KR20120108500A - Manufacturing of solder powder with a diameter of several micrometer - Google Patents

Manufacturing of solder powder with a diameter of several micrometer Download PDF

Info

Publication number
KR20120108500A
KR20120108500A KR1020110026431A KR20110026431A KR20120108500A KR 20120108500 A KR20120108500 A KR 20120108500A KR 1020110026431 A KR1020110026431 A KR 1020110026431A KR 20110026431 A KR20110026431 A KR 20110026431A KR 20120108500 A KR20120108500 A KR 20120108500A
Authority
KR
South Korea
Prior art keywords
solder particles
diameter
solder
polymer resin
manufacturing
Prior art date
Application number
KR1020110026431A
Other languages
Korean (ko)
Inventor
엄용성
문종태
최광성
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR1020110026431A priority Critical patent/KR20120108500A/en
Priority to US13/364,347 priority patent/US20120240727A1/en
Publication of KR20120108500A publication Critical patent/KR20120108500A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Abstract

PURPOSE: A method for manufacturing solder particles with diameter of sub-micrometers or several micrometers is provided to obtain a small particle size without increase of an oxide film. CONSTITUTION: A method for manufacturing solder particles with diameter of sub-micrometers or several micrometers comprises the steps of: mixing solder particles(4) having a diameter of 10-1000um with single polymer resin, heating the mixture at a temperature higher than the melting point of the solder particles, applying ultrasonic waves to the mixed solution to reduce the diameter of the solder particles below 0.1-10 um, and cooling the solder particles at the room temperature without exposure to the atmosphere.

Description

서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자 제조방법 {MANUFACTURING OF SOLDER POWDER WITH A DIAMETER OF SEVERAL MICROMETER} METHOD FOR MANUFACTURING SOLDER PARTICLE OF SUB-MYRON OR MICRO-METER SIZE {MANUFACTURING OF SOLDER POWDER WITH A DIAMETER OF SEVERAL MICROMETER}

본 발명은 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자 제조방법에 관한 것이다.The present invention relates to a method for producing solder particles of submicrometer or micrometer diameter.

이동통신 기기의 소형화 추세에 따라, 칩 자체의 미세화 및 집적화에 대한 연구가 활발히 진행되고 있다. In accordance with the trend of miniaturization of mobile communication devices, studies on miniaturization and integration of chips themselves have been actively conducted.

칩을 집적화 하기 위해 미세 피치(Fine Pitch) 패턴화된 기판이 사용된다. 종래에는 미세 피치 패턴화된 기판 상의 금속 패드 위에 솔더 범프를 형성하기 위해서 포토 리소그라피를 사용하는 반도체 공정을 이용하거나 솔더 페이스트를 기판 상에 스크린 프린팅 한 후 리플로우 하는 공정을 사용하였다. 반도체 공정은 비용이 많이 드는 문제가 있고, 스크린 프린팅 공정은 약 150um 피치 이하로 솔더 범프를 형성하기 어려운 문제가 있다.Fine pitch patterned substrates are used to integrate the chip. Conventionally, a semiconductor process using photolithography is used to form solder bumps on a metal pad on a fine pitch patterned substrate, or a process of screen printing solder paste onto a substrate and then reflowing is used. The semiconductor process has a costly problem, and the screen printing process has a problem that it is difficult to form solder bumps at about 150um pitch or less.

일반적으로 기판 상의 금속 패드위에 솔더 범프가 형성되게 된다. 이때, 솔더 입자의 직경이 서브마이크로미터 또는 수마이크로미터이어야 한다. 범프가 형성되는 금속 패드가 수마이크로미터 크기이기 때문이다. 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자를 제조하기 위하여 초음파를 사용하는 방법은 알려져 있으나, 제조된 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자(표면적 증가, 도 1 참조)가 대기(공기) 중에 노출되어 표면의 산화막이 증가되는 문제가 있다. 산화막이 증가되면 솔더 접합성이 저하되는 문제가 있다.Typically, solder bumps are formed on the metal pads on the substrate. At this time, the diameter of the solder particles should be submicrometer or several micrometers. This is because the metal pads on which the bumps are formed are several micrometers in size. Ultrasonic methods are known for producing submicron or multi-micrometer diameter solder particles, but the manufactured submicron or multi-micrometer diameter solder particles (surface area increase, see FIG. 1) may be atmospheric (air). There is a problem in that the oxide film on the surface is increased by exposure. When the oxide film is increased, there is a problem in that solder bonding property is lowered.

본 발명의 목적은 상기 종래기술의 문제점을 해결하여 솔더 입자의 산화막을 증가시키지 않고 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자를 제공하는 것이다.It is an object of the present invention to solve the problems of the prior art to provide solder particles of submicrometer or micrometer diameter without increasing the oxide film of the solder particles.

본 발명은 직경 10 내지 1000 um의 솔더 입자와 일원계 고분자 수지를 혼합하여 혼합물을 제조하는 혼합공정, 혼합물의 솔더 입자의 용융점보다 높은 온도로 열을 가하는 용융공정, 혼합용액에 초음파를 가하여 솔더입자의 직경이 0.1 내지 10 um 미만이 되도록 하는 초음파공정, 직경 0.1 내지 10 um 미만 솔더 입자가 대기중에 노출되지 않고 상온으로 냉각하는 냉각공정을 포함하는 것을 특징으로 하는 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자 제조방법을 제공한다.The present invention is a mixing process for preparing a mixture by mixing the solder particles of 10 to 1000 um diameter and one-way polymer resin, a melting process for applying heat to a temperature higher than the melting point of the solder particles of the mixture, the solder particles by applying ultrasonic waves to the mixed solution Ultrasonic process to the diameter of less than 0.1 to 10 um, submicrometer or several micrometer diameter characterized in that it comprises a cooling process for cooling the solder particles less than 0.1 to 10 um in diameter at room temperature without exposure to the atmosphere Provided are methods for producing solder particles.

본 발명에 따른 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자 제조방법은 산화막을 증가 시키지 않고 솔더 입자의 크기를 작게 하고, 솔더 범프 형성시 플럭스 용매를 사용하지 않아 제조 비용을 감소시키는 효과가 있다.The method of manufacturing a solder particle having a submicrometer or several micrometer diameter according to the present invention has the effect of reducing the size of the solder particles without increasing the oxide film and reducing the manufacturing cost by not using a flux solvent when forming the solder bumps.

도 1은 단위 체적내의 솔더 입자의 직경 변화에 따른 솔더 입자의 표면적 변화 그래프이다.
도 2는 직경 10 내지 1000 um의 솔더 입자와 일원계 고분자 수지가 혼합되어 용기에 담겨있는 모습이다.
도 3은 초음파공정을 거친 직경 0.1 내지 10 um 미만의 솔더 입자가 액상의 일원계 고분자 수지와 혼합되어 용기에 담겨있는 모습이다.
1 is a graph of surface area change of solder particles according to a change in diameter of solder particles in a unit volume.
2 is a state in which a solder particle and a one-way polymer resin of 10 to 1000 um in diameter are mixed and contained in a container.
Figure 3 is a state in which solder particles having a diameter of less than 0.1 to 10 um through the ultrasonic process is mixed with a liquid one-way polymer resin contained in a container.

본 발명은 직경 10 내지 1000 um의 솔더 입자와 일원계 고분자 수지를 혼합하여 혼합물을 제조하는 혼합공정, 혼합물의 솔더 입자의 용융점보다 높은 온도로 열을 가하는 용융공정, 혼합용액에 초음파를 가하여 솔더입자의 직경이 0.1 내지 10 um 미만이 되도록 하는 초음파공정, 직경 0.1 내지 10 um 미만 솔더 입자가 대기중에 노출되지 않고 상온으로 냉각하는 냉각공정을 포함하는 것을 특징으로 하는 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자 제조방법에 대한 것이다.The present invention is a mixing process for preparing a mixture by mixing the solder particles of 10 to 1000 um diameter and one-way polymer resin, a melting process for applying heat to a temperature higher than the melting point of the solder particles of the mixture, the solder particles by applying ultrasonic waves to the mixed solution Ultrasonic process to the diameter of less than 0.1 to 10 um, submicrometer or several micrometer diameter characterized in that it comprises a cooling process for cooling the solder particles less than 0.1 to 10 um in diameter at room temperature without exposure to the atmosphere It is about a solder particle manufacturing method.

상기 일원계 고분자 수지는 온도의 변화에 따라 반응을 하지 않는 성질을 지니고 있다. 상온 내지 솔더 입자의 용융점 온도 근처(용융점 + 100oC)에서 반응을 하지 않는 것이 바람직하다. 일원계 고분자 수지의 예로는 에폭시 수지, 오일류 등이 있다. 구체적으로 살펴보면, 에폭시 수지의 예로는 DGEBA(Diglycidyl ether of bisphenol-A), TGDDM(Tetraglycidyl-4,4-diaminodiphenylmethane), TriGDDM(Diglycidyl ether of para-aminophenol), Isocyanate기를 포함한 수지, Bismaleimide 수지 등이 있으며, 오일류의 예로는 에폭시 변성 실리콘 오일, 아민변성 실리콘오일, 카복실 변성실리콘오일, 폴리올 수지 등이 있다. The one-way polymer resin has a property of not reacting with a change in temperature. It is preferable not to react at room temperature to near the melting point temperature of the solder particles (melting point + 100 ° C.). Examples of the monocyclic polymer resin include epoxy resins, oils, and the like. Specifically, examples of epoxy resins include DGEBA (Diglycidyl ether of bisphenol-A), TGDDM (Tetraglycidyl-4,4-diaminodiphenylmethane), TriGDDM (Diglycidyl ether of para-aminophenol), resins including Isocyanate groups, and Bismaleimide resins. Examples of oils include epoxy modified silicone oils, amine modified silicone oils, carboxyl modified silicone oils, and polyol resins.

솔더 산화막 제거를 위해 환원제를 첨가 할 수도 있다. 에폭시 수지는 오일류에 비해 환원제와 반응성이 좋아 솔더 산화막 제거에 유리하므로 일원계 고분자 소재로 더욱 바람직하다.A reducing agent may be added to remove the solder oxide. Epoxy resins are more preferred as monocyclic polymer materials because they are more reactive with reducing agents than oils and are advantageous for removing solder oxides.

상기 솔더 입자의 직경은 초음파공정 이전에 10 내지 1000um이다. 솔더 입자는 Sn, Bi, Ag, Cu, In, Pb 등의 합금이며, 60Sn/40Bi, 52In/48Sn, 97In/3Ag, 57Bi/42Sn/1Ag, 58Bi/42Sn, 52Bi/32Pb/16Sn, 96.5Sn/3Ag/0.5Cu 등을 예로 들 수 있다. 솔더 입자의 용융점은 80 내지 250 oC인 것이 바람직하다. 또한, 솔더 입자는 일원계 고분자 수지 100 부피에 대해 1 내지 60 부피비로 혼합하는 것이 바람직하다. 솔더 입자의 부피비가 1 미만이면 분산도에 문제가 생길 수 있고, 60 초과하면 점도가 지나치게 증가하여 균일한 크기의 솔더 입자 생성이 어려울 수 있다.
The diameter of the solder particles is 10 to 1000um before the ultrasonic process. Solder particles are alloys such as Sn, Bi, Ag, Cu, In, Pb, 60Sn / 40Bi, 52In / 48Sn, 97In / 3Ag, 57Bi / 42Sn / 1Ag, 58Bi / 42Sn, 52Bi / 32Pb / 16Sn, 96.5Sn / 3Ag / 0.5Cu etc. are mentioned. Melting point of solder particles is 80 to 250 o is preferably C. In addition, it is preferable that the solder particles are mixed at a volume ratio of 1 to 60 with respect to 100 volumes of the monocyclic polymer resin. If the volume ratio of the solder particles is less than 1, there may be a problem in dispersion degree, and if it exceeds 60, the viscosity may be excessively increased to make it difficult to generate solder particles of uniform size.

도면을 참조하여 본 발명의 하나의 실시예에 대해서 설명하고자 한다.
One embodiment of the present invention will be described with reference to the drawings.

1. 혼합공정1. Mixing process

도 2는 직경 10 내지 1000 um의 솔더 입자(1)와 일원계 고분자 수지(2)가 혼합되어 용기(3)에 담겨있는 모습이다. 고상의 솔더 입자(1)는 액상의 일원계 고분자 수지(2)에 함침 되고 대기(공기)와 격리되어 산화막의 증가는 발생하지 않는다. 용기(3)의 재질은 솔더 입자의 용융점 보다 높은 온도에서 분해, 부식 등이 되지 않고 견딜 수 있는 재료가 바람직하다. 또한 용기의 형상은 특별히 제한되지 않는다. 용기(3)는 프로펠러 형의 교반기 및 초음파 발생기를 추가적으로 구비할 수도 있다. 즉 프로펠러형의 교반기 및 초음파 발생기가 용기에 부착된 형태일 수 있다. 용기(3)에 열선이 구비되어서 외부 열원 없이 자체적으로 가열이 가능할 수도 있다. 또한 온도계가 용기(3) 내부에 내장된 형태일 수도 있다. 용기(3) 외부에 냉각매체를 흐르게 하는 장치를 구비할 수도 있다.2 is a view in which the solder particles 1 and the one-component polymer resin 2 having a diameter of 10 to 1000 um are mixed and contained in the container 3. The solid solder particles 1 are impregnated with the liquid monocyclic polymer resin 2 and are isolated from the atmosphere (air) so that an increase in the oxide film does not occur. As for the material of the container 3, the material which can endure without decomposition, corrosion, etc. at the temperature higher than the melting point of solder particle is preferable. In addition, the shape of the container is not particularly limited. The vessel 3 may further include a propeller type stirrer and an ultrasonic generator. That is, the propeller type agitator and the ultrasonic generator may be attached to the container. The vessel 3 may be provided with a heating wire so that it can be heated by itself without an external heat source. In addition, the thermometer may be a form embedded in the container (3). An apparatus for flowing a cooling medium to the outside of the container 3 may be provided.

2. 용융공정2. Melting Process

도면에는 도시 되지 않았지만, 솔더 입자의 용융점 보다 높은 온도로 열을 가하여 솔더 입자를 용융시킨다. 열을 가하는 방법은 특별히 제한되지 않는다. 핫플레이트 등의 외부 열원을 이용하여 용기(3)에 열을 가할 수 있다. 또한 용기(3) 내부에 구비된 열선 등의 열원을 이용하여 외부 열원 없이 자체적으로 열을 가할 수도 있다.Although not shown in the figure, the solder particles are melted by applying heat at a temperature higher than the melting point of the solder particles. The method of applying heat is not particularly limited. Heat may be applied to the vessel 3 using an external heat source such as a hot plate. In addition, by using a heat source such as a heating wire provided in the container 3, it is possible to apply heat itself without an external heat source.

3. 초음파공정3. Ultrasonic Process

도면에는 도시 되지 않았지만, 솔더 입자가 용융된 혼합용액에 초음파를 가하여 직경 0.1 내지 10 um 미만의 솔더 입자를 제조한다. 진동자 등의 외부 장치를 혼합용액에 담가 초음파를 가할 수 있다. 또한 용기(3) 내부에 구비된 장치(초음파 발생기)를 이용하여 초음파를 가할 수도 있다. 진동자 등의 초음파 발생기의 형상 및 재질은 특별히 제한되지 않는다. 초음파는 28khz 이상이 바람직하다.Although not shown in the drawings, ultrasonic wave is applied to the mixed solution in which the solder particles are melted to prepare solder particles having a diameter of 0.1 to less than 10 μm. An external device such as a vibrator may be immersed in the mixed solution to apply ultrasonic waves. In addition, ultrasonic waves may be applied using an apparatus (ultrasound generator) provided in the container 3. The shape and material of an ultrasonic generator such as a vibrator are not particularly limited. The ultrasonic wave is preferably 28 khz or more.

4. 냉각공정4. Cooling process

도 3은 초음파공정을 거친 직경 0.1 내지 10 um 미만의 솔더 입자가 액상의 일원계 고분자 수지와 혼합되어 용기에 담겨있는 모습이다. 용기(3)에 담겨진 상태에서 혼합 용액을 상온으로 냉각하는 것이 바람직하다. 솔더 입자가 냉각 공정 중에 대기(공기) 중에 노출되면 산화막이 증가할 수 있다. 용기(3)에 담겨진 상태에서 혼합 용액을 상온으로 냉각하는 방법은 특별히 제한되지 않는다. 용기(3) 외부에 냉각매체를 흐르게 하는 장치를 구비하여 냉각을 시킬 수 있으며, 공기중에서 방치하여 냉각 시킬 수도 있다.
Figure 3 is a state in which solder particles having a diameter of less than 0.1 to 10 um through the ultrasonic process is mixed with a liquid one-way polymer resin contained in a container. It is preferable to cool the mixed solution to room temperature in the state contained in the container 3. If the solder particles are exposed to the atmosphere (air) during the cooling process, the oxide film may increase. The method of cooling the mixed solution to room temperature in the state contained in the container 3 is not particularly limited. An apparatus for allowing a cooling medium to flow outside the vessel 3 may be cooled, and may be cooled by being left in the air.

상기 혼합공정, 용융공정, 초음파공정, 냉각공정을 거친 혼합물에서 일원계 고분자 수지를 제거하고, 건조하여 직경 0.1 내지 10 um 미만의 고상 솔더 입자를 얻을 수도 있다.One-way polymer resin may be removed from the mixture that has undergone the mixing process, melting process, ultrasonic process, and cooling process and dried to obtain solid solder particles having a diameter of less than 0.1 to 10 um.

필요에 따라 환원제, 경화제 및 촉매로 이루어진 군에서 1종이상의 화합물을 첨가 할 수 있다. 첨가 화합물을 첨가하는 시점은 특별히 제한되지 않는다. 환원제의 예로는 글루탐산, 말산, 아젤라인산, 아베이트산, 아디핀산, 아스코르빈산, 아크릴산, 시트르산 등이 있다. 경화제의 예로는 아민 계열(MPDA, DDM, DDS 등)과 무수물 계열(MNA, DDSA, MA, SA, MTHPA, HHPA, THPA, PMDA 등)이 있다. 촉매의 예로는 BDMA, BF3-MEA, DMP-30, DMBA, MI 등이 있다.
If necessary, one or more compounds may be added from the group consisting of a reducing agent, a curing agent, and a catalyst. The time point of adding the additive compound is not particularly limited. Examples of reducing agents include glutamic acid, malic acid, azelaic acid, abate acid, adipic acid, ascorbic acid, acrylic acid, citric acid and the like. Examples of curing agents include amine series (MPDA, DDM, DDS, etc.) and anhydride series (MNA, DDSA, MA, SA, MTHPA, HHPA, THPA, PMDA, etc.). Examples of catalysts include BDMA, BF3-MEA, DMP-30, DMBA, MI, and the like.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. This is for explaining the present invention more specifically, but the scope of the present invention is not limited to these Examples.

[실시예][Example]

1. 혼합공정1. Mixing process

직경 40~50um의 Sn/58Bi 솔더 입자 15g, DGEBA(YD-128, ㈜국도화학) 5 g 및 환원제인 말산 1g을 혼합하여 가온 및 초음파 진동이 가능한 원통형태의 금속 용기에 투입하였다.15 g of Sn / 58Bi solder particles having a diameter of 40 to 50 um, 5 g of DGEBA (YD-128, Kukdo Chemical Co., Ltd.), and 1 g of malic acid, a reducing agent, were mixed and introduced into a cylindrical metal container capable of heating and ultrasonic vibration.

2. 용융공정2. Melting Process

상기 혼합물이 담긴 용기를 핫플레이트 위에 올려 놓고 상온에서 180oC까지 100oC/min의 속도로 열을 가하였다. (Sn/58Bi 솔더 입자의 용융점 138oC)The vessel containing the mixture was placed on a hotplate and heated at a rate of 100 o C / min from room temperature to 180 o C. (Melting point 138 o C of Sn / 58Bi solder particles)

3. 초음파공정3. Ultrasonic Process

솔더 용융점 보다 높은 온도인 180oC에 도달한 후, 기둥모양의 진동자를 혼합 용액에 잠기게 하고, 일본 Nussei사의 US-50 초음파 발진기를 사용하여 약 28KHz의 발진주파수 초음파를 가하여 솔더 입자 직경이 0.1um ~ 10um 되도록 하였다. After reaching 180 o C, which is higher than the solder melting point, the column-shaped vibrator is immersed in the mixed solution, and the ultrasonic particle oscillation frequency of about 28KHz is applied using a US-50 ultrasonic oscillator manufactured by Nussei, Japan, so that the solder particle diameter is 0.1. um to 10um.

4. 냉각공정4. Cooling process

용기에 담겨진 상태에서 공기중에서 방치하여 상온까지 냉각하였다.
It left to stand in air in the container, and cooled to room temperature.

이상에서 본 발명은 몇몇 실시예에 대해서만 상세히 설명되었지만 본 발명의 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 명백한 것이며, 이러한 변형 및 수정된 사항은 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail with reference to only a few embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the present invention, and such changes and modifications are within the scope of the appended claims.

1: 직경 10 내지 1000 um의 솔더 입자
2: 일원계 고분자 수지
3: 용기
4: 직경 0.1 내지 10 um 미만의 솔더 입자
1: solder particles with a diameter of 10 to 1000 um
2: monocyclic polymer resin
3: container
4: solder particles less than 0.1 to 10 um in diameter

Claims (5)

직경 10 내지 1000 um의 솔더 입자와 일원계 고분자 수지를 혼합하여 혼합물을 제조하는 혼합공정, 혼합물의 솔더 입자의 용융점보다 높은 온도로 열을 가하는 용융공정, 혼합용액에 초음파를 가하여 솔더입자의 직경이 0.1 내지 10 um 미만이 되도록 하는 초음파 공정, 직경 0.1 내지 10 um 미만 솔더 입자가 대기중에 노출되지 않고 상온으로 냉각하는 냉각공정을 포함하는 것을 특징으로 하는 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자 제조방법.A mixing process of preparing a mixture by mixing solder particles having a diameter of 10 to 1000 um and a monocyclic polymer resin, a melting process of applying heat at a temperature higher than the melting point of the solder particles of the mixture, and applying a ultrasonic wave to the mixed solution to increase the diameter of the solder particles. Ultrasonic process to be less than 0.1 to 10 um, submicrometer or several micrometer diameter solder particles production, characterized in that it comprises a cooling process for cooling to room temperature without the solder particles less than 0.1 to 10 um in diameter Way. 제1항에 있어서, 상기 일원계 고분자 수지는 에폭시 수지계인 것을 특징으로 하는 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자 제조방법.The method of claim 1, wherein the monocyclic polymer resin is a submicrometer or several micrometer diameter solder particle manufacturing method characterized in that the epoxy resin. 제1항에 있어서, 상기 솔더 입자의 용융점은 80 내지 250oC인 것을 특징으로 하는 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자 제조방법.The method of claim 1, wherein the solder particles have a melting point of 80 to 250 ° C. 6. 제1항에 있어서, 일원계 고분자 수지를 제거하고 건조하는 단계를 추가적으로 포함하는 것을 특징으로 하는 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자 제조방법.The method of claim 1, further comprising the step of removing and drying the monocyclic polymer resin submicrometer or several micrometer diameter solder particle manufacturing method. 제1항에 있어서, 환원제, 경화제 및 촉매로 이루어진 군에서 1종이상의 화합물을 첨가하는 단계를 추가적으로 포함하는 것을 특징으로 하는 서브마이크로미터 또는 수마이크로미터 직경의 솔더 입자 제조방법.The method of claim 1, further comprising the step of adding at least one compound from the group consisting of a reducing agent, a curing agent and a catalyst.
KR1020110026431A 2011-03-24 2011-03-24 Manufacturing of solder powder with a diameter of several micrometer KR20120108500A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110026431A KR20120108500A (en) 2011-03-24 2011-03-24 Manufacturing of solder powder with a diameter of several micrometer
US13/364,347 US20120240727A1 (en) 2011-03-24 2012-02-02 Method of manufacturing solder powder having diameter of sub-micrometers or several micrometers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110026431A KR20120108500A (en) 2011-03-24 2011-03-24 Manufacturing of solder powder with a diameter of several micrometer

Publications (1)

Publication Number Publication Date
KR20120108500A true KR20120108500A (en) 2012-10-05

Family

ID=46876183

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110026431A KR20120108500A (en) 2011-03-24 2011-03-24 Manufacturing of solder powder with a diameter of several micrometer

Country Status (2)

Country Link
US (1) US20120240727A1 (en)
KR (1) KR20120108500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140367375A1 (en) * 2013-06-18 2014-12-18 Electronics And Telecommunications Research Institute Method of fabricating a solder particle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949007A (en) * 1995-08-07 1997-02-18 Harada:Kk Metal powder and its production
US6518514B2 (en) * 2000-08-21 2003-02-11 Matsushita Electric Industrial Co., Ltd. Circuit board and production of the same
US6271048B1 (en) * 2000-10-20 2001-08-07 Unisys Corporation Process for recycling a substrate from an integrated circuit package
JP2003166007A (en) * 2001-03-28 2003-06-13 Tamura Kaken Co Ltd Method for manufacturing metal fine-particle, substance containing metal fine-particle, and soldering paste composition
JP4762517B2 (en) * 2004-09-09 2011-08-31 株式会社オプトニクス精密 Method for producing toner for printer
US7459007B2 (en) * 2005-03-15 2008-12-02 Clarkson University Method for producing ultra-fine metal flakes
JP5005530B2 (en) * 2005-03-23 2012-08-22 パナソニック株式会社 Method for forming electric / electronic circuit and electric / electronic equipment using the same
JP5032005B2 (en) * 2005-07-05 2012-09-26 三井金属鉱業株式会社 High crystal silver powder and method for producing the high crystal silver powder
KR101234597B1 (en) * 2009-10-15 2013-02-22 한국전자통신연구원 method for bonding flip chip and structure at the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140367375A1 (en) * 2013-06-18 2014-12-18 Electronics And Telecommunications Research Institute Method of fabricating a solder particle

Also Published As

Publication number Publication date
US20120240727A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP4353380B2 (en) Paste-like silver particle composition, method for producing solid silver, solid silver, joining method, and method for producing printed wiring board
US10068863B2 (en) Formation of solder and copper interconnect structures and associated techniques and configurations
US7327039B2 (en) Nanoparticle filled underfill
KR101234597B1 (en) method for bonding flip chip and structure at the same
CN100472742C (en) Flip chip mounting body and method for mounting such flip chip mounting body and bump forming method
KR20130101986A (en) Low-temperature-sinterable bonding material, and bonding method using the bonding material
WO2006025387A1 (en) Bump forming method and solder bump
JPWO2006126614A1 (en) Pasty silver composition, its production method, solid silver production method, solid silver, adhesion method and circuit board production method
JP2017179403A (en) Coated silver particle and manufacturing method therefor, conductive composition and conductor
JP2016148104A (en) Paste-like metal particle composition, method for producing metallic member-joined body, and method for producing porous metal particle sintered substance
KR100765146B1 (en) Solder paste and method of forming solder bumps using the same
KR20100007690A (en) Composition, and methods of forming solder bump and flip chip using the same
KR20120108500A (en) Manufacturing of solder powder with a diameter of several micrometer
JP2013110403A (en) Reflow film, method for forming solder bump, method for forming solder join, and semiconductor device
JP2013110402A (en) Reflow film, method for forming solder bump, method for forming solder join, and semiconductor device
JP2010239031A (en) Liquid resin composition for underfill, flip-chip package, and method of manufacturing the same
US20140367375A1 (en) Method of fabricating a solder particle
CN107304282B (en) Compositions of thermosetting resin and substrate equipped with electronic component
WO2020004342A1 (en) Silver paste and joined body production method
JP2003109429A (en) Conductive paste and circuit connecting method
JP2020175415A (en) Metallic composition, adhesive, sintered body, joint structure, joint body and method for manufacture thereof, and support member with sintered body and method for manufacture thereof
JP2015224263A (en) Adhesive composition, semiconductor device using the same and production method of semiconductor device
JP2017145290A (en) Adhesive composition, adhesive sheet formed from the same, cured product thereof, and semiconductor device
JP2007150355A (en) Method of manufacturing substrate with bump
JP2008010821A (en) Method of hardening resin film for die bonding, and method of die bonding