KR20120005683A - Method for preparing branched nanowires - Google Patents

Method for preparing branched nanowires Download PDF

Info

Publication number
KR20120005683A
KR20120005683A KR1020100066257A KR20100066257A KR20120005683A KR 20120005683 A KR20120005683 A KR 20120005683A KR 1020100066257 A KR1020100066257 A KR 1020100066257A KR 20100066257 A KR20100066257 A KR 20100066257A KR 20120005683 A KR20120005683 A KR 20120005683A
Authority
KR
South Korea
Prior art keywords
branched
silicon
nanowires
nanowire
hydrogen
Prior art date
Application number
KR1020100066257A
Other languages
Korean (ko)
Inventor
조만호
이우정
마진원
배정민
고대홍
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020100066257A priority Critical patent/KR20120005683A/en
Publication of KR20120005683A publication Critical patent/KR20120005683A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02653Vapour-liquid-solid growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PURPOSE: A method for manufacturing branched nano-wires is provided to maximize the surface area of the branched nano-wires through a single process by adjusting the ratio of silicon-based gas and hydrogen in the growing of nano-wires. CONSTITUTION: A method for manufacturing branched nano-wires includes the following: Nano-wires are grown based on a metal catalyst and a vapor-liquid-solid method. Source gas for growing the nano-wires contains silicon-based gas. Carrier gas contains hydrogen. The rate of the silicon-based gas and the hydrogen is 10-15:200-300sccm. The metal catalyst includes one or more selected form a group including Au, Ni, Fe, Ag, Pd, and Pd/Ni. The silicon-based gas includes one selected from a group including silane, SiCl_4, tris dimethylamino silane. The flux of total gas containing the silicon-based gas and the hydrogen is 4-6x10^-6m^3/s.

Description

브랜치드 나노와이어의 제조방법{METHOD FOR PREPARING BRANCHED NANOWIRES}Method for producing branched nanowires {METHOD FOR PREPARING BRANCHED NANOWIRES}

본 발명은 브랜치드 나노와이어의 제조방법에 관한 것으로서, 보다 구체적으로 극대화된 표면적을 제공할 수 있어서 태양전지 등의 소자의 효율을 향상시킬 수 있는 브랜치드 나노와이어의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a branched nanowire, and more particularly, to a method for manufacturing a branched nanowire, which can provide a maximized surface area and improve efficiency of a device such as a solar cell.

나노와이어는 직경이 나노미터 영역을 가지고, 길이가 직경에 비해 훨씬 큰 수백 나노미터, 마이크로미터 또는 밀리미터 단위를 갖는 선형 재료이다. 이러한 나노 와이어의 물성은 그들이 갖는 직경과 길이에 의존한다.Nanowires are linear materials with nanometer diameters in diameter, and hundreds of nanometers, micrometers, or millimeters in length, much larger than diameter. The physical properties of these nanowires depend on their diameter and length.

현재, 나노 입자(nano particle)에 대한 제조방법과 물성에 대한 연구는 상당히 활성화되어 있는 것에 비해, 나노와이어에 대한 보편적인 제조방법은 미비한 실정이다. 기존의 대표적인 방법은 예를 들어, 템플릿(template)을 이용하는 방법, 화학기상증착법(Chemical Vapor Deposition: CVD), 및 레이저 어블레이션법(Laser Ablation) 등이 있다.Currently, research on the manufacturing method and physical properties of nanoparticles (nano particles) is relatively active, while the general manufacturing method for nanowires is inadequate. Exemplary conventional methods include, for example, a method using a template, chemical vapor deposition (CVD), and laser ablation.

템플릿(template)을 이용하는 방법은 수 나노미터에서 수백 나노미터 단위의 공극을 만들고, 이 공극을 나노와이어의 틀로 이용하는 것이다. 예컨대, 알루미늄 전극을 산화시켜 표면을 알루미늄 산화물로 만들고, 이 산화물에 전기화학적 에칭으로 다공성 나노 공극들을 만든다. 이것을 금속 이온이 들어있는 용액에 담그고, 전기를 걸어주면 금속 이온들이 공극을 통해 알루미늄 전극 위에 쌓이게 되고, 결국 상기 공극들은 금속 이온으로 채워진다. 그 후 적당한 방법으로 상기 산화물을 제거시키면 금속 나노와이어만 남게 된다.The way to use a template is to create pores on the order of nanometers to hundreds of nanometers, and use these pores as a framework for nanowires. For example, the aluminum electrode is oxidized to make the surface an aluminum oxide, which is then electrochemically etched to create porous nanopores. Dipping this into a solution containing metal ions and applying electricity causes metal ions to accumulate on the aluminum electrode through the pores, which eventually fill the pores with metal ions. The oxide is then removed in a suitable way leaving only the metal nanowires.

그러나, 상기 방법은 실험실적 방법으로서 공정이 너무 복잡하고, 시간이 오래 걸려서 대량생산에 적합하지 않다는 문제점이 있다. 또한, 상기 나노와이어의 직경과 길이가 상기 공극의 크기 및 깊이에 의존하며, 현재의 기술로서는 수 나노미터 단위의 크기와 수백 마이크로미터에서 수 밀리미터 깊이를 갖는 공극을 만들기는 거의 불가능하기 때문에 수 나노미터의 직경을 가지며 길이가 긴 나노와이어를 만드는 것은 매우 곤란하다는 단점이 있다.However, this method has a problem that the process is too complicated and takes a long time to be suitable for mass production as a laboratory method. In addition, the diameter and length of the nanowires depend on the size and depth of the pores, and in the present technology it is almost impossible to make pores with dimensions in the order of several nanometers and depths from several hundred micrometers to several millimeters. The disadvantage is that it is very difficult to make long nanowires with a diameter of meters.

화학기상증착법(CVD)은 원하는 물질을 포함하고 있는 기체 상태의 원료 가스가 반응기 안으로 주입되면 열이나 플라즈마 등으로부터 에너지를 받게 되어 분해되는데, 이 때 원하는 물질이 기판 위에 도달하여 나노 단위의 튜브 또는 와이어를 형성하게 하는 방법이다. 상기 화학기상증착법은 반응실의 압력에 따라 LPCVD(저압화학기상증착), APCVD(상압화학기상증착), HPCVD(고압화학기상증착)으로 나뉘며, 플라즈마를 이용하여 비교적 저온에서도 나노튜브 등을 형성시킬 수 있도록 하는 PECVD(Plasma Enhanced Chemical Vapor Deposition) 등도 있다.Chemical Vapor Deposition (CVD) is a gaseous source gas containing a desired material is injected into the reactor receives the energy from heat or plasma, etc. When the desired material reaches the substrate and the nano-tubes or wires To form. The chemical vapor deposition method is divided into LPCVD (low pressure chemical vapor deposition), APCVD (high pressure chemical vapor deposition), HPCVD (high pressure chemical vapor deposition) according to the pressure of the reaction chamber, and can form nanotubes at a relatively low temperature using plasma. Plasma Enhanced Chemical Vapor Deposition (PECVD).

상기 방법을 개략적으로 설명하면, 탄소나노튜브의 경우 예컨대, 메탄 등의 탄화수소 가스를 원료가스로 하고, 유리 기판 상에 전이금속인 니켈, 코발트, 철 등을 나노 단위의 입자 상태로 분산시킨 후 나노튜브 또는 나노와이어를 형성시킨다. 따라서, 탄소나노튜브의 성장 이전에 전이금속 박막을 형성하는 공정이 따로 필요하다. 상기에서 사용되는 전이금속은 두 가지 역할을 하는데, 첫째 원료 가스를 분해시키는 촉매역할을 하며, 둘째 나노튜브 또는 나노와이어의 생성 모핵으로서의 역할을 한다. 실제 나노 물질 합성에서는 웨이퍼 상에 나노 물질이 합성되어 자라게 된다.In the case of carbon nanotubes, a hydrocarbon gas such as methane is used as a raw material gas, and nickel, cobalt, iron, and the like, which are transition metals, are dispersed in nanoparticles on a glass substrate. Form a tube or nanowire. Therefore, a process for forming a transition metal thin film before the growth of carbon nanotubes is required separately. The transition metal used in the above serves two roles, first as a catalyst to decompose the source gas, and second as a production nucleus of the nanotubes or nanowires. In actual nanomaterial synthesis, nanomaterials are synthesized and grown on a wafer.

레이저 어블레이션(laser ablation)법은 단층 탄소나노튜브와 반도체 나노 와이어를 합성하기 위한 방법으로, 다른 방법에 비하여 상당히 높은 순도의 나노 물질을 얻을 수 있으며, 정제가 용이하다는 장점이 있다. 상기 방법에 의하면, 우선 석영관 안쪽에 전이금속과 나노 물질의 합성을 위한 기본 벌크 물질을 일정비율로 섞어 만든 시편을 장착하고, 외부에서 레이저를 이용하여 상기 시편을 기화시켜 나노튜브 또는 나노와이어를 합성한다. 버퍼 기체로는 보통 아르곤을 사용하게 되는데 합성된 나노튜브 또는 나노와이어는 상기 버퍼 기체와 함께 이동하여 냉각된 수집기에 붙게 되거나 수집기 근처에 붙게 된다.Laser ablation is a method for synthesizing single-walled carbon nanotubes and semiconductor nanowires. The laser ablation method has a high purity and can be easily purified compared to other methods. According to the method, first, a specimen prepared by mixing a basic bulk material for synthesis of a transition metal and a nanomaterial in a predetermined ratio inside a quartz tube, and vaporizing the specimen using a laser from the outside to prepare nanotubes or nanowires Synthesize Argon is usually used as the buffer gas, and the synthesized nanotubes or nanowires move with the buffer gas to be attached to the cooled collector or near the collector.

한편, 상기와 같은 종래기술에 의해 제조된 나노와이어는 작은 크기로 인하여 미세 소자에 다양하게 응용될 수 있으며, 특정 방향에 따른 전자의 이동 특성이나 편광 현상을 나타내는 광학 특성을 이용할 수 있는 장점이 있다.On the other hand, the nanowires manufactured by the prior art as described above can be applied to various micro-devices due to their small size, and there is an advantage of using optical characteristics indicating the movement characteristics or polarization of electrons in a specific direction. .

기존의 단일 나노와이어가 FET(Field Effect Transistor) 등의 전자 소자나 센서, 광검출소자(photodetector) 등에 응용이 가능하지만 특히, 균일한 간격으로 밀도 있게 가지가 형성된 나노와이어를 제조하게 되면 다중 접촉점에 의한 소자 디자인의 다양성, 복잡한 구조로 새로운 기능이 부가된 소자의 구현이 가능하다.Conventional single nanowires can be applied to electronic devices such as field effect transistors (FETs), sensors, and photodetectors, but especially when fabricating nanowires with densely branched at uniform intervals, Diversity of device designs and complex structures enable the implementation of devices with new features.

그러나, 기존의 단일 나노와이어는 표면적이 작아서 태양전지 등의 소자의효율 향상과 관련하여 한계가 있으므로, 보다 극대화된 표면적을 제공할 수 있는 나노와이어에 대한 연구가 필요하다.However, since the conventional single nanowire has a small surface area and is limited in terms of improving the efficiency of devices such as solar cells, research on nanowires that can provide more maximized surface area is required.

본 발명은 극대화된 표면적을 제공함으로써 태양전지 등의 소자의 효율을 향상시킬 수 있는 브랜치드 나노와이어의 제조방법을 제공하고자 한다.The present invention is to provide a method for manufacturing a branched nanowire that can improve the efficiency of devices such as solar cells by providing a maximized surface area.

이에, 본 발명은Thus, the present invention

금속 촉매 및 VLS(vapor-liquid-solid) 방법을 이용하여 나노와이어를 성장시키는 단계를 포함하는 브랜치드 나노와이어의 제조방법으로서,A method for producing a branched nanowire comprising growing a nanowire using a metal catalyst and a vapor-liquid-solid (VLS) method,

상기 나노와이어의 성장을 위한 소스 기체는 실리콘계 기체를 포함하고, 운반 기체는 수소(H2)를 포함하며,The source gas for growth of the nanowires comprises a silicon-based gas, the carrier gas comprises hydrogen (H 2 ),

상기 실리콘계 기체 : 수소(H2)의 비율은 10 ~ 15 : 200 ~ 300sccm 인 것을 특징으로 하는 브랜치드 나노와이어의 제조방법을 제공한다.The silicon-based gas: the ratio of hydrogen (H 2 ) provides a method for producing a branched nanowire, characterized in that 10 ~ 15: 200 ~ 300sccm.

또한, 본 발명은 상기 브랜치드 나노와이어의 제조방법으로부터 제조되는 브랜치드 나노와이어를 제공한다.In addition, the present invention provides a branched nanowire prepared from the method for producing a branched nanowire.

또한, 본 발명은 상기 브랜치드 나노와이어를 포함하는 태양전지를 제공한다.The present invention also provides a solar cell comprising the branched nanowires.

본 발명에 따른 브랜치드 나노와이어의 제조방법은 나노와이어의 성장시 실리콘계 기체 : 수소(H2)의 비율을 10 ~ 15 : 200 ~ 300sccm 으로 조절함으로써, 브랜치드 나노와이어를 제조할 수 있고, 특히 종래의 브랜치드 나노와이어의 제조방법은 단일 나노와이어를 성장시킨 후 단일 나노와이어의 표면에 별도로 Au 클러스터(cluster)를 형성시키고 브랜치드 나노와이어를 성장시키는 2단계의 공정을 거쳐야 했었으나, 본 발명은 단일 공정으로써 브랜치드 나노와이어를 제조할 수 있다. 본 발명에 따라 제조되는 브랜치드 나노와이어는 극대화된 표면적을 제공할 수 있으므로, 태양전지 등의 소자의 효율을 향상시킬 수 있는 장점이 있다.In the method for producing a branched nanowire according to the present invention, a branched nanowire may be prepared by controlling a ratio of silicon-based gas: hydrogen (H 2 ) to 10 to 15: 200 to 300 sccm during growth of the nanowire, and in particular, The conventional method for manufacturing a branched nanowire had to go through a two-step process of growing Au nano clusters on the surface of a single nanowire after growing a single nanowire, and growing a branched nanowire. Branched nanowires can be prepared in a single process. Since the branched nanowires manufactured according to the present invention can provide a maximized surface area, there is an advantage of improving the efficiency of devices such as solar cells.

도 1 및 도 2는 각각 종래의 단일 나노와이어를 포함하는 태양전지를 개략적으로 나타낸 도이다.
도 3은 본 발명에 따른 브랜치드 나노와이어의 제조방법의 VLS(vapor-liquid-solid) 방법을 개략적으로 나타낸 도이다.
도 4는 본 발명에 따른 브랜치드 나노와이어의 제조방법의 일구체예를 나타낸 도이다.
도 5는 본 발명에 따른 브랜치드 나노와이어의 제조방법의 일구체예로서, 실란(SiH4)과 수소(H2)의 함량에 따른 상관관계를 나타낸 도이다.
도 6 및 도 7은 각각 본 발명에 따라 제조된 브랜치드 나노와이어의 일구체예를 나타낸 도이다.
1 and 2 are schematic diagrams of solar cells each including a conventional single nanowire.
3 is a view schematically showing a vapor-liquid-solid (VLS) method of manufacturing a branched nanowire according to the present invention.
Figure 4 is a view showing one embodiment of a method for producing a branched nanowire according to the present invention.
5 is a view showing a correlation according to the content of silane (SiH 4 ) and hydrogen (H 2 ) as one embodiment of a method for manufacturing a branched nanowire according to the present invention.
6 and 7 are diagrams each showing one embodiment of a branched nanowire manufactured according to the present invention.

이하, 본 발명을 보다 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 브랜치드 나노와이어의 제조방법은 금속 촉매 및 VLS(vapor-liquid-solid) 방법을 이용하여 나노와이어를 성장시키는 단계를 포함하고, 상기 나노와이어의 성장을 위한 소스 기체는 실리콘계 기체를 포함하며, 운반 기체는 수소(H2)를 포함하고, 상기 실리콘계 기체 : 수소(H2)의 비율은 10 ~ 15 : 200 ~ 300sccm 인 것을 특징으로 한다.Method for producing a branched nanowire according to the present invention includes the step of growing a nanowire using a metal catalyst and vapor-liquid-solid (VLS) method, the source gas for the growth of the nanowire is a silicon-based gas The carrier gas includes hydrogen (H 2 ), and the ratio of the silicon-based gas: hydrogen (H 2 ) is 10 to 15: 200 to 300 sccm.

본 발명에 따른 브랜치드 나노와이어의 제조방법에 있어서, 상기 금속 촉매는 와이어를 성장시킬 수 있는 금속 촉매이면 모두 사용할 수 있다. 구체적으로 Au, Ni, Fe, Ag, Pd, Pd/Ni 등을 예로 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 금속 촉매는 나노 입자, 또는 박막 형태로 기판에 코팅될 수 있으며, 상기 기판 위에 코팅되는 금속 촉매 코팅층의 두께는 50nm 이하인 것이 바람직하다.In the method for producing a branched nanowire according to the present invention, any of the metal catalysts can be used as long as the metal catalyst can grow a wire. Specifically, Au, Ni, Fe, Ag, Pd, Pd / Ni and the like, for example, but is not limited thereto. The metal catalyst may be coated on a substrate in the form of nanoparticles or a thin film, and the thickness of the metal catalyst coating layer coated on the substrate is preferably 50 nm or less.

상기 금속 촉매를 기판에 코팅하는 방법으로는 본 발명의 목적을 저해하지 않는 한 특별히 제한되지 않고, 당 기술분야에서 통상적으로 사용되는 코팅방법, 예를 들어 화학 기상 증착법(CVD), 스퍼터링(sputtering), e-빔 증착(e-beam evaporation), 진공증착법, 스핀 코팅(spin coating), 딥핑(dipping) 방법 등으로 수행될 수 있다.The method of coating the metal catalyst on the substrate is not particularly limited as long as the object of the present invention is not impaired, and coating methods commonly used in the art, for example, chemical vapor deposition (CVD) and sputtering , e-beam evaporation, vacuum deposition, spin coating, dipping, or the like.

본 발명에 따른 브랜치드 나노와이어의 제조방법에 있어서, 상기 VLS(vapor-liquid-solid) 방법은 하기 도 3에 기재한 바와 같이 고온의 반응로(furnace) 내부에서 운송되는 증기상 실리콘 함유 기체가 금, 코발트, 니켈 등의 용융 금속 촉매의 표면상에서 응축되어 결정화함으로써 실리콘 나노와이어로 성장되는 방법을 말한다.In the method for producing a branched nanowire according to the present invention, the vapor-liquid-solid (VLS) method is a vapor phase silicon-containing gas transported inside a high temperature furnace (furnace) as shown in FIG. It refers to a method of growing into silicon nanowires by condensation and crystallization on the surface of molten metal catalysts such as gold, cobalt, nickel and the like.

본 발명에 따른 브랜치드 나노와이어의 제조방법에 있어서, 금속 촉매 및 VLS(vapor-liquid-solid) 방법을 이용한 나노와이어의 성장시 소스 기체는 실리콘계 기체를 포함하고, 운반 기체는 수소(H2)를 포함하며, 상기 실리콘계 기체 : 수소(H2)의 비율은 10 ~ 15 : 200 ~ 300sccm 인 것을 특징으로 한다. 보다 구체적으로, 상기 실리콘계 기체 : 수소(H2)의 비율은 10 : 300, 12 : 240, 15 : 300sccm 등일 수 있으나, 이에만 한정되는 것은 아니다.In the method for producing a branched nanowire according to the present invention, the source gas during the growth of the nanowires using a metal catalyst and vapor-liquid-solid (VLS) method, the silicon gas, the carrier gas is hydrogen (H 2 ) It includes, the ratio of the silicon-based gas: hydrogen (H 2 ) is characterized in that 10 to 15: 200 to 300sccm. More specifically, the ratio of the silicon-based gas: hydrogen (H 2 ) may be 10: 300, 12: 240, 15: 300sccm, and the like, but is not limited thereto.

상기 실리콘계 기체로는 실란(SiH4), SiCl4, 트리스 디메틸아미노실란(TDMAS; Tris DimethylAmino Silane), 이들의 혼합물 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Examples of the silicon-based gas include silane (SiH 4 ), SiCl 4 , tris dimethylaminosilane (TDMAS), and mixtures thereof, but are not limited thereto.

또한, 상기 실리콘계 기체 및 수소(H2)를 포함하는 총기체의 유량(total Flow rate)은 4 ~ 6 × 10-6 m3/s 인 것이 바람직하고, 4.5 ~ 5.5 × 10-6 m3/s 인 것이 보다 바람직하나, 이에만 한정되는 것은 아니다. In addition, the total flow rate of the total gas containing the silicon-based gas and hydrogen (H 2 ) is preferably 4 ~ 6 × 10 -6 m 3 / s, 4.5 ~ 5.5 × 10 -6 m 3 / It is more preferable that it is s, but it is not limited to this.

또한, 상기 실리콘계 기체 및 수소(H2)의 총압력은 2torr 이고, 상기 수소 기체의 부분압력은 1.9torr 이상인 경우 브랜치드 나노와이어 성장이 유리하나, 이에만 한정되는 것은 아니다.In addition, when the total pressure of the silicon-based gas and hydrogen (H 2 ) is 2torr, and the partial pressure of the hydrogen gas is 1.9torr or more, branched nanowire growth is advantageous, but is not limited thereto.

또한, 본 발명은 상기 브랜치드 나노와이어의 제조방법으로부터 제조되는 브랜치드 나노와이어를 제공한다. 이는 기존의 2-step 공정에서 극대화된 수소와 실리콘계 가스의 유량 차이를 이용한 1-step 공정이라는 장점이 있다.In addition, the present invention provides a branched nanowire prepared from the method for producing a branched nanowire. This has the advantage of being a one-step process using the flow rate difference between hydrogen and silicon gas maximized in the existing two-step process.

또한, 본 발명은 상기 브랜치드 나노와이어를 포함하는 태양전지를 제공한다. 또한, 이 때 형성된 브랜치드 나노와이어는 실리콘계를 포함할 수 있고, 그 외의 와이어인 게르마늄 브랜치드 나노와이어(Ge branched Nanowires), 실리콘게르마늄 브랜치드 나노와이어(SiGe branched nanowires)를 추가로 포함할 수 있으며, 광대역 흡수가 가능하여 효율이 향상된 태양전지를 제공할 수 있을 것이다.The present invention also provides a solar cell comprising the branched nanowires. In addition, the branched nanowires formed at this time may include silicon-based, and may further include other wires, such as german branched nanowires, and silicon germanium branched nanowires. In addition, broadband absorption may provide a solar cell having improved efficiency.

상기 게르마늄 브랜치드 나노와이어(Ge branched Nanowires), 실리콘게르마늄 브랜치드 나노와이어(SiGe branched nanowires) 등은 본 발명에 따라 생성된 브랜치드 나노와이어의 표면에 존재하는 촉매에 공정가스를 추가적으로 흘려주어 형성할 수 있다.The germanium branched nanowires, silicon germanium branched nanowires, and the like may be formed by additionally flowing a process gas to a catalyst present on the surface of the branched nanowires produced according to the present invention. Can be.

본 발명에 따른 브랜치드 나노와이어의 제조방법은 나노와이어의 성장시 실리콘계 기체 : 수소(H2)의 비율을 10 ~ 15 : 200 ~ 300sccm 으로 조절함으로써, 브랜치드 나노와이어를 제조할 수 있고, 특히 종래의 브랜치드 나노와이어의 제조방법은 단일 나노와이어를 성장시킨 후 단일 나노와이어의 표면에 별도로 Au 클러스터(cluster)를 형성시키고 브랜치드 나노와이어를 성장시키는 2단계의 공정을 거쳐야 했었으나, 본 발명은 단일 공정으로써 브랜치드 나노와이어를 제조할 수 있다. 본 발명에 따라 제조되는 브랜치드 나노와이어는 극대화된 표면적을 제공할 수 있으므로, 태양전지 등의 소자의 효율을 향상시킬 수 있는 장점이 있다.In the method for producing a branched nanowire according to the present invention, a branched nanowire may be prepared by controlling a ratio of silicon-based gas: hydrogen (H 2 ) to 10 to 15: 200 to 300 sccm during growth of the nanowire, and in particular, The conventional method for manufacturing a branched nanowire had to go through a two-step process of growing Au nano clusters on the surface of a single nanowire after growing a single nanowire, and growing a branched nanowire. Branched nanowires can be prepared in a single process. Since the branched nanowires manufactured according to the present invention can provide a maximized surface area, there is an advantage of improving the efficiency of devices such as solar cells.

이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, these examples are intended to illustrate the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited thereby.

<< 실시예Example >>

UHV-CVD(ultrahigh vacuum chemical vapor deposition)을 이용한 VLS(vapor-liquid-solid) 방법을 이용하여 실리콘 나노와이어를 제조하였다.Silicon nanowires were prepared using a vapor-liquid-solid (VLS) method using ultrahigh vacuum chemical vapor deposition (UHV-CVD).

실리콘 기판 상에 3nm 두께의 Au 필름을 촉매로서 2 × 10-6 torr의 압력하에서 0.1 Å/sec의 속도로 증착시켰다. 1 × 10-8 torr의 압력 및 500℃의 온도로 5분 동안 열처리를 수행하여 실리콘 기판 상의 Au 필름으로부터 Au-Si 합금 droplets를 형성하였다. 그 이후에, 2torr 및 500℃의 조건하에서 SiH4 및 H2를 이용하여 나노와이어를 성장시켰다. 이 때, 상기 SiH4의 유량은 10sccm으로 고정하였고, H2의 유량은 각각 50, 70, 100, 200 및 300sccm 으로 달리하면서 나노와이어를 성장시켰다.A 3 nm thick Au film was deposited on a silicon substrate at a rate of 0.1 μs / sec under a pressure of 2 × 10 −6 torr as a catalyst. The heat treatment was performed for 5 minutes at a pressure of 1 × 10 −8 torr and a temperature of 500 ° C. to form Au-Si alloy droplets from the Au film on the silicon substrate. Thereafter, nanowires were grown using SiH 4 and H 2 under conditions of 2torr and 500 ° C. At this time, the flow rate of the SiH 4 was fixed at 10 sccm, the flow rate of H 2 was grown to 50, 70, 100, 200 and 300 sccm, respectively, nanowires were grown.

상기 실시예에 따라 제조된 브랜치드 나노와이어의 실란(SiH4)과 수소(H2)의 함량에 따른 상관관계를 하기 도 5에 나타내었다. 또한, 상기 실시예에 따라 제조된 브랜치드 나노와이어의 전자사진을 하기 도 6 및 도 7에 나타내었다.The correlation according to the content of silane (SiH 4 ) and hydrogen (H 2 ) of the branched nanowires prepared according to the above embodiment is shown in FIG. 5. In addition, the electrophotograph of the branched nanowires prepared according to the embodiment is shown in Figure 6 and 7 below.

상기와 같이, 본 발명에 따른 브랜치드 나노와이어의 제조방법은 나노와이어의 성장시 실리콘계 기체 : 수소(H2)의 비율을 10 ~ 15 : 200 ~ 300sccm 으로 조절함으로써, 브랜치드 나노와이어를 제조할 수 있고, 특히 종래의 브랜치드 나노와이어의 제조방법은 단일 나노와이어를 성장시킨 후 단일 나노와이어의 표면에 별도로 Au 클러스터(cluster)를 형성시키고 브랜치드 나노와이어를 성장시키는 2단계의 공정을 거쳐야 했었으나, 본 발명은 단일 공정으로써 브랜치드 나노와이어를 제조할 수 있음을 알 수 있다. 또한. 본 발명에 따라 제조되는 브랜치드 나노와이어는 극대화된 표면적을 제공할 수 있으므로, 태양전지 등의 소자의 효율을 향상시킬 수 있다.As described above, the method for manufacturing a branched nanowire according to the present invention is to adjust the ratio of silicon-based gas: hydrogen (H 2 ) in the growth of the nanowire to 10 ~ 15: 200 ~ 300sccm, to produce a branched nanowire In particular, the conventional manufacturing method of the branched nanowires had to go through a two-step process of growing a single nanowire, forming Au clusters separately on the surface of the single nanowire, and growing the branched nanowires. It can be seen that the present invention can produce branched nanowires in a single process. Also. Since the branched nanowires manufactured according to the present invention can provide a maximized surface area, efficiency of devices such as solar cells can be improved.

Claims (8)

금속 촉매 및 VLS(vapor-liquid-solid) 방법을 이용하여 나노와이어를 성장시키는 단계를 포함하는 브랜치드 나노와이어의 제조방법으로서,
상기 나노와이어의 성장을 위한 소스 기체는 실리콘계 기체를 포함하고, 운반 기체는 수소(H2)를 포함하며,
상기 실리콘계 기체 : 수소(H2)의 비율은 10 ~ 15 : 200 ~ 300sccm 인 것을 특징으로 하는 브랜치드 나노와이어의 제조방법.
A method for producing a branched nanowire comprising growing a nanowire using a metal catalyst and a vapor-liquid-solid (VLS) method,
The source gas for growth of the nanowires comprises a silicon-based gas, the carrier gas comprises hydrogen (H 2 ),
The silicon-based gas: the ratio of hydrogen (H 2 ) is a method of producing a branched nanowire, characterized in that 10 to 15: 200 to 300sccm.
제1항에 있어서,
상기 금속 촉매는 Au, Ni, Fe, Ag, Pd 및 Pd/Ni로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 브랜치드 나노와이어의 제조방법.
The method of claim 1,
The metal catalyst is a method for producing a branched nanowire, characterized in that it comprises at least one selected from the group consisting of Au, Ni, Fe, Ag, Pd and Pd / Ni.
제1항에 있어서,
상기 실리콘계 기체는 실란(SiH4), SiCl4 및 트리스 디메틸아미노실란(TDMAS; Tris DimethylAmino Silane)으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 브랜치드 나노와이어의 제조방법.
The method of claim 1,
The silicon-based gas is silane (SiH 4 ), SiCl 4 and tris dimethylaminosilane (TDMAS; Tris DimethylAmino Silane) A method for producing a branched nanowire, characterized in that it comprises one or more selected from the group consisting of.
제1항에 있어서,
상기 실리콘계 기체 및 수소(H2)를 포함하는 총기체의 유량은 4 ~ 6 × 10-6 m3/s 인 것을 특징으로 하는 브랜치드 나노와이어의 제조방법.
The method of claim 1,
The flow rate of the total gas containing the silicon-based gas and hydrogen (H 2 ) is a method for producing a branched nanowire, characterized in that 4 ~ 6 × 10 -6 m 3 / s.
제1항에 있어서,
상기 실리콘계 기체 및 수소(H2)의 총압력은 2torr 이고, 상기 수소 기체의 부분압력은 1.9torr 이상인 것을 특징으로 하는 브랜치드 나노와이어의 제조방법.
The method of claim 1,
The total pressure of the silicon-based gas and hydrogen (H 2 ) is 2torr, the partial pressure of the hydrogen gas is 1.9torr or more method for producing a branched nanowire.
제1항 내지 제5항 중 어느 한 항의 브랜치드 나노와이어의 제조방법으로부터 제조되는 브랜치드 나노와이어.Branched nanowires prepared from the method for producing a branched nanowire of any one of claims 1 to 5. 제6항의 브랜치드 나노와이어를 포함하는 태양전지.The solar cell comprising the branched nanowires of claim 6. 제7항에 있어서,
상기 태양전지는 실리콘게르마늄 브랜치드 나노와이어(SiGe branched nanowires) 및 게르마늄 브랜치드 나노와이어(Ge branched nanowires)로 이루어진 군으로부터 선택되는 1종 이상을 추가로 포함하는 것을 특징으로 하는 태양전지.
The method of claim 7, wherein
The solar cell further comprises one or more selected from the group consisting of silicon germanium branched nanowires (SiGe branched nanowires) and germanium branched nanowires (Ge branched nanowires).
KR1020100066257A 2010-07-09 2010-07-09 Method for preparing branched nanowires KR20120005683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100066257A KR20120005683A (en) 2010-07-09 2010-07-09 Method for preparing branched nanowires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100066257A KR20120005683A (en) 2010-07-09 2010-07-09 Method for preparing branched nanowires

Publications (1)

Publication Number Publication Date
KR20120005683A true KR20120005683A (en) 2012-01-17

Family

ID=45611680

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100066257A KR20120005683A (en) 2010-07-09 2010-07-09 Method for preparing branched nanowires

Country Status (1)

Country Link
KR (1) KR20120005683A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161932A1 (en) 2011-05-23 2012-11-29 Carestream Health, Inc. Branched nanowire preparation methods, compositions, and articles
CN103030100A (en) * 2013-01-09 2013-04-10 华北电力大学 Method for preparing sub-wavelength silicon nano-wire array with antireflection characteristic
WO2014179340A2 (en) * 2013-04-29 2014-11-06 The University Of North Carolina At Chapel Hill Methods and systems for chemically encoding high-resolution shapes in silicon nanowires

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161932A1 (en) 2011-05-23 2012-11-29 Carestream Health, Inc. Branched nanowire preparation methods, compositions, and articles
US8741026B2 (en) 2011-05-23 2014-06-03 Carestream Health, Inc. Branched nanowire preparation methods, compositions, and articles
CN103030100A (en) * 2013-01-09 2013-04-10 华北电力大学 Method for preparing sub-wavelength silicon nano-wire array with antireflection characteristic
WO2014179340A2 (en) * 2013-04-29 2014-11-06 The University Of North Carolina At Chapel Hill Methods and systems for chemically encoding high-resolution shapes in silicon nanowires
WO2014179340A3 (en) * 2013-04-29 2014-12-24 The University Of North Carolina At Chapel Hill Methods and systems for chemically encoding high-resolution shapes in silicon nanowires

Similar Documents

Publication Publication Date Title
US7354871B2 (en) Nanowires comprising metal nanodots and method for producing the same
Yang et al. Templated synthesis of single-walled carbon nanotubes with specific structure
CN102358938B (en) Method for controllably synthesizing single-crystal WO2 and WO3 nanowire arrays with good field emission characteristics in low temperature and large area
KR101102098B1 (en) Method for Producing Branched Nanowire
Hejazi et al. The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism
US20100084628A1 (en) Branched nanowire and method for fabrication of the same
Kinoshita et al. Two step floating catalyst chemical vapor deposition including in situ fabrication of catalyst nanoparticles and carbon nanotube forest growth with low impurity level
KR101457562B1 (en) Silica nano wire comprising silicon nanodot and process for preparing the same
CN101891145A (en) Silicon nanowire preparation by gas-liquid-solid phase method
CN109850873B (en) Preparation method of single-walled carbon nanotube intramolecular junction
Li et al. Direct Synthesis of Graphene Dendrites on SiO 2/Si Substrates by Chemical Vapor Deposition
KR20120005683A (en) Method for preparing branched nanowires
KR101617953B1 (en) A method for manufacturing vertically aligned SnSe nanosheets via physical vapor deposition
CN101891198A (en) Solid-liquid-solid phase preparation method of Si nanowires
Wang et al. General in situ chemical etching synthesis of ZnO nanotips array
Kumar et al. On the growth mode of two-lobed curvilinear graphene domains at atmospheric pressure
KR20070072849A (en) Synthesis of a self assembled hybrid of ultrananocrystalline diamond and carbon nanotubes
Wang Synthesis and properties of germanium nanowires
Merchan-Merchan et al. Flame synthesis of zinc oxide nanocrystals
KR20160062810A (en) Method for preparing carbon nanotube and hybrid carbon nanotube composite
CN111112642B (en) Method for preparing germanium nanowires
Soam et al. A detailed study on the growth of silicon nanowires by hot wire chemical vapor process: concept of critical size of Sn catalyst
Liu et al. Fabrication of silicon nanowire on freestanding multiwalled carbon nanotubes by chemical vapor deposition
Jeon et al. Synthesis of gallium-catalyzed silicon nanowires by hydrogen radical-assisted deposition method
Zhuang et al. Boron-assisted growth of silica nanowire arrays and silica microflowers for bendable capacitor application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application