KR20120119242A - Method of manufacturing high-purity and nano-sacle manganese dioxide - Google Patents

Method of manufacturing high-purity and nano-sacle manganese dioxide Download PDF

Info

Publication number
KR20120119242A
KR20120119242A KR1020110037034A KR20110037034A KR20120119242A KR 20120119242 A KR20120119242 A KR 20120119242A KR 1020110037034 A KR1020110037034 A KR 1020110037034A KR 20110037034 A KR20110037034 A KR 20110037034A KR 20120119242 A KR20120119242 A KR 20120119242A
Authority
KR
South Korea
Prior art keywords
manganese dioxide
manganese
solid
nitric acid
high purity
Prior art date
Application number
KR1020110037034A
Other languages
Korean (ko)
Other versions
KR101316620B1 (en
Inventor
최순식
신명승
양원석
원용필
Original Assignee
한창산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한창산업 주식회사 filed Critical 한창산업 주식회사
Priority to KR1020110037034A priority Critical patent/KR101316620B1/en
Publication of KR20120119242A publication Critical patent/KR20120119242A/en
Application granted granted Critical
Publication of KR101316620B1 publication Critical patent/KR101316620B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A manufacturing method of high purity nano-particle manganese dioxide is provided to enhance recovery rate of the high purity nano-particle manganese dioxide having B -MnO2 crystalline structure. CONSTITUTION: A manufacturing method of high purity nano-particle manganese dioxide comprises the following steps: mixing manganese containing materials with a reducing agent and pulverizing and heat treating the mixed raw materials in order to reducing roast thereof(s1); leaching by injecting the reduced materials into nitric acid(s3); separating metal based impurities by adding basic material to the leached solution(s4); separating the separated manganese nitrate solution by thermal decomposition(s5); washing the thermal decomposed manganese dioxide and removing the alkali based impurities by separating thereof(s6); and wet pulverizing the washed manganese dioxide into the particle size of 100 nano meters-1 micro meters(s8); drying thereof(s9). [Reference numerals] (S1) Raw material preparation process; (S2) Mixing/pulverizing/heat treating process; (S3) Leaching nitric acid process; (S4) Impurity purification/solid-liquid isolation process; (S5) Thermal decomposing/solid-liquid isolation process; (S6) Impurity removal washing process; (S7) Reactive filtrate re-use process; (S8) Wet pulverizing/neutralizing process; (S9) Dried powder

Description

고순도 나노입자 이산화망간 제조방법{Method of manufacturing high-purity and nano-sacle manganese dioxide}Method of manufacturing high-purity nanoparticle manganese dioxide {Method of manufacturing high-purity and nano-sacle manganese dioxide}

본 발명은 β-MnO2 결정구조를 갖는 고순도 이산화망간 제조방법에 관한 것으로서, 질산침출 공정과 열분해 공정 및 반응여액 재사용공정을 통하여 추가적인 설비를 하지 않고도 간단한 공정으로 망간산화물 회수율을 높이고 고순도의 나노 이산화망간을 제조하는 방법에 관한 것이다.The present invention relates to a high-purity manganese dioxide manufacturing method having a β-MnO 2 crystal structure, through the nitric acid leaching process, pyrolysis process and the reaction filtrate reuse process to increase the recovery rate of manganese oxide in a simple process without the need for additional equipment and high-purity nano manganese dioxide It relates to a manufacturing method.

이산화망간(MnO2)은 자원적으로 풍부하고 염가이기 때문에 전지용 양극 활물질로 넓게 이용되고 있는데, 휴대 전자기기의 소형 다기능화에 따라 방전특성 및 신뢰성 등이 보다 향상된 고성능의 전지를 위하여, 보다 개선된 전지용 양극재가 요구된다.Manganese dioxide (MnO 2 ) is widely used as a cathode active material for batteries because it is rich in resources and inexpensive. For the high performance battery with improved discharge characteristics and reliability according to the compact and multifunctionality of portable electronic devices, A cathode material is required.

리튬 이차전지의 양극재인 LiMn2O4를 합성하기 위한 전구체로서 이산화망간은 높은 순도와 미세한 입자크기 특성이 요구되는데, 종래의 기술에 의한 이산화망간은 평균 입자크기가 수십 um의 다결정 구조를 하고 있어, 결정결함 또는 결정입계가 존재하고 입자크기가 크기 때문에 수소이온이나 리튬이온 등이 이산화망간 고상 내에서 확산되는 것이 방해되거나 지체되어 전지의 성능이 저하된다. 따라서 생산 단가를 낮추면서 입자크기를 미세화한 고순도의 이산화망간 제조방법이 요구된다.As a precursor for synthesizing LiMn 2 O 4 , a cathode material of a lithium secondary battery, manganese dioxide is required to have high purity and fine particle size characteristics. However, the conventional manganese dioxide has a polycrystalline structure having an average particle size of several tens of um, and thus crystals. Due to the presence of defects or grain boundaries and large particle sizes, diffusion of hydrogen ions or lithium ions into the manganese dioxide solid phase is prevented or delayed, thereby degrading the performance of the battery. Therefore, there is a need for a method of producing high purity manganese dioxide with a reduced particle size while minimizing the production cost.

이산화망간은 제조방법에 따라 화학이산화망간(Chemical Manganese Dioxide: CMD), 전해이산화망간(Electrolytic Manganese Dioxide: EMD), 천연이산화망간(Natural Manganese Dioxide: NMD)으로 나눌 수 있는데, CMD는 화학적인 방법에 의해 제조된 이산화망간이며, NMD는 자연적으로 존재하는 이산화망간을 의미한다. 일반적으로 NMD는 불순물 함량이 높기 때문에 전지용 원료로 사용하기 어렵다.Manganese dioxide can be divided into Chemical Manganese Dioxide (CMD), Electrolytic Manganese Dioxide (EMD), and Natural Manganese Dioxide (NMD) according to the manufacturing method. NMD means naturally occurring manganese dioxide. In general, NMD is difficult to use as a raw material for batteries because of its high impurity content.

전지용 이산화망간의 제조방법으로는 황산수용액 등의 산성수용액에 MnSO4 등의 망간광물을 용해하여 그 용액을 전기분해함으로써 망간산화물(EMD)을 얻는 방법을 주로 이용하였으나, 초기 설비 비용투자가 크며, 이산화망간 내에 불순물 함량이 높아 순도가 90% 수준이며, 입자사이즈가 20 um이상으로 크고, SO4이온 농도가 높아 전지성능을 열화시키는 단점이 있다. As a method of manufacturing manganese dioxide for batteries, a method of obtaining manganese oxide (EMD) by dissolving manganese minerals such as MnSO 4 in an acidic aqueous solution such as sulfuric acid aqueous solution and electrolyzing the solution was mainly used. The impurity content is high in the 90% purity level, the particle size is larger than 20 um, there is a disadvantage that deteriorates the battery performance due to high SO 4 ion concentration.

CMD는 MnSO4와 알칼리금속염산화물을 반응시켜 얻는 공정(SEDEMA 공정)이 가장 널리 이용되고 있으며, 이 밖에도 산화제의 종류에 따라 다양한 방법들이 보고되어 왔으나 나노입자 제조에 대한 기술은 그리 많지 않다. CMD is the most widely used process of reacting MnSO 4 with alkali metal chloride (SEDEMA process). Besides, various methods have been reported depending on the type of oxidizing agent, but there are not many techniques for preparing nanoparticles.

이 외에도 이산화망간 입자의 미세화를 위해 졸겔법, 분무 열분해법 등을 이용하는 방법이 연구되었으나, 공정이 복잡하고 합성시간이 오래 걸리는 단점이 있다. 또한 초임계/아임계 수열합성법을 이용하여 MnO2 나노입자를 합성하는 연구가 진행되어 있으나, 수열합성법의 특성상 가격이 높다는 단점이 있다.In addition, a method of using a sol-gel method, spray pyrolysis, etc. has been studied for miniaturization of manganese dioxide particles, but it has a disadvantage in that the process is complicated and takes a long time to synthesize. In addition, although researches for synthesizing MnO 2 nanoparticles using a supercritical / subcritical hydrothermal synthesis method have been conducted, there is a disadvantage in that the price is high due to the characteristics of the hydrothermal synthesis method.

상기와 같은 필요성에 의하여, 본 발명은 제조공정을 간단하게 하여 전지용 이산화망간의 생산단가를 낮추면서 입자크기를 미세화하는 제조방법을 제공하고자 한다.By the necessity as described above, the present invention is to provide a manufacturing method for simplifying the manufacturing process to reduce the particle size while lowering the production cost of manganese dioxide for batteries.

또한, β-MnO2 결정구조를 갖는 고순도 이산화망간의 회수율을 높이기 위한 제조방법을 제공하고자 한다.In addition, an object of the present invention is to provide a method for increasing the recovery rate of high-purity manganese dioxide having a β-MnO 2 crystal structure.

상기의 해결하고자 하는 과제를 위한 본 발명에 따른 전지용 이산화망간 제조방법은, 망간함유물질을 환원제와 혼합하여 분쇄하고 열처리하여 환원배소하는 공정, 환원된 원료를 질산에 침출시키는 공정, 염기성 물질을 이용하여 금속계 불순물을 침전시켜 고액 분리하는 공정, 고액 분리된 질산망간 용액을 열분해하고 고액 분리하는 공정, 열분해된 이산화망간을 수세하고 고액 분리하여 알칼리계 불순물을 제거하는 공정 및 수세된 이산화망간을 100nm ~ 1um의 입자크기로 습식 분쇄하는 공정을 포함하는 것을 특징으로 한다.The method for manufacturing a battery manganese dioxide according to the present invention for the problem to be solved, the process of reducing and roasting the manganese-containing material by mixing with a reducing agent and heat treatment, leaching the reduced raw material to nitric acid, using a basic material The process of precipitating metal-liquid and separating liquid-liquid, the process of pyrolyzing and liquid-liquid separation of solid-liquid manganese nitrate solution, the process of washing pyrolyzed manganese dioxide and solid-liquid separation to remove alkali-based impurities and the washed manganese dioxide particles of 100nm ~ 1um It characterized in that it comprises a process of wet grinding to size.

본 발명의 바람직한 실시예로서, 고액 분리된 질산망간 용액을 질산침출 공정에 재사용하는 것을 특징으로 한다.As a preferred embodiment of the present invention, the solid-liquid separated manganese nitrate solution is characterized in that it is reused in the nitric acid leaching process.

또한, 금속계 불순물을 침전시키는 공정에서 염기성 물질은 Ca(OH)2 분말인 것을 특징으로 한다. In addition, the basic material in the step of precipitating metallic impurities is characterized in that the Ca (OH) 2 powder.

또한, 열처리 공정에서 원료의 재산화를 방지하고자 열처리 후에 질소가스 분위기에서 냉각하고, 질산 침출 공정에서 질소가스를 투입하여 원료의 재산화를 방지하는 것을 특징으로 한다.In addition, in order to prevent the reoxidation of the raw material in the heat treatment process, after cooling in a nitrogen gas atmosphere, characterized in that to prevent the reoxidation of the raw material by introducing nitrogen gas in the nitric acid leaching process.

본 발명에 의한 β-MnO2 결정구조를 갖는 이산화망간은 순도가 95% 이상이며, 입자크기가 나노 크기로 미세하여 양극재 합성시 균일한 혼합으로 균질의 양극재를 제조함으로 전지의 방전특성과 신뢰성 등을 향상시킬 수 있다.Manganese dioxide having a β-MnO 2 crystal structure according to the present invention has a purity of 95% or more, and its particle size is fine to nano size, so as to prepare a homogeneous cathode material by uniform mixing during cathode material synthesis, the discharge characteristics and reliability of the battery Etc. can be improved.

도 1은 고순도 나노입자 이산화망간 제조공정 흐름도이다.1 is a high purity nanoparticle manganese dioxide manufacturing process flow chart.

이하에서는, 첨부된 도면을 참조하여 본 발명에 의한 고순도 나노입자 이산화망간 제조방법에 관하여 바람직한 실시예를 설명한다. 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명을 위한 것으로서, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of a method for producing high purity nanoparticle manganese dioxide according to the present invention. The embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention but for the purpose of description, and the scope of the technical spirit of the present invention is not limited by these embodiments.

도 1은 고순도 나노입자 이산화망간 제조공정 흐름도이다. 도 1의 S1단계는 원료를 준비하는 공정으로서, 사용한 망간함유물질은 50% 수준의 망간함량을 가진 망간광석이다. 35% 이하의 망간함량을 가진 망간광석을 사용할 경우 폐기물 발생량이 높아 생산성 대비 가격 경쟁력이 없으므로 50% 내외의 망간함량을 가진 망간광석을 사용하는 것이 바람직하다.1 is a high purity nanoparticle manganese dioxide manufacturing process flow chart. Step S1 of FIG. 1 is a process of preparing a raw material, and the used manganese-containing material is manganese ore having a manganese content of 50%. When manganese ore with a manganese content of 35% or less is used, it is preferable to use manganese ore with a manganese content of about 50% because the amount of waste generated is high and the price is not competitive with productivity.

S2단계는 원료를 혼합하여 분쇄하고 환원배소를 위해 열처리하는 공정이다. 망간광석의 질산에 대한 용해도를 높이기 위하여 카본을 함유하고 있는 물질과 혼합 및 분쇄하고, 전기로를 이용하여 열처리하여 망간광석내 존재하고 있는 Mn2O3, MnO2, Mn3O4등의 망간산화물을 MnO로 환원배소한다. S2 step is a process of mixing and grinding the raw materials and heat treatment for reducing roasting. Manganese oxides such as Mn 2 O 3 , MnO 2 , and Mn 3 O 4 present in manganese ores are mixed and pulverized with carbon-containing materials in order to increase the solubility of manganese ores in nitric acid. Is reduced to MnO.

질산에 대한 함망간물질은 그 상태에 따라 용해도가 달라진다. Mn 또는 MnO 상태일 때 질산에 대하여 최대 침출율이 100%가 되므로 망간광석을 Mn이나 MnO로 환원시켜야 한다. 망간광석을 환원시키는 방법으로서는 탄소를 주성분으로 하고 있는 환원제를 사용하는 방법과, 열처리시 일산화탄소, 메탄 가스 등으로 환원분위기를 조성함으로써 환원시키는 방법이 있는데, 본 발명에서는 값이 비교적 저렴한 카본 환원제를 이용한다. Manganese substances for nitric acid have different solubility depending on their state. Since the maximum leaching rate is 100% for nitric acid in the Mn or MnO state, manganese ore should be reduced to Mn or MnO. As a method of reducing manganese ore, there is a method of using a reducing agent mainly composed of carbon, and a method of reducing by forming a reducing atmosphere with carbon monoxide, methane gas or the like during heat treatment. In the present invention, a relatively inexpensive carbon reducing agent is used. .

환원제의 함량은 탄소의 함량에 따라 유동적으로 변하지만, 카본의 경우 원료에 대하여 6% ~ 10% 첨가시 질산에 대한 용해도가 가장 높다. 망간광석 분쇄시 입자가 너무 작으면 질산침출 후 불순물 정제시 고액 분리에 어려움이 있고, 입자가 너무 클 경우 망간의 질산침출 시간이 증가하거나 환원제 혼합시 환원제와의 균일한 혼합이 어려워 질산침출율을 떨어뜨릴 수 있다. 망간광석의 입자사이즈는 50mesh ~ 200mesh가 적당하며, 전기로의 온도는 700℃ ~ 800℃, 유지시간은 2시간 이내가 바람직하다. 냉각시 환원되어진 원료가 재산화되는 것을 방지하기 위하여 질소로 분위기를 조정한다.Although the content of the reducing agent varies fluidly according to the content of carbon, carbon has the highest solubility in nitric acid when 6% to 10% of the raw material is added. If the particles are too small during manganese ore crushing, it is difficult to separate solid-liquids when purifying impurities after nitric acid leaching. If the particles are too large, the nitric acid leaching time increases, or it is difficult to uniformly mix with the reducing agent when mixing the reducing agent. You can drop it. The particle size of manganese ore is 50mesh ~ 200mesh is suitable, the temperature of the electric furnace is 700 ℃ ~ 800 ℃, the holding time is preferably within 2 hours. The atmosphere is adjusted with nitrogen to prevent reoxidation of the reduced raw materials upon cooling.

S3단계는 질산침출 공정으로서, 환원된 원료를 증류수에 투입하여 슬러리 상태로 만든 후 50%의 질산수용액을 서서히 투입하여 망간을 침출한다. 슬러리의 온도가 70℃ 정도일 때 질산을 투입하는 것이 질산에 대한 용해도를 높이는데 적절하다. 일산화망간(MnO) 1몰을 완전히 용해시키기 위해서는 2몰의 질산이 필요한데, 여러 가지 불순물들이 또한 질산을 소모하므로 MnO 1몰당 2.2 ~ 2.4몰의 질산을 첨가시키는 것이 바람직하다. 질산은 서서히 투입하여야 하며, 투입량을 급격히 가져갈 경우 발열반응이 일어나 슬러리 내의 온도가 높아져 질산의 분해가 일어나게 된다. 질산을 서서히 투입하여 PH를 0.5 ~ 1.0으로 조정 후 2시간 교반한다. 산반응시 원료의 재산화를 억제하기 위하여 질소가스를 분당 2리터로 투입하여 분위기를 조정한다. Step S3 is a nitric acid leaching process, in which a reduced raw material is added to distilled water to make a slurry, and then 50% nitric acid solution is gradually added to leach manganese. When nitric acid is added when the temperature of the slurry is about 70 ° C, it is appropriate to increase the solubility in nitric acid. To completely dissolve one mole of manganese monoxide (MnO), two moles of nitric acid are required. Since various impurities also consume nitric acid, it is preferable to add 2.2 to 2.4 moles of nitric acid per mole of MnO. Nitric acid should be added slowly, and if the input amount is taken rapidly, an exothermic reaction occurs and the temperature in the slurry becomes high, resulting in decomposition of nitric acid. Nitric acid was slowly added and the pH was adjusted to 0.5 ~ 1.0 and stirred for 2 hours. In order to suppress reoxidation of raw materials during acid reaction, nitrogen gas is added at 2 liters per minute to adjust the atmosphere.

S4단계는 불순물 정제 및 여과에 의한 고액 분리 공정이다. S3단계인 질산침출 공정은 PH가 매우 낮기 때문에 망간광석 내에 존재하는 망간뿐만 아니라, 금속계 불순물, 알칼리계 불순물들이 질산수용액에 존재하게 된다. 금속계 불순물을 정제하기 위하여 환원된 원료(MnO)를 초기 투입량 대비 10%를 투입하여 PH를 2.0으로 맞춘 후 Ca(OH)2 분말을 투입하여 PH를 4.5로 조정 후 고액 분리한다. 산성조건에서 침전되는 Fe, Si, Co, Ni등의 금속계 불순물이 질산에 용해되지 않는 폐기물과 함께 침전되고 망간성분은 용액상태로 남아 있으므로, 침전물과 용액을 여과하여 분리함으로써 순도가 높은 질산망간 용액을 얻을 수 있었다. S4 step is a solid-liquid separation process by impurity purification and filtration. Since the nitric acid leaching process of step S3 has a very low pH, not only manganese present in manganese ore, but also metallic impurities and alkali based impurities are present in the nitric acid solution. In order to purify the metallic impurities, 10% of the reduced raw material (MnO) is added to adjust the pH to 2.0, and then Ca (OH) 2 powder is added to adjust the pH to 4.5 and the solids are separated. Metallic impurities such as Fe, Si, Co, and Ni precipitated under acidic conditions are precipitated together with the waste which does not dissolve in nitric acid, and manganese components remain in solution. Could get

불순물 정제공정시 NaOH, KOH, NH4OH 등을 이용하여 PH를 높일 수 있으나, NaOH, KOH, NH4OH 수용액을 이용할 경우 Mn(OH)2, 실리카겔 등이 형성되어 고액 분리에 어려움이 있으며, 그로 인하여 망간의 회수율 또한 낮아진다. Ca(OH)2 분말을 이용할 경우에는 고액 분리에 어려움이 없으며 망간회수율도 높다. 질산망간 용액에 Ca의 함량이 약 2%정도 존재하나, 추후 진행되는 질산분해공정에서 대부분 제거되며 최종 MnO2에는 약 50ppm 정도의 미량이 포함되어 문제되지 않는다.In the impurity purification process, NaOH, KOH, NH 4 OH, etc. can be used to increase the pH.However, when NaOH, KOH, NH 4 OH aqueous solution is used, Mn (OH) 2 and silica gel are formed, which makes it difficult to separate solid solution. This also lowers the recovery of manganese. When Ca (OH) 2 powder is used, there is no difficulty in separating solid-liquid liquid and manganese recovery is high. Ca content of about 2% is present in the manganese nitrate solution, but it is mostly removed in the subsequent nitric acid decomposition process, and the final MnO 2 is contained in a trace amount of about 50ppm.

S5단계는 열분해 공정을 이용하여 β-MnO2을 수득하는 단계이다. 고액 분리된 질산망간 용액에 NH4OH를 소량 투입하여 PH를 7.0으로 조정 후 열분해를 진행한다. PH를 6.0으로 조정 후 열분해 할 경우 β-MnO2가 합성되나 결정화도가 매우 낮은 결과를 보였으며, PH를 5.0으로하여 열분해시 β-MnO2가 합성되지 않았다. PH를 7.0으로 조정 후 열분해를 진행할 경우 β-MnO2가 합성되었으며, 결정화도 또한 높은 결과를 얻을 수 있었다. Step S5 is a step of obtaining β-MnO 2 using a pyrolysis process. A small amount of NH 4 OH was added to the solid-liquid manganese nitrate solution to adjust the pH to 7.0, followed by pyrolysis. Β-MnO 2 was synthesized when the pyrolysis was adjusted after adjusting pH to 6.0, but the crystallinity was very low. Β-MnO 2 was not synthesized when pyrolysis was made at pH 5.0. When pyrolysis was performed after adjusting the pH to 7.0, β-MnO 2 was synthesized and the crystallinity was also high.

질산망간 용액 열분해시 용액의 온도를 120℃미만으로 가져갈 경우 생성된 MnO2의 입자사이즈가 1㎛ 수준까지 작아지는 것을 확인해 볼 수 있었으나, 반응시간이 매우 길어짐에 따라 생산성 차원에서 효과적이지 않다. 분해온도를 180℃ 이상으로 높게 가져갈 경우 입자사이즈가 50㎛ 내외까지 성장하였으며, 이는 다음 공정인 미분쇄 공정시 분쇄시간이 길어지며, 그로 인하여 설비운전시 불순물 오염도가 높아지며 생산성이 낮아지는 결과를 초래할 수 있다. 120℃ ~ 160℃로 열분해 하여 생성된 이산화망간의 평균입자사이즈는 3 ~ 7㎛이었다. When the temperature of the solution was lower than 120 ° C. during the thermal decomposition of manganese nitrate, it was confirmed that the particle size of the produced MnO 2 was reduced to the level of 1 μm, but the reaction time was very long, which is not effective in terms of productivity. If the decomposition temperature is higher than 180 ℃, the particle size grows up to around 50㎛, which leads to a long grinding time during the next grinding process, which leads to a high impurity contamination and low productivity during operation of the equipment. Can be. The average particle size of manganese dioxide produced by thermal decomposition at 120 ° C. to 160 ° C. was 3 to 7 μm.

질산망간 열분해시 망간수율이 70% 수준에서 증류수를 투입하여 분해를 종결시킨다. 망간수율을 90% 이상 가져갈 경우 생성되는 MnO2 내에 질산에 잔류하고 있는 불순물들이 MnO2에 흡착되어 불순물 함량이 높아지는 결과를 보였다.When pyrolysis of manganese nitrate terminates the decomposition by adding distilled water at a manganese yield of 70%. MnO 2 generated when the manganese yield is over 90% Impurities remaining in the nitric acid in the adsorbed to MnO 2 resulted in a high impurity content.

망간수율을 70% 수준에서 종결하므로 잔류하는 질산망간 수용액은 많은 양의 망간이 함유되어 있으므로 고액 분리하여 액상의 반응여액은 질산침출 공정에 재사용한다.Since the manganese yield is terminated at the 70% level, the remaining manganese nitrate solution contains a large amount of manganese, so that the liquid filtrate is separated and the liquid filtrate is reused in the nitric acid leaching process.

S6단계는 생성된 이산화망간에 함유되어 있는 알칼리 금속 및 알칼리토금속 등의 알칼리계 불순물을 세척하는 수세 공정단계이다. 증류수를 투입하여 열분해 반응이 종결된 반응액 슬러리를 20분 이상 교반하면 가용성의 질산염 형태로 존재하던 Na, K, Ca, Mg, Zn, Pb 등의 불순물 성분이 용해된다. 이 반응액 슬러리를 고액 분리한 고체상태의 MnO2를 세척하면 고순도의 MnO2가 수득된다. 고액 분리된 액체상태에도 5% 정도의 망간성분을 함유하고 있어 질산침출 공정에 재사용한다.S6 is a washing process step of washing alkali-based impurities such as alkali metal and alkaline earth metal contained in the produced manganese dioxide. When the reaction solution slurry in which the pyrolysis reaction is terminated by distilled water is stirred for 20 minutes or more, impurity components such as Na, K, Ca, Mg, Zn, and Pb that are present in the form of soluble nitrate are dissolved. MnO 2 in solid state obtained by solid-liquid separation of the reaction solution slurry is obtained with high purity MnO 2 . It contains about 5% manganese even in the liquid-liquid separated state, so it is reused in the nitric acid leaching process.

S7단계는 본 발명에 따른 반응여액 재사용 공정단계이다. 기존의 질산망간 열분해 공정의 경우에서는 질산망간 열분해 후 고액 분리된 반응여액을 재열분해 하여 불순물 함량이 많은 이산화망간을 제조하여 환원배소시 망간원료와 함께 투입하여 환원배소함으로서 망간의 손실을 최소화하는 공정이 보고되어 있다. 그러나, 이와 같은 공정을 적용할 경우 설비가 증대됨은 물론 공정이 복잡해짐에 따라 현장에서 적용하기에 어려움이 있다. Step S7 is a reaction filtrate reuse process step according to the present invention. In the case of the conventional manganese nitrate pyrolysis process, the process of minimizing the loss of manganese by producing a manganese dioxide with a large amount of impurities by pyrolyzing the reaction filtrate separated from the liquid-liquid after pyrolysis of manganese nitrate and injecting it together with the manganese raw material during reduction and roasting. Reported. However, the application of such a process is difficult to apply in the field as the equipment is increased and the process is complicated.

본 발명에서는 고액 분리된 반응여액을 재열분해 하지 않고 질산침출 공정단계에서 반응여액을 재사용한다. 반응여액에 환원된 이산화망간 원료를 투입하고, 질산을 서서히 투입하여 pH를 0.5 ~ 1.0으로 조정 후 불순물 정제 공정을 거쳐, 열분해 하여 이산화망간을 합성하였다. 합성된 이산화망간은 불순물 함량이 매우 낮은 고순도의 산화물이었으며, 이와 같이 반응여액을 질산침출 공정에 재사용함으로써 90% 이상의 망간산화물을 회수할 수 있고, 추가적인 설비의 증가 없이 간단하게 공정에 접목시킬 수 있다. In the present invention, the reaction filtrate is reused in the nitric acid leaching process step without pyrolyzing the separated reaction filtrate. The reduced manganese dioxide raw material was added to the reaction filtrate, nitric acid was gradually added to adjust the pH to 0.5 to 1.0, and then pyrolyzed to synthesize manganese dioxide through an impurity purification process. The synthesized manganese dioxide was an oxide of high purity with a very low impurity content, and thus, by reusing the reaction filtrate in the nitric acid leaching process, more than 90% of manganese oxide can be recovered, and can be easily incorporated into the process without additional equipment.

S8단계는 질산망간 열분해 후 수득 된 이산화망간을 미세화하기 위하여 습식으로 분쇄하는 단계이다. 질산망간 열분해 후 수득 된 이산화망간의 평균입자는 4㎛ 수준이므로, 습식분쇄기를 이용하여 100nm ~ 1um 입자크기로 분쇄한다. 분쇄 후 잔류하는 질산을 중화처리하기 위하여 알칼리인 LiOH를 투입한다. 중화처리 후 PH는 6 ~ 8이 적당하다. Step S8 is a step of wet grinding to refine the manganese dioxide obtained after pyrolysis of manganese nitrate. Since the average particle of manganese dioxide obtained after pyrolysis of manganese nitrate is 4 µm level, it is ground to a particle size of 100nm ~ 1um using a wet mill. LiOH, an alkali, is added to neutralize nitric acid remaining after grinding. After neutralization, the pH is appropriate.

S9단계는 중화처리 후 고액 분리하여 고상의 이산화망간을 건조하여 분말인 완제품을 최종적으로 수득한다.In step S9, after neutralization, solid-liquid separation is performed to dry solid manganese dioxide to finally obtain a finished product as a powder.

제조된 이산화망간 내의 불순물을 ICP(Inductivity Coupled Plasma)로 측정하고, MnO2의 함유량은 KSM 1317 표준규격을 적용하여 측정하였다. 제조된 이산화망간 내의 불순물은 Fe 0ppm ~ 20ppm, Ca 70ppm, Mg 20ppm, Na 40ppm, K 40ppm이었으며, MnO2 함유량은 95% 이상으로서 고순도의 망간산화물을 획득할 수 있었다.Impurities in the prepared manganese dioxide were measured by ICP (Inductivity Coupled Plasma), and the content of MnO 2 was measured by applying the KSM 1317 standard. Impurities in the prepared manganese dioxide were Fe 0ppm ~ 20ppm, Ca 70ppm, Mg 20ppm, Na 40ppm, K 40ppm, MnO 2 content of more than 95% could obtain a high purity manganese oxide.

Claims (5)

전지용 이산화망간 제조방법에 있어서,
(1) 망간함유물질을 환원제와 혼합하여 분쇄하고 열처리하여 환원배소하는 공정
(2) 환원된 원료에 질산을 투입하여 침출시키는 공정
(3) 침출된 용액에 염기성 물질을 가하여 금속계 불순물을 침전시켜 고액 분리하는 공정
(4) 고액 분리된 질산망간 용액을 열분해하고 고액 분리하는 공정
(5) 열분해된 이산화망간을 수세하고 고액 분리하여 알칼리계 불순물을 제거하는 공정
(6) 수세된 이산화망간을 100nm ~ 1um의 입자크기로 습식 분쇄하는 공정을 포함하는 것을 특징으로 하는 고순도 나노입자 이산화망간 제조방법
In the manufacturing method of manganese dioxide for a battery,
(1) Process of grinding manganese-containing materials by mixing with a reducing agent and pulverizing them by heat treatment
(2) Leaching by adding nitric acid to the reduced raw material
(3) Process of solid-liquid separation by adding basic substance to leached solution to precipitate metallic impurities
(4) pyrolysis and solid-liquid separation of the solid-liquid manganese nitrate solution
(5) washing with pyrolyzed manganese dioxide and solid-liquid separation to remove alkali impurities
(6) Method for producing high purity nanoparticles manganese dioxide comprising the step of wet grinding the washed manganese dioxide to a particle size of 100nm ~ 1um
제1항에 있어서, 상기 (4)공정 또는 (5)공정에서 고액 분리된 질산망간 용액을 질산침출 공정에 재사용하는 것을 특징으로 하는 고순도 나노입자 이산화망간 제조방법The method for producing high purity nanoparticle manganese dioxide according to claim 1, wherein the manganese nitrate solution solid-liquid separated in step (4) or step (5) is reused in the nitrate leaching process. 제1항에 있어서, 상기 (3)공정에서 염기성 물질은 Ca(OH)2 분말인 것을 특징으로 하는 고순도 나노입자 이산화망간 제조방법The method of claim 1, wherein in the step (3), the basic material is Ca (OH) 2 powder. 제1항에 있어서, 상기 (1)공정에서 열처리 후에 질소가스 분위기에서 냉각하고, 상기 (2)공정에서 질소가스를 투입하면서 진행하여 원료의 재산화를 방지하는 것을 특징으로 하는 고순도 나노입자 이산화망간 제조방법The method of claim 1, wherein after the heat treatment in the step (1) is cooled in a nitrogen gas atmosphere, and in the step (2) proceeds with the introduction of nitrogen gas in the production of high purity nanoparticles manganese dioxide characterized in that the reoxidation of the raw material is prevented Way 제1항 내지 제4항 중 어느 한 항의 제조방법으로 제조된 조성물로서,
결정구조가 β-MnO2이고, 순도가 95%이며 입자크기가 100 ~ 500nm인 이산화망간 분말 조성물
A composition prepared by the method of any one of claims 1 to 4,
Manganese Dioxide Powder Composition with Crystal Structure of β-MnO 2 , Purity 95% and Particle Size 100 ~ 500nm
KR1020110037034A 2011-04-21 2011-04-21 Method of manufacturing high-purity and nano-sacle manganese dioxide KR101316620B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110037034A KR101316620B1 (en) 2011-04-21 2011-04-21 Method of manufacturing high-purity and nano-sacle manganese dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110037034A KR101316620B1 (en) 2011-04-21 2011-04-21 Method of manufacturing high-purity and nano-sacle manganese dioxide

Publications (2)

Publication Number Publication Date
KR20120119242A true KR20120119242A (en) 2012-10-31
KR101316620B1 KR101316620B1 (en) 2013-10-18

Family

ID=47286532

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110037034A KR101316620B1 (en) 2011-04-21 2011-04-21 Method of manufacturing high-purity and nano-sacle manganese dioxide

Country Status (1)

Country Link
KR (1) KR101316620B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480109B1 (en) * 2013-02-06 2015-01-07 한국세라믹기술원 Synthesis Method of Nano-Chemical Manganese Dioxide by Recycle Process for Cathode material used in Secondary Battery
KR101480110B1 (en) * 2013-02-06 2015-01-07 한국세라믹기술원 Synthesis Method of Nano-Chemical Manganese Dioxide(CMD) by Epitaxial Growth for Cathode Material used in Secondary Battery
CN116199263A (en) * 2021-12-01 2023-06-02 中国科学院福建物质结构研究所 Method for preparing functional adsorption material beta-MnO 2 from waste battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101644474B1 (en) 2014-10-23 2016-08-01 충북대학교 산학협력단 Manufacturing method of manganese dioxide catalyst with C2-C5 alcohol as reducing agent
KR102235364B1 (en) * 2020-10-19 2021-04-02 서경환 Process for Synthesizing of Manganese Sulfide using Electrolytic Manganese Flake and Elemental Sulfur Powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384653B1 (en) * 2000-06-16 2003-05-22 이계승 Preparation Method Of High Purity Manganese Oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480109B1 (en) * 2013-02-06 2015-01-07 한국세라믹기술원 Synthesis Method of Nano-Chemical Manganese Dioxide by Recycle Process for Cathode material used in Secondary Battery
KR101480110B1 (en) * 2013-02-06 2015-01-07 한국세라믹기술원 Synthesis Method of Nano-Chemical Manganese Dioxide(CMD) by Epitaxial Growth for Cathode Material used in Secondary Battery
CN116199263A (en) * 2021-12-01 2023-06-02 中国科学院福建物质结构研究所 Method for preparing functional adsorption material beta-MnO 2 from waste battery

Also Published As

Publication number Publication date
KR101316620B1 (en) 2013-10-18

Similar Documents

Publication Publication Date Title
KR101191154B1 (en) Method of recovery and synthesis of metaloxidic cathodic active material for lithium ionsecondary battery
KR101682217B1 (en) A Method Of Manufacturing A Lithium Carbonate With High Purity By Recycling A Lithium From A Anode Material Of Used Lithium Ion Secondary Battery
RU2530126C2 (en) Production of iron orthophosphate
CN112499609A (en) Method for preparing iron phosphate by using waste lithium iron phosphate anode powder lithium extraction slag and application
TW202007004A (en) Process for the recycling of spent lithium ion cells
JP2012064557A5 (en)
TW202107764A (en) Process for the recovery of lithium from waste lithium ion batteries
CN101508471B (en) Process for producing cobaltic-cobaltous oxide
KR101316620B1 (en) Method of manufacturing high-purity and nano-sacle manganese dioxide
TWI636014B (en) Lithium titanate, process for preparing the same, and electricity storage device using the same
CN114684801B (en) Method for preparing high-purity ferric phosphate by using pyrite cinder
CN109825714B (en) Method for synthesizing precursor raw material of lithium battery positive electrode material by using nickel protoxide reclaimed material
CN113184821B (en) Method for preparing ferric phosphate from iron-containing slag
CN115784188A (en) Method for recycling and preparing battery-grade iron phosphate
CN116371387A (en) Preparation method of cation doped modified lithium ion sieve
US20050142058A1 (en) Low temperature process for preparing tricobalt tetraoxide
CN115744851A (en) Method for recycling and preparing battery-grade iron phosphate
KR100384653B1 (en) Preparation Method Of High Purity Manganese Oxide
CN115626620B (en) Preparation method of manganese phosphate
KR101543922B1 (en) Method for preparing manganese oxide from manganese dust
TWI481104B (en) Novel method of preparing olivine-type electrode material using formic acid derivative
EP4253578A1 (en) Method of preparing high-purity lithium carbonate through reduction calcining of waste cathode material
RU2554652C2 (en) Method of producing lithium cobaltite
CN117303431B (en) Special copper oxide powder for photovoltaic and preparation process thereof
CN116409763A (en) Method for preparing high-purity ferric phosphate from wet-process crude phosphoric acid

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160906

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171103

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181115

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191002

Year of fee payment: 7