접합부 (fusion splicing)가 없어지고, 집속형렌즈를 사용함으로써 제조비용을 절감하고 제조공정을 간편하게 할 수 있는 처리할 수 있는 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈을 제공하기 위한 것이다.In addition, the object of the present invention is the manufacturing cost by adopting the optical system that can be used as it is without modification to the standard parts, such as LD, PD, isolator, filter, GRIN lens, aspheric lens, which are raw materials used in the existing WDM-Coupler and BOSA The centralization eliminates the dual core fiber, GRIN lens, WDM-coupler exterior and fusion splicing of the output, and reduces the manufacturing cost and simplifies the manufacturing process. The present invention provides an optical transmission / reception module in which an integrated wavelength divider and a bidirectional optical transmission / reception element are integrated.

상기와 같은 목적을 달성하기 위하여 본 발명에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈은, 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈에 있어서, 입력부인 광섬유에 입사된 광신호가 GRIN 렌즈를 거쳐서 평행광으로 변환되고, WDM 필터를 만나서 반사되는 광신호는 다시 GRIN 렌를 거쳐서 출력부인 광섬유에 입사되어 출력되며, WDM 필터를 투과한 광신호는 focusing 렌즈를 거쳐서 focusing beam 형태를 유지하며, splitting filter를 거치면서 반사되는 광신호는 수신부인 포토다이오드에 입사되고, 광송신부인 레이져다이오드에서 출력된 광신호는 optical isolator와 splitting filter와 평행광렌즈를 거친 후 GRIN 렌즈에 집속되어 최종적으로 입력부 광섬유로 출력되는 것을 특징으로 한다.In order to achieve the above object, the optical transmission module integrating the wavelength division element and the bidirectional optical transmission and reception element according to the present invention is an optical transmission / reception module in which the wavelength division element and the two-way optical transmission and reception element are integrated. The converted optical signal is converted into parallel light through the GRIN lens, and the optical signal reflected by the WDM filter is incident to the optical fiber which is output through the GRIN len, and the optical signal transmitted through the WDM filter is focused by the focusing lens. The optical signal reflected through the splitting filter is incident on the photodiode as the receiver, and the optical signal output from the laser diode as the optical transmitter is focused on the GRIN lens after passing through parallel optical lens with the optical isolator and splitting filter. It is characterized in that finally output to the input optical fiber.

또한, 본 발명에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈은, 입력 광신호로서 1270nm ~ 1610nm 파장대역을 사용하고, 출력광신호로서 1270nm ~ 1610nm 파장 중 적어도 하나 이상의 파장을 사용하며, 양방향 광송수신 파장으로서 출력광신호를 제외한 파장을 사용하는 것을 특징으로 한다.In addition, an optical transmission / reception module in which a wavelength division element and a bidirectional optical transmission / reception element are integrated according to the present invention may use a wavelength band of 1270 nm to 1610 nm as an input optical signal, and at least one wavelength of 1270 nm to 1610 nm as an output optical signal. In addition, it is characterized by using a wavelength other than the output light signal as a bi-directional optical transmission and reception wavelength.

또한, 본 발명에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈은, Focusing 렌즈가 부착된 레이져다이오드와 평행광 GRIN 렌즈간 광결합되고, 광결합효율을 증가시키기 위해서 중간에 평행광 렌즈를 사용하는 것을 특징으로 한다.In addition, the optical transmission module integrating the wavelength splitting element and the bidirectional optical transmission and reception element according to the present invention, the laser diode with the focusing lens and the optical light is coupled between the parallel light GRIN lens, parallel light in the middle to increase the optical coupling efficiency It is characterized by using a lens.

또한, 본 발명에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈은, 양방향 송수신 모듈의 광수신부와 광송신부의 파장을 10 ~ 90% 투과 필터를 사용하여 같은 파장을 사용하거나 또는 splitting filter를 사용하여 광송신부와 광수신부에 다른 파장을 사용하는 구조를 갖는 것을 특징으로 한다.In addition, in the optical transmission module in which the wavelength splitting element and the bidirectional optical transmitting and receiving element are integrated, the wavelengths of the optical receiving unit and the optical transmitting unit of the bidirectional transmitting and receiving module use the same wavelength or splitting using a 10 to 90% transmission filter. It is characterized by having a structure using different wavelengths in the optical transmitter and the optical receiver using a filter.

상기와 같은 구성에 의하여 본 발명에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈은, 기존 WDM-coupler를 BOSA 내부에 집적화하여 소요되는 부품수를 감소하고 조립공정을 단순화하여 모듈의 저가격화를 이루고 전체 시스템구축 시 공정의 간소화를 이룰 수 있는 장점을 갖는다.The optical transmission module in which the wavelength splitting device and the bidirectional optical transmission and reception device are integrated according to the present invention by the above configuration is integrated with the existing WDM-coupler in the BOSA, thereby reducing the number of parts required and simplifying the assembly process. It has the advantage of achieving low cost and simplification of the process when constructing the whole system.

또한, 본 발명에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈은 기존의 분리된 WDM-Coupler와 BOSA에 사용되는 원재료인 LD, PD, isolator, filter, GRIN lens, aspheric lens 등 표준 부품들을 수정하지 않고 그대로 사용할 수 있는 광학계를 채용함으로써 제조원가를 절감할 수 있으며, 집속화로 출력부의 dual core fiber, GRIN 렌즈, WDM-coupler 외장부 및 융착접합부 (fusion splicing)가 없어지고, 집속형렌즈를 사용함으로써 제조비용을 절감하고 제조공정을 간편하게 할 수 있는 처리할 수 있다.In addition, the optical transmission module integrating the wavelength division device and the bidirectional optical transmission and reception device according to the present invention is a standard such as LD, PD, isolator, filter, GRIN lens, aspheric lens, which are raw materials used in the existing WDM-Coupler and BOSA. Manufacturing cost can be reduced by adopting the optical system that can be used as it is without modifying the parts, and focusing eliminates dual core fiber, GRIN lens, WDM-coupler exterior part and fusion splicing part, and focusing lens By using the process can reduce the manufacturing cost and simplify the manufacturing process.

특히, 본 발명에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈은, WDM-coupler가 내장된 양방향 광송수신 모듈에 의하면 기존의 WDM-coupler와 BOSA 가 분리된 구조와 비교하여 WDM 특성, 광출력 (opitcal output power), 수신감도 (PD sensitivity), optical cross-talk 등 모든 특성의 저하 없이 집적형 광학소자를 제조할 수 있으며, 집적화에 따른 모듈의 저가격과 생산성 향상 및 모듈의 단일화를 이룰 수 있는 장점을 갖는다.In particular, the optical transmission module in which the wavelength division element and the two-way optical transmission and reception element are integrated according to the present invention has a WDM characteristic compared to the structure in which the conventional WDM-coupler and the BOSA are separated according to the bidirectional optical transmission and reception module having the WDM-coupler. It is possible to manufacture integrated optical devices without degrading all the characteristics such as optical output power, PD sensitivity, optical cross-talk, etc. Has the advantage to be achieved.

도 1은 본 발명의 일실시예에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈을 개략적으로 도시한 도면
도 2는 종래의 WDM-coupler와 BOSA가 융착접합(fusion splicing)으로 연결된 구조를 도시한 개략도
도 3-a는 평행광 렌즈 갭(collimating lensed cap)이 장착된 LD TO Can(Laser diode Transistor Outlook Can)과 dual fiber collimator와 광결합할 경우의 광학계 구조도
도 3-b는 flat window cap이 장착된 LD TO Can에 외장형 평행광 렌즈(external collimating lens)를 장착하여 dual fiber collimator와 광결합할 경우의 광학계 구조도
도 3-c는 본 발명의 일실시예에 따른 본 발명의 일실시예에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈에서 집속형 렌즈 캡 (focusing lensed cap)이 장착된 LD TO Can과 dual fiber collimator사이에 별도의 평행광 렌즈를 사용한 광학계 구조도
도 4는 본 발명의 일실시예에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈로서 도 3-c의 광학계에 optical isolator, splitting filter, 포토다이오드(PD, Photo Diode)를 장착한 WDM-coupler 내장형 BOSA 광학계 구조도
도 5-a는 광송신부와 광수신부의 파장이 같은 BOSA(Same wavelength BOSA)의 경우 각부품의 개략도
도 5-b는 Same wavelength BOSA의 경우 WDM 필터의 사양
도 5-c는 Same wavelength BOSA의 경우 Splitting 필터의 사양
도 6-a는 광송신부와 광수신부의 파장이 서로 다른 BOSA(Different wavelength BOSA)의 경우 각부품의 개략도
도 6-b는 Different wavelength BOSA의 경우 WDM 필터의 사양
도 6-c는 Different wavelength BOSA 의 경우 Splitting 필터의 사양
도 6-d는 광수신부의 다른 파장을 걸러주는 blocking 필터의 사양
도 7은 본 발명의 일실시예에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈로서 완성된 WDM-coupler 내장된 BOSA의 실물사진
1 is a view schematically showing an optical transmission module in which a wavelength division device and a bidirectional optical transmission and reception device are integrated according to an embodiment of the present invention;
Figure 2 is a schematic diagram showing a structure in which the conventional WDM-coupler and BOSA is connected by fusion splicing (fusion splicing)
3-a is an optical structure diagram when optical coupling with a laser diode transistor Outlook can (LD TO Can) equipped with a collimating lensed cap and a dual fiber collimator
FIG. 3-b is an optical system structure diagram when an external collimating lens is mounted on an LD TO Can equipped with a flat window cap and optically coupled to a dual fiber collimator.
3-c shows an LD TO equipped with a focusing lensed cap in an optical transmission / reception module in which a wavelength division device and a two-way optical transmission and reception device are integrated according to an embodiment of the present invention. Optical system structure using separate parallel light lens between can and dual fiber collimator
4 is an optical transmission module in which a wavelength division device and a bidirectional optical transmission and reception device are integrated according to an embodiment of the present invention, in which an optical isolator, a splitting filter, and a photo diode (PD) are mounted on the optical system of FIG. WDM-coupler embedded BOSA optical structure
5-a is a schematic diagram of each component in the case of same wavelength BOSA (BOSA) having the same wavelength of the optical transmitter and the optical receiver
Figure 5-b is the specification of WDM filter for Same wavelength BOSA
Figure 5-c is the specification of splitting filter for Same wavelength BOSA
Figure 6-a is a schematic diagram of each component in the case of the differential wavelength BOSA (BOSA) having different wavelengths of the optical transmitter and the optical receiver
Figure 6-b is the specification of WDM filter for different wavelength BOSA
Figure 6-c is the specification of splitting filter for different wavelength BOSA
6-d is a specification of a blocking filter for filtering different wavelengths of a light receiving unit
FIG. 7 is a real picture of a WSA-coupler-embedded BOSA completed as an optical transmission module integrating a wavelength division device and a bidirectional optical transmission and reception device according to an embodiment of the present invention; FIG.

이하에서는 도면에 도시된 실시예를 참조하여 본 발명에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈을 보다 상세하게 설명하기로 한다.Hereinafter, an optical transmission / reception module in which a wavelength division device and a bidirectional optical transmission / reception device are integrated according to the present invention will be described in more detail with reference to the embodiment shown in the drawings.

본 발명에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈은 레이저다이오드와 상기 레이져다이오드에서 방출된 빛을 집속광(focusing beam)으로 변환하는 비구면 렌즈(aspheric lens)와 optical isolator와 splitting filter를 거치고난 후 GRIN 렌즈에 광결합하여 이루어진다.According to the present invention, an optical transmitter / receiver module integrating a wavelength splitter and a bidirectional optical transmitter / receiver includes an aspheric lens, an optical isolator, and splitting for converting light emitted from the laser diode and the laser diode into a focused beam. After passing through the filter, it is optically coupled to the GRIN lens.

도 1은 본 발명의 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈의 구성을 나타낸 것으로, 도 1을 참조하면, Input fiber(1)는 dual core capillary(3)를 거쳐서 GRIN lens(4)를 통해 평행광으로 변환되며 WDM filter(6)를 거치면서 통과하는 빛은 광수신부와 광송신부로 전달되지만 반사되는 광은 GRIN lens(4)를 거쳐서 output fiber(1)로 되돌아 나가게 된다. WDM filter(6)을 통해서 나온 평행광은 추가적인 평행광 렌즈(7)을 거치면서 집속광(focusing beam)으로 변환되고 다시 splitting filter(8)을 통해서 반사되는 광은 광수신부인 포토다이오드 (5)로 들어가서 광신호를 받게된다. 집속형렌즈가 장착된 LD TO Can(10)에서 나오는 광은 optical isolator(9)를 거치고 평행광 렌즈(7)를 지나면서 평행광을 이루게 되고 최종적으로 GRIN lens(4)와 결합하여 input fiber(1)로 광신호를 송신할 수 있게 된다.FIG. 1 is a view illustrating a configuration of an optical transmission module in which a wavelength division device and a bidirectional optical transmission and reception device are integrated. Referring to FIG. 1, an input fiber 1 passes through a dual core capillary 3 and a GRIN lens 4. The light transmitted through the WDM filter 6 is transmitted to the light receiving unit and the light transmitting unit, but the reflected light is returned to the output fiber 1 through the GRIN lens. The parallel light from the WDM filter (6) is converted into a focusing beam through an additional parallel light lens (7), and the light reflected back through the splitting filter (8) is a photodiode (5). Enter and receive an optical signal. The light from the LD TO Can (10) equipped with the focusing lens passes through the optical isolator (9) and passes through the parallel light lens (7) to form parallel light, and finally combines with the GRIN lens (4) to combine the input fiber ( The optical signal can be transmitted in 1).

도 3-a는 WDM-coupler의 내부구조인 dual core fiber와 GRIN lens를 사용할 경우에 있어 외경 1.8mm의 GRIN lens의 effective beam diameter(1/e2)는 약 0.5mm가 된다. LD와의 광결합효율(coupling efficiency)을 최대화 하기 위해서는 LD에서 방출되는 평행광의 effective beam diameter가 0.5mm 정도로 GRIN lens의 effective beam diameter와 같은 값을 가지는 것이 필요한데, 기존의 collimating lens(17)가 장착된 cap 구조에서는 레이져다이오드와 렌즈간의 거리를 최소 0.2mm로 할 경우 effective beam diameter는 약 1.3mm 정도가 되고, 이 경우 LD chip(16)의 조립정밀도와 lensed cap의 조립정밀도에 한계가 있기 때문에 평행광 렌즈를 거쳐 나오는 빛의 방사각(beam divergence angle)을 GRIN 렌즈에서 방사되는 광과 동일하게 정밀하게 제어하기 어렵다. 이러한 이유 때문에 collimating lensed cap을 사용한 LD TO Can을 GRIN lens에 바로 결합하는 광학계는 사용이 어렵다.3-a shows that the effective beam diameter (1 / e 2 ) of the GRIN lens having an outer diameter of about 1.8 mm is about 0.5 mm when using a dual core fiber and a GRIN lens, which are internal structures of the WDM-coupler. In order to maximize the coupling efficiency with the LD, it is necessary that the effective beam diameter of the parallel light emitted from the LD has the same value as the effective beam diameter of the GRIN lens. The conventional collimating lens 17 is mounted. In the cap structure, when the distance between the laser diode and the lens is at least 0.2 mm, the effective beam diameter is about 1.3 mm. In this case, since the assembly precision of the LD chip 16 and the assembly precision of the lensed cap are limited, parallel light It is difficult to control the beam divergence angle of light exiting the lens with the same precision as the light emitted from the GRIN lens. For this reason, it is difficult to use an optical system that directly couples LD TO Can using a collimating lensed cap to a GRIN lens.

도 3-b는 flat window cap을 가지는 LD TO Can의 외부에 평행광 렌즈(18)를 사용하는 광학계를 나타내고 있는데, 이 경우 LD chip과 외부 평행광 렌즈(18) 사이의 거리가 1.1mm 정도 떨어져 있어 effective beam diameter는 1.6mm 정도로 되고 GRIN lens의 effective beam diameter인 0.5mm 와 차이가 있어서 광결합효율은 매우 낮게 된다.3-b shows an optical system using a parallel light lens 18 outside the LD TO Can having a flat window cap, in which case the distance between the LD chip and the external parallel light lens 18 is about 1.1 mm apart. Therefore, the effective beam diameter is about 1.6mm and the optical coupling efficiency is very low because it is different from the 0.5mm which is the effective beam diameter of the GRIN lens.

이러한 문제를 해결하기 위해서 본 발명에서는 도 3-c와 같이 focusing lensed cap(10)을 장착한 LD TO Can과 GRIN lens 사이에 추가로 collimating lens(7)를 사용하는 광학계를 고안하였다. LD 에서 focusing lens를 거쳐서 집광된 빛은 초점(focal point)을 지나서 다시 퍼지게 되는데 이 퍼지는 특정한 지점에 평행광렌즈(7)를 놓음으로서 최종적으로 생성된 평행광의 effective beam diameter를 0.5mm 로 조절할 수 있고 결국 LD와 GRIN lens간에 30 ~ 50%정도 높은 광결합효율을 얻을 수 있다.In order to solve this problem, the present invention devised an optical system using a collimating lens (7) between the LD TO Can equipped with a focusing lensed cap (10) and the GRIN lens as shown in FIG. The light condensed from the LD through the focusing lens is spread again through the focal point, and by placing the parallel light lens 7 at a specific point, the effective beam diameter of the finally produced parallel light can be adjusted to 0.5 mm. As a result, a 30-50% higher optical coupling efficiency can be obtained between the LD and GRIN lenses.

도 4는 도 3c에서 고안된 광학계를 기본으로 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈을 도시한 것이다. Focusing lensed cap이 장착된 LD TO Can(10)과 GRIN 렌즈(4) 사이에 평행광 렌즈(7)를 구성함으로서 광결합효율을 높이고 또한 LD로 되돌아 입사되는 광을 방지하기 위한 optical isolator(9)를 장착하고, splitting filter(8)을 장착해서 수신부로 들어가는 광을 분리하는 구조이다.
4 illustrates an optical transmission / reception module in which a wavelength division device and a bidirectional optical transmission / reception device are integrated based on the optical system designed in FIG. 3C. An optical isolator (9) for improving optical coupling efficiency and preventing light from entering back into the LD by forming a parallel light lens (7) between the LD TO Can (10) equipped with a focusing lensed cap and the GRIN lens (4). And splitting filter (8) to separate the light entering the receiver.

도 4의 광학계와 구조도를 기본으로 도 1에는 각 부품들을 결합하는 전체적인 광송수신모듈을 나타내었다. Input fiber(1)는 dual core capillary(3)를 거쳐서 GRIN lens(4)를 통해 평행광으로 변환되며 WDM filter(6)를 거치면서 통과하는 빛은 광수신부와 광송신부로 전달되지만 반사되는 광은 GRIN lens(4)를 거쳐서 output fiber(1)로 나가게 된다. WDM filter(6)을 통해서 나온 평행광은 추가적인 평행광 렌즈(7)을 거치면서 집속광(focusing beam)으로 변환되고 다시 splitting filter(8)을 통해서 반사되는 광은 광수신부인 포토다이오드(5)로 들어가게 된다. Focusing lens가 장착된 LD TO Can(10)에서 나오는 광은 optical isolator(9)를 거치고 collimating lens(7)를 지나면서 평행광을 이루고 최종적으로 GRIN lens(4)와 결합하여 input fiber(1)로 광을 송신할 수 있게 된다.Based on the optical system and the structural diagram of FIG. 4, FIG. 1 shows the overall optical transmission / reception module combining the components. Input fiber (1) is converted into parallel light through GRIN lens (4) through dual core capillary (3), and light passing through WDM filter (6) is transmitted to light receiver and light transmitter but reflected light It goes through the GRIN lens (4) to the output fiber (1). Parallel light from the WDM filter (6) is converted into a focusing beam through an additional parallel light lens (7), and the light reflected through the splitting filter (8) is a photodiode (5) which is a light receiver. Will enter. The light from the LD TO Can (10) equipped with the focusing lens passes through the optical isolator (9), passes through the collimating lens (7), forms parallel light, and finally combines with the GRIN lens (4) to the input fiber (1). Light can be transmitted.

도 1과 같은 구조의 광모듈을 제작하기 위해서 도 4의 splitting filter(8)을 제외하고 모든 기구물을 stainless steel 304 제품을 사용하여 laser welding 장비를 사용하여 각 부분을 용접하여 결합하였다. 광모듈 제조공정 중 가장 중요한 광정렬(optical alignment)은 먼저 GIRN lens(4)와 collimating lens(7)을 기구물에 용접하여 고정한 후 focusing lensed LD TO Can(10 을 3축정렬장치를 사용하여 최대 결합효율이 되는 위치를 찾아 정렬한 후에 레이져웰딩(laser welding)하여 용접하는 공정을 거친다. LD 공정 후 포토다이오드부도 동일한 방법으로 최대 수신감도가 출력되는 위치를 찾아서 광정렬한 후 용접한다.In order to fabricate the optical module having the structure as shown in FIG. 1, all the components except for the splitting filter 8 of FIG. 4 were welded to each part by using laser welding equipment using stainless steel 304 products. The most important optical alignment in the optical module manufacturing process is to first fix the GIRN lens (4) and the collimating lens (7) by welding them to the fixture, and then focusing lensed LD TO Can (10) using the 3-axis alignment device. After locating and aligning the efficiency, laser welding is performed and the photodiode part after LD process finds the position where the maximum reception sensitivity is output in the same way, and then aligns and welds.

도 5-a는 광수신부와 광송신부에 동일한 파장을 사용할 경우 WDM filter(6)와 splitting filter(8)의 특성을 나타내었다. 도 5-b는 WDM filter의 예로서 input fiber(2)로 1310 ~ 1610nm의 파장이 들어올 경우 1310 ~ 1490nm 대역의 파장은 모두 반사시켜서 fiber output(1)로 출력시키고 통과된 1550 ~ 1610nm 대역의 파장은 다시 50% 투과하고 50%는 반사하는 splitting filter(8)을 거쳐서 50% 광은 광수광부(5)로 들어가고 또한 광송신부(10)에서 나오는 광은 input fiber(2)를 통해서 방출되는 구조를 나타내고 있다.5-A shows the characteristics of the WDM filter 6 and the splitting filter 8 when the same wavelength is used for the optical receiver and the optical transmitter. 5-b is an example of the WDM filter, when 1310 to 1610 nm wavelength is input to the input fiber 2, all wavelengths of the 1310 to 1490 nm band are reflected and output to the fiber output 1, and the wavelength of 1550 to 1610 nm band is passed. 50% light enters the light-receiving part 5 and the light exiting from the light-transmitting part 10 passes through a splitting filter (8) which transmits 50% of the light and reflects 50% again. It is shown.

도 6-a, 도 6-b, 도 6-c는 광송신과 광수신 파장을 각각 다른 대역을 사용할 경우의 WDM filter(6)와 splitting filter(8)의 특성을 나타내었다. 광수신부의 cross-talk을 감소시키기 위해서 도 6-d와 같이 광수신부에 입사되는 광을 제외한 나머지 파장대역의 광은 모두 반사시키는 blocking filter(16)을 사용하였다.6-a, 6-b, and 6-c illustrate the characteristics of the WDM filter 6 and the splitting filter 8 when using different bands for optical transmission and optical reception wavelengths. In order to reduce the cross-talk of the optical receiver, a blocking filter 16 reflecting all the light in the wavelength band except for the light incident on the optical receiver is used as shown in FIG.

이하는 본 발명에 따른 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈에 대한 구체적인 실시예로서, WDM-filter(6)는 1590nm 파장이 투과되고 1310nm ~ 1550nm 파장대역은 반사되는 특성을 가지는 dual core fiber collimator(3)로서 통상적으로 판매되는 제품을 사용하였다. GRIN lens의 외경은 1.8mm이며 effective beam diameter는 beam profiler로 측정한 결과 0.5mm 정도였다. dual core capillary와 GRIN 렌즈를 결합하는 외부구조물은 stainless steel 304 으로 외경은 3.8mm였고 끝단에 평행광 렌즈(7)를 접합할 수 있는 구조를 가지고 있으며 외부구조물과 렌즈는 레이져웰더를 사용하여 용접하였다. 입력단 화이버(2)에 1310nm ~ 1590nm의 광을 입사시킬 경우 출력단 화이버(1)에서는 1310nm ~ 1550nm 대역의 광은 모두 반사시키고 단지 1590nm 대역의 광출력만을 나타내었으며 이때 optical isolation은 31dB, total insertion loss는 1dB 미만이었다.The following is a specific embodiment of the optical transmission module in which the wavelength splitting element and the bidirectional optical transmission and reception element are integrated according to the present invention. The WDM-filter 6 has a characteristic in which a wavelength of 1590 nm is transmitted and a wavelength of 1310 nm to 1550 nm is reflected. A commercially available product was used as the dual core fiber collimator (3). The outer diameter of the GRIN lens was 1.8mm and the effective beam diameter was about 0.5mm as measured by the beam profiler. The external structure that combines dual core capillary and GRIN lens is stainless steel 304 with an outer diameter of 3.8mm, and has a structure that can join parallel light lens (7) at the end, and the external structure and lens were welded using laser welder. . When 1310 nm to 1590 nm light is incident on the input end fiber 2, the output end fiber 1 reflects all light in the 1310 nm to 1550 nm band and shows only 1590 nm light output. The optical isolation is 31 dB and the total insertion loss is It was less than 1 dB.

평행광 렌즈(7)의 focal length는 1.65mm, 평행광의 effective beam diameter는 GRIN lens의 유효경과 같이 0.5mm로 설계하고 제작하였다.The focal length of the parallel light lens 7 is 1.65 mm, and the effective beam diameter of the parallel light is designed and manufactured to be 0.5 mm like the effective diameter of the GRIN lens.

Splitting filter(8)은 1590nm 파장대역과 AOI(Angle Of Incident beam) 45도 상태에서 1590nm로 입사된 광을 50%만 투과시키고 나머지 50%는 수광부로 반사시키는 성능의 필터를 사용하였다.The splitting filter (8) used a filter capable of transmitting only 50% of light incident at 1590nm in the 1590nm wavelength band and 45 degrees of AOI (Angle Of Incident beam) and reflecting the remaining 50% to the light receiving part.

포토다이오드는 통상적인 BOSA에 사용되는 focal length 2.3mm, 수신감도 -36dBm의 155Mbps급 상용품을 사용하였고, 입력광 1590nm에 대해서 BERT system 으로 측정한 결과 수신감도는 -32dBm 을 나타내었다.The photodiode used a 155Mbps commercial product with focal length 2.3mm and reception sensitivity of -36dBm used for the conventional BOSA. The reception sensitivity was -32dBm as measured by the BERT system for the input light of 1590nm.

Isolator(9)는 clear aperture 0.8mm 제품을 사용하였고, 레이져다이오드(10)는 focal length 7.5mm인 비구면렌즈가 장착된 1590nm DFB LD를 사용하였다.Isolator (9) used clear aperture 0.8mm product and laser diode (10) used 1590nm DFB LD with aspherical lens with focal length 7.5mm.

본 실시예를 통해서 상온에서 LIV text system으로 광출력을 측정한 결과 레이져다이오드의 구동전류를 문턱전류 7.0mA + 10mA로 할 경우 opitcal isolator(9), splitting filter(8), 평행광 렌즈(7), GRIN 렌즈(5)를 통해서 최종적으로 입력단 화이버(2)로 0.35mW의 광출력을 보였다. 레이져다이오드의 비구면렌즈 앞단에서 측정한 광출력 값을 1mW 정도임을 감안할 때 총 광결합효율은 약 27%로 계산된다.In the present embodiment, when the optical power is measured at room temperature using the LIV text system, when the driving current of the laser diode is set to a threshold current of 7.0 mA + 10 mA, the opitcal isolator (9), the splitting filter (8), and the parallel light lens (7). The optical output of 0.35mW was finally obtained through the GRIN lens (5) to the input fiber (2). The total optical coupling efficiency is calculated to be about 27%, considering that the light output value measured in front of the aspherical lens of the laser diode is about 1mW.

이 결합효율은 통상적인 focusing lensed LD TO Can과 광화이버를 광경합할 경우의 50% 정도 결합효율보다는 낮은 값을 보이고 있으나 GRIN lens과 광결합하고 중간 광경로에 50% splitting filter가 있을 경우를 감안하면 아주 좋은 결과를 보이고 있으며 양산성에도 문제가 없는 결과를 보이고 있다.This coupling efficiency is lower than that of the conventional focusing lensed LD TO Can and optical fiber by about 50%, but considering the optical coupling with the GRIN lens and the 50% splitting filter in the intermediate optical path. The results are very good, and the result is no problem for mass production.

도면 7에 본 발명과 같이 제작된 WDM-coupler 내장형 BOSA 를 나타내었다.Figure 7 shows the WDM-coupler built-in BOSA manufactured in accordance with the present invention.

앞에서 설명되고 도면에 도시된 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈은 본 발명을 실시하기 위한 하나의 실시예에 불과하며, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안된다. 본 발명의 보호범위는 이하의 특허청구범위에 기재된 사항에 의해서만 정하여지며, 본 발명의 요지를 벗어남이 없이 개량 및 변경된 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속한다고 할 것이다.The optical transmission / reception module in which the wavelength division element and the bidirectional optical transmission / reception element are integrated as described above and illustrated in the drawings is only one embodiment for implementing the present invention, and should not be construed as limiting the technical idea of the present invention. The scope of protection of the present invention is defined only by the matters set forth in the claims below, and the embodiments which have been improved and changed without departing from the gist of the present invention will be apparent to those skilled in the art. It will be said to belong to the protection scope of the present invention.

1 Output fiber
2 Input fiber
3 Dual core capillary
4 GRIN lens
5 Photodiode
6 WDM filter
7 Collimating lens
8 Splitting filter
9 Optical isolator
10 Focusing lensed LD
11 BOSA
12 Optical fiber
13 Fusion splicing
14 Output fiber
15 WDM coupler
16 LD chip
17 Collimating lensed cap
18 External collimating lens
1 Output fiber
2 Input fiber
3 Dual core capillary
4 GRIN lens
5 Photodiode
6 WDM filter
7 Collimating lens
8 Splitting filter
9 Optical isolator
10 Focusing lensed LD
11 BOSA
12 Optical fiber
13 Fusion splicing
14 Output fiber
15 WDM coupler
16 LD chip
17 Collimating lensed cap
18 External collimating lens

Claims (4)

파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈에 있어서,
입력부인 광섬유에 입사된 광신호가 GRIN 렌즈를 거쳐서 평행광으로 변환되고,
WDM 필터를 만나서 반사되는 광신호는 다시 GRIN 렌를 거쳐서 출력부인 광섬유에 입사되어 출력되며,
WDM 필터를 투과한 광신호는 focusing 렌즈를 거쳐서 focusing beam 형태를 유지하며,
splitting filter를 거치면서 반사되는 광신호는 수신부인 포토다이오드에 입사되고,
광송신부인 레이져다이오드에서 출력된 광신호는 optical isolator와 splitting filter와 평행광렌즈를 거친 후 GRIN 렌즈에 집속되어 최종적으로 입력부 광섬유로 출력되는 것을 특징으로 하는 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈.
An optical transmission module in which a wavelength splitting element and a bidirectional optical transmission and reception element are integrated,
The optical signal incident on the optical fiber as an input unit is converted into parallel light through the GRIN lens,
The optical signal reflected by the WDM filter is incident to the optical fiber, which is output through the GRIN, and then output.
The optical signal transmitted through the WDM filter maintains the focusing beam shape through the focusing lens,
The optical signal reflected while passing through the splitting filter is incident on the photodiode as a receiver.
The optical signal output from the laser diode, which is an optical transmitter, passes through an optical isolator, a splitting filter and a parallel optical lens, is focused on a GRIN lens, and finally output to an input optical fiber. Optical transmission module.
제1항에 있어서,
입력 광신호로서 1270nm ~ 1610nm 파장대역을 사용하고,
출력광신호로서 1270nm ~ 1610nm 파장 중 적어도 하나 이상의 파장을 사용하며,
양방향 광송수신 파장으로서 출력광신호를 제외한 파장을 사용하는 것을 특징으로 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈.
The method of claim 1,
1270nm ~ 1610nm wavelength band is used as an input optical signal,
At least one wavelength of 1270nm ~ 1610nm wavelength is used as an output optical signal,
An optical transmission / reception module in which a wavelength splitting element and a two-way optical transmission / reception element are integrated, using a wavelength other than an output optical signal as a bidirectional optical transmission / reception wavelength.
제1항 또는 제2항에 있어서,
Focusing 렌즈가 부착된 레이져다이오드와 평행광 GRIN 렌즈간 광결합되고,
광결합효율을 증가시키기 위해서 중간에 평행광 렌즈를 사용하는 것을 특징으로 하는 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈.
The method according to claim 1 or 2,
Optically coupled between a laser diode with a focusing lens and a parallel light GRIN lens,
An optical transmission / reception module in which a wavelength splitting element and a bidirectional optical transmission and reception element are integrated, in order to increase the optical coupling efficiency.
제1항 내지 제3항 중 어느 하나의 항에 있어서,
양방향 송수신 모듈의 광수신부와 광송신부의 파장을 10 ~ 90% 투과 필터를 사용하여 같은 파장을 사용하거나 또는 splitting filter를 사용하여 광송신부와 광수신부에 다른 파장을 사용하는 구조를 갖는 것을 특징으로 하는 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈.
4. The method according to any one of claims 1 to 3,
The wavelength of the optical receiver and the optical transmitter of the bi-directional transceiver module using the same wavelength using a 10 to 90% transmission filter, or using a splitting filter using a different wavelength to the optical transmitter and the optical receiver Optical transmitting and receiving module integrating wavelength splitting element and bidirectional optical transmitting and receiving element.
KR1020110073888A 2011-07-26 2011-07-26 Optical transceiver Module Integrated WDM coupler and Bi-directional Optical Sub-Assembly KR101283678B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110073888A KR101283678B1 (en) 2011-07-26 2011-07-26 Optical transceiver Module Integrated WDM coupler and Bi-directional Optical Sub-Assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110073888A KR101283678B1 (en) 2011-07-26 2011-07-26 Optical transceiver Module Integrated WDM coupler and Bi-directional Optical Sub-Assembly

Publications (2)

Publication Number Publication Date
KR20130012634A true KR20130012634A (en) 2013-02-05
KR101283678B1 KR101283678B1 (en) 2013-08-23

Family

ID=47893259

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110073888A KR101283678B1 (en) 2011-07-26 2011-07-26 Optical transceiver Module Integrated WDM coupler and Bi-directional Optical Sub-Assembly

Country Status (1)

Country Link
KR (1) KR101283678B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023164A1 (en) * 2013-08-16 2015-02-19 주식회사 포벨 Light receiving module having built-in wavelength-tunable wavelength-selective filter
US20170063485A1 (en) * 2015-08-24 2017-03-02 Lightron Fiber-Optic Devices Inc Optical transceiver module with dual band pass wdm coupler embedded therein
CN109917523A (en) * 2019-04-30 2019-06-21 武汉兴思为光电科技有限公司 A kind of wavelength interval is less than the 50G simplex optical module of 20nm
CN110007409A (en) * 2019-04-19 2019-07-12 东莞铭普光磁股份有限公司 Optical transceiver module interface module and optical device
CN112394458A (en) * 2020-12-15 2021-02-23 四川九州光电子技术有限公司 Coaxial encapsulation 40G light emission receiving assembly
CN113835164A (en) * 2020-06-08 2021-12-24 青岛海信宽带多媒体技术有限公司 Optical module

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605184B (en) * 2013-10-17 2015-04-22 深圳市创鑫激光股份有限公司 Kilowatt-level high-isolation online optical isolator
CN103605181B (en) * 2013-10-17 2015-04-22 深圳市创鑫激光股份有限公司 Hectowatt-level high-isolation online-type optical isolator
CN103605183B (en) * 2013-10-17 2015-03-25 深圳市创鑫激光股份有限公司 Hectowatt-level high-isolation collimating-type optical isolator
CN103605185B (en) * 2013-10-17 2015-04-22 深圳市创鑫激光股份有限公司 Kilowatt-level high-isolation collimating-type optical isolator
CN103941356B (en) * 2014-04-16 2016-01-06 华为技术有限公司 Network-building method, optical module and equipment
CN110646900B (en) * 2019-09-24 2021-08-13 武汉光迅科技股份有限公司 Optical module
CN110618504A (en) * 2019-09-24 2019-12-27 武汉光迅科技股份有限公司 Optical module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486061B1 (en) * 2003-03-17 2005-05-03 박진상 Two-way optical transmitter-receiver module
KR20050029083A (en) * 2003-09-20 2005-03-24 (주) 빛과 전자 Triplexer optical sub-assembly module with a built-in wdm coupler
JP2008152194A (en) * 2006-12-20 2008-07-03 Tecdia Kk Optical transceiver module
JP2008268459A (en) * 2007-04-19 2008-11-06 Hitachi Maxell Ltd Collimator lens and optical communication module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023164A1 (en) * 2013-08-16 2015-02-19 주식회사 포벨 Light receiving module having built-in wavelength-tunable wavelength-selective filter
US9547138B2 (en) 2013-08-16 2017-01-17 Phovel.Co.Ltd. Light receiving module having built-in wavelength-tunable wavelength-selective filter
US20170063485A1 (en) * 2015-08-24 2017-03-02 Lightron Fiber-Optic Devices Inc Optical transceiver module with dual band pass wdm coupler embedded therein
KR20170023459A (en) 2015-08-24 2017-03-06 (주) 빛과 전자 Optical transceiver module with dual band pass wdm coupler
US10120142B2 (en) 2015-08-24 2018-11-06 Lightron Fiber-Optic Devices Inc Optical transceiver module with dual band pass WDM coupler embedded therein
CN110007409A (en) * 2019-04-19 2019-07-12 东莞铭普光磁股份有限公司 Optical transceiver module interface module and optical device
CN109917523A (en) * 2019-04-30 2019-06-21 武汉兴思为光电科技有限公司 A kind of wavelength interval is less than the 50G simplex optical module of 20nm
CN113835164A (en) * 2020-06-08 2021-12-24 青岛海信宽带多媒体技术有限公司 Optical module
CN112394458A (en) * 2020-12-15 2021-02-23 四川九州光电子技术有限公司 Coaxial encapsulation 40G light emission receiving assembly

Also Published As

Publication number Publication date
KR101283678B1 (en) 2013-08-23

Similar Documents

Publication Publication Date Title
KR101283678B1 (en) Optical transceiver Module Integrated WDM coupler and Bi-directional Optical Sub-Assembly
US8303195B2 (en) Optical transceiver module
US7184621B1 (en) Multi-wavelength transmitter optical sub assembly with integrated multiplexer
US7995928B2 (en) Collimated ball lenses for optical triplexers
US6769816B2 (en) Multi-wavelength transceiver device with integration on transistor-outline cans
US9709759B2 (en) NxN parallel optical transceiver
EP2568626B1 (en) Bi-direction optical sub-assembly and optical transceiver
US10379303B2 (en) Optical module and method for aligning optical module
JPS6266209A (en) Wavelength multiplexing element for optical communication network
KR20210106517A (en) VCSEL-based free-space active optical transceiver module
CN105717585A (en) Light receiving assembly of tree structure
JP6363548B2 (en) Fiber side light input / output device and optical axis adjustment method
US7010190B2 (en) Silicon optic based wavelength division multiplexing device
KR101687788B1 (en) WDM Bi-directional Optical Sub-assembly using Beam Aperture Method
KR101674005B1 (en) Single Wavelength Bi-directional Optical Sub-Assembly
KR101435589B1 (en) Optical modulator package for bi-directional data communication
US6853767B1 (en) Methods for manufacturing optical coupling elements
KR0170329B1 (en) Optical wavelength division multiplexer for optical communication
KR101674006B1 (en) Low-loss WDM Bi-directional Optical Sub-assembly
CN211061792U (en) Four-wavelength light path structure based on optical filter
KR0165495B1 (en) Wavelength division multiplexer for otpcial telecommunication
CN215005964U (en) Wavelength division demultiplexer
KR101626785B1 (en) Bidirectional optical sub-assembly having lens-type reflecter for extending receiving light path
JP2003066376A (en) Wavelength separation optical device and wavelength multiple optical transmission module
KR100480304B1 (en) Bi-directional transceiver and bi-directional transceiver module using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170620

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190626

Year of fee payment: 7