KR20120075722A - Preparation method of rice protein hydrolysate - Google Patents

Preparation method of rice protein hydrolysate Download PDF

Info

Publication number
KR20120075722A
KR20120075722A KR1020100137513A KR20100137513A KR20120075722A KR 20120075722 A KR20120075722 A KR 20120075722A KR 1020100137513 A KR1020100137513 A KR 1020100137513A KR 20100137513 A KR20100137513 A KR 20100137513A KR 20120075722 A KR20120075722 A KR 20120075722A
Authority
KR
South Korea
Prior art keywords
rice protein
endopeptides
hydrolyzate
rice
producing
Prior art date
Application number
KR1020100137513A
Other languages
Korean (ko)
Other versions
KR101284264B1 (en
Inventor
김종훈
이현준
최소연
박선화
민병중
심선택
박수현
Original Assignee
주식회사농심
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사농심 filed Critical 주식회사농심
Priority to KR1020100137513A priority Critical patent/KR101284264B1/en
Publication of KR20120075722A publication Critical patent/KR20120075722A/en
Application granted granted Critical
Publication of KR101284264B1 publication Critical patent/KR101284264B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/346Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/3262Foods, ingredients or supplements having a functional effect on health having an effect on blood cholesterol
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/54Proteins
    • A23V2250/548Vegetable protein
    • A23V2250/5482Cereal protein
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/54Proteins
    • A23V2250/55Peptide, protein hydrolysate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

PURPOSE: A producing method of rice protein hydrolysate is provided to offer the high blood circulation improving activity of the hydrolysate obtained from multi-stage enzyme decomposing rice protein. CONSTITUTION: A producing method of rice protein hydrolysate comprises the following steps: mixing rice protein and purified water in a weight ratio of 1:4-10; enzyme-decomposing the mixture using endoprotease; deactivating the endoprotease, and enzyme-decomposing the mixture using exoprotease; deactivating the exoprotease; and filtering, cooling, and drying the obtained e rice protein hydrolysate. The endoprotease are at least two enzymes selected from the group consisting of maxazyme, protamex, neutrase, prowin L20, protease N, promod 278, bioprotease P, and bioprotease OF50. The exoprotease is amylase R or flavourzyme.

Description

쌀 단백질 가수분해물의 제조 방법{Preparation Method of Rice protein hydrolysate }Preparation Method of Rice Protein Hydrolysate

본 발명은 쌀 단백질을 다단 효소분해하여 생산된 혈행개선 활성이 높은 쌀 단백질 가수분해물의 제조방법에 관한 것이다.The present invention relates to a method for producing rice protein hydrolyzate having high blood circulation improving activity produced by multistage enzymatic digestion of rice protein.

단백질 소재 시장은 세계적으로 지속적인 증가 추세에 있으며 현재 약 20조 이상으로 예측되고 있다. 주요 단백질 소재는 우유(유청) 단백질, 난황 단백질, 젤라틴, 단세포 단백질, 콩 단백질, 어육 단백질, 글루텐, 기타 식물성 단백질로 구분되며 광범위한 용도로 사용되고 있다. 그 중 사용 목적에 따라 영양학적 용도와 기능적 용도의 2가지로 나눌 수 있다. The protein material market continues to grow globally and is currently estimated to be more than 20 trillion. The main protein material is divided into milk (whey) protein, egg yolk protein, gelatin, single-cell protein, soy protein, fish meat protein, gluten, and other vegetable proteins and is used in a wide range of applications. According to the purpose of use, it can be divided into two types: nutritional use and functional use.

우선, 영양학적 용도로서 최종 제품에 단백질이나 아미노산의 함량을 높여줌으로써 제품의 전체적인 영양학적 밸런스나 가치를 높여주고 부족한 단백질 성분을 강화하는 목적으로 이용되는데, 대표적인 사용처로는 분유나 이유식 등의 유아식 제품이나 운동 후 피로 회복이나 체내 영양 균형을 맞추기 위한 각종 건강 기능성 식품 등이 있다.First of all, it is used for the purpose of enhancing the overall nutritional balance or value of the product and strengthening the insufficient protein components by increasing the content of protein or amino acid in the final product as a nutritional use. In addition, there are various health functional foods for restoring fatigue after exercise and balancing nutrition in the body.

또한, 단백질의 물성을 이용하는 기능적 용도로의 단백질은 단백질이 가지는 고유한 특성을 제품에 이용하기 위해서 사용하는 것을 의미한다. 일반적으로 단백질의 특성을 나타내는 항목으로는 기포 생성/안정력, 수분/오일 흡수력, 유화력, 겔 형성능력 등이 주로 사용된다.In addition, a protein for functional use utilizing the properties of the protein means to use the unique properties of the protein in the product. In general, the items indicating the properties of proteins are mainly used for bubble generation / stability, moisture / oil absorption, emulsification, gel formation ability.

세계적인 단백질 시장 추세가 크게 변화하고 있다. 과거에는 주로 동물성 단백질 소재 위주로 많이 이용되어 왔으나, 최근 웰빙 트랜드에 대한 소비자의 관심도 증가와 더불어 광우병, 구제역, 조류독감 등의 동물성 단백질 소스(Source)에 대한 경계심이 증가하면서 상대적으로 보다 천연적이고 안전한 이미지가 있는 식물성 단백질 소재에 대해 관심이 증대되고 있다. 이러한 관심에 대하여 주목받고 있는 소재는 대두 단백질(soy protein)이다. 현재 대두 단백질 시장이 식물성 단백질 시장 중에서 가장 큰 시장을 형성하고 있다. 하지만 대두의 원료의 특성상 알레르기 우려와 더불어 끊임없이 발생되는 GMO 이슈로 인해 이러한 우려를 불식시킬 수 있는 새로운 식물성 단백질 소재에 대한 많은 사용자의 관심도가 증가하고 있는 실정이다.The global protein market trend is changing dramatically. In the past, it has been used mainly for animal protein materials, but recently, as consumers' interest in well-being trends increased, and as the alertness of animal protein sources such as mad cow disease, foot-and-mouth disease, bird flu, etc. increased, a relatively more natural and safe image There is increasing interest in the plant protein material. Attention to this interest is soy protein. The soy protein market currently forms the largest market for vegetable protein. However, due to the nature of soybean raw materials, many users are interested in new vegetable protein materials that can alleviate these concerns due to allergic concerns and GMO issues.

고 콜레스테롤 혈증은 콜레스테롤과 중성지방 등의 대사가 정상적으로 진행되지 않아 혈액 속에 콜레스테롤 등이 정상치를 넘은 상태를 지칭한다. 고 콜레스테롤 혈증은 동맥경화증의 주요 원인으로 비만 인구의 증가와 더불어 유병률이 증가하고 있으며, 그에 따라 고 콜레스테롤 혈증을 예방하고 치료하기 위한 연구가 지속되고 있다. 일반적으로 혈행개선 효과는 HMG-CoA 환원효소(HMG-CoA reductase)의 저해활성과 담즙산의 결합력을 측정하여 도출한다.Hypercholesterolemia refers to a condition in which cholesterol and the like exceed normal levels in blood because metabolism of cholesterol and triglycerides does not proceed normally. Hypercholesterolemia is a major cause of atherosclerosis, and the prevalence increases with the increase in obesity population. Accordingly, studies to prevent and treat hypercholesterolemia continue. In general, blood circulation improvement effects are derived by measuring the inhibitory activity of HMG-CoA reductase and the binding capacity of bile acids.

HMG-CoA 환원효소는 콜레스테롤 생합성 저해의 주요 작용 효소로 알려져 있다. HMG-CoA 환원효소의 활성을 억제하면 콜레스테롤 합성의 중간 단계 산물인 메발로네이트(mevalonate)의 합성을 억제하여 콜레스테롤 생합성이 억제되며, 이로 인해 LDL 수용체의 발현이 증가함으로써 혈중 콜레스테롤을 세포 안으로 흡수하여 이중 작용으로 혈장 콜레스테롤을 낮춘다. 대부분의 스타틴(statin) 의약품의 혈행개선 효과는 HMG-CoA 환원효소 저해에 의한 것으로 알려져 있다.HMG-CoA reductase is known to be the major acting enzyme of cholesterol biosynthesis inhibition. Inhibiting the activity of HMG-CoA reductase inhibits the synthesis of mevalonate, an intermediate product of cholesterol synthesis, and inhibits cholesterol biosynthesis. Dual action lowers plasma cholesterol It is known that most of the statin medicines have a blood circulation improvement effect due to HMG-CoA reductase inhibition.

담즙산의 결합력은 담즙산염 생합성과 재순환 사이클에서 콜레스테롤 저해에 중요한 작용을 한다고 알려져 있다. 담즙산은 간에서 생성돼 담낭에서 지방질 소화에 중요한 역할을 하고 십이지장이나 간세포로 재흡수되는데, 이 순환과정에서 담즙산의 재흡수를 저해하면 담즙산이 부족한 간은 혈중 콜레스테롤을 이용해서 모자라는 담즙산염을 생합성 하기 때문에 혈중 콜레스테롤 수치가 낮아진다. 콩 단백질의 혈행개선 효과는 답즙산과의 결합에 의한 것으로 알려져 있다.The binding capacity of bile acids is known to play an important role in cholesterol inhibition in bile salt biosynthesis and recycling cycles. Bile acids are produced in the liver and play an important role in the digestion of fat in the gallbladder and are reabsorbed into the duodenum or liver cells. Because of this, blood cholesterol levels are lowered. The blood circulation improvement effect of soy protein is known to be due to binding to bile acid.

쌀을 포함한 식물 유래 단백질은 혈행개선 효과에 대해 보고되어 있다(J. Nutr. March 1, 1997 vol. 127(3) 470-477). 단백질 가수분해물의 경우 콩을 가수분해한 분해물의 답즙산 결합력을 통한 혈행개선 기능이 보고되어 있고(J. Agric. Food Chem. 2007, 55, 10599-10604), 검정콩 단백질의 가수분해물은 면역 활성 증진에 대한 내용(한국출원번호: 10-2003-0084633, 면역 활성이 강화된 검은콩 단백질 가수 분해물)과 혈중 지질 농도 증가 억제 및 체중 감소 효과에 대한 내용(한국출원번호: 10-2004-0101921, 혈중 지질 농도의 증가 억제 및 체중 감소 효과가 있는 검은콩 펩타이드 조성물), 그리고 검은콩 단백질 가수분해물은 체내에서 AMPK의 활성을 증가시키고 인슐린 민감도를 향상시키는 효과의 항 당뇨 기능성에 대한 내용(한국출원번호: 10-2006-0067833, 검은콩 단백질 가수분해물) 등이 출원되어 있다. 하지만 쌀을 원료로 생산한 가수분해물의 HMG-CoA 환원효소 저해 활성 및 담즙산의 결합력에 대해서는 아직 보고된 바 없다.Plant-derived proteins, including rice, have been reported for blood circulation improvement effects (J. Nutr. March 1, 1997 vol. 127 (3) 470-477). Protein hydrolyzate has been reported to improve blood circulation through bile acid binding of hydrolyzed soybean (J. Agric. Food Chem. 2007, 55, 10599-10604). (Korean Application No .: 10-2003-0084633, Immune-Activated Black Soy Protein Hydrolysate) and Inhibition of Increasing Blood Lipid Levels and Weight Loss Effects (Korean Application No .: 10-2004-0101921, Blood Black soybean peptide composition which inhibits the increase of lipid concentration and weight loss effect, and black soybean protein hydrolyzate have been described for the anti-diabetic function of the effect of increasing AMPK activity and improving insulin sensitivity in the body (Korean Application No .: 10-2006-0067833, black soy protein hydrolyzate) and the like. However, the HMG-CoA reductase inhibitory activity and the binding capacity of bile acids have not been reported.

본 발명은 쌀 단백질을 다단 효소분해하여 생산된 혈행개선 활성이 높은 쌀 단백질 가수분해물의 제조방법에 관한 것이다.The present invention relates to a method for producing rice protein hydrolyzate having high blood circulation improving activity produced by multistage enzymatic digestion of rice protein.

본 발명의 일 측면은 쌀 단백질 및 정제수를 1:4~10의 중량비로 혼합하는 단계; 상기 정제수에 혼합된 쌀 단백질을 엔도펩티데이즈로 효소분해하는 단계; 상기 엔도펩티데이즈를 실활시키는 단계; 상기 실활된 혼합액을 엑소펩티데이즈로 효소분해하는 단계; 상기 엑소펩티데이즈를 실활시키는 단계; 및 생성된 쌀 단백질 가수분해물을 냉각, 여과 및 건조시키는 단계;를 포함하는 쌀 단백질 가수분해물의 제조방법을 제공한다.
One aspect of the present invention comprises the steps of mixing the rice protein and purified water in a weight ratio of 1: 4 ~ 10; Enzymatically digesting the rice protein mixed in the purified water with endopeptides; Inactivating the endopeptides; Enzymatically digesting the inactivated mixed solution with exopeptides; Inactivating the exopeptides; It provides a method for producing a rice protein hydrolyzate comprising; and cooling, filtering and drying the resulting rice protein hydrolyzate.

상기 쌀 단백질은 단백질 함량이 40-90%일 수 있다. 쌀 단백질의 단백질 함량이 40% 미만인 경우 가수분해되는 쌀 단백질의 양이 적어 혈행 개선 효과가 미비하며, 시중에 90%를 초과하는 단백질 함량을 가지는 쌀 단백질이 판매되지 않다. 쌀 단백질은 CJ 및 Remy 사 등 시중 시판 쌀 단백질을 사용할 수 있다.
The rice protein may have a protein content of 40-90%. When the protein content of the rice protein is less than 40%, the amount of hydrolyzed rice protein is small and the blood circulation improving effect is insufficient, and rice protein having a protein content of more than 90% is not sold on the market. As the rice protein, commercially available rice proteins such as CJ and Remy can be used.

또한 상기 엔도펩티데이즈로 효소분해하는 단계에서 엔도펩티데이즈는 쌀 단백질을 구성하는 펩타이드의 내부에 작용하여 단백질을 분해하는 효소로, 쌀 단백질 분해에 적합하게 사용될 수 있는 효소라면 특별히 제한되지 않으나, 상기 엔도펩티데이즈는 뉴트레이즈(Nutrase), 프로타맥스(Protamex), 프로윈 엘20(Prowin L20), 프로티즈 엔(Protease N), 프로모드 278(Promod 278), 바이오프로티즈 피(Bioprotease P) 및 바이오프로티즈 오에프50(Bioprotease OF50)로 이루어진 그룹에서 적어도 두 종이 선택될 수 있다. In addition, the endopeptides in the step of enzymatic digestion with endopeptides are enzymes that decompose proteins by acting inside the peptide constituting the rice protein, and are not particularly limited as long as they are enzymes that can be suitably used for rice proteolysis. Endopeptides include Nutrase, Protamex, Prowin L20, Protease N, Promod 278, Bioprotease P And at least two species from the group consisting of Bioprotease OF50.

이때, 상기 엔도펩티데이즈는 쌀 단백질 100중량부에 대하여 0.01~15중량부가 첨가될 수 있다. 엔도펩티데이즈가 0.01중량부 미만으로 사용되면, 효소 활성의 역치를 넘지 못하며, 15중량부를 초과하여 사용해도 효소 활성이 더 높아지지 않아 경제적인 이유로 바람직하지 않다. In this case, the endopeptides may be added 0.01 to 15 parts by weight based on 100 parts by weight of rice protein. If the endopeptides are used at less than 0.01 part by weight, the enzyme activity is not exceeded, and the use of more than 15 parts by weight does not result in higher enzyme activity, which is undesirable for economic reasons.

엔도펩티데이즈가 두 종이 선택되는 경우, 상기 두 종의 엔도펩티데이즈를 혼합하여 쌀 단백질을 가수분해하거나 순차적으로 상기 두 종의 엔도펩티데이즈로 쌀 단백질을 가수분해할 수 있다. 이때, 상기 엔도펩티데이즈는 쌀 단백질 100중량부에 대하여 0.01~15중량부가 첨가될 수 있다. 역시 마찬가지로, 엔도펩티데이즈가 0.01중량부 미만으로 사용되면, 효소 활성의 역치를 넘지 못하며, 15중량부를 초과하여 사용해도 효소 활성이 더 높아지지 않아 경제적인 이유로 바람직하지 않다.
When two species of endopeptides are selected, the two kinds of endopeptides may be mixed to hydrolyze the rice protein or sequentially hydrolyze the rice protein with the two species of endopeptides. In this case, the endopeptides may be added 0.01 to 15 parts by weight based on 100 parts by weight of rice protein. Likewise, when the endopeptides are used at less than 0.01 part by weight, the enzyme activity is not exceeded, and the use of more than 15 parts by weight does not result in higher enzyme activity, which is undesirable for economic reasons.

또한, 상기 엑소펩티데이즈 효소분해 단계에서 엑소펩티데이즈는 쌀 단백질을 구성하는 펩타이드의 말단에 작용하여 단백질을 분해하는 효소로, 쌀 단백질 분해에 적합하게 사용될 수 있는 효소라면 특별히 제한되지 않으나, 아밀레이즈 알(Amylase R) 또는 플라보자임(flavourzyme)일 수 있다. 이때, 상기 엑소펩티데이즈는 쌀 단백질 100중량부에 대하여 0.01~15중량부가 첨가될 수 있다. 엑소펩티데이즈가 0.01중량부 미만으로 사용되면, 효소 활성의 역치를 넘지 못하며, 15중량부를 초과하여 사용해도 효소 활성이 더 높아지지 않아 경제적인 이유로 바람직하지 않다.
In addition, the exopeptides in the enzymatic digestion step is an enzyme that acts on the ends of the peptides constituting the rice protein to decompose the protein, and is not particularly limited as long as it is an enzyme that can be suitably used for rice proteolysis. It may be an egg (Amylase R) or a flavozyme. In this case, the exopeptides may be added 0.01 to 15 parts by weight based on 100 parts by weight of rice protein. If exopeptides are used at less than 0.01 part by weight, it does not exceed the threshold of enzyme activity, and when used in excess of 15 parts by weight, the enzyme activity is not higher, which is not preferable for economic reasons.

또한, 상기 효소분해는 30~350rpm으로 교반하면서 40~65℃에서 1~12시간 동안 진행될 수 있다. 40℃ 미만의 온도에서 상술한 효소들의 활성이 낮아 효소 분해가 효율이 떨어지며, 65℃ 초과의 온도에서는 오히려 상술한 효소(엔도펩티데이즈, 엑소펩티데이즈)가 실활될 우려가 높다. 또한, 효소분해를 1시간 미만의 시간 동안 진행하면 만족할 만한 효소 활성을 나타내지 못하며, 12시간 초과의 시간 동안 효소 분해를 진행하면 효소 활성이 더 이상 증가하지 않아 경제성의 측면에서 바람직하지 않다.
In addition, the enzymatic decomposition may proceed for 1 to 12 hours at 40 ~ 65 ℃ while stirring at 30 ~ 350rpm. The activity of the enzymes described above is lowered at a temperature of less than 40 ° C., so that the enzyme degradation is inefficient. At temperatures above 65 ° C., the enzymes (endopeptides, exopeptides) are rather inactivated. In addition, if the enzymatic digestion is performed for less than 1 hour, satisfactory enzymatic activity is not exhibited. If enzymatic digestion is performed for more than 12 hours, the enzymatic activity does not increase any more, which is undesirable from the economic point of view.

또한, 상기 효소 실활단계는 70~95℃에서 10~50분 동안 진행될 수 있다. 70℃ 미만의 온도에서는 상술한 효소들의 활성이 아직 남아 있을 수 있으며, 95℃ 초과의 온도에서는 효소 및 가수분해물의 변성의 우려가 있다. 또한, 10분 미만의 시간 동안 효소 실활을 진행하면 효소의 활성이 남아 효소 실활율이 낮으며, 50분 초과의 시간 동안 효소를 실활시키면 효소 및 가수분해물의 변성 또는 파괴의 우려가 있다.
In addition, the enzyme inactivation step may be performed for 10 to 50 minutes at 70 ~ 95 ℃. At temperatures below 70 ° C., the activity of the enzymes described above may still remain, and at temperatures above 95 ° C. there is concern of denaturation of enzymes and hydrolysates. In addition, if the enzyme inactivation proceeds for less than 10 minutes, the activity of the enzyme remains, the enzyme inactivation rate is low, and if the enzyme is inactivated for more than 50 minutes, there is a fear of denaturation or destruction of the enzyme and hydrolyzate.

또한, 상기 침전된 침전물을 층 분리한 효소분해액을 여과포(5㎛)에 통과시켜 여과시킨다.In addition, the precipitated precipitate is separated by filtration through a filter cloth (5㎛).

또한, 상기 여과된 효소분해액을 건조하여 분말화할 수 있다. 이때 건조의 방법에는 제한이 없고, 진공건조, 열풍건조, 분무건조, 동결건조 등 일반적인 건조방법을 이용한다.
In addition, the filtered enzymatic digestion liquid may be dried and powdered. At this time, the drying method is not limited, and general drying methods such as vacuum drying, hot air drying, spray drying, and freeze drying are used.

본 발명의 다른 측면은 엔도펩티데이즈 및 엑소펩티데이즈를 쌀 단백질에 순차 처리하여 제조한 혈행 개선 활성이 향상된 쌀 단백질 가수분해물을 제공한다.Another aspect of the present invention provides a rice protein hydrolyzate having improved blood circulation improving activity prepared by sequentially processing endopeptides and exopeptides on rice proteins.

상기 엔도펩티데이즈는 뉴트레이즈(Nutrase), 프로타맥스(Protamex), 프로티즈 엔(Protease N), 프로모드 278(Promod 278), 바이오프로티즈 피(Bioprotease P)로 이루어진 그룹에서 적어도 두 종이 선택될 수 있다. The endopeptides are selected from at least two species in the group consisting of Nutrase, Protamex, Protease N, Promod 278, and Bioprotease P. Can be.

두 종의 엔도펩티데이즈가 선택되는 경우, 상기 두 종의 엔도펩티데이즈가 혼합되어 또는 순차적으로 상기 두 종의 엔도펩티데이즈로 쌀 단백질을 가수분해할 수 있다.
When two species of endopeptides are selected, the two kinds of endopeptides can be mixed or sequentially hydrolyzed the rice protein with the two species of endopeptides.

또한, 상기 침전된 침전물을 층 분리한 효소분해액을 여과포(5㎛)에 통과시켜 여과시킨다.In addition, the precipitated precipitate is separated by filtration through a filter cloth (5㎛).

또한, 상기 여과된 효소분해액을 건조하여 분말화할 수 있다. 이때 건조의 방법에는 제한이 없고, 진공건조, 열풍건조, 분무건조, 동결건조 등 일반적인 건조방법을 이용한다.
In addition, the filtered enzymatic digestion liquid may be dried and powdered. At this time, the drying method is not limited, and general drying methods such as vacuum drying, hot air drying, spray drying, and freeze drying are used.

본 발명의 다른 측면은 엔도펩티데이즈 및 엑소펩티데이즈를 쌀 단백질에 순차 처리하여 제조한 혈행 개선 활성이 향상된 쌀 단백질 가수분해물을 제공한다. Another aspect of the present invention provides a rice protein hydrolyzate having improved blood circulation improving activity prepared by sequentially processing endopeptides and exopeptides on rice proteins.

뉴트레이즈(Nutrase), 프로타맥스(Protamex), 프로윈 엘20(Prowin L20), 프로티즈 엔(Protease N), 프로모드 278(Promod 278), 바이오프로티즈 피(Bioprotease P) 및 바이오프로티즈 오에프50(Bioprotease OF50)로 이루어진 그룹에서 적어도 두 종이 선택될 수 있다. Nutrase, Protamex, Prowin L20, Protease N, Promod 278, Bioprotease P and Bioprotease At least two species may be selected from the group consisting of Bioprotease OF50.

두 종의 엔도펩티데이즈를 혼합하여 또는 순차적으로 상기 두 종의 엔도펩티데이즈로 가수분해할 수 있다. Two species of endopeptides can be mixed or hydrolyzed to the two species of endopeptides sequentially.

또한, 상기 엑소펩티데이즈는 아밀레이즈 알(Amylase R) 또는 플라보자임(flavourzyme)일 수 있다.
In addition, the exopeptides may be amylase R or flavozyme.

본 발명은 쌀 단백질을 엔도펩티데이즈 및 엑소펩티데이즈 효소로 순차적으로 가수분해하여 얻어진 고체상과 액상을 분리한 후, 상기 액상을 여과하여 분말화하는 것을 특징으로 하는, 혈행개선 인자가 함유된 쌀 단백질 효소분해물의 제조 방법을 제공한다. The present invention is characterized in that the solid phase and the liquid phase obtained by sequentially hydrolyzing the rice protein hydrolyzed with endopeptides and exopeptide enzyme, and then the liquid phase is filtered and powdered, rice protein containing a blood circulation improvement factor Provided are methods for preparing enzymatic digests.

본 발명에 의하면, 일반적인 혈행개선 치료제와는 달리, 식품으로써 일상적으로 섭취할 수 있고, 저렴한 가격으로 단시간 내에 간단한 공정을 통하여 제조가능하며, 생산성이 높고, 상대적으로 혈행개선 활성이 뛰어난, 혈행개선 펩타이드 인자들을 다량 함유 한 쌀 단백질 가수분해물을 얻을 수 있다According to the present invention, unlike a general anti-hemorrhagic therapeutic agent, it can be routinely consumed as a food, and can be manufactured through a simple process at a low price at a low price, and has high productivity and relatively good anti-hemorrhagic activity, a hematopoietic peptide Rice protein hydrolyzate containing a large amount of factors can be obtained

도 1은 쌀 단백질을 효소분해한 후 분말화하는 공정을 나타내는 순서도이다.
도 2는 쌀 단백질을 각 엔도펩티데이즈로 처리하여 생산한 가수분해물의 HMG-CoA 환원효소의 저해활성을 측정한 결과이다.
도 3은 쌀 단백질을 엔도펩티데이즈와 엑소펩티데이즈로 순차 처리하여 생산한 가수분해물의 HMG-CoA 환원효소의 저해활성을 측정한 결과이다.
도 4는 쌀 단백질을 엔도펩티데이즈와 엑소펩티데이즈로 순차 처리하여 생산한 가수분해물의 답즙산 결합력을 측정한 결과이다.
1 is a flowchart showing a process of enzymatically digesting rice protein and then powdering it.
Figure 2 is a result of measuring the inhibitory activity of HMG-CoA reductase of the hydrolyzate produced by treating rice protein with each endopeptides.
Figure 3 is a result of measuring the inhibitory activity of HMG-CoA reductase hydrolyzate produced by sequentially processing rice protein with endopeptides and exopeptides.
4 is a result of measuring the bile acid binding capacity of the hydrolyzate produced by sequentially processing rice protein with endopeptides and exopeptides.

이하에서는 본 발명을 실시예 및 첨부된 도면에 의하여 보다 구체적으로 설명하기로 한다. 하기 실시예는 본 발명을 더 쉽게 이해하기 위하여 제공되는 것일 뿐, 본 발명이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples and the accompanying drawings. The following examples are merely provided to more easily understand the present invention, but the present invention is not limited to the following examples.

[실시예 1] 쌀 단백질 가수분해물의 제조Example 1 Preparation of Rice Protein Hydrolyzate

2톤 용량의 반응조에 정제수 1,540kg을 넣고, 80rpm으로 교반하면서 쌀 단백질 220㎏을 넣는다. 온도를 55℃로 상승시키고, 엔도펩티데이즈[Bioprotease P] 효소 1.1kg을 용액상태로 만들어 첨가한 후, 3시간 동안 교반하며 반응시켰다. 반응이 완료된 후, 온도를 90℃로 상승시켜 15분간 유지시킴으로써 효소를 불활성화시켰다. 온도를 다시 55℃로 낮춘 후, 엑소펩티데이즈[Amylase R] 효소 1.1kg을 용액상태로 만들어 첨가한 후 3시간 동안 교반하며 반응시켰다. 반응이 완료된 후, 온도를 90℃로 상승시켜 15분간 유지시킴으로써 효소를 불활성화시켰다. 분해액을 필터프레스로 여과하였다. 회수된 액을 농축기로 이송하여 50±5℃에서 고형분 함량 40 중량%까지 농축한 후 분말화하였다. 분말화 조건은 송풍 온도 180℃, 배풍 온도 98℃로 하였으며, 아토마이저(atomizer)는 15,000rpm으로 조절하여 실시하였다.
1540 kg of purified water was added to a 2-ton reactor, and 220 kg of rice protein was added while stirring at 80 rpm. The temperature was raised to 55 ° C, 1.1 kg of endopeptides [Bioprotease P] enzyme was added in solution, and then reacted with stirring for 3 hours. After the reaction was completed, the enzyme was inactivated by raising the temperature to 90 ° C. and holding for 15 minutes. After the temperature was lowered to 55 ° C., 1.1 kg of exopeptides [Amylase R] enzyme was added in a solution state, and then reacted with stirring for 3 hours. After the reaction was completed, the enzyme was inactivated by raising the temperature to 90 ° C. and holding for 15 minutes. The degradation solution was filtered through a filter press. The recovered solution was transferred to a concentrator and concentrated to a solid content of 40 wt% at 50 ± 5 ° C. and then powdered. The powdering conditions were set to a blowing temperature of 180 ° C., a blowing air temperature of 98 ° C., and an atomizer was adjusted to 15,000 rpm.

[실시예 2] 쌀 단백질 가수분해물의 HMG-CoA 환원효소 저해 효과Example 2 HMG-CoA Reductase Inhibitory Effect of Rice Protein Hydrolyzate

HMG-CoA 환원효소 활성은 Kleinsek(1977) 등의 방법에 따라 측정하였다. 즉, 1mL Cuvette에 각 쌀 단백질 가수분해물 20μL(대조구는 쌀 단백질 가수분해물 대신 DMSO(Dimethyl sulfoxide) 20μL), 인산완충용액(pH 7.0, 0.5μM) 100μL, DTT(20mM) 100μL, NADPH (3mM) 100μL, 효소 100μL를 가하고 반응액의 온도를 37℃로 일정하게 한 후 HMG-CoA(3mM)를 100μL 가하여 효소반응을 시작하면서 340nm에서 5분간의 흡광도 변화를 기록하였다. 또한 HMG-CoA 대신 증류수를 가한 blank로 반응시킨 흡광도의 변화도 동시에 기록하여 억제활성을 산출하였다. HMG-CoA reductase activity was measured according to the method of Kleinsek (1977) et al. 20 μL of each rice protein hydrolyzate (20 μL of DMSO (dimethyl sulfoxide) instead of rice protein hydrolyzate), 100 μL of phosphate buffer (pH 7.0, 0.5 μM), 100 μL of DTT (20 mM), 100 μL of NADPH (3 mM) in 1 mL Cuvette 100 μL of enzyme was added and the temperature of the reaction solution was kept constant at 37 ° C., and then 100 μL of HMG-CoA (3 mM) was added to record the change in absorbance at 340 nm for 5 minutes. In addition, the inhibitory activity was calculated by simultaneously recording the change in absorbance which was reacted with a blank added with distilled water instead of HMG-CoA.

도 2는 쌀 단백질을 여러 엔도펩티데이즈로 처리하여 생산한 가수분해물의 HMG-CoA 환원효소의 활성의 저해율을 나타낸 것이다. 여기서 사용된 엔도펩티데이즈는 다음 표 1과 같다.
Figure 2 shows the inhibition rate of HMG-CoA reductase activity of the hydrolyzate produced by treating rice protein with various endopeptides. Endopeptides used herein are shown in Table 1 below.

쌀 단백질 가수분해에 사용된 엔도펩티데이즈Endopeptides Used for Rice Protein Hydrolysis 1One AlcalaseAlcalase 22 NeutaraseNeutarase 33 ProtamexProtamex 44 Maxazyme NNPMaxazyme NNP 55 Prowin L20Prowin L20 66 Promod 278Promod 278 77 Protease MProtease M 88 Protease NProtease N 99 DelvolaseDelvolase 1010 Bioprotease PBioprotease P 1111 PROTEXTM 51FPPROTEXTM 51FP 1212 SUMIZYME FPSUMIZYME FP 1313 Bioprotease OF50Bioprotease OF50 1414 ProteAXProteAX

도 2에서 보는 바와 같이, 뉴트레이즈(Nutrase), 프로타맥스(Protamex), 프로윈 엘20(Prowin L20), 프로티즈 엔(Protease N), 프로모드 278(Promod 278), 바이오프로티즈 피(Bioprotease P) 및 바이오프로티즈 오에프50(Bioprotease OF50)로 가수분해한 쌀 단백질의 HMG-CoA 환원효소 저해 활성이 다른 엔도펩티데이즈보다 높다.
As shown in Figure 2, Nutrase, Protamex, Prowin L20, Protease N, Promod 278, Promod 278, Bioprotease P ( HMG-CoA reductase inhibitory activity of rice protein hydrolyzed with Bioprotease P) and Bioprotease OF50 is higher than other endopeptides.

도 3은 쌀단백질을 하기 표 2에서 기재한 엔도펩티데이즈와 엑소펩티데이즈로 순차 처리하여 생산한 가수분해물의 HMG-CoA 환원효소의 저해활성을 나타낸 것이다. Figure 3 shows the inhibitory activity of HMG-CoA reductase of the hydrolyzate produced by sequentially treating the rice protein with endopeptides and exopeptides described in Table 2.

도 3에서 보는 바와 같이, 엔도펩티데이즈와 엑소펩티데이즈를 순차 처리하여 생산한 가수분해물의 환원효소의 저해활성이 3배 이상 상승하였다. As shown in FIG. 3, the inhibitory activity of the reductase of the hydrolyzate produced by sequentially treating endopeptides and exopeptides was increased by three times or more.

그러나, 도 2와 도 3을 비교하면, 엔도펩티데이즈만 단독처리하는 경우(도 2 참조) 엔도펩티데이즈와 엑소펩티데이즈를 순차 처리하는 경우보다 MG-CoA 환원효소의 저해활성이 훨씬 작음을 알 수 있다.
However, comparing FIG. 2 and FIG. 3 shows that the MG-CoA reductase inhibitory activity is much smaller than the endopeptides alone treatment (see FIG. 2). Can be.

IC50 이란 HMG-CoA reductase의 활성을 50% 저해할 수 있는 시료의 농도를 나타내며, 그 값이 작을수록 HMG-CoA 환원효소의 활성을 강하게 저해하는 것이므로 강한 혈압 강하 효과를 가지는 것을 의미한다. 표 2는 엔도펩티데이즈와 엑소펩티데이즈로 순차적으로 처리하여 생산한 쌀단백 가수분해물의 IC50값이다.
IC 50 The mean concentration of the sample that can inhibit the activity of HMG-CoA reductase 50%, the smaller the value means that the stronger the inhibition of HMG-CoA reductase activity, which means that it has a strong blood pressure lowering effect. Table 2 shows IC 50 values of rice protein hydrolysates produced by sequentially treating with endopeptides and exopeptides.

번호number 처리 효소Processing enzymes HMG-CoA reductase
저해효과
(IC50 , ug/mL)
HMG-CoA reductase
Inhibitory effect
(IC 50 , ug / mL)
1차
엔도펩티데이즈
Primary
Endopeptides
2차
엔도펩티데이즈
Secondary
Endopeptides
엑소
펩티데이즈
Exo
Peptides
Pep 1Pep 1 NutraseNutrase Bioprotease PBioprotease P FlavourzymeFlavorzyme 850850 Pep 2Pep 2 ProtamexProtamex Protease NProtease N Amylase RAmylase R 540540 Pep 3Pep 3 Promod 278Promod 278 -- Amylase RAmylase R 530530 Pep 4Pep 4 Promod 278Promod 278 Bioprotease PBioprotease P Amylase RAmylase R 560560 Pep 5Pep 5 Bioprotease PBioprotease P -- Amylase RAmylase R 390390

또한, 표 2에서 보는 바와 같이, 엔도펩티데이즈와 엑소펩티데이즈의 조합에 따라, 또는 엔도펩티데이즈 처리 횟수에 따라 HMG-CoA 환원효소의 저해활성이 향상됨을 알 수 있다.
In addition, as shown in Table 2, it can be seen that the inhibitory activity of HMG-CoA reductase is improved according to the combination of endopeptides and exopeptides or the number of endopeptidase treatments.

[실시예 3] 쌀 단백질 가수분해물의 답즙산 결합력 테스트 Example 3 Bile Acid Adhesion Test of Rice Protein Hydrolysate

쌀 단백질 가수분해물의 답즙산 결합력은 Camire 등(1993)의 방법을 수정하여 측정하였다. 즉, 쌀 단백질 가수분해물 0.1g을 증류수 5ml에 녹여 0.1N HCl 용액 2ml을 가하여 37℃ 항온수조에서 1시간 동안 진탕 교반하고, 1N NaOH 용액으로 pH를 7.0으로 조절하였다. 여기에 cholic acid, deoxycholic acid, glycocholic acid, 타우루콜산의 농도가 각각 31.25μmol/ml이 되도록 조제한 0.1M phosphate buffer용액(pH 7.0) 4ml와 porcine pancreatin의 농도가 10mg/ml가 되도록 조제한 0.01M phosphate buffer 용액(pH 7.0) 5ml을 각각 첨가하여 37℃ 항온수조에서 1시간 동안 진탕 교반시켰다. 교반된 용액에 1.33M phosphoric acid 2ml 첨가하고 원심분리(26,890×g/10min)하여, 상등액을 취하였고 또한 남은 잔사에 0.01M phosphate buffer(pH 7.0) 5ml를 첨가한 후 vortex mixer로 잘 혼합하고 다시 원심분리하여 상등액을 취하였다. 상등액을 모두 혼합 후, 1N NaOH로 pH를 7.0으로 조절하고, 이 용액 0.28ml와 증류수 3ml을 시험관에 넣고 test reagent(nitroamide dinucleotide, nitro blue tetrazolium salt, diaphorase, 3α-hydroxysteroid dehydrogenase) 0.5ml를 첨가하였다. Sample blank는 test reagent 중 3α-hydroxysteroid dehydrogenase를 제외한 시약만을 첨가하였다. Control과 Control blank는 쌀 단백질의 가수분해물 대신 증류수만 첨가하여 쌀 단백질의 가수분해물의 경우와 동일방법으로 처리 후 test reagent 0.5ml를 첨가하고 37℃에서 5분간 반응하여 1.33M phosphoric acid 0.1ml를 가하여 반응을 정지시킨 후, 530nm에서 흡광도 측정하여 답즙산 결합력을 계산하였다. The bile acid binding capacity of the rice protein hydrolyzate was measured by modifying the method of Camire et al. (1993). That is, 0.1 g of rice protein hydrolyzate was dissolved in 5 ml of distilled water, 2 ml of 0.1 N HCl solution was added thereto, shaken and stirred for 1 hour in a 37 ° C. constant temperature water bath, and the pH was adjusted to 7.0 with 1 N NaOH solution. In addition, 4M 0.1M phosphate buffer solution (pH 7.0) prepared so that the concentrations of cholic acid, deoxycholic acid, glycocholic acid, and taurucolic acid were 31.25μmol / ml and 0.01M phosphate prepared so that the concentration of porcine pancreatin was 10mg / ml 5 ml of a buffer solution (pH 7.0) was added thereto, and the mixture was stirred for 1 hour in a 37 ° C constant temperature water bath. 2 ml of 1.33M phosphoric acid was added to the stirred solution and centrifuged (26,890 × g / 10min). The supernatant was collected, and 5 ml of 0.01 M phosphate buffer (pH 7.0) was added to the remaining residue, followed by mixing well with a vortex mixer. The supernatant was taken by centrifugation. After mixing all the supernatant, the pH was adjusted to 7.0 with 1N NaOH, 0.28 ml of this solution and 3 ml of distilled water were placed in a test tube, and 0.5 ml of test reagent (nitroamide dinucleotide, nitro blue tetrazolium salt, diaphorase, 3α-hydroxysteroid dehydrogenase) was added. . In sample blank, only reagent except 3α-hydroxysteroid dehydrogenase was added. In the control and control blanks, only distilled water was added instead of hydrolyzate of rice protein, and 0.5 ml of test reagent was added and reacted for 5 minutes at 37 ° C. After stopping the reaction, the absorbance was measured at 530nm to calculate the bile acid binding force.

도 4는 쌀 단백질을 엔도펩티데이즈와 엑소펩티데이즈로 순차 처리하여 생산한 가수분해물의 답즙산 결합력을 측정한 값이다. 이때, 처리한 엔도펩티데이즈 및 엑소펩티데이즈는 표 2의 효소이다. Figure 4 is a measure of the bile acid binding capacity of the hydrolyzate produced by sequentially processing the rice protein with endopeptides and exopeptides. At this time, the treated endopeptides and exopeptides are the enzymes of Table 2.

도 4에서 보는 바와 같이, 엔도펩티데이즈 및 엔속펩티데이즈를 순차 처리한 쌀 단백질 가수분해물(Pep 1 내지 Pep 5)은 쌀 단백질(RP)에 비하여 2배 이상 높은 답즙산과의 결합력을 나타냈으며, 또한, 혈행개선 효과가 있다고 알려진 기존의 콩 분리대두단백질 및 그 가수분해물, 검은콩 대두단백질 및 그 가수분해물에 비하여 1.5배 내지 2배 이상 높은 답즙산과의 결합력을 나타내었다.As shown in FIG. 4, rice protein hydrolysates (Pep 1 to Pep 5) sequentially treated with endopeptides and endocopeptides showed more than two times higher binding strength with bile acids than rice protein (RP). In comparison with the conventional soybean isolated soy protein and its hydrolyzate, black soybean protein and its hydrolyzate, which are known to have a blood circulation improvement effect, they showed a binding capacity with bile acid 1.5 to 2 times higher.

RP: 쌀 단백질,
1: Alcalase처리 가수분해물,
2: Neutarase처리 가수분해물,
3: Protamex처리 가수분해물,
4: Maxazyme NNP처리 가수분해물,
5: Prowin L20처리 가수분해물,
6: Promod 278처리 가수분해물,
7: Protease M처리 가수분해물,
8: Protease N처리 가수분해물,
9: Delvolase처리 가수분해물,
10: Bioprotease P처리 가수분해물,
11: PROTEXTM 51FP처리 가수분해물,
12: SUMIZYME FP처리 가수분해물,
13: Bioprotease OF50처리 가수분해물,
14: ProteAX 처리 가수분해물,
Pep 1,2,3,4,5: 쌀 단백질 가수분해물,
SI: 콩 분리대두단백질,
S Pep: 콩 단백질 가수분해물,
BI : 검은콩 분리 대두단백질,
B pep : 검은콩 단백질 가수분해물
RP: rice protein,
1: Alcalase Treatment Hydrolyzate,
2: Neutarase treatment hydrolyzate,
3: Protamex treatment hydrolyzate,
4: Maxazyme NNP treated hydrolyzate,
5: Prowin L20 treated hydrolyzate,
6: Promod 278 treatment hydrolyzate,
7: Protease M treatment hydrolyzate,
8: protease N treatment hydrolyzate,
9: Delvolase Treatment Hydrolyzate,
10: Bioprotease P-treated hydrolyzate,
11: PROTEXTM 51FP treated hydrolyzate,
12: SUMIZYME FP treated hydrolyzate,
13: Bioprotease OF50 treatment hydrolyzate,
14: ProteAX Treatment Hydrolyzate,
Pep 1,2,3,4,5: rice protein hydrolysates,
SI: soybean isolate protein,
S Pep: Soy Protein Hydrolyzate,
BI: soy protein isolate,
B pep: Black Bean Protein Hydrolyzate

Claims (14)

쌀 단백질 및 정제수를 1:4~10의 중량비로 혼합하는 단계;
상기 정제수에 혼합된 쌀 단백질을 엔도펩티데이즈로 효소분해하는 단계;
상기 엔도펩티데이즈를 실활시키는 단계;
상기 실활된 혼합액을 엑소펩티데이즈로 효소분해하는 단계;
상기 엑소펩티데이즈를 실활시키는 단계; 및
생성된 쌀 단백질 가수분해물을 냉각, 여과 및 건조시키는 단계;를 포함하는 쌀 단백질 가수분해물의 제조방법.
Mixing the rice protein and purified water in a weight ratio of 1: 4 to 10;
Enzymatically digesting the rice protein mixed in the purified water with endopeptides;
Inactivating the endopeptides;
Enzymatically digesting the inactivated mixed solution with exopeptides;
Inactivating the exopeptides; And
Cooling, filtration and drying the resulting rice protein hydrolyzate; Method of producing a rice protein hydrolyzate comprising.
제1항에 있어서,
상기 쌀 단백질은 단백질 함량이 40-90%인 쌀 단백질 가수분해물의 제조방법.
The method of claim 1,
The rice protein is a method of producing a rice protein hydrolyzate having a protein content of 40-90%.
제1항에 있어서,
상기 엔도펩티데이즈는 뉴트레이즈(Nutrase), 프로타맥스(Protamex), 프로윈 엘20(Prowin L20), 프로티즈 엔(Protease N), 프로모드 278(Promod 278), 바이오프로티즈 피(Bioprotease P) 및 바이오프로티즈 오에프50(Bioprotease OF50)로 이루어진 그룹에서 적어도 두 종이 선택되는 쌀 단백질 가수분해물의 제조방법.
The method of claim 1,
The endopeptides include Nutrase, Protamex, Prowin L20, Protease N, Promod 278, Bioprotease P And at least two species selected from the group consisting of Bioprotease OF50.
제3항에 있어서,
상기 두 종의 엔도펩티데이즈를 혼합하여 쌀 단백질을 가수분해하거나 순차적으로 상기 두 종의 엔도펩티데이즈로 쌀 단백질을 가수분해하는 쌀 단백질 가수분해물의 제조방법.
The method of claim 3,
A method for producing a rice protein hydrolyzate, wherein the two kinds of endopeptides are mixed to hydrolyze rice proteins or sequentially hydrolyzed rice proteins with the two types of endopeptides.
제1항에 있어서,
상기 엑소펩티데이즈는 아밀레이즈 알(Amylase R) 또는 플라보자임(flavourzyme)인 쌀 단백질 가수분해물의 제조방법.
The method of claim 1,
The exopeptides are amylase egg (Amylase R) or flavozyme (flavourzyme) method of producing a rice protein hydrolyzate.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 엔도펩티데이즈 및 상기 엑소펩티데이즈는 각각 쌀 단백질 100중량부에 대하여 0.01~15중량부가 첨가되는 쌀 단백질 가수분해물의 제조방법.
The method according to any one of claims 1 to 5,
The endopeptides and exopeptides is a method for producing a hydrolyzate of rice protein is added 0.01 to 15 parts by weight with respect to 100 parts by weight of rice protein, respectively.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 효소분해는 30~350rpm으로 교반하면서 40~65℃에서 1~12시간 동안 진행되는 쌀 단백질 가수분해물의 제조방법.
The method according to any one of claims 1 to 5,
The enzymatic digestion is a method for producing a rice protein hydrolyzate that proceeds for 1 to 12 hours at 40 ~ 65 ℃ while stirring at 30 ~ 350rpm.
제6항에 있어서,
상기 효소분해는 30~350rpm으로 교반하면서 40~65℃에서 1~12시간 동안 진행되는 쌀 단백질 가수분해물의 제조방법.
The method of claim 6,
The enzymatic digestion is a method for producing a rice protein hydrolyzate that proceeds for 1 to 12 hours at 40 ~ 65 ℃ while stirring at 30 ~ 350rpm.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 효소 실활단계는 70~95℃에서 10~50분 동안 진행되는 쌀 단백질 가수분해물의 제조방법.
The method according to any one of claims 1 to 5,
The enzyme inactivation step is a method for producing a hydrolyzate of rice protein proceeds for 10 to 50 minutes at 70 ~ 95 ℃.
제6항에 있어서,
상기 효소 실활단계는 70~95℃에서 10~50분 동안 진행되는 쌀 단백질 가수분해물의 제조방법.
The method of claim 6,
The enzyme inactivation step is a method for producing a hydrolyzate of rice protein proceeds for 10 to 50 minutes at 70 ~ 95 ℃.
엔도펩티데이즈 및 엑소펩티데이즈를 쌀 단백질에 순차 처리하여 제조한 혈행 개선 활성이 향상된 쌀 단백질 가수분해물. Rice protein hydrolyzate with improved blood circulation improving activity prepared by sequentially processing endopeptides and exopeptides on rice proteins. 제11항에 있어서,
상기 엔도펩티데이즈는 뉴트레이즈(Nutrase), 프로타맥스(Protamex), 프로윈 엘20(Prowin L20), 프로티즈 엔(Protease N), 프로모드 278(Promod 278), 바이오프로티즈 피(Bioprotease P) 및 바이오프로티즈 오에프50(Bioprotease OF50)로 이루어진 그룹에서 적어도 두 종이 선택되는 쌀 단백질 가수분해물.
The method of claim 11,
The endopeptides include Nutrase, Protamex, Prowin L20, Protease N, Promod 278, Bioprotease P ) And at least two species of rice protein hydrolysates selected from the group consisting of Bioprotease OF50.
제12항에 있어서,
두 종의 상기 엔도펩티데이즈를 혼합하여 또는 순차적으로 두 종의 상기 엔도펩티데이즈로 가수분해되는 쌀 단백질 가수분해물.
The method of claim 12,
A rice protein hydrolyzate, wherein two kinds of said endopeptides are mixed or sequentially hydrolyzed to two kinds of said endopeptides.
제12항에 있어서,
상기 엑소펩티데이즈는 아밀레이즈 알(Amylase R) 또는 플라보자임(flavourzyme)인 쌀 단백질 가수분해물.
The method of claim 12,
The exopeptides are amylase egg (Amylase R) or flavozyme (flavourzyme) rice protein hydrolyzate.
KR1020100137513A 2010-12-29 2010-12-29 Preparation Method of Rice protein hydrolysate KR101284264B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100137513A KR101284264B1 (en) 2010-12-29 2010-12-29 Preparation Method of Rice protein hydrolysate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100137513A KR101284264B1 (en) 2010-12-29 2010-12-29 Preparation Method of Rice protein hydrolysate

Publications (2)

Publication Number Publication Date
KR20120075722A true KR20120075722A (en) 2012-07-09
KR101284264B1 KR101284264B1 (en) 2013-07-08

Family

ID=46709564

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100137513A KR101284264B1 (en) 2010-12-29 2010-12-29 Preparation Method of Rice protein hydrolysate

Country Status (1)

Country Link
KR (1) KR101284264B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222537A (en) * 2013-05-08 2013-07-31 中国农业科学院农产品加工研究所 Method for preparing peanut peptides through step enzymatic hydrolysis of peanut protein isolate by using two neutral proteases
CN116287083A (en) * 2023-05-24 2023-06-23 山东大树欧亚天然调味品有限公司 Rice peptide and preparation method thereof, rice peptide chelate and preparation method thereof
CN117099869A (en) * 2023-06-27 2023-11-24 河南工业大学 Preparation method of wheat protein peptide chelated calcium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139563B2 (en) * 1992-02-21 2001-03-05 株式会社成和化成 Method for producing rice bran protein-derived peptide
KR100281760B1 (en) * 1998-08-24 2001-02-15 이상윤 Method for preparing soybean proteinase containing blood pressure lowering factor
EP1274318B1 (en) * 2000-04-07 2011-07-20 Nestec S.A. Cultured protein hydrolysate
KR100619692B1 (en) * 2000-05-26 2006-09-06 엘지전자 주식회사 Pay digital broadcast recieving fee calculating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222537A (en) * 2013-05-08 2013-07-31 中国农业科学院农产品加工研究所 Method for preparing peanut peptides through step enzymatic hydrolysis of peanut protein isolate by using two neutral proteases
CN116287083A (en) * 2023-05-24 2023-06-23 山东大树欧亚天然调味品有限公司 Rice peptide and preparation method thereof, rice peptide chelate and preparation method thereof
CN116287083B (en) * 2023-05-24 2023-08-25 山东大树欧亚天然调味品有限公司 Rice peptide and preparation method thereof, rice peptide chelate and preparation method thereof
CN117099869A (en) * 2023-06-27 2023-11-24 河南工业大学 Preparation method of wheat protein peptide chelated calcium

Also Published As

Publication number Publication date
KR101284264B1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
RU2370279C2 (en) Application of proline-specific endoproteses for peptide and protein hydrolysis
Khiari et al. Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products
Chalé et al. ACE inhibitory, hypotensive and antioxidant peptide fractions from Mucuna pruriens proteins
Simonetti et al. Antioxidative and antihypertensive activities of pig meat before and after cooking and in vitro gastrointestinal digestion: Comparison between Italian autochthonous pig Suino Nero Lucano and a modern crossbred pig
Aondona et al. In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions
Balti et al. Comparative study on biochemical properties and antioxidative activity of cuttlefish (Sepia officinalis) protein hydrolysates produced by Alcalase and Bacillus licheniformis NH1 proteases
Ng et al. Optimization of enzymatic hydrolysis of palm kernel cake protein (PKCP) for producing hydrolysates with antiradical capacity
Xue et al. Preparation and antioxidative properties of a rapeseed (Brassica napus) protein hydrolysate and three peptide fractions
Zhao et al. Preparation and radical scavenging activity of papain-catalyzed casein plasteins
JPS6243654B2 (en)
Megías et al. Sunflower protein hydrolysates reduce cholesterol micellar solubility
Noh et al. Preparation of egg white liquid hydrolysate (ELH) and its radical-scavenging activity
US5387422A (en) Proteolytic fungal enzyme food supplement composition
KR101284264B1 (en) Preparation Method of Rice protein hydrolysate
Vieira et al. Production of peptides with radical scavenging activity and recovery of total carotenoids using enzymatic protein hydrolysis of shrimp waste
CA2384590C (en) Processes for making protein hydrolysates from animal peptone and for preserving mucosa
Parris et al. Angiotensin I converting enzyme-inhibitory peptides from commercial wet-and dry-milled corn germ
Yuliatmo et al. Increasing of angiotensin converting enzyme inhibitory derived from Indonesian native chicken leg protein using Bacillus cereus protease enzyme.
Lim et al. Wheat gluten hydrolysates prepared by sequential treatment with different combinations of commercial proteases
Popović et al. Biologically active digests from pumpkin oil cake protein: effect of cross-linking by transglutaminase
KR101295633B1 (en) Manufacturing method of Rice protein plain including high level of Branched chain amino acids
US6372452B1 (en) Process for obtaining plant peptones with a high hydrolysis degree and applications thereof
KR20110033314A (en) Feed for fry young fishes and method of producing hydrolyzate of low-phytin vegetable protein to be used therein
JP2020517257A (en) Enzyme-based method for extracting value-added products from raw biomass
JP7442777B2 (en) protein hydrolyzate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170629

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180627

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190626

Year of fee payment: 7