KR20130002401A - Electrolytic hydrogen-generating electrode and method for producing the same - Google Patents

Electrolytic hydrogen-generating electrode and method for producing the same Download PDF

Info

Publication number
KR20130002401A
KR20130002401A KR1020110063350A KR20110063350A KR20130002401A KR 20130002401 A KR20130002401 A KR 20130002401A KR 1020110063350 A KR1020110063350 A KR 1020110063350A KR 20110063350 A KR20110063350 A KR 20110063350A KR 20130002401 A KR20130002401 A KR 20130002401A
Authority
KR
South Korea
Prior art keywords
electrode
hastelloy
hydrogen
sample
electrolytic
Prior art date
Application number
KR1020110063350A
Other languages
Korean (ko)
Other versions
KR101257921B1 (en
Inventor
고희찬
유영재
Original Assignee
주식회사 코일렉트로드
고희찬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코일렉트로드, 고희찬 filed Critical 주식회사 코일렉트로드
Priority to KR1020110063350A priority Critical patent/KR101257921B1/en
Publication of KR20130002401A publication Critical patent/KR20130002401A/en
Application granted granted Critical
Publication of KR101257921B1 publication Critical patent/KR101257921B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: A hydrogen generation electrode for an electrolyzer and a manufacturing method thereof are provided to reduce the electricity cost by a high electric current density and a low hydrogen overvoltage, and enhancing a coating film bonding to a Pt-based catalyst metal-cocatalyst metal by forming a multiparous Ni powder melt spraying structure by a thermal spraying method. CONSTITUTION: A method for manufacturing a hydrogen generation electrode includes a process for manufacturing a hastelloy or Ni plate coated with a multiparous spraying layer by melt-spraying Ni powder on the surface of the hastelloy or Ni. A process for coating the surface of the hastelloy or Ni plate with metals selected from among Sn, Zn, Ti, Zr, Co, Mn, Sn or V, which are Pt-based catalyst metal-cocatalyst metals, is included. The size of Ni power is 10 to 120 micrometers. The thickness of the multiparous spraying layer is 50 to 200 micrometers. [Reference numerals] (AA) Measurement of hydrogen overvoltage

Description

전해조용 수소 발생용 전극 및 이의 제조방법{Electrolytic hydrogen-generating electrode and method for producing the same}Electrolytic hydrogen-generating electrode and method for producing the same

본 발명은 전해조용 수소발생 전극으로, 발전소 해수전해용 음극 및 가성소다생산용 음극 제조 방법에 관한 것이다. 또한 상기의 방법으로 제조된 수소발생용 음극에 관한 것이다.
The present invention relates to a hydrogen generating electrode for an electrolytic cell, and a method for producing a cathode for power plant seawater electrolysis and a cathode for caustic soda production. It also relates to a hydrogen generating negative electrode produced by the above method.

해수 전해조용 양극 개발에 관하여는 공개특허2002-0053996, 공개특허 2000-0040399등의 대표적인 방법으로 금속 염화물 열분해법이 있지만, 해수 전해조용 음극에 관하여는 개발이 전무한 상태이다. 현재 음극으로 사용하는 하스텔로이 판은 가동기간이 길어지면 철성분이 부분적으로 산화되어 산화층을 형성하여 전해전압을 상승 시킬 뿐 아니라, 철성분 용출이 지속적으로 발생하여 전해조 내부를 오염시킨다. 전해조용 음극 개발에 관하여는 가성소다 생산용 음극개발이 공개특허 1994-000606을 통하여 발표된 바 있지만 금속합금 분말로 레이니 니켈(Raney Nickel), 니켈-알루미늄 (Ni:Al-70:30)을 용사 도포하여 그 중 고 비표면적으로 니켈 촉매층을 얻기 위하여 알루미늄을 제거하는 제조방법이 있다. 그러나 이 제조법은 고농도의 가성소다용액에 합금인 니켈 알루미늄으로부터 알루미늄을 제거하는 공정이 불가피한데, 이 때문에 생기는 폐수가 다량이고, 알루미늄 용출 시간이 장시간(1 ~ 5일) 소요되어 비경제적이다. 특히 이 제조법은 고온의 열용사를 사용하기 때문에 산화 알루미늄 형성이 불가피하고 산화알루미늄은 가성소다용액에서 제거가 어렵고 비전도성층으로 전해성능개선에 만족스럽지 못하다.
Regarding the development of the positive electrode for seawater electrolyzer, there is a metal chloride pyrolysis method as a representative method such as Published Patent 2002-0053996, 2000-0040399, etc., but there is no development for the negative electrode for seawater electrolyzer. Hastelloy plates, which are currently used as cathodes, have a long operating period, whereby the iron component is partially oxidized to form an oxide layer to increase the electrolytic voltage, and iron elution continuously occurs to contaminate the interior of the electrolytic cell. Regarding the development of the cathode for the electrolytic cell, the development of the cathode for the production of caustic soda has been announced through the Patent Publication No. 1994-000606, but sprayed Raney Nickel and Nickel-Aluminum (Ni: Al-70: 30) with metal alloy powder. There is a manufacturing method in which aluminum is removed in order to obtain a nickel catalyst layer with a high specific surface. However, this manufacturing method inevitably removes aluminum from nickel aluminum, which is an alloy, in a high concentration of caustic soda solution. This waste water is large, and the dissolution time of aluminum takes a long time (1-5 days), which is uneconomical. In particular, since this method uses high temperature thermal spraying, it is inevitable to form aluminum oxide, and aluminum oxide is difficult to remove from the caustic soda solution and is not satisfactory in improving electrolytic performance as a non-conductive layer.

본 발명의 목적은 위에서 기술한 발전소의 해수전해뿐 아니라 가성소다 음극 또는 기타 전해장치의 수소발생 촉매 제조방식으로 미세 니켈을 용사도포방식 및 촉매 코팅에 의한 수소과전압을 낮추어 궁극적으로는 셀 전해전압을 낮추는 이상적인 전극 제조방법을 제공하는 데 있다.It is an object of the present invention to produce a hydrogen-catalyzed catalyst for the caustic soda cathode or other electrolytic apparatus as well as the seawater electrolysis of the power plant described above to reduce the hydrogen overvoltage by the spray coating method and the catalyst coating and ultimately reduce the cell electrolytic voltage. It is to provide an ideal electrode manufacturing method to lower.

기존의 발전소용 음극은 염수에 비교적 안정적이며 수소 흡탈착이 유리한 하스텔로이, 니켈 또는 카본스틸에 니켈 도포된 평판 그대로 사용하고 있다. 그러나 해수용 전해반응에서 염소를 발생시키는 양극(도 1)에 대한 관심과 개발은 많지만 음극에 대한 연구와 특허는 미미한 상태이다. 현재 음극으로 사용하는 하스텔로이 판은 가동기간이 길어지면 철성분이 부분적으로 산화되어 산화층을 형성하여 전해전압을 상승 시킬 뿐 아니라 철성분 용출이 지속적으로 발생하여 전해조 내부를 오염시킨다. 최근 유가 상승에 따른 전해비 감축에 대한 요구가 있는바 양극 개발만으로는 한계가 있어 해수 전해 전압을 낮추기 위한 방안으로 음극의 촉매 활성점을 극대화하여 수소과전압을 낮추는 전극제조방법을 제공함에 있다.
Existing cathodes for power plants are used as flat plates coated with nickel on Hastelloy, nickel or carbon steel, which are relatively stable in brine and have advantageous hydrogen adsorption and desorption. However, there is much interest and development for the positive electrode (Fig. 1) that generates chlorine in seawater electrolysis, but the research and patents on the negative electrode are insignificant. Hastelloy plates, which are currently used as cathodes, have a long operating period, whereby the iron component is partially oxidized to form an oxide layer, which increases the electrolytic voltage, and the elution of the iron component continues to contaminate the interior of the electrolytic cell. Recently, there is a demand for reducing the electrolyte cost due to the increase in oil price, and the development of the anode is limited. Therefore, the method for reducing the seawater electrolytic voltage is to provide an electrode manufacturing method for maximizing the catalyst active point of the cathode to lower the hydrogen overvoltage.

상기한 이하 본 발명의 해수전해 및 가성소다생산 또는 수처리에 의한 수소발생용 음극 제조 방법을 좀 더 구체적으로 설명하면 다음과 같다.Hereinafter, a method of preparing a negative electrode for generating hydrogen by seawater electrolysis and caustic soda production or water treatment will be described in more detail as follows.

본 발명의 해수전해용 음극제조는 크게 두 가지로 분류할 수 있는데, 모재인 하스텔로이 또는 니켈 표면상에 마이크로미터 크기의 니켈분말을 용사 도포 하는 전극 제조법으로 니켈 분말의 입도 크기, 코팅 두께에 따라 전해 전압을 측정한다.Cathode for seawater electrolysis according to the present invention can be classified into two types. The electrode manufacturing method of thermally spraying a micrometer-sized nickel powder on the surface of Hastelloy, or nickel, as a base material, depends on the particle size of the nickel powder and the coating thickness. Measure the electrolytic voltage.

니켈분말 용사 도포에서 사용되는 니켈분말의 크기는 바람직하게 10 ~ 120 μm 로 수행되며, 전도성 모재 하스텔로이 또는 니켈판에 대한 니켈 분말의 용사 코팅 두께는 원칙적으로 별도의 제한을 두지 않으나 바람직하게는 50 ~ 200 μm, 보다 바람직하게는 50 ~ 150 μm로 용사 방식으로 도포하여 다기공성 용사층을 제조한다. 상기 용사의 구체적 방법으로는 당업자에게 공지된 것을 채택하는 한 별도의 제한이 없고, 예를 들면 가스 열용사 방식을 들 수 있다. The size of the nickel powder used in the spray coating of the nickel powder is preferably performed in a range of 10 to 120 μm, and the thermal spray coating thickness of the nickel powder on the conductive base material Hastelloy or the nickel plate is not particularly limited but is preferably 50. It is applied in a thermal spraying method to ˜200 μm, more preferably 50 to 150 μm to prepare a porous porous layer. There is no restriction | limiting in particular as long as the specific method of the thermal spraying adopts what is known to a person skilled in the art, For example, a gas thermal spraying system is mentioned.

추가적으로 다기공성 용사층으로 도포된 하스텔로이 또는 니켈판을 촉매특성을 극대화하기 위해 표면에 백금계 촉매 금속-조촉매 금속을 코팅하는 과정을 수행한다. 상기 코팅 방법으로는 당업자에게 공지된 방법을 채택하는 한 별도의 제한을 두지는 않으나, 바람직하게는 백금계 촉매 금속-조촉매 금속 복합 졸로 이루어진 콜로이드용액에 침액 코팅하여 전극을 제조한다. 구체적으로 백금계 촉매 금속과 조촉매 금속이 혼합된 콜로이드용액을 제조하여 코팅하며, 상기 백금계 촉매 금속으로는 백금, 로듐, 루테늄, 이리듐, 팔라듐 또는 오스뮴을 사용할 수 있으며 바람직하게는 루테늄이 좋다. 또한 상기 조촉매 금속으로는 주석, 아연, 타이타늄, 지르코늄, 코발트, 망간, 주석 또는 바나듐의 사용이 가능하며, 지르코늄의 사용이 바람직하다. 이 때 제조된 백금계 촉매 금속-조촉매 금속 복합 졸에 있어서 조촉매 금속과 백금계 촉매 금속의 몰 비율은 0.8 ~ 0.2 : 0.2 ~ 0.8 의 범위가 되게 함이 바람직함과 동시에 양자의 몰 비율의 합은 정수 1 에 해당하며, 예를 들면 조촉매 금속과 백금계 촉매 금속의 몰비율이 0.8:0.2, 0.6:0.4, 0.4:0.6 또는 0.2:0.8 이 되도록 할 수 있다. 나아가 하스텔로이 또는 니켈판의 백금계 촉매 금속-조촉매 금속 코팅막은 60 ~ 200 ℃에서 20분 ~ 10시간 건조 단계를 거친 후 소성온도 400 ~ 800 ℃ 에서 20분 ~ 10 시간 열처리하는 단계를 거쳐 형성된다. In addition, a Hastelloy or nickel plate coated with a porous porous spray layer is coated with a platinum-based catalyst metal-catalyst metal on a surface in order to maximize catalytic properties. The coating method is not particularly limited as long as it adopts a method known to those skilled in the art, but preferably, the electrode is prepared by immersion coating in a colloidal solution composed of a platinum-based catalytic metal-catalyst metal sol. Specifically, a colloidal solution in which a platinum-based catalyst metal and a promoter metal are mixed and coated is prepared. As the platinum-based catalyst metal, platinum, rhodium, ruthenium, iridium, palladium or osmium may be used, and ruthenium is preferable. In addition, as the promoter metal, tin, zinc, titanium, zirconium, cobalt, manganese, tin or vanadium may be used, and zirconium is preferable. In the prepared platinum-based catalyst metal-catalyzed metal composite sol, the molar ratio of the promoter metal and the platinum-based catalyst metal is preferably in the range of 0.8 to 0.2: 0.2 to 0.8, and at the same time, The sum corresponds to the integer 1, and for example, the molar ratio of the promoter metal and the platinum-based catalyst metal may be 0.8: 0.2, 0.6: 0.4, 0.4: 0.6 or 0.2: 0.8. Furthermore, the platinum-based catalyst metal-cocatalyst metal coating film of Hastelloy or nickel plate is formed through a drying step of 20 minutes to 10 hours at 60 to 200 ° C. and then heat-treated at 400 to 800 ° C. for 20 minutes to 10 hours. do.

상기의 방법으로 제작된 전극들의 수소과전압을 측정하여 기존의 하스텔로이 음극 대비성능을 비교 평가하며, 전해전압 측정을 위해서는 양극에 상업용 불용성 전극을 고정 시키고 마찬가지로 샘플특성을 비교 평가한다.
The hydrogen overvoltage of the electrodes manufactured by the above method was measured to compare and evaluate the performance of the conventional Hastelloy cathode. For the measurement of the electrolytic voltage, the commercially insoluble electrode was fixed to the anode and the sample characteristics were similarly evaluated.

본 발명에 의해 제작된 전극은 높은 전류 밀도와 낮은 수소과전압으로 전력비를 절감할 수 있고 열용사법에 의한 다기공성 니켈 분말 용사구조를 형성하므로 백금계 촉매 금속-조촉매 금속에 대한 코팅막 결합을 증가시켜준다. 또한 본 발명인 음극의 개선만으로 기존의 하스텔로이 전극을 사용했을 때와 대비하여 전해전압을 200 ~ 400 mV까지 절감할 수 있다.
The electrode manufactured according to the present invention can reduce the power ratio with high current density and low hydrogen overvoltage, and form a porous porous powder spray structure by thermal spraying method, thereby increasing the coating layer bonding to the platinum-based catalytic metal-catalyst metal. give. In addition, it is possible to reduce the electrolytic voltage to 200 ~ 400 mV as compared to when using a conventional Hastelloy electrode only by improving the cathode of the present invention.

도 1은 해수전해조 반응 모식도를 나타낸다.
도 2는 반전지 실험에서 사용된 수소 과전압 측정장치를 나타낸다.
도 3은 수소과전압 측정을 위한 음극의 분극 곡선을 나타내며 전압 범위는 0 ~ -2.2 V, 전해질 조건은 3 % 염수(NaCl), 반응 온도는 상온, 기준 전극은 포화 칼로멜 전극(SCE)이다.
도 4는 전해전압 측정장치를 나타내며 전해질 조건은 3 % 염수(NaCl) 500 ml, 반응 온도는 실온, 양극은 이리듐 산화전극, 음극은 본 발명의 개발전극, 전극 간극은 3 mm이다.
도 5는 용사법에 의해 처리된 도포된 전극으로 니켈 분말 10 ~ 40 μm 입자로 도포된 음극표면 사진(sample 5B)을 나타낸다.
도 6은 용사법에 의해 처리된 도포된 전극으로 니켈 분말 40 ~ 80 μm 입자로 도포된 음극표면 사진(sample 4B)을 나타낸다.
도 7은 용사법에 의해 처리된 도포된 전극으로 니켈 분말 80 ~ 120 μm 입자로 도포된 음극표면 사진(sample 2B)을 나타낸다.
도 8은 니켈 분말 40 ~ 80 μm 입자로 도포된 음극 표면상에 루테늄-지르코늄(6:4) 코팅 처리된 전극(sample 1B) 사진으로 SEM 배율 x110의 평면 사진을 나타낸다.
도 9는 니켈 분말 40 ~ 80 μm 입자로 도포된 음극 표면상에 루테늄-지르코늄(6:4) 코팅 처리된 전극(sample 1B) 사진으로 SEM 배율 x110의 측면 사진을 나타낸다.
도 10은 니켈 분말 40 ~ 80 μm 입자로 도포된 음극 표면상에 루테늄-지르코늄(6:4) 코팅 처리된 전극(sample 1B) 사진으로 SEM 배율 x10000의 평면 사진을 나타낸다.
1 shows a schematic diagram of a seawater electrolyte tank reaction.
2 shows a hydrogen overvoltage measuring apparatus used in the half-cell experiment.
Figure 3 shows the polarization curve of the cathode for measuring the hydrogen overvoltage, the voltage range is 0 ~ -2.2 V, the electrolyte condition is 3% saline (NaCl), the reaction temperature is room temperature, the reference electrode is a saturated calomel electrode (SCE).
4 shows an electrolytic voltage measuring device, the electrolyte conditions are 500 ml of 3% saline (NaCl), the reaction temperature is room temperature, the anode is an iridium oxide electrode, the cathode is a development electrode of the present invention, the electrode gap is 3 mm.
FIG. 5 shows a negative electrode surface photograph (sample 5B) coated with 10 to 40 μm particles of nickel powder with a coated electrode treated by a spraying method.
FIG. 6 shows a cathode surface photograph (sample 4B) coated with 40 to 80 μm particles of nickel powder with a coated electrode treated by a thermal spraying method.
7 shows a negative electrode surface photograph (sample 2B) coated with 80 to 120 μm particles of nickel powder with a coated electrode treated by a spraying method.
FIG. 8 shows a planar photograph at SEM magnification x110 as a photograph of an electrode (sample 1B) coated with ruthenium-zirconium (6: 4) coated on a cathode surface coated with 40 to 80 μm particles of nickel powder.
FIG. 9 is a side view of SEM magnification x110 as a photograph of an electrode (sample 1B) coated with ruthenium-zirconium (6: 4) coated on a cathode surface coated with 40 to 80 μm particles of nickel powder.
FIG. 10 is a planar photograph of SEM magnification x10000 as a photograph of an electrode (sample 1B) coated with ruthenium-zirconium (6: 4) coated on a cathode surface coated with 40 to 80 μm particles of nickel powder.

이하 각 과정에 따라 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail according to each process.

하기의 실시예에 의해 본 발명을 보다 상세하게 설명하나, 이는 발명의 구성 및 효과를 이해시키기 위한 것 일뿐, 본 발명의 범위를 제한하고자 하는 것은 아니다.
The present invention will be described in more detail with reference to the following examples, which are intended only for understanding the configuration and effects of the present invention and are not intended to limit the scope of the present invention.

[실시예 1] 10 ~ 40 μm 니켈 분말로 용사 도포된 음극Example 1 A negative electrode thermally sprayed with 10 to 40 μm nickel powder

가로40mm, 세로 60mm, 두께 1.2mm 의 하스텔로이 모재를 #40알루미나로 블라스팅하여 조면화하고, 30% 질산용액에서 30분간 에칭 처리한 후 수세하였다. 표면이 조밀화된 하스텔로이 판에 가스 열용사 방식에 의하여 10 ~ 40 μm 입자분포를 지닌 니켈분말로 도포하였다. 이때 용사층 두께는 각각 50 μm(sample 6B), 150 μm(sample 5B)로 각각 수행하였다.The Hastelloy base material having a width of 40 mm, a length of 60 mm, and a thickness of 1.2 mm was blasted with # 40 alumina, roughened, etched in 30% nitric acid solution for 30 minutes, and washed with water. The dense Hastelloy plate was coated with a nickel powder having a particle distribution of 10 to 40 μm by a gas thermal spraying method. In this case, the sprayed layer thicknesses were respectively 50 μm (sample 6B) and 150 μm (sample 5B).

수소과전압측정(도 2)에 있어서 제조된 전극을 음극으로, 양극으로는 자체 제작된 이리듐 전극을 사용하였다. 포화 카로멜 전극을 기준전극으로 사용하였다. 한편 전해질로는 3% 염수(NaCl)를 사용하였다. 과전압과 전류 밀도를 알아보기 위하여 Tafel’s plot을 실시하였다. 실험조건은 전위범위를 0 V에서 -2.2 V까지 하였으며, 스캔 속도(scan rate)는 5 mV/s로 하였다. 또한 전극의 같은 전류밀도에서 분극의 정도를 알아보기 위하여 분극 극성 커브(도 3)를 시행하였다. 실험조건은 Tafel’s plot와 동일하다. 전극 면적은 1cm2로 수행하였다. In the hydrogen overvoltage measurement (FIG. 2), the produced electrode was used as a cathode, and an iridium electrode produced by itself was used as the anode. A saturated caramel electrode was used as a reference electrode. Meanwhile, 3% brine (NaCl) was used as the electrolyte. Tafel's plot was performed to determine the overvoltage and current density. Experimental conditions ranged from 0 V to -2.2 V and the scan rate was 5 mV / s. In addition, a polarization polarity curve (FIG. 3) was performed to determine the degree of polarization at the same current density of the electrode. Experimental conditions are identical to Tafel's plot. The electrode area was performed at 1 cm 2 .

전해전압을 측정(도 4)하기 위하여는 상기에서 제조된 40mmx60mm 전극들과 기존의 하스텔로이 음극판을 기준으로 성능을 비교 평가하였으며, 양극에 자체 제작된 이리듐 불용성 전극을 고정시켰다. 이때 염수의 농도는 3% 소금물이며, 반응온도는 상온 그리고 인가전류는 정전류로 20 ASD(2 kA/m2)로 사용하였으며 반응 시간은 2분으로 정하였다.In order to measure the electrolytic voltage (FIG. 4), performance was evaluated based on the 40 mm × 60 mm electrodes manufactured above and the conventional Hastelloy negative electrode plate, and the self-made iridium insoluble electrode was fixed to the positive electrode. At this time, the concentration of brine was 3% brine, the reaction temperature was room temperature and the applied current was used as a constant current 20 ASD (2 kA / m 2 ) and the reaction time was set to 2 minutes.

전해효율 측정에 관하여는 전해전압을 측정후 발생된 차아염소나트륨은 칼륨요오드와 차아염소산나륨을 이용하여 적정하여 측정하였다.For the measurement of the electrolytic efficiency, sodium hypochlorite generated after the measurement of the electrolytic voltage was measured by titration using potassium iodine and sodium hypochlorite.

표 1 에서 반전지 실험에서 수행한 전해전압은 각각 평균 5.06 V, 4.91 V이며 분극 곡선에서 측정한 수소과전압은 256 mV와 245 mV 이다. 실험 결과 니켈 용사층이 두꺼운 150 μm에서 다소 낮은 과전압과 전해 전압을 보인다. 이러한 전해전압의 특성은 니켈 분말 도포하지 않은 전극(sample 7B) 대비 150 mV 정도의 전압 강하를 가져온다.The electrolytic voltages performed in the half cell experiments in Table 1 were 5.06 V and 4.91 V, respectively, and the hydrogen overvoltages measured in the polarization curve were 256 mV and 245 mV, respectively. Experimental results show that the nickel thermal sprayed layer shows slightly lower overvoltage and electrolytic voltage at 150 μm thick. The characteristics of the electrolytic voltage result in a voltage drop of about 150 mV compared to the electrode without sample nickel powder (sample 7B).

표 2 에서와 같이 차아염소산나트륨을 발생시키는 전해 효율은 각각 평균 88.1 % 과 87.6 % 으로 입자크기에 따른 영향은 적은 것으로 나타난다. 그러나 니켈이 도포되지 않은 전극(sample 7B)의 전해효율 대비하여 5 ~ 6 %개선된다.
As shown in Table 2, the electrolytic efficiency of generating sodium hypochlorite was 88.1% and 87.6% on average, respectively. However, 5 to 6% improvement is compared with the electrolytic efficiency of the electrode (sample 7B) that is not coated with nickel.

[실시예 2] 40 ~ 80 μm 니켈 분말 용사 도포된 음극Example 2 40 to 80 μm nickel powder sprayed anode

가로40mm, 세로 60mm, 두께 1.2mm의 하스텔로이 모재를 #40알루미나 로 블라스팅하여 조면화 하고, 30% 질산용액에서 30분간 에칭처리한 후 수세하였다. 표면이 조밀화된 하스텔로이 판에 가스 열용사 방식에 의하여 40 ~ 80 μm 의 입자분포크기를 가진 니켈분말로 도포하였다. 이때 용사층 두께는 50 μm(sample 8B), 150 μm(sample 4B)로 각각 수행하였다. The Hastelloy base material having a width of 40mm, a length of 60mm, and a thickness of 1.2mm was roughened by blasting with # 40 alumina, and then etched in 30% nitric acid solution for 30 minutes and washed with water. The dense Hastelloy plate was coated with a nickel powder having a particle distribution size of 40 to 80 μm by gas thermal spraying. At this time, the sprayed layer thickness was performed at 50 μm (sample 8B) and 150 μm (sample 4B), respectively.

제조된 전극의 수소과전압, 전해전압 및 전해효율은 실시예 1과 동일한 방법으로 측정하였다.Hydrogen overvoltage, electrolytic voltage and electrolytic efficiency of the prepared electrode were measured in the same manner as in Example 1.

표 1에서 반전지실험에서 수행한 전해전압은 각각 평균 4.83V, 4.78V이며 분극 곡선에서 측정한 수소과전압은 235 mV와 225 mV 이다. The electrolytic voltages performed in the half-cell test in Table 1 were 4.83V and 4.78V, respectively, and the hydrogen overvoltages measured in the polarization curve were 235 mV and 225 mV, respectively.

표 2 에서와 같이 차아염소산나트륨을 발생 시키는 전해 효율은 각각 평균 88.3% 과 89.4% 이다.
As shown in Table 2, the electrolytic efficiencies for generating sodium hypochlorite are 88.3% and 89.4%, respectively.

[실시예 3] 80 ~ 120 μm 니켈 분말 용사 도포된 음극Example 3 80 to 120 μm nickel powder sprayed anode

가로40mm, 세로 60mm, 두께 1.2mm의 하스텔로이 모재를 #40알루미나로 블라스팅하여 조면화 하고, 30% 질산용액에서 30분간 에칭처리한 후 수세하였다. 표면이 조밀화된 하스텔로이 판에 가스 열용사 방식에 의하여 80 ~ 120 μm 의 입자분포크기를 가진 니켈분말로 도포하였다. 이때 용사층 두께는 각각 50 μm(sample 3B), 150 μm(sample 2B)로 각각 수행하였다.The Hastelloy base material having a width of 40 mm, a length of 60 mm, and a thickness of 1.2 mm was blasted with # 40 alumina, roughened, and etched in 30% nitric acid solution for 30 minutes and washed with water. The dense Hastelloy plate was coated with a nickel powder having a particle size of 80-120 μm by means of gas thermal spraying. In this case, the sprayed layer thicknesses were respectively 50 μm (sample 3B) and 150 μm (sample 2B).

제조된 전극의 수소과전압, 전해전압 및 전해효율은 실시예 1과 동일한 방법으로 측정하였다.Hydrogen overvoltage, electrolytic voltage and electrolytic efficiency of the prepared electrode were measured in the same manner as in Example 1.

표 1 에서 반전지 실험에서 수행한 전해전압은 각각 평균 4.75V, 4.73V이며 분극 곡선에서 측정한 수소과전압은 각각 220 mV와 218 mV 이다. 위의 결과는 입자크기가 클수록 낮은 전해전압이 나타나는 것로 보인다.  The electrolytic voltages performed in the half cell experiment in Table 1 were 4.75V and 4.73V, respectively, and the hydrogen overvoltages measured in the polarization curve were 220 mV and 218 mV, respectively. The above results indicate that the larger the particle size, the lower the electrolytic voltage.

표 2 에서와 같이 차아염소산나트륨을 발생 시키는 전해 효율은 각각 평균 90.1% 과 90.5%이다.
As shown in Table 2, the electrolytic efficiencies for generating sodium hypochlorite are 90.1% and 90.5%, respectively.

[실시예 4] 40 ~ 80 μm 니켈 분말 용사 도포 및 루테늄-지르코늄 코팅된 음극(sample 1B)Example 4 40 to 80 μm nickel powder spray coating and ruthenium-zirconium coated anode (sample 1B)

가로40mm, 세로 60mm, 두께 1.2mm의 하스텔로이 모재를 #40알루미나로 블라스팅하여 조면화 하고, 30% 질산용액에서 30분간 에칭 처리한 후 수세하였다. 표면이 조밀화된 하스텔로이 판에 가스 열용사 방식에 의하여 40 ~ 80 μm 입자분포크기를 가진 니켈분말로 도포하였다. 이때 용사층 두께는 150 μm(sample 1B)로 수행하였다.The Hastelloy base material having a width of 40 mm, a length of 60 mm, and a thickness of 1.2 mm was blasted with # 40 alumina, roughened, and etched in 30% nitric acid solution for 30 minutes and washed with water. The dense Hastelloy plate was coated with nickel powder having a particle size of 40-80 μm by means of gas thermal spraying. In this case, the sprayed layer thickness was performed at 150 μm (sample 1B).

백금계 촉매 금속-조촉매 금속으로서 루테늄-지르코늄 코팅용액을 제조하는데 있어서 지르코늄 프로폭사이드(Zirconium(IV) propoxide) 1몰을 에탄올 25몰로 희석하고 졸의 안정화를 위하여 4N 질산 용액을 0.16M 첨가하고 30분간 교반한 다음, 4몰의 증류수를 25몰의 에탄올로 희석하고 30분 동안 교반한 용액을 시린지 펌프(syringe pump)를 사용하여 1분당 0.1 ml의 속도로 첨가하고 24시간 교반하여 지르코늄졸을 우선 제조하였다. 다음으로 루테늄 염화 수화물(Ruthenium(Ⅲ) chloride hydrate)을 에탄올에 0.1M의 농도로 녹인 다음, 지르코늄과 루테늄의 몰비율이 0.4:0.6 이 되도록 두 용액을 혼합하여 지르코늄-루테늄 복합 졸을 제조함으로서 루테늄-지르코늄 코팅용액을 제조하였다. In preparing a ruthenium-zirconium coating solution as a platinum catalyst metal-catalyst metal, 1 mole of zirconium (IV) propoxide was diluted with 25 moles of ethanol, and 0.16 M of 4N nitric acid solution was added to stabilize the sol. After stirring for 30 minutes, 4 mol of distilled water was diluted with 25 mol of ethanol and the stirred solution for 30 minutes was added at a rate of 0.1 ml per minute using a syringe pump and stirred for 24 hours to add zirconium sol. First was prepared. Next, ruthenium (III) chloride hydrate is dissolved in ethanol at a concentration of 0.1 M, and then the two solutions are mixed so that the molar ratio of zirconium and ruthenium is 0.4: 0.6 to prepare a zirconium-ruthenium complex sol. A zirconium coating solution was prepared.

150 μm 두께의 다기공성 니켈 층으로 도포된 모재를 상기와 같이 제조된 루테늄:지르코늄 몰조성비 6:4 로 이루어진 콜로이드 코팅용액에 침액 코팅하여 전극을 제조하였다. 이 때 건조는 80 ℃의 온도에서 30분간 수행하였고, 500 ℃에서 30분간의 열처리를 하였다. 상기의 8회 반복 코팅과정을 거쳤다. An electrode was prepared by immersion coating of a base material coated with a 150 μm thick porous nickel layer on a colloidal coating solution composed of a ruthenium: zirconium molar composition ratio of 6: 4. At this time, drying was performed for 30 minutes at a temperature of 80 ℃, and heat treatment for 30 minutes at 500 ℃. The above 8 times repeated coating process.

제조된 전극의 수소과전압, 전해전압 및 전해효율은 실시예 1과 동일한 방법으로 측정하였다.Hydrogen overvoltage, electrolytic voltage and electrolytic efficiency of the prepared electrode were measured in the same manner as in Example 1.

표 1 에서 반전지 실험에서 수행한 전해전압은 평균 4.71 V이며 분극 곡선에서 측정한 수소과전압은 205 mV이다. 따라서 루테늄-지르코늄 촉매 코팅한 전극의 전해전압은 동일한 조건으로 니켈 용사된 것 대비 -70 mV 정도 우수하게 나타난다. In Table 1, the average electrolytic voltage conducted in the half cell experiment was 4.71 V and the hydrogen overvoltage measured in the polarization curve was 205 mV. Therefore, the electrolytic voltage of the electrode coated with ruthenium-zirconium catalyst is about -70 mV better than that of nickel-sprayed under the same conditions.

표 2 에서와 같이 차아염소산나트륨을 발생 시키는 전해 효율은 평균 88.7 %이다.
As shown in Table 2, the electrolytic efficiency for generating sodium hypochlorite is 88.7% on average.

[비교예1] [Comparative Example 1]

비교전극으로는 기존 발전소 현장에서 사용하는 하스텔로이 판으로 가로40mm, 세로 60mm, 두께 1.2mm를 사용하였다.As a comparison electrode, Hastelloy plate used in the existing plant site was used 40mm wide, 60mm long and 1.2mm thick.

상기 비교전극(sample 7B)의 수소과전압, 전해전압 및 전해효율은 실시예 1과 동일한 방법으로 측정하였다.The hydrogen overvoltage, electrolytic voltage and electrolytic efficiency of the comparative electrode (sample 7B) were measured in the same manner as in Example 1.

표 1 내에 하스텔로이 판은 반전지 실험에서 수행한 전해전압은 평균 5.15 V 이며 측정한 수소 과전압은 286 mV 이다. The Hastelloy plate in Table 1 has an average electrolytic voltage of 5.15 V and a measured hydrogen overvoltage of 286 mV.

표 2 에서와 같이 차아염소산나트륨을 발생 시키는 전해 효율은 평균 84.1 %이다.
As shown in Table 2, the electrolytic efficiency for generating sodium hypochlorite is 84.1% on average.

[비교예2][Comparative Example 2]

비교전극으로는 백금 전극으로 가로 40mm, 세로 60mm, 두께 1.2mm를 사용하였다.As a comparison electrode, 40 mm in width, 60 mm in length, and 1.2 mm in thickness were used as the platinum electrode.

상기 비교전극의 수소과전압 및 전해전압은 실시예 1과 동일한 방법으로 측정하였다.The hydrogen overvoltage and electrolysis voltage of the comparison electrode were measured in the same manner as in Example 1.

표 1 내에 백금 전극은 반전지 실험에서 수행한 전해전압은 평균 4.70 V 이며 측정한 수소 과전압은 204 mV 이다.
Platinum electrodes in Table 1 have an average electrolytic voltage of 4.70 V and a measured hydrogen overvoltage of 204 mV.

실시예Example 용사층
두께(μm)
Thermal spray
Thickness (μm)
백금계 촉매 금속-조촉매 금속 코팅Platinum-based catalytic metal-catalyst metal coating 평균
수소과전압(mV)
(20 ASD기준)
Average
Hydrogen Overvoltage (mV)
(20 ASD standard)
평균 전해전압(V)
(20 ASD기준)
Average Electrolytic Voltage (V)
(20 ASD standard)
전위차
(mV)
Potential difference
(mV)
실시예 1-1(sample 6B)Example 1-1 (sample 6B) 5050 xx 256256 5.065.06 -90-90 실시예 1-2
(sample 5B)(도 5)
Examples 1-2
(sample 5B) (FIG. 5)
150150 xx 245245 4.914.91 -240-240
실시예 2-1
(sample 8B)
Example 2-1
(sample 8B)
5050 xx 235235 4.834.83 -320-320
실시예 2-2
(sample 4B)(도 6)
Example 2-2
(sample 4B) (FIG. 6)
150150 xx 225225 4.784.78 -370-370
실시예 3-1
(sample 3B)
Example 3-1
(sample 3B)
5050 xx 220220 4.754.75 -370-370
실시예 3-2
(sample 2B)(도 7)
Example 3-2
(sample 2B) (FIG. 7)
150150 xx 218218 4.734.73 -420-420
실시예 4-1
(sample 1B)(도 8,9,10)
Example 4-1
(sample 1B) (FIGS. 8, 9, 10)
150150 루테늄-지르코늄(6:4)Ruthenium-zirconium (6: 4) 205205 4.714.71 -440-440
비교예 1
(Sample 7B)
Comparative Example 1
(Sample 7B)
xx xx 286286 5.155.15 00
비교예 2
(백금 전극)
Comparative Example 2
(Platinum electrode)
xx xx 204204 4.704.70 -450-450

실시예Example 전해효율 1회(%)Electrolysis Efficiency Once (%) 전해효율 2회(%)2 times electrolytic efficiency 전해효율 3회(%)Electrolysis Efficiency 3 Times (%) 평균(%)Average(%) 실시예
1-1(sample 6B)
Example
1-1 (sample 6B)
86.586.5 88.688.6 89.189.1 88.188.1
실시예
1-2(sample 5B)
Example
1-2 (sample 5B)
85.685.6 89.189.1 88.188.1 87.687.6
실시예
2-1(sample 8B)
Example
2-1 (sample 8B)
86.686.6 88.288.2 90.290.2 88.388.3
실시예
2-2(sample 4B)
Example
2-2 (sample 4B)
88.588.5 89.289.2 90.590.5 89.489.4
실시예
3-1(sample 3B)
Example
3-1 (sample 3B)
89.589.5 90.190.1 90.890.8 90.190.1
실시예
3-2(sample 2B)
Example
3-2 (sample 2B)
90.790.7 90.390.3 90.590.5 90.590.5
실시예
4-1(sample 1B)
Example
4-1 (sample 1B)
87.587.5 89.989.9 88.888.8 88.788.7
비교예 1
(Sample 7B)
Comparative Example 1
(Sample 7B)
81.581.5 82.582.5 85.285.2 84.184.1

Claims (5)

하스텔로이 또는 니켈 표면상에 니켈분말을 용사 도포 하여 다기공성 용사층으로 도포된 하스텔로이 또는 니켈판을 제조하는 과정을 포함하는 수소발생용 전극의 제조방법.
A method for producing a hydrogen generating electrode comprising the step of thermally applying a nickel powder on a Hastelloy or nickel surface to produce a Hastelloy or nickel plate coated with a porous porous layer.
제 1항에 있어서,
상기 제조된 다기공성 용사층으로 도포된 하스텔로이 또는 니켈판의 표면에 백금계 촉매 금속-조촉매 금속으로 주석, 아연, 타이타늄, 지르코늄, 코발트, 망간, 주석 또는 바나듐으로부터 선택되는 것을 코팅하는 과정을 더 포함하는 수소발생용 전극의 제조방법.
The method of claim 1,
Coating a process selected from tin, zinc, titanium, zirconium, cobalt, manganese, tin or vanadium as a platinum-based catalytic metal-catalyst metal on the surface of the Hastelloy or nickel plate coated with the prepared porous porous layer Method for producing a hydrogen generating electrode further comprising.
제 1항에 있어서,
상기 니켈분말의 크기는 10 ~ 120 μm 인 것을 특징으로 하는 수소발생용 전극의 제조방법.
The method of claim 1,
The size of the nickel powder is a method for producing a hydrogen electrode, characterized in that 10 ~ 120 μm.
제 1항에 있어서,
상기 다기공성 용사층의 두께는 50 ~ 200 μm 인 것을 특징으로 하는 수소발생용 전극의 제조방법.
The method of claim 1,
The thickness of the porous porous spray layer is a method for producing a hydrogen electrode, characterized in that 50 ~ 200 μm.
제 1항 내지 제 4항에서 선택된 어느 한 항의 방법에 의해 제조되는 수소발생용 전극.
Electrode for hydrogen generation produced by the method of any one of claims 1 to 4.
KR1020110063350A 2011-06-29 2011-06-29 Electrolytic hydrogen-generating electrode and method for producing the same KR101257921B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110063350A KR101257921B1 (en) 2011-06-29 2011-06-29 Electrolytic hydrogen-generating electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110063350A KR101257921B1 (en) 2011-06-29 2011-06-29 Electrolytic hydrogen-generating electrode and method for producing the same

Publications (2)

Publication Number Publication Date
KR20130002401A true KR20130002401A (en) 2013-01-08
KR101257921B1 KR101257921B1 (en) 2013-04-24

Family

ID=47835028

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110063350A KR101257921B1 (en) 2011-06-29 2011-06-29 Electrolytic hydrogen-generating electrode and method for producing the same

Country Status (1)

Country Link
KR (1) KR101257921B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513334A (en) * 2018-07-20 2021-03-16 科思创知识产权两合公司 Method for improving nickel electrode performance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184691A (en) * 1984-03-02 1985-09-20 Permelec Electrode Ltd Durable electrode and its manufacture
KR940010101B1 (en) * 1992-06-02 1994-10-21 한양화학 주식회사 Process for the preparation of electrolytic cell cathodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513334A (en) * 2018-07-20 2021-03-16 科思创知识产权两合公司 Method for improving nickel electrode performance
CN112513334B (en) * 2018-07-20 2023-12-22 科思创知识产权两合公司 Method for improving nickel electrode performance

Also Published As

Publication number Publication date
KR101257921B1 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
EP3444383B1 (en) Anode for alkaline water electrolysis and method for producing anode for alkaline water electrolysis
Mayousse et al. Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis
Pletcher et al. A comparison of cathodes for zero gap alkaline water electrolysers for hydrogen production
Xu et al. The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction
Moussallem et al. Development of high-performance silver-based gas-diffusion electrodes for chlor-alkali electrolysis with oxygen depolarized cathodes
TWI409364B (en) Cathode for hydrogen generation
Cui et al. Controllable synthesis of a self-assembled ultralow Ru, Ni-doped Fe2O3 lily as a bifunctional electrocatalyst for large-current-density alkaline seawater electrolysis
JP4673628B2 (en) Cathode for hydrogen generation
Liu et al. Surface morphology and electrochemical properties of RuO2-doped Ti/IrO2-ZrO2 anodes for oxygen evolution reaction
CN103981534A (en) Electrocatalyst, electrode coating and electrode for the preparation of chlorine
JP5518900B2 (en) Cathode for electrolysis of aqueous solution of water or alkali metal compound, electrolytic cell for electrolysis of alkali metal chloride, and method for producing cathode for electrolysis of aqueous solution of water or alkali metal compound
JP5307270B2 (en) Cathode for hydrogen generation used for salt electrolysis
JP6788378B2 (en) Water electrolysis cell and multi-pole water electrolysis tank
Chen et al. Controllable preparation of Ti/TiO2-NTs/PbO2–CNTs–MnO2 layered composite materials with excellent electrocatalytic activity for the OER in acidic media
Fazlinezhad et al. Characterization and electrochemical properties of stable Ni2+ and F-co-doped PbO2 coating on titanium substrate
US20030136669A1 (en) Electrode for electrolysis in acidic media
Pérez-Viramontes et al. Electrochemical study of Ir–Sn–Sb–O materials as catalyst-supports for the oxygen evolution reaction
KR101860763B1 (en) Non-precious Metal Electrocatalyst, Proton Exchange Membrane Water Electrolyzer Using The Same And Method For Preparing The Same
KR101257921B1 (en) Electrolytic hydrogen-generating electrode and method for producing the same
Liu et al. Effects of calcination temperature on the surface morphology and electrocatalytic properties of Ti/IrO2-ZrO2 anodes in an oxygen evolution application
Hosseini et al. RuO 2, RuO 2–TiO 2 and RuO 2–TiO 2–IrO 2 nanoparticles supported on Ni mesh as mixed metal oxide electrodes for oxygen reduction reaction
WO2020105369A1 (en) Hydrogen production method
Wu et al. Highly efficient H 2 production and size-selective AgCl synthesis via electrolytic cell design
US20230323548A1 (en) Electrode for gas evolution in electrolytic processes
Hosseini et al. and RuO

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160418

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170418

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190410

Year of fee payment: 7