KR20120029174A - 양자점 발광소자 - Google Patents

양자점 발광소자 Download PDF

Info

Publication number
KR20120029174A
KR20120029174A KR1020100091105A KR20100091105A KR20120029174A KR 20120029174 A KR20120029174 A KR 20120029174A KR 1020100091105 A KR1020100091105 A KR 1020100091105A KR 20100091105 A KR20100091105 A KR 20100091105A KR 20120029174 A KR20120029174 A KR 20120029174A
Authority
KR
South Korea
Prior art keywords
light emitting
layer
transport layer
emitting device
quantum dot
Prior art date
Application number
KR1020100091105A
Other languages
English (en)
Inventor
황성원
김정섭
정훈재
손철수
Original Assignee
삼성엘이디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성엘이디 주식회사 filed Critical 삼성엘이디 주식회사
Priority to KR1020100091105A priority Critical patent/KR20120029174A/ko
Publication of KR20120029174A publication Critical patent/KR20120029174A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]

Abstract

양자점 발광 소자가 개시된다. 개시된 발광 소자는 전자수송층; 상기 전자수송층 위에 형성된 것으로, 다수의 양자점을 포함하는 양자점 발광층; 상기 양자점 발광층 위에 형성된 정공수송층;을 포함하며, 상기 다수의 양자점은 상기 양자점 발광층을 가로지르는 방향이 비극성이 되는 결정구조를 갖는 것을 특징으로 한다.

Description

양자점 발광소자{Quantun dot light emitting device}
본 개시는 비극성면 양자점 발광소자에 대한 것이다.
발광소자(Light Emitting Device; LED)는 화합물 반도체(compound semiconductor)의 PN접합을 통해 발광원을 구성함으로서, 다양한 색의 빛을 구현할 수 있는 반도체 소자를 말한다. 최근, 물리적, 화학적 특성이 우수한 질화물을 이용하여 구현된 청색 LED 및 자외선 LED가 등장하였고, 또한 청색 또는 자외선 LED와 형광물질을 이용하여 백색광 또는 다른 단색광을 만들 수 있게 됨으로써 발광소자의 응용범위가 넓어지고 있다.
또한, 반도체 산업의 급속한 발전에 따라 개발된 초미세 제조기술은 물질의 크기를 수십 nm 이하로 작게 만드는 것을 가능하게 하고 있으며, 반도체 양자점(quantum dot: QD)의 발광 특성을 이용한 발광소자에 대한 연구가 활발히 진행되고 있다. 반도체 양자점은 3차원적인 크기가 드브로이 파장의 길이보다 작은 시료의 반도체 물질을 말한다. 반도체 양자점은 수십만개 이상의 전자로 이루어져 있지만, 대부분의 전자들은 원자핵에 견고하게 속박되어 있어 속박되지 않은 자유 전자의 수는 1 내지 100개 정도로 제한된다. 이 경우, 전자들이 가지는 에너지 준위가 불연속적으로 제한되어 연속적인 밴드를 형성하는 벌크(bulk) 상태의 반도체와는 다른 전기적 및 광학적 특성을 나타낸다. 양자점은 크기에 따라 밴드갭을 조절할 수 있어 발광 파장을 조절할 수 있다.
그러나, 발광소자의 활성층으로 양자점 층을 형성함에 있어서, 양자점의 불규칙한 성장이 문제시된다. 즉, 두께나 수평적인 밀도를 정확하기 조절하기가 여려워 불균일한 표면 프로파일이 나타나는데, 이는 발광특성을 저해하는 요인이된다.
본 개시는 비극성면 양자점 발광층을 도입하여, 광추출효율이 향상된 양자점 발광 소자를 제시하고자 한다.
일 유형에 따르는 발광 소자는 전자수송층; 상기 전자수송층 위에 형성된 것으로, 다수의 양자점을 포함하는 양자점 발광층; 상기 양자점 발광층 위에 형성된 정공수송층;을 포함하며, 상기 다수의 양자점은 상기 양자점 발광층을 가로지르는 방향이 비극성이 되는 결정구조를 갖는 것을 특징으로 한다.
상기 전자수송층은 n형 도펀트가 도핑된 그래핀층으로 이루어질 수 있으며, 상기 그래핀층은 하나 또는 복수의 그래핀 시트를 포함하여 이루어질 수 있다.
상기 전자수송층은 TiO2, ZrO2, HfO2 등의 금속 산화물, Si3N4을 포함하는 무기물 또는 n형 반도체 중 어느 하나를 포함하여 이루어질 수 있다.
상기 정공수송층은 p형 도펀트가 도핑된 그래핀층으로 이루어질 수 있으며, 상기 그래핀층은 하나 또는 복수의 그래핀 시트를 포함하여 이루어질 수 있다.
상기 정공수송층은 PEDOT, PSS, PPV, PVK 등의 전도성 고분자 또는 p형 반도체 중 어느 하나를 포함하여 이루어질 수 있다.
상기 양자점은 Si계 나노결정, II-VI족계 화합물 반도체 나노결정, III-V족계 화합물 반도체 나노결정, IV-VI족계 화합물 반도체 나노결정 및 이들의 혼합물 중 어느 하나의 나노 결정을 포함하여 이루어질 수 있다.
상기 전자수송층 및 정공수송층 각각의 일측에는 전자, 정공 주입을 위한 제1전극 및 제2전극이 형성될 수 있다.
상기 제1전극 및 제2전극은 수직형 배치로 형성될 수 있으며, 상기 제1전극 및 제2전극 중 어느 하나는 상기 양자점 발광층에서 생성된 광이 일방향으로 출사되게 반사하는 반사전극으로 구성될 수 있다.
상기 제1전극 및 제2전극은 메사형 배치로 형성될 수 있으며, 이 경우, 비극성면 사파이어 기판을 더 포함하며, 상기 전자수송층, 양자점 발광층, 정공수송층이 비극성면에 순차 성장된 구조일 수 있다.
상기 전자수송층 및 전공수송층의 어느 하나의 일측에는 상기 양자점 발광층에서 생성된 광이 일방향으로 출사되도록 반사하는 반사층이 더 구비될 수 있다.
상술한 발광 소자는 극성 효과를 제어하는 구조로서, 비극성면 양자점 발광층을 채용함으로써, 전자, 정공 재결합확률을 높이고 있으며, 내부 양자 효율이 높아진다.
또한, 이와 함께, 그래핀층을 전자수송층, 정공수송층에 도입함으로써 공정비용을 줄이고, 더욱 높이고 있다.
도 1은 본 발명의 실시예들에 따른 양자점 발광소자의 대표적인 구성을 보인 개념도이다.
도 2는 육방정계 형상의 결정구조를 예시하여, 비극성면과 극성면을 설명하는 개념도이다.
도 3a 및 도 3b는 각각 양자점 발광층을 가로지르는 방향이 극성 및 비극성일 때의 밴드갭 에너지 분포를 보인다.
도 4는 본 발명의 일 실시예에 따른 양자점 발광소자의 개략적인 구조를 보인다.
도 5는 본 발명의 다른 실시예에 따른 양자점 발광소자의 개략적인 구조를 보인다.
도 6은 본 발명의 또 다른 실시예에 따른 양자점 발광소자의 개략적인 구조를 보인다.
도 7은 본 발명의 또 다른 실시예에 따른 양자점 발광소자의 개략적인 구조를 보인다.
<도면의 주요 부분에 대한 부호설명>
100, 200, 300, 400, 500...양자점 발광 소자
110, 210, 310...기판 130, 230...전자수송층
150...양자점 발광층 152...양자점
170, 270...정공수송층 181, 281...제1전극
182, 282, 283...제2전극 290...반사층
430...n형 그래핀층 470...p형 그래핀층
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 도면에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 각 구성요소의 크기나 두께는 설명의 명료성을 위하여 과장되어 있을 수 있다.
도 1은 본 발명의 실시예들에 따른 양자점 발광 소자(100)의 대표적인 구성을 보인 개념도이다. 도 2는 육방정계 형상의 결정구조를 예시하여, 비극성면과 극성면을 설명하는 개념도이다. 도 3a 및 도 3b는 각각 발광층을 가로지르는 방향이 극성 및 비극성일 때의 밴드 에너지 분포를 보인다.
발광 소자(100)는 전자수송층(130), 전자수송층(130) 위에 형성된 것으로, 다수의 양자점을 포함하는 양자점 발광층(150) 및 양자점 발광층(150) 위에 형성된 정공수송층(170)을 포함한다. 전자수송층(130), 양자점 발광층(150) 및 정공수송층(170)은 소정 기판(110) 상에 형성될 수 있다. 실시예들에서, 양자점 발광층(150)을 구성하는 다수의 양자점(152)은 양자점 발광층(150)을 가로지르는 방향이 비극성이 되는 결정구조를 갖는 것을 특징으로 한다. 양자점 발광층(150)을 가로지르는 방향은 도면에 z 방향으로 표시하고 있다.
양자점 발광층(150)을 이와 같이 구성한 것은 내부 양자 효율을 높이기 위한 것이다. 에피 성장이 비극성면에서 이루어지는 경우와 극성면에서 이루어지는 경우, 광학적 특성에서 차이가 있는데, 도 2 및 도 3을 참조하여, 이를 설명한다. 먼저, 도 2에 예시한 바와 같은 육방정계 형상의 결정 구조에서, 결정의 각 성분들은 길이가 같고 서로 120도의 각을 이루는 3개의 축, [1000], [0100], [0010]과, 3개의 축이 이루는 평면에 수직인 축 [0001]을 기준으로 하여 배열된다. 여기서, 축 [0001]에 수직인 면은 극성면(polar side face)이 되고, c-plane 또는 면(0001)이라고 한다. 축 [1000]과 축 [0100]의 벡터합에 해당하는 a축에 수직인 면은 비극성면(non-polar side face)가 되고, a-plane 또는 면 (1120)이라고 한다. 또한, 축 [1000]과 축 [0010]의 벡터합에 해당하는 m축에 수직인 면도 비극성면(non-polar side face)이 되고, m-plane 또는 면 (1100)이라 한다.
극성면이 c-plane에 성장되는 에피와 비극성면인 a-plane 또는 m-plane에 성장되는 에피는 도 3a 및 도 3b에 나타난 바와 같이, 밴드 에너지 분포 형상에서 차이를 보인다. 도 3a는 극성면에 성장된 에피로서, GaN/InGaN/GaN의 양자우물구조의 밴드 에너지 분포를 보이는데, 자발 분극 Psp가 발광층을 가로지르는 방향, 즉, z방향으로 형성됨에 따라 z=0인 중심 위치에 대해 대칭성이 없는 형태이다. 또한, 전도대와 가전자대의 에너지 피크 위치도 일치하지 않는다. 반면, 도 3b는 비극성면에 성장된 경우로서, 자발 분극 Psp가 z 방향과 수직인 방향으로 형성되고, 발광층을 가로지르는 방향, 즉, z 방향으로는 극성이 없는 형태가 되므로, z=0에 대해 대칭적인 밴드 에너지분포를 보이고, 또한, 전도대와 가전자대의 에너지 피크 위치도 일치한다. 이러한 차이점에 따라, 극성면 성장 에피와 비극성면 성장 에피는 동일한 재질로 양자우물구조를 형성하여도, 밴드갭 에너지가 다르게 나타난다. 또한, 전자, 정공 재결합에 있어서도, 우물층에서 전자, 정공의 공간 분리(space separation) 현상이 나타나는 도 3a의 극성면 성장 구조에 비해, 이러한 현상이 나타나지 않는 도 3b의 비극성면 성장 구조가 전자 정공의 재결합(radiative recombination) 확률이 높아지고, 따라서, 내부 양자 효율도 높아지게 된다.
발명자는 이러한 점에 착안하여, 양자점으로 발광층을 구성함에 있어서도, 내부 양자 효율을 높일 수 있는 구조로, 비극성면 성장의 개념을 도입하고 있다.
이하, 보다 구체적인 실시예들을 살펴보기로 한다.
도 4는 본 발명의 일 실시예에 따른 양자점 발광 소자(200)의 개략적인 구조를 보인다. 발광 소자(200)는 기판(210) 상에 순차 형성된 전자수송층(230), 양자점 발광층(150), 정공수송층(270)을 포함한다.
기판(210)의 재질로는 실리콘(Si), 실리콘 카바이드(SiC), 사파이어(sapphire), 유리(glass), GaN, LiGaO2, ZrB2, ZnO 또는 (Mn,Zn)FeO4 등이 채용될 수 있으며, 이 외에도, 기판(210) 상에 형성되는 전자수송층(230)의 재질에 알맞은 다양한 물질이 채용될 수 있다.
전자수송층(electron transport layer)(230)은 양자점 발광층(150)에 전자를 전달할 수 있는 다양한 재질로 형성될 수 있다. 예를 들어, TiO2, ZrO2, HfO2 등의 금속 산화물들 또는 Si3N4을 포함하는 무기물이 사용될 수 있다. 또는, n형 반도체 재질, 예를 들어, n-AlxGayInzN (x+y+z=1) 등이 사용될 수 있다. 전자수송층(130)은 단층으로 도시되어 있으나, 이는 예시적인 것이고, 다층막 구성을 가질 수도 있다.
양자점 발광층(150)은 도 1에서 설명한 바와 같이, 양자점 발광층(150)을 구성하는 다수의 양자점(152) 들이 발광층을 가로지르는 방향으로 비극성 결정 구조를 갖도록 구성된다. 비극성 결정 구조의 양자점(152)은 비극성면 사파이어 기판을 사용하여 형성할 수 있다. 예를 들어, GaN 기반의 양자점을 형성할 때, GaN 성장면이 a-plane 또는 m-plane이 되도록 하고, 일반적인 양자점과 마찬가지로, 자기조립(self assemble) 방법을 이용한다. 비극성면끼리의 격자상수 불일치(lattice mismatch)에 의한 sk mode 성장을 통해 비극성 결정 구조의 양자점을 형성할 수 있다. 양자점(150)은 전자수송층(230) 상에 직접 형성되거나, 또는, 별개의 기판에서 제조된 후 전자수송층(230) 상에 전사될 수 있다. 전자수송층(230)과 양자점 발광층(150) 사이에는 비극성 구조 형성을 위해 필요한 버퍼층등이 도입될 수도 있다. 양자점 발광층(150)은 다수의 양자점(152)이 단층 구조를 이루는 것으로 도시되고 있으나 이에 한정되지 않으며 복수층 구성이 되는 것도 가능하다.
양자점(152)은 Si계 나노결정, II-VI족계 화합물 반도체 나노결정, III-V족계 화합물 반도체 나노결정, IV-VI족계 화합물 반도체 나노결정 및 이들의 혼합물 중 어느 하나의 나노결정을 포함할 수 있다. II-VI족계 화합물 반도체 나노결정은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HggZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe 및 HgZnSTe로 구성된 군으로부터 선택된 어느 하나일 수 있다. III-V족계 화합물 반도체 나노결정은 GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs, 및 InAlPAs로 구성된 군으로부터 선택된 어느 하나일 수 있다. IV-VI족계 화합물 반도체 나노결정은 SbTe일 수 있다.
정공수송층(hole transport layer)(270)은 양자점 발광층(150)에 정공을 전달할 수 있는 다양한 재질로 형성될 수 있다. 예를 들어, PEDOT, PSS, PPV, PVK 등의 전도성 고분자 재질이 사용될 수 있으며, 또는, p형 반도체 재질, 예를 들어, p-AlxGayInzN (x+y+z=1)이 사용될 수 있다. 정공수송층(270)은 단층으로 도시되어 있으나, 이에 한정되지 않으며, 다층막 구성일 수도 있다.
전자수송층(230) 및 정공수송층(270) 각각의 일측에는 전자, 정공 주입을 위한 제1전극(281) 및 제2전극(282)이 형성되며, 도시된 바와 같이, 정공수송층(270)의 상면에 제1전극(281)이 형성되고, 기판(210)의 하면에 제2전극(282)이 형성될 수 있다. 이러한 전극 구조는 통상 수직형 구조라고 하며, 기판(210)이 전도성 재질일 때, 채용될 수 있다.
제1전극(281) 및 제2전극(282) 중 어느 하나는 양자점 발광층(150)에서 생성된 광이 일방향으로 출사되되도록 광을 반사시키기 위해, 반사전극으로 구성될 수 있다. 예를 들어, 기판(210)의 하면에 마련된 제2전극(182)을 반사전극으로 구성하는 경우, 양자점 발광층(150)에서 생성된 광은 전면(front side)으로 출사되게 된다. 반사전극인 제2전극(282)은 Al, Cu 등과 같은 반사 메탈 소재로 형성될 수 있다. 제1전극(281)은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide)와 같은 투명 전극 소재로 형성될 수 있다. 투명 전극 소재로 된 제1전극(281)과 반사 메탈 소재로 된 제2전극(282)의 위치는 서로 바뀔 수 있다.
도 5는 본 발명의 다른 실시예에 따른 양자점 발광소자(300)의 개략적인 구조를 보인다. 발광 소자(300)는 기판(310) 상에 순차 형성된 전자수송층(230), 양자점 발광층(150), 정공수송층(270)을 포함한다. 본 실시예는 제2전극(283)의 배치에서 도 4의 발광 소자(200)와 차이가 있다. 즉, 제2전극(283)은 전자수송층(230)의 상면 일측에 형성되어 있다. 이러한 구조는 통상, 메사 구조라 하는데, 기판(310) 상에 전자수송층(230), 양자점 발광층(150), 정공수송층(270)을 순차 형성한 후, 정공수송층(270)과 양자점 발광층(150)의 영역 일부를 전자수송층(230) 상면 일부가 드러나도록 에칭한 후, 이 영역에 제2전극(283)을 마련하는 것이다.
기판(310)이 전도성이 없는 재질인 경우, 이러한 구조가 채용될 수 있으며, 양자점 발광층(150)을 보다 용이하게 형성하기 위해, 기판(310)으로 비극성 사파이어 기판을 사용할 수 있다. 성장면을 비극성면으로 하여 전자수송층(230)을 형성하고, 비극성 결정구조의 양자점(152)을 구비하는 양자점 발광층(150)을 직접 형성할 수 있다.
기판(310)의 하면에는 메탈 소재의 반사층(290)을 더 형성될 수 있고 이에 따라, 양자점 발광층(150)에서 생성된 광은 전면(front side)으로 출사되게 된다. 반사층(290)의 위치는 기판(310)과 전자수송층(230) 사이의 위치로 변형될 수도 있다.
이하의 실시예들은 전자수송층, 정공수송층에 그래핀(graphene)을 도입한 것이다. 그래핀 시트(graphene sheet)는 탄소로 이루어진 육방정계(hexagonal) 단층 구조물로서, 우수한 투광성과 특징적인 전하이동 성질에 의해 전자소자 및 광학 분야에서 각광받는 소재이다. 그래핀 시트(sheet)는 이차원 탄도 이동(2-dimensional ballistic transport) 특성을 갖는다. 전하가 물질 내에서 이차원 탄도 이동한다는 것은 산란(scattering)에 의한 저항이 거의 없는 상태로 이동한다는 것을 의미한다. 따라서 그래핀 시트내에서 전하의 이동도(mobility)는 매우 높고, 그래핀 시트는 매우 낮은 비저항을 갖는다. 이와 같이, 순수한 상태의 그래핀 시트는 밴드갭이 0인 금속으로 동작하는 한편, 도핑을 이용하여, 밴드갭을 형성할 수 있으며, 이에 따라 반도체 거동이 가능할 것으로 연구되고 있다. 일반적인 반도체에서, 재료의 결정구조에 의해 전도대와 가전자대의 간격이 유한하게 정해지는 것과 달리, 그래핀 시트는 예를 들어, 이중층 그래핀 시트의 대칭성이 변형되는 경우 등, 밴드갭이 변화, 조절될 수 있다.
비극성 양자점과 함께, 반도체 거동의 그래핀을 이용한 발광소자의 구성을 살펴본다.
도 6은 본 발명의 또 다른 실시예에 따른 양자점 발광소자(400)의 개략적인 구조를 보인다. 양자점 발광소자(400)는 기판(210) 상에 순차 형성된, n형 그래핀층(430), 양자점 발광층(150), p형 그래핀층(470)을 포함한다.
n형 그래핀층(430)은 하나 또는 복수의 그래핀 시트로 구성되며, n형 도펀트가 도핑되어 이루어진다. 그래핀 시트의 형성은 화학 기상 증착법(chemical vapor deposition, CVD), 기계적 또는 화학적 박리법, 에피택시(epitaxy) 성장법 등으로 형성될 수 있다. n형 도펀트로는 예를 들어, 질소(N), 플루오르(F), 망간(Mn) 등이 사용될 수 있으며, 이에 한정되는 것은 아니다.
p형 그래핀층(470)은 하나 또는 복수의 그래핀 시트로 구성되며, 여기에, p형 도펀트가 도핑되어 이루어진다. 그래핀 시트의 형성은 화학 기상 증착법(chemical vapor deposition, CVD), 기계적 또는 화학적 박리법, 에피택시(epitaxy) 성장법 등으로 형성될 수 있다. p형 도펀트는 예를 들어, 산소(O), 금(Au), 비스무트(Bi) 등이 사용될 수 있으며, 이에 한정되는 것은 아니다.
양자점 발광층(150)은 전술한 실시예들과 마찬가지로, 양자점 발광층(150)을 가로지르는 방향이 비극성이 되는 결정구조를 갖는 양자점(152)들을 포함한다.
p형 그래핀층(470)의 상면에는 제1전극(281)이, n형 그래핀층(430)의 하면에는 제2전극(282)이 형성된다. 제2전극(282)은 메탈 소재의 반사전극으로 구성될 수 있다. 제2전극(282)의 위치는 기판(210)의 하면으로 변형될 수 있다.
도 7은 본 발명의 또 다른 실시예에 따른 양자점 발광소자(500)의 개략적인 구조를 보인다. 본 실시예는 전극 구조에 있어서 도 6의 실시예와 차이가 있다. 메사형 구조로서, p형 그래핀층(470) 상면에 제1전극(281)이 형성되고, n형 그래핀층(430) 상면에 제2전극(283)이 형성된다. 기판(210)의 하면에 반사층(290)이 더 형성될 수 있다.
상술한 발광소자(200, 300, 400, 500)들은 발광층에 비극성 양자점을 채용, 및/또는 전자수송층, 정공수송층으로서, 도핑된 그래핀을 채용한 것으로, 예시적인 구조를 설명한 것이며, 이로부터 다양한 변형이 가능하다.
예를 들어, 레이저 다이오드 방식으로서, 전자수송층, 정공수송층의 양 측에 브래그반사층을 더 도입하여, 소정 공진조건을 만족하는 특정 파장을 증폭 출사하는 구조로 적용될 수 있다.
또한, 발광소자가 적용되는 용도에 따라 기판이나 전극 구조가 변경될 수 있으며, 예시된 수직형, 수평형 외에, 수직-수평 구조가 사용될 수 있다.
또한, 박막 품질의 개선이나 발광 효율 향상을 위해 전자수송층, 정공수송층의 재질 변경, 기타 다른 버퍼층의 도입, 그래핀층의 형성에 필요한 버퍼층 도입이 가능할 것이다.
또한, 발광층에서 생성된 광이 외부로 출사되는 효율을 높이기 위한 다양한 형상의 출사패턴 등을 함께 적용하는 것이 가능할 것이다.
이러한 본원 발명인 양자점 발광소자는 이해를 돕기 위하여 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.

Claims (14)

  1. 전자수송층;
    상기 전자수송층 위에 형성된 것으로, 다수의 양자점을 포함하는 양자점 발광층;
    상기 양자점 발광층 위에 형성된 정공수송층;을 포함하며,
    상기 다수의 양자점은 상기 양자점 발광층을 가로지르는 방향이 비극성이 되는 결정구조를 갖는 것을 특징으로 하는 발광 소자.
  2. 제1항에 있어서,
    상기 전자수송층은 n형 도펀트가 도핑된 그래핀층으로 이루어지는 발광 소자.
  3. 제2항에 있어서,
    상기 그래핀층은 하나 또는 복수의 그래핀 시트를 포함하는 발광 소자.
  4. 제1항에 있어서,
    상기 전자수송층은
    상기 전자수송층은 TiO2, ZrO2, HfO2 등의 금속 산화물, Si3N4을 포함하는 무기물 또는 n형 반도체 중 어느 하나를 포함하여 이루어지는 발광 소자
  5. 제1항에 있어서,
    상기 정공수송층은 p형 도펀트가 도핑된 그래핀층으로 이루어지는 발광 소자.
  6. 제5항에 있어서,
    상기 그래핀층은 하나 또는 복수의 그래핀 시트를 포함하는 발광 소자.
  7. 제1항에 있어서,
    상기 정공수송층은 PEDOT, PSS, PPV, PVK 등의 전도성 고분자 또는 p형 반도체 중 어느 하나를 포함하여 이루어지는 발광 소자.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 양자점은 Si계 나노결정, II-VI족계 화합물 반도체 나노결정, III-V족계 화합물 반도체 나노결정, IV-VI족계 화합물 반도체 나노결정 및 이들의 혼합물 중 어느 하나의 나노 결정을 포함하여 이루어지는 발광 소자.
  9. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 전자수송층 및 정공수송층 각각의 일측에는 전자, 정공 주입을 위한 제1전극 및 제2전극이 형성되는 발광 소자.
  10. 제9항에 있어서,
    상기 제1전극 및 제2전극은 수직형 배치로 형성되는 발광 소자.
  11. 제10항에 있어서,
    상기 제1전극 및 제2전극 중 어느 하나는 상기 양자점 발광층에서 생성된 광이 일방향으로 출사되게 반사하는 반사전극으로 구성되는 발광 소자.
  12. 제9항에 있어서,
    상기 제1전극 및 제2전극은 메사형 배치로 형성되는 발광 소자.
  13. 제12항에 있어서,
    비극성면 사파이어 기판을 더 포함하며,
    상기 전자수송층, 양자점 발광층, 정공수송층이 비극성면에 순차 성장된 발광 소자.
  14. 제12항에 있어서,
    상기 전자수송층 및 전공수송층의 어느 하나의 일면의 일측에는
    상기 양자점 발광층에서 생성된 광이 일방향으로 출사되도록 반사하는 반사층이 더 구비된 발광 소자.
KR1020100091105A 2010-09-16 2010-09-16 양자점 발광소자 KR20120029174A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100091105A KR20120029174A (ko) 2010-09-16 2010-09-16 양자점 발광소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100091105A KR20120029174A (ko) 2010-09-16 2010-09-16 양자점 발광소자

Publications (1)

Publication Number Publication Date
KR20120029174A true KR20120029174A (ko) 2012-03-26

Family

ID=46133713

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100091105A KR20120029174A (ko) 2010-09-16 2010-09-16 양자점 발광소자

Country Status (1)

Country Link
KR (1) KR20120029174A (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328476B1 (ko) * 2012-08-20 2013-11-13 포항공과대학교 산학협력단 유기발광다이오드의 제조방법
KR20150144616A (ko) * 2014-06-17 2015-12-28 삼성전자주식회사 그래핀과 양자점을 포함하는 전자 소자
KR20160093429A (ko) * 2015-01-29 2016-08-08 홍익대학교 산학협력단 황색 및 청색 양자점 이중층을 포함하는 백색 전기 발광 소자 및 그 제조방법
KR20220006333A (ko) * 2020-07-08 2022-01-17 한국과학기술연구원 질화붕소 나노튜브와 유무기 페로브스카이트를 포함하는 복합소재, 및 이를 응용한 전자 소자

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328476B1 (ko) * 2012-08-20 2013-11-13 포항공과대학교 산학협력단 유기발광다이오드의 제조방법
KR20150144616A (ko) * 2014-06-17 2015-12-28 삼성전자주식회사 그래핀과 양자점을 포함하는 전자 소자
CN105280710A (zh) * 2014-06-17 2016-01-27 三星电子株式会社 包括石墨烯和量子点的电子装置
CN105280710B (zh) * 2014-06-17 2020-09-01 三星电子株式会社 包括石墨烯和量子点的电子装置
KR20160093429A (ko) * 2015-01-29 2016-08-08 홍익대학교 산학협력단 황색 및 청색 양자점 이중층을 포함하는 백색 전기 발광 소자 및 그 제조방법
KR20220006333A (ko) * 2020-07-08 2022-01-17 한국과학기술연구원 질화붕소 나노튜브와 유무기 페로브스카이트를 포함하는 복합소재, 및 이를 응용한 전자 소자

Similar Documents

Publication Publication Date Title
TWI436508B (zh) 半導體發光裝置
US8043942B2 (en) Method for producing core-shell nanowires, nanowires produced by the method and nanowire device comprising the nanowires
US9905790B2 (en) Optoelectronic device including quantum dot
US20190214376A1 (en) Display device
US10199593B2 (en) Display device and manufacturing method of the same
KR20120067158A (ko) 양자점 발광 소자
US20130146838A1 (en) Quantum dot device including different kinds of quantum dot layers
KR101689663B1 (ko) 그래핀을 이용한 양자점 발광소자
US8222056B2 (en) Manufacturing method of light-emitting diode
KR20120029174A (ko) 양자점 발광소자
KR20120059063A (ko) 양자점 발광 소자 및 그의 제조 방법
KR101710659B1 (ko) 그래핀 발광 소자 및 그 제조 방법
US11742462B2 (en) Display device and manufacturing method thereof
US11282987B2 (en) Display device and manufacturing method thereof
US8344395B2 (en) Light-emitting diode and manufacturing method thereof
KR101536995B1 (ko) 양자구조를 포함하는 나노구조체, 이의 제조방법 및 이를 포함하는 광자 방출 소자
KR20080095522A (ko) 유기전계발광장치 및 그 제조방법
KR101552122B1 (ko) 반도체 나노 결정 및 전도성 고분자가 함유된 투명 전극층을 포함하는 발광 소자
US20230329026A1 (en) Quantum dot, method of manufacturing quantum dot, optical member including quantum dot, and electronic apparatus including quantum dot
US20220199692A1 (en) Color filter structure and display device including the same
US20230378141A1 (en) Display device
KR20210157949A (ko) 표시 장치

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid