KR20120090218A - Double pipe heat exchanger - Google Patents

Double pipe heat exchanger Download PDF

Info

Publication number
KR20120090218A
KR20120090218A KR1020110010522A KR20110010522A KR20120090218A KR 20120090218 A KR20120090218 A KR 20120090218A KR 1020110010522 A KR1020110010522 A KR 1020110010522A KR 20110010522 A KR20110010522 A KR 20110010522A KR 20120090218 A KR20120090218 A KR 20120090218A
Authority
KR
South Korea
Prior art keywords
inner tube
heat exchanger
tube
bending
section
Prior art date
Application number
KR1020110010522A
Other languages
Korean (ko)
Other versions
KR101326759B1 (en
Inventor
백영기
조중원
Original Assignee
한라공조주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한라공조주식회사 filed Critical 한라공조주식회사
Priority to KR1020110010522A priority Critical patent/KR101326759B1/en
Publication of KR20120090218A publication Critical patent/KR20120090218A/en
Application granted granted Critical
Publication of KR101326759B1 publication Critical patent/KR101326759B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: A double pipe heat exchanger is provided to fundamentally prevent an outer path of a bending unit from being blocked due to the deformation of an inner pipe because the deformation of the inner pipe is minimized in a bending process. CONSTITUTION: A double pipe heat exchanger comprises an inner pipe(10) and an outer pipe(20). A spiral groove(14) is formed on the outer surface of the inner pipe in a longitudinal direction to form an outer path(30) in a spiral shape. The pitches of the spiral groove are differently formed along the longitudinal direction of the inner pipe. The outer pipe and the inner pipe have a linear portion and a bent portion(40).

Description

이중관식 열교환기{DOUBLE PIPE HEAT EXCHANGER}Double Tube Heat Exchanger {DOUBLE PIPE HEAT EXCHANGER}

본 발명은 이중관식 열교환기에 관한 것으로서, 보다 상세하게는, 벤딩 과정 시에 내부관의 변형을 최소화시킬 수 있도록 구성함으로써, 내부관의 변형으로 인한 벤딩부의 외부유로 막힘현상을 방지할 수 있는 이중관식 열교환기에 관한 것이다.The present invention relates to a double tube heat exchanger, and more particularly, by configuring to minimize the deformation of the inner tube during the bending process, the double tube type to prevent the clogging phenomenon of the external flow path due to the deformation of the inner tube. Relates to a heat exchanger.

공조장치는, 다수의 열교환기를 구비하고 있으며, 그 일례로서, 이중관식 열교환기가 있다. The air conditioner includes a plurality of heat exchangers, and as an example thereof, a double tube heat exchanger.

이중관식 열교환기는, 도 1에 도시된 바와 같이, 내부관(10)과 외부관(20)을 구비한다. As shown in FIG. 1, the double tube heat exchanger includes an inner tube 10 and an outer tube 20.

내부관(10)은, 내측의 내부유로(12)를 갖추고 있으며, 이 내부유로(12)에는 제 1유체가 도입되어 흐른다. The inner tube 10 includes an inner inner passage 12, and a first fluid flows into the inner passage 12.

외부관(20)은, 내부관(10)의 외면 둘레에 설치된다. 특히, 내부관(10)과의 사이에 외부유로(30)가 형성되도록 설치되며, 이렇게 형성된 외부유로(30)에는 제 2유체가 도입되어 흐른다. The outer tube 20 is provided around the outer surface of the inner tube 10. In particular, the outer channel 30 is installed between the inner tube 10 and the second channel is introduced into the outer channel 30.

외부유로(30)로 도입된 제 2유체는, 내부유로(12)를 따라 흐르는 제 1유체와 서로 다른 온도를 갖는다. 따라서, 제 1유체와의 접촉할 시에 상기 제 1유체와 상호 열교환작용이 일어난다.The second fluid introduced into the external flow path 30 has a temperature different from that of the first fluid flowing along the internal flow path 12. Therefore, mutual contact with the first fluid occurs upon contact with the first fluid.

한편, 내부관(10)의 외주면에는 나선홈(14)이 형성되어 있다. 나선홈(14)은 내부관(10)의 표면적을 넓히고, 제 2유체의 흐름 시간을 연장시킨다. 따라서, 외부유로(30)를 따라 유동하는 제 2유체와 내부유로(12)를 따라 유동하는 제 1유체 간의 열교환효율을 높인다.On the other hand, the spiral groove 14 is formed on the outer peripheral surface of the inner tube (10). The spiral groove 14 widens the surface area of the inner tube 10 and extends the flow time of the second fluid. Therefore, the heat exchange efficiency between the second fluid flowing along the outer passage 30 and the first fluid flowing along the inner passage 12 is increased.

이러한 나선홈(14)은, 내부관(10)의 외주면을 전조롤러(도시하지 않음)로 가압하여 나선 형태의 홈을 각인(刻印)함에 따라 형성되는 것이 보통이다.Such spiral grooves 14 are usually formed by pressing the outer circumferential surface of the inner tube 10 with a rolling roller (not shown) to stamp the grooves of the spiral shape.

그런데, 이러한 종래의 이중관식 열교환기는, 도 2에 도시된 바와 같이, 특정부분을 벤딩하는 과정에서, 특정부분의 외부유로(30)가 변형되어 막힐 우려가 있다는 단점이 있으며, 이러한 단점 때문에 제 2유체의 흐름이 원활하지 못하다는 문제점이 지적되고 있다.However, such a conventional double tube heat exchanger, as shown in Figure 2, in the process of bending a specific portion, there is a risk that the external flow path 30 of the specific portion is deformed and clogged, and because of this disadvantage second It is pointed out that the fluid flow is not smooth.

즉, 이중관식 열교환기는, 설치되는 곳에 따라 벤딩이 필요한 경우가 있으며, 이러한 경우, 벤딩이 필요한 특정부분을 벤딩 가공한다. 그런데, 특정부분을 벤딩 가공하는 과정에서 특정부분(이하, "벤딩부(40)"라 칭함)의 안쪽부분에는 압축력이 작용하고 바깥쪽부분에는 인장력이 작용하며, 이러한 압축력과 인장력 때문에 내부관(10)과 외부관(20)이 변형되면서 외부유로(30)를 막히게 한다는 단점이 있다.That is, the double tube heat exchanger may be required to be bent depending on where it is installed, and in this case, a specific portion requiring bending is bent. However, in the process of bending a specific portion, a compression force acts on the inner portion of the specific portion (hereinafter referred to as "bending portion 40") and a tension force acts on the outer portion, and because of the compression force and the tensile force, the inner tube ( 10) and the outer tube 20 is deformed to block the outer passage 30.

특히, 내부관(10)의 경우에는, 외측면의 나선홈(14)이 바깥쪽부분에 작용하는 인장력 때문에 곧게 펴지면서 도 3에 도시된 바와 같이, 외부관(20)의 내주면에 밀착된다는 단점이 있으며, 이러한 단점 때문에 외부관(20)과의 사이에 존재하는 외부유로(30)가 막혀져 없어진다는 문제점이 있다.In particular, in the case of the inner tube 10, the spiral groove 14 of the outer surface is straightened due to the tension force acting on the outer portion, as shown in Figure 3, the close contact with the inner peripheral surface of the outer tube 20, the disadvantages There is a problem that the external flow path 30 existing between the external pipe 20 is blocked because of this disadvantage.

그리고 이러한 문제점 때문에 제 2유체의 흐름이 원활하지 못하다는 단점이 있으며, 이러한 단점 때문에 제 2유체와 제 1유체와의 열교환효율이 떨어지고, 공조장치가 손상되는 결점이 지적되고 있다.And there is a disadvantage that the flow of the second fluid is not smooth due to this problem, the drawback of the heat exchange efficiency between the second fluid and the first fluid is lowered, and the air conditioning apparatus is damaged due to this disadvantage.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출된 것으로서, 그 목적은, 벤딩 과정 시에 내부관의 변형을 최소화시킬 수 있도록 구성함으로써, 내부관의 변형으로 인한 벤딩부의 외부유로 막힘현상을 원천적으로 방지할 수 있는 이중관식 열교환기를 제공하는 데 있다.The present invention has been made to solve the conventional problems as described above, the object of the configuration is to minimize the deformation of the inner tube during the bending process, by blocking the external flow of the bending portion due to the deformation of the inner tube It is to provide a double tube heat exchanger that can be prevented at the source.

본 발명의 다른 목적은, 벤딩부의 외부유로 막힘현상을 방지할 수 있도록 구성함으로써, 제 2유체의 흐름을 원활하게 유지시킬 수 있는 이중관식 열교환기를 제공하는 데 있다.Another object of the present invention is to provide a double-tube heat exchanger that can be configured to prevent the clogging phenomenon of the external flow of the bending portion, to smoothly maintain the flow of the second fluid.

본 발명의 또 다른 목적은, 제 2유체의 흐름을 원활하게 유지시킬 수 있도록 구성함으로써, 제 1유체와 제 2유체간의 열효환효율을 증진시킬 수 있고, 공조장치의 손상을 방지할 수 있는 이중관식 열교환기를 제공하는 데 있다.Still another object of the present invention is to provide a structure capable of smoothly maintaining the flow of the second fluid, thereby improving thermal efficiency between the first fluid and the second fluid, and preventing damage to the air conditioning apparatus. To provide a tubular heat exchanger.

이러한 목적을 달성하기 위하여, 본 발명의 이중관식 열교환기는, 내부유로가 형성된 내부관과, 상기 내부관이 내부에 삽입 장착되어 상기 내부관과의 사이에 외부유로가 형성된 외부관을 포함하는 이중관식 열교환기에 있어서, 상기 내부관의 외면에 길이방향을 따라 나선홈을 형성하여 상기 외부유로를 나선형상으로 형성하고, 상기 나선홈은, 상기 내부관의 길이방향을 따라 각기 다른 피치(Pitch)를 갖는 것을 특징으로 한다.In order to achieve this object, the double tube heat exchanger of the present invention, the inner tube is formed of an inner tube, and the inner tube is a double tube type including an outer tube is inserted into the inner tube and the outer channel is formed between the inner tube. In the heat exchanger, a spiral groove is formed on the outer surface of the inner tube along a longitudinal direction to form the outer flow path in a spiral shape, and the spiral groove has a different pitch along the longitudinal direction of the inner tube. It is characterized by.

바람직하게는, 벤딩부를 더 포함하며, 상기 벤딩부에 대응되는 상기 내부관의 벤딩부 구간이, 직선부 구간에 비해 나선홈의 피치가 조밀하게 구성되는 것을 특징으로 한다.Preferably, the apparatus further includes a bending part, wherein the bending part section of the inner tube corresponding to the bending part has a more dense pitch of the spiral groove than the straight section section.

본 발명에 따른 이중관식 열교환기에 의하면, 벤딩부에 대응되는 내부관의 나선홈 피치를 다른 부분에 비해 조밀하게 형성하는 구조이므로, 벤딩 시에 벤딩부에 대응되는 내부관의 변형을 최소화시킬 수 있는 효과가 있다.According to the double tube heat exchanger according to the present invention, since the structure of the spiral groove pitch of the inner tube corresponding to the bending portion is formed more densely than other portions, the deformation of the inner tube corresponding to the bending portion can be minimized during bending. It works.

또한, 벤딩 시에 내부관의 변형을 최소화시키는 구조이므로, 벤딩 후에 내부관의 벤딩부에 형성된 나선홈이 본래의 형태를 일정하게 유지할 수 있는 효과가 있다.In addition, since the structure minimizes deformation of the inner tube during bending, there is an effect that the spiral groove formed in the bending portion of the inner tube after the bending can maintain its original shape.

또한, 내부관의 벤딩부에 형성된 나선홈이 일정한 형태를 유지할 수 있는 구조이므로, 종래와 같이 벤딩 가공시에 나선홈의 변형으로 인한 외부유로 막힘현상을 원천적으로 방지할 수 있는 효과가 있다. In addition, since the spiral groove formed in the bending portion of the inner tube can maintain a constant shape, there is an effect that can prevent the clogging phenomenon of the external flow path due to the deformation of the spiral groove during the bending process as in the prior art.

또한, 나선홈의 변형으로 인한 외부유로 막힘현상을 원천적으로 방지할 수 있으므로, 제 2유체의 흐름을 원활하게 유지시킬 수 있다. 따라서, 제 1유체와 제 2유체간의 열효환효율을 증진시킬 수 있는 효과가 있다.In addition, since it is possible to prevent clogging of the external flow path due to deformation of the spiral groove, it is possible to smoothly maintain the flow of the second fluid. Therefore, there is an effect that can improve the heat conversion efficiency between the first fluid and the second fluid.

또한, 벤딩부에 대응되는 내부관의 나선홈 피치를 다른 부분에 비해 조밀하게 형성하는 구조이므로, 내부관의 벤딩 가공 시에, 적은 힘으로도 내부관을 벤딩할 수 있다. 따라서, 내부관의 벤딩작업이 매우 쉽고 편리하여 내부관의 제조성과 생산성이 향상되는 효과가 있다.Further, since the spiral groove pitch of the inner tube corresponding to the bending part is formed more densely than other portions, the inner tube can be bent with a small force during the bending process of the inner tube. Therefore, the bending operation of the inner tube is very easy and convenient, there is an effect that the productivity and productivity of the inner tube is improved.

도 1은 종래의 이중관식 열교환기를 나타내는 단면도,
도 2는 벤딩부를 갖는 종래의 이중관식 열교환기를 나타내는 단면도,
도 3은 종래의 이중관식 열교환기의 벤딩부를 나타내는 도 2의 Ⅲ-Ⅲ선 단면도,
도 4는 본 발명에 따른 이중관식 열교환기를 나타내는 단면도,
도 5는 본 발명의 이중관식 열교환기를 구성하는 내부관을 나타내는 측면도,
도 6은 본 발명에 따른 이중관식 열교환기가 벤딩되었을 경우를 나타내는 단면도이다.
도 7은 본 발명에 따른 이중관식 열교환기의 내부관에 나선홈을 가공하는 롤링가공장치를 나타내는 사시도,
도 8은 본 발명에 따른 이중관식 열교환기의 내부관에 나선홈을 가공하는 롤링가공장치를 나타내는 평면도이다.
1 is a cross-sectional view showing a conventional double tube heat exchanger,
2 is a cross-sectional view showing a conventional double tube heat exchanger having a bent portion;
3 is a cross-sectional view taken along line III-III of FIG. 2 showing a bending part of a conventional double tube heat exchanger;
4 is a cross-sectional view showing a double tube heat exchanger according to the present invention;
5 is a side view showing an inner tube constituting the double tube heat exchanger of the present invention;
6 is a cross-sectional view illustrating a case where the double tube heat exchanger according to the present invention is bent.
7 is a perspective view showing a rolling mill factory processing a spiral groove in the inner tube of the double-tube heat exchanger according to the present invention;
8 is a plan view showing a rolling mill factory processing a spiral groove in the inner tube of the double-tube heat exchanger according to the present invention.

이하, 본 발명에 따른 이중관식 열교환기의 바람직한 실시예를 첨부한 도면에 의거하여 상세히 설명한다(종래와 동일한 구성요소는 동일한 부호를 사용하여 설명한다).DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of a double tube heat exchanger according to the present invention will be described in detail with reference to the accompanying drawings (the same components will be described with the same reference numerals).

먼저, 본 발명에 따른 이중관식 열교환기의 특징부를 살펴보기에 앞서, 도 4와 도 6을 참조하여 이중관식 열교환기에 대해 간략하게 살펴본다.First, before looking at the features of the double tube heat exchanger according to the present invention, a brief look at the double tube heat exchanger with reference to FIGS.

도 4를 참조하면, 이중관식 열교환기는, 내부관(10)과 외부관(20)을 구비한다.Referring to FIG. 4, the double tube heat exchanger includes an inner tube 10 and an outer tube 20.

내부관(10)은, 내부유로(12)를 갖추고 있으며, 이 내부유로(12)에는 제 1유체가 도입되어 흐른다. The inner tube 10 includes an inner passage 12, in which a first fluid flows into the inner passage 12.

그리고 내부관(10)의 외주면에는 나선홈(14)이 형성되어 있다. 나선홈(14)은 내부관(10)의 외주면을 따라 나선형으로 형성된다. 이러한 나선홈(14)은, 내부관(10)의 외주면을 전조롤러(도시하지 않음)로 가압하여 나선 형태의 홈을 각인함에 따라 형성된다.The spiral groove 14 is formed on the outer circumferential surface of the inner tube 10. The spiral groove 14 is formed spirally along the outer circumferential surface of the inner tube 10. The spiral groove 14 is formed by pressing the outer circumferential surface of the inner tube 10 with a rolling roller (not shown) to stamp the groove of the spiral shape.

외부관(20)은, 내부관(10)의 외면 둘레에 조립되며, 내부관(10)의 외주면과 협동하여 외부유로(30)를 형성한다. 특히, 내부관(10)의 나선홈(14)과 협동하여 나선형 외부유로(30)를 형성한다.The outer tube 20 is assembled around the outer surface of the inner tube 10, and cooperates with the outer circumferential surface of the inner tube 10 to form the outer passage 30. In particular, in cooperation with the spiral groove 14 of the inner tube 10 to form a spiral outer flow path (30).

이렇게 형성된 나선형 외부유로(30)에는, 제 2유체가 도입되어 흐르는데, 이때, 나선형 외부유로(30)로 도입된 제 2유체는, 내부유로(12)를 따라 흐르는 제 1유체와 서로 다른 온도를 갖는다. 따라서, 제 1유체와의 접촉할 경우에 상기 제 1유체와 상호 열교환작용이 일어난다.A second fluid is introduced into and flows into the spiral outer flow path 30 formed as described above. At this time, the second fluid introduced into the spiral outer flow path 30 has a temperature different from that of the first fluid flowing along the inner flow path 12. Have Therefore, mutual contact with the first fluid occurs when it comes into contact with the first fluid.

한편, 이중관식 열교환기는, 도 6에 도시된 바와 같이, 벤딩부(40)를 구비하기도 한다. 이러한 벤딩부(40)는, 서로 조립된 내부관(10)과 외부관(20)을 벤딩 가공함에 따라 형성된다. On the other hand, the double tube heat exchanger, as shown in Figure 6, may be provided with a bending portion (40). The bending part 40 is formed by bending the inner tube 10 and the outer tube 20 assembled together.

다음으로, 본 발명에 따른 이중관식 열교환기의 특징부를 도 4 내지 도 6을 참조하여 상세하게 설명한다. Next, the features of the double tube heat exchanger according to the invention will be described in detail with reference to FIGS. 4 to 6.

먼저, 도 4와 도 5를 참조하면, 본 발명의 이중관식 열교환기는, 내부관(10)의 구비하되, 상기 내부관(10)의 나선홈(14)은, 그 피치(Pitch)(P)가 부분별로 각기 다르도록 구성된다.First, referring to FIGS. 4 and 5, the double tube heat exchanger of the present invention includes an inner tube 10, and the spiral groove 14 of the inner tube 10 has a pitch P of the inner tube 10. Are configured to be different for each part.

특히, 내부관(10)의 특정구간 중에, 벤딩이 요구되는 벤딩부 구간(ℓ)의 나선홈(14) 피치(P1)와, 직선부 구간(L)의 나선홈(14) 피치(P2)가 서로 다르도록 구성된다.In particular, the pitch P1 of the spiral grooves 14 of the bending section (L) and the pitch of the spiral grooves 14 of the straight section (L) of the bending section section ℓ where bending is required during the specific section of the inner tube 10. Are configured to be different from each other.

더욱 상세하게는, 벤딩이 요구되는 벤딩부 구간(ℓ)의 나선홈(14) 피치(P1)가, 직선부 구간(L)의 나선홈(14) 피치(P2)에 비해 상대적으로 작도록 구성된다. 따라서, 벤딩부 구간(ℓ)의 단위 길이당 나선홈(14) 개수가 상기 직선부 구간(L)의 단위 길이당 나선홈(14) 개수보다 많도록 구성한다.More specifically, the pitch P1 of the spiral groove 14 in the bending section (ℓ) requiring bending is configured to be relatively smaller than the pitch P2 of the spiral groove 14 in the straight section (L). do. Therefore, the number of the spiral grooves 14 per unit length of the bending section (L) is configured to be larger than the number of the spiral grooves 14 per unit length of the straight section (L).

이렇게 구성한 이유는, 벤딩부 구간(ℓ)의 나선홈(14) 피치(P1)를 작게 구성함으로써, 벤딩부 구간(ℓ)의 나선홈(14) 사이에 형성된 돌출부(16) 폭(W2)을, 직선부 구간(L)의 나선홈(14) 사이에 형성된 돌출부(16) 폭(W1)보다 작게 형성하기 위함이고, 이는, 벤딩부 구간(ℓ)의 돌출부(16)를 조밀하게 형성하기 위함이며, 이로써, 벤딩부 구간(ℓ)을 벤딩할 시에, 벤딩부 구간(ℓ)에 안쪽부분과 바깥쪽부분에 작용하는 압축력과 인장력에 효율좋게 대응할 수 있게 하기 위함이다.The reason for this configuration is to make the pitch P1 of the spiral groove 14 in the bending section l smaller so that the width W2 of the protrusion 16 formed between the spiral grooves 14 in the bending section l is smaller. In order to form smaller than the width (W1) of the protrusions 16 formed between the spiral grooves 14 of the straight portion section (L), this is to form densely formed protrusions 16 of the bending section (L) Thus, when bending the bending section (l), it is to be able to efficiently respond to the compressive force and the tensile force acting on the inner portion and the outer portion in the bending section (l).

특히, 도 6에 도시된 바와 같이, 벤딩부 구간(ℓ)을 벤딩할 시에, 벤딩부 구간(ℓ)의 돌출부(16)가 외부관(20)의 내측면에 의해 평평하게 변형되는 것을 방지한다. 따라서, 내부관(10)이 벤딩되더라도 벤딩부(40)의 외측면에 형성된 나선홈(14)이 본래의 형태를 일정하게 유지할 수 있게 한다. In particular, as shown in FIG. 6, when bending the bending section (l), the protrusion 16 of the bending section (l) is prevented from being flatly deformed by the inner surface of the outer tube 20. do. Therefore, even when the inner tube 10 is bent, the spiral groove 14 formed on the outer surface of the bending part 40 can maintain its original shape.

이로써, 내부관(10)이 벤딩되더라도 벤딩부(40)의 외부유로(30)가 나선 형상을 유지할 수 있게 한다. 그 결과, 종래의 기술과 같이, 벤딩 가공시에 나선홈(14)의 변형으로 인해 발생하는 벤딩부(40)의 외부유로(30) 막힘현상을 원천적으로 방지할 수 있다. As a result, even when the inner tube 10 is bent, the outer channel 30 of the bending part 40 may maintain the spiral shape. As a result, as in the prior art, clogging of the external flow path 30 of the bending part 40 generated due to the deformation of the spiral groove 14 at the time of bending can be fundamentally prevented.

따라서, 벤딩부(40)에 대한 제 2유체의 흐름을 원활하게 유지시킬 수 있다. 이로써, 제 1유체와 제 2유체간의 열효환효율을 증진시킬 수 있고, 공조장치의 손상을 방지할 수 있게 된다.Therefore, it is possible to smoothly maintain the flow of the second fluid with respect to the bending part 40. As a result, it is possible to improve the heat conversion efficiency between the first fluid and the second fluid, and to prevent damage to the air conditioning apparatus.

이 밖에도, 벤딩부 구간(ℓ)의 나선홈(14) 피치(P1)가 작게 구성되면, 내부관(10)을 벤딩 가공할 시에, 적은 힘으로도 내부관(10)을 벤딩할 수 있다. 따라서, 내부관(10)의 벤딩작업이 매우 쉽고 편리하다. 이로써, 내부관(10)의 제조성이 향상되고, 내부관(10)의 생산성이 좋아진다.In addition, when the pitch P1 of the spiral groove 14 in the bending section section l is made small, when the inner tube 10 is bent, the inner tube 10 can be bent with a small force. . Therefore, the bending work of the inner tube 10 is very easy and convenient. As a result, the manufacturability of the inner tube 10 is improved, and the productivity of the inner tube 10 is improved.

한편, 내부관(10)의 나선홈(14)은, 도 7과 도 8에 도시된 바와 같이, 롤링가공장치(50)의 전조롤러(52) 각인에 의해 형성되므로, 내부관(10)에 대한 전조롤러(52)의 전조각도 또는 내부관(10)에 대한 전조롤러(52)의 회전속도를 조절하면 나선홈(14)의 피치(P1. P2)를 다양하게 조절할 수 있다.On the other hand, the spiral groove 14 of the inner tube 10 is formed by the stamping roller 52 of the rolling processing device 50, as shown in Figs. 7 and 8, so as to the inner tube 10 By adjusting the rolling angle of the rolling roller 52 or the rotational speed of the rolling roller 52 with respect to the inner tube 10, the pitch P1. P2 of the spiral groove 14 can be adjusted in various ways.

참고로, 롤링가공장치(50)는, 다수의 전조롤러(52)를 구비하는 것으로, 상기 전조롤러(52)들이 내부관(10)의 둘레를 따라 원주방향으로 회전운동하면서 내부관(10)의 외주면을 가압한다. 따라서, 전조롤러(52)에 대응되는 나선홈(14)을 내부관(10)의 외주면에 각인시킨다. For reference, the rolling processing apparatus 50 includes a plurality of rolling rollers 52, and the rolling rollers 52 rotate in the circumferential direction along the circumference of the inner tube 10 and the inner tube 10 To press the outer circumferential surface. Therefore, the spiral groove 14 corresponding to the rolling roller 52 is stamped on the outer peripheral surface of the inner tube 10.

한편, 도 6을 참조하면, 내부관(10)과 외부관(20)을 벤딩 가공할 시에, 내부관(10)의 벤딩부 구간(ℓ2)은, 외부관(20)의 벤딩부 구간(ℓ1)의 길이보다 작게 형성되는 것이 좋다.Meanwhile, referring to FIG. 6, when bending the inner tube 10 and the outer tube 20, the bent portion section l2 of the inner tube 10 is a bending portion section of the outer tube 20 ( It is better to form smaller than the length of l1).

더욱 바람직하게는, 내부관(10)의 벤딩부 구간(ℓ2)의 길이가, 외부관(20)의 벤딩부 구간(ℓ1)의 길이보다는 작고, 외부관(20)의 벤딩부 구간(ℓ1)의 절반길이보다는 크도록 형성되는 것이 좋다.{(0.5×ℓ1) < ℓ2 < ℓ1}.More preferably, the length of the bend section l2 of the inner tube 10 is smaller than the length of the bend section l1 of the outer tube 20 and the bend section l1 of the outer tube 20. It is preferable to be formed to be larger than half the length of {(0.5 x l1) <l2 <l1}.

이렇게 구성한 이유는, 내부관(10)의 벤딩부 구간(ℓ2) 길이가, 외부관(20)의 벤딩부 구간(ℓ1)보다는 작고, 외부관(20)의 벤딩부 구간(ℓ1)의 절반보다는 크게 형성될 경우에, 내부관(10)의 벤딩부 구간(ℓ2)이 변형되지 않고 본래의 형태를 일정하게 유지되면서 효율좋게 벤딩될 수 있기 때문이다.The reason for this configuration is that the length of the bend section l2 of the inner tube 10 is smaller than the length of the bend section l1 of the outer tube 20 and less than half of the bend section l1 of the outer tube 20. This is because, when largely formed, the bending part section l2 of the inner tube 10 can be bent efficiently while maintaining the original shape without being deformed.

이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니며, 특허청구범위에 기재된 범주내에서 적절하게 변경 가능한 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention.

10: 내부관 12: 내부유로
14: 나선홈 16: 돌출부
20: 외부관 30: 외부유로
40: 벤딩부
P1: 벤딩부 구간의 나선홈 피치(Pitch)
P2: 직선부 구간의 나선홈 피치(Pitch)
ℓ: 벤딩부 구간 L: 직선부 구간
ℓ1: 외부관의 벤딩부 구간 ℓ2: 내부관의 벤딩부 구간
W1: 직선부 구간의 돌출부 폭 W2: 벤딩부 구간의 돌출부 폭
10: inner tube 12: inner channel
14: spiral groove 16: protrusion
20: outer tube 30: outer channel
40: bending part
P1: Spiral groove pitch of the bending section
P2: Spiral groove pitch of straight section
ℓ: bending section L: straight section
l1: bending section section of the outer tube l2: bending section section of the inner tube
W1: protrusion width of the straight section W2: protrusion width of the bending section

Claims (5)

내부유로(12)가 형성된 내부관(10)과, 상기 내부관(10)이 내부에 삽입 장착되어 상기 내부관(10)과의 사이에 외부유로(30)가 형성된 외부관(20)을 포함하는 이중관식 열교환기에 있어서,
상기 내부관(10)의 외면에 길이방향을 따라 나선홈(14)을 형성하여 상기 외부유로(30)를 나선형상으로 형성하고,
상기 나선홈(14)은, 상기 내부관(10)의 길이방향을 따라 각기 다른 피치(Pitch)(P1, P2)를 갖는 것을 특징으로 하는 이중관식 열교환기.
An inner tube 10 having an inner passage 12 and an outer tube 20 having an inner passage 10 inserted therein and having an outer passage 30 formed therebetween. In the double tube heat exchanger,
Spiral grooves 14 are formed on the outer surface of the inner tube 10 along the longitudinal direction to form the outer passage 30 in a spiral shape,
The spiral groove (14) is a double tube heat exchanger, characterized in that it has a different pitch (P1, P2) along the longitudinal direction of the inner tube (10).
제 1항에 있어서,
상기 외부관(20) 및 내부관(10)은, 직선부(L)와 벤딩부(40)를 구비하고,
상기 벤딩부(40)에 대응되는 상기 내부관(10)의 벤딩부 구간(ℓ)의 나선홈(14) 피치가, 상기 직선부 구간(L)의 나선홈(14) 피치보다 작게 형성된 것을 특징으로 하는 이중관식 열교환기.
The method of claim 1,
The outer tube 20 and the inner tube 10 is provided with a straight portion (L) and the bending portion 40,
The pitch of the spiral grooves 14 of the bending section (L) of the inner tube 10 corresponding to the bending portion 40 is formed smaller than the pitch of the spiral grooves 14 of the straight section (L). Double tube heat exchanger.
제 2항에 있어서,
상기 나선홈(14) 사이에 돌출부(16)가 형성되고,
상기 벤딩부 구간(ℓ)의 돌출부(16) 폭(W2)은, 상기 직선부 구간(L)의 돌출부(16) 폭(W1)보다 작게 형성된 것을 특징으로 하는 이중관식 열교환기.
The method of claim 2,
Protrusions 16 are formed between the spiral grooves 14,
Double bend heat exchanger, characterized in that the protrusion (16) width (W2) of the bending section (L) is formed smaller than the width (W1) of the protrusion (16) of the straight section (L).
제 2항에 있어서,
상기 내부관(10)의 벤딩부 구간(ℓ2)은, 상기 외부관(20)의 벤딩부 구간(ℓ1)의 길이보다 작게 형성된 것을 특징으로 하는 이중관식 열교환기.
The method of claim 2,
The bending section section (l2) of the inner tube (10), the double tube heat exchanger, characterized in that formed smaller than the length of the bending section section (l1) of the outer tube (20).
제 2항 내지 제 4항 중 어느 한 항에 있어서,
상기 벤딩부 구간(ℓ)의 단위 길이당 나선홈(14) 개수가 상기 직선부 구간(L)의 단위 길이당 나선홈(14) 개수보다 많은 것을 특징으로 하는 이중관식 열교환기.
The method according to any one of claims 2 to 4,
Double bent heat exchanger, characterized in that the number of spiral grooves (14) per unit length of the bending section (L) is greater than the number of spiral grooves (14) per unit length of the straight section (L).
KR1020110010522A 2011-02-07 2011-02-07 Double pipe heat exchanger KR101326759B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110010522A KR101326759B1 (en) 2011-02-07 2011-02-07 Double pipe heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110010522A KR101326759B1 (en) 2011-02-07 2011-02-07 Double pipe heat exchanger

Publications (2)

Publication Number Publication Date
KR20120090218A true KR20120090218A (en) 2012-08-17
KR101326759B1 KR101326759B1 (en) 2013-11-07

Family

ID=46883330

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110010522A KR101326759B1 (en) 2011-02-07 2011-02-07 Double pipe heat exchanger

Country Status (1)

Country Link
KR (1) KR101326759B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017159542A1 (en) * 2016-03-14 2018-12-06 カルソニックカンセイ株式会社 Double pipe

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200318910A1 (en) * 2019-04-08 2020-10-08 Hamilton Sundstrand Corporation Curved heat exchanger
KR102435386B1 (en) * 2022-02-24 2022-08-24 군산대학교산학협력단 Twisted Fluted Heat Transfer Tube with Periodically Variable Forming Depth

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718092U (en) * 1993-08-31 1995-03-31 マルヤス工業株式会社 Double pipe
DE102005063539B4 (en) * 2004-11-09 2012-09-06 Denso Corporation Method and device for producing a grooved pipe and its construction
JP2007218461A (en) 2006-02-15 2007-08-30 Matsushita Electric Ind Co Ltd Double tube type heat exchanger
JP2009097784A (en) 2007-10-16 2009-05-07 Denso Corp Piping device, refrigeration cycle device equipped with the same, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017159542A1 (en) * 2016-03-14 2018-12-06 カルソニックカンセイ株式会社 Double pipe

Also Published As

Publication number Publication date
KR101326759B1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
US9821364B2 (en) Double pipe type heat exchanger and method for manufacturing the same
CN101846465B (en) Heat exchanger
US20090139696A1 (en) Flat heat pipe with multi-passage sintered capillary structure
US20060265874A1 (en) Manufacture method for inner-fin tube and manufacture device for the same
CN102272547A (en) Fin for a heat exchanger, and heat exchanger including such a fin
KR101326759B1 (en) Double pipe heat exchanger
EP1123763A3 (en) Heat exchangers and fins for heat exchangers and methods for manufacturing the same
JPS62272096A (en) Hollow section for heat exchanger and manufacture thereof
WO2014167845A1 (en) Fin-and-tube heat exchanger and refrigeration cycle device
US6594896B2 (en) Method for making corrugated fins
US9885521B2 (en) Method for manufacturing refrigerant guide tube of heat exchanger, refrigerant guide tube manufactured using the method and heat exchanger with the refrigerant guide tube
JP2007093036A (en) Heat exchanger, its manufacturing method and its manufacturing device
US20200348085A1 (en) Round metal pipe, heat exchanger provided with same, pipe bender, and method for bend-processing round metal pipe
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP2007093034A (en) Triple tube heat exchanger
US10875078B2 (en) Corrugated fin element
KR102552158B1 (en) Double pipe heat exchanger and manufacturing method of the same
KR20130001544A (en) Method of manufacturing the double-wall pipe and double-wall pipe thereof
JP2000079431A (en) Manufacture of heat exchanger
JP2012122686A (en) Twisted tube type heat exchanger
JP2868163B2 (en) Method of manufacturing heat exchanger tube for heat exchanger
JP2000266487A (en) Heat exchanger
KR102537514B1 (en) Heat transfer fin of fin-tube type heat exchanger
KR100357100B1 (en) heat-exechanger is made up of pipe is formed of small diameter
KR100498318B1 (en) Refrigerant pipe bending apparatus for fin and tube solid type heat exchanger

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee