KR20110075220A - Thin film solar cell and fabricating method thereof - Google Patents

Thin film solar cell and fabricating method thereof Download PDF

Info

Publication number
KR20110075220A
KR20110075220A KR1020090131604A KR20090131604A KR20110075220A KR 20110075220 A KR20110075220 A KR 20110075220A KR 1020090131604 A KR1020090131604 A KR 1020090131604A KR 20090131604 A KR20090131604 A KR 20090131604A KR 20110075220 A KR20110075220 A KR 20110075220A
Authority
KR
South Korea
Prior art keywords
solar cell
thin film
layer
film solar
zno
Prior art date
Application number
KR1020090131604A
Other languages
Korean (ko)
Other versions
KR101056132B1 (en
Inventor
우성호
김강필
김대환
강진규
이동하
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR1020090131604A priority Critical patent/KR101056132B1/en
Publication of KR20110075220A publication Critical patent/KR20110075220A/en
Application granted granted Critical
Publication of KR101056132B1 publication Critical patent/KR101056132B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A thin film type solar cell and a manufacturing method thereof are provided to form an aligned nano structure complex which is substantially and vertically aligned with respect to a light-transmitting electrode layer. CONSTITUTION: A CIGS absorbing layer is formed on a substrate by performing a solution process(S1). A buffer layer is formed on the CIGS absorbing layer by performing a chemical solution deposition process(S2,S3). A seed layer of a metal oxide is formed on the buffer layer by performing the solution process(S4). A nano-rod is grown. The nano-rod is dipped into a precursor solution of metal nano particles so as to attach the metal nano particles and to perform a thermal process(S5,S6).

Description

박막형 태양전지 및 그 제조방법{Thin film solar cell and fabricating method thereof}Thin film solar cell and its manufacturing method {Thin film solar cell and fabricating method

본 명세서에 개시된 기술은 박막형 태양전지 및 그 제조방법에 관한 것으로, 광변환 효율이 크게 향상된 박막형 태양전지 및 이를 저비용으로 생산할 수 있는 제조방법에 관한 것이다.The technology disclosed herein relates to a thin film solar cell and a method of manufacturing the same, and a thin film solar cell having a greatly improved light conversion efficiency and a manufacturing method capable of producing the same at low cost.

최근 치솟는 유가 상승과 화석에너지의 고갈로 인해 신재생에너지에 대한 관심이 높아지고 있는데 그 중에서도 태양에너지를 이용한 태양전지에 대한 연구가 활발히 진행되고 있다. 태양전지는 광기전력 효과(Photovoltaic Effect)를 이용하여 빛 에너지를 전기 에너지로 변환시키는 장치로서, 그 구성 물질에 따라서 실리콘 태양전지, 박막 태양전지, 염료감응 태양전지 및 유기고분자 태양전지 등으로 구분된다. 태양전지 중에서도 CIGS 태양전지는 실리콘 태양전지에 비해 높은 광변환효율을 나타내어 차세대 박막태양전지로 각광받고 있다. 현재 이러한 CIGS 태양전지의 광변환효율을 향상시키기 위하여 재료조성 및 구조에 관한 여러 가지 연구가 활발히 진행되고 있다.Recently, interest in renewable energy is increasing due to soaring oil prices and depletion of fossil energy. Among them, research on solar cells using solar energy is being actively conducted. The solar cell is a device that converts light energy into electrical energy by using the photovoltaic effect, and is classified into silicon solar cell, thin film solar cell, dye-sensitized solar cell, and organic polymer solar cell according to its material. . Among the solar cells, CIGS solar cell shows high light conversion efficiency compared to silicon solar cell and is attracting attention as the next generation thin film solar cell. At present, various studies on material composition and structure are actively conducted to improve the light conversion efficiency of CIGS solar cells.

일 실시예에 따르면, 투광성 전극층, 및 상기 투광성 전극층 위에 배치되며 상기 투광성 전극층에 대해 실질적으로 수직하게 정렬된 나노구조물 복합체들을 포함하되, 상기 나노구조물 복합체는 나노로드 및 상기 나노로드 주위에 결합된 금속 나노입자들을 포함하는 박막형 태양전지가 제공된다.According to one embodiment, a light transmissive electrode layer and nanostructure complexes disposed on the light transmissive electrode layer and aligned substantially perpendicular to the light transmissive electrode layer, wherein the nanostructure complex is a nanorod and a metal bonded around the nanorod. A thin film solar cell including nanoparticles is provided.

다른 실시예에 따르면, 기판 위에 용액공정으로 CIGS 흡수층을 형성하는 단계, 상기 CIGS 흡수층 위에 화학적인 용액증착으로 버퍼층을 형성하고 열처리하는 단계, 상기 버퍼층 위에 용액공정으로 금속 산화물의 씨드 층을 형성하고 나노로드를 성장시키는 단계, 및 금속 나노입자들의 전구체 용액에 상기 나노로드를 담그어 산화환원 반응을 일으켜 상기 나노로드 주위에 상기 금속 나노입자들을 부착시키고 열처리하는 단계를 포함하는 박막형 태양전지의 제조방법이 제공된다.According to another embodiment, forming a CIGS absorber layer by a solution process on a substrate, forming a buffer layer by chemical solution deposition on the CIGS absorber layer and heat treatment, forming a seed layer of a metal oxide by a solution process on the buffer layer and nano A method of manufacturing a thin film solar cell includes growing a rod, and immersing the nanorod in a precursor solution of metal nanoparticles to cause a redox reaction to attach and heat-treat the metal nanoparticles around the nanorod. do.

이하, 도면을 참조하여 본 개시의 실시예들에 대해 상세히 설명하고자 한다. 다음에 소개되는 실시예들은 당업자에게 개시된 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되어지는 것이다. 따라서 개시된 기술은 이하 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 요소가 다른 요소 “위에”있다고 할 때, 이는 상기 일 요소가 다른 요소 “바로 위에”있는 경우 뿐 아니라, 그 중간에 또 다른 요소가 있는 경우도 포함한다.Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. The following embodiments are provided as examples to ensure that the spirit disclosed by the skilled person is fully conveyed. Thus, the disclosed technology is not limited to the embodiments described below and may be embodied in other forms. In the drawings, the width, length, thickness, etc. of the components may be exaggerated for convenience. Like numbers refer to like elements throughout. As explained in the drawing as a whole, it is explained from an observer's point of view that, when one element is "on" another element, this includes not only the case where the element is "right on" another element, but also when there is another element in the middle. .

도 1은 본 개시의 일 실시예에 따른 CIGS 박막형 태양전지를 나타낸다.1 illustrates a CIGS thin film solar cell according to an embodiment of the present disclosure.

도 1을 참조하면, CIGS 박막형 태양전지(100)는 기판(101), p측 전극(102), 광흡수층(103), 버퍼층(104), 윈도우층(105), n측 전극(106) 및 나노구조물 복합체들의 층(107)이 순서대로 적층되어 있다.Referring to FIG. 1, the CIGS thin film solar cell 100 includes a substrate 101, a p-side electrode 102, a light absorption layer 103, a buffer layer 104, a window layer 105, an n-side electrode 106, and Layers 107 of nanostructured composites are stacked in order.

기판(101)으로서, 유리, 스테인레스 스틸 호일, 티타늄 호일, 폴리이미드 등의 다양한 재질의 기판이 사용될 수 있다.As the substrate 101, a substrate of various materials such as glass, stainless steel foil, titanium foil, polyimide, or the like may be used.

p측 전극(102)으로서, Mo, Cr, Cu, 투명 전도성 산화물(ITO, ZnO, SnO2 등)과 같은 재질의 전극이 사용될 수 있다.As the p-side electrode 102, an electrode made of a material such as Mo, Cr, Cu, or a transparent conductive oxide (ITO, ZnO, SnO 2, etc.) may be used.

광흡수층(103)으로서, CIGS, 즉 구리, 인듐, 갈륨, 셀레늄으로 이루어진 CuInGaSe2 형태의 4원소 화합물 반도체가 사용된다.As the light absorption layer 103, a four-element compound semiconductor in the form of CuInGaSe 2 composed of CIGS, ie, copper, indium, gallium, and selenium, is used.

버퍼층(104)은 하부의 광흡수층과 윈도우층간의 밴드갭 에너지 차를 완화하고 격자상수 차이를 완화할 수 있으며, CdS, ZnS, ZnSe 등이 사용될 수 있다.The buffer layer 104 may alleviate the band gap energy difference between the light absorbing layer and the window layer below and alleviate the lattice constant difference, and CdS, ZnS, ZnSe, or the like may be used.

윈도우층(105)으로는 주로 금속 산화물, 예를 들어 도핑되지 않은 ZnO가 사용될 수 있다.As the window layer 105, mainly a metal oxide, for example, undoped ZnO, may be used.

n측 전극(106)으로는 Al, B, Ga, In 과 같은 불순물로 도핑된 ZnO층, ITO층, F 도핑된 SnO2층 등이 사용될 수 있다.As the n-side electrode 106, a ZnO layer doped with impurities such as Al, B, Ga, In, an ITO layer, or an F-doped SnO 2 layer may be used.

CIGS 박막형 태양전지(100)는 상술한 기판(101), p측 전극(102), 광흡수층(103), 버퍼층(104), 윈도우층(105), n측 전극(106) 순으로 적층된 구조를 갖는 종래의 CIGS 박막형 태양전지 구조 상부에 나노구조물 복합체들의 층(107)이 더 적층된 것이다.The CIGS thin film solar cell 100 has a structure in which the substrate 101, the p-side electrode 102, the light absorption layer 103, the buffer layer 104, the window layer 105, and the n-side electrode 106 are stacked in this order. A layer 107 of nanostructure composites is further stacked on top of a conventional CIGS thin film solar cell structure having a.

나노구조물 복합체들의 층(107)을 구성하는 나노구조물 복합체 각각은 나노로드(107a)와 나노로드(107a) 주위에 결합된 금속 나노입자들(107b)을 포함할 수 있다. 상기 나노구조물 복합체들은 n측 전극(106) 위에 실질적으로 수직하게 정렬되어 있다. 실질적으로 수직하게 정렬되어 있음은 나노로드(107a)의 길이방향이 n측 전극(106)의 표면에 대해 랜덤하게 배치되지 않고 대체로 90도에 가깝게 서 있는 것을 의미한다. 나노로드(107a)는 ZnO, AZO(Al doped ZnO), IZO(In doped ZnO), BZO(B doped ZnO), GZO(Ga doped ZnO) 등이 될 수 있다. 금속 나노입자(107b)로는 Au, Ag, Pt, Pd, Al, Ni, Ti, Cr, Mo 등이 사용될 수 있다. 바람직하게는 금속 나노입자(107b)로는 일반 금속과 달리 산화가 잘 되지 않는 귀금속 입자, 예를 들어 Au, Ag, Pt, Pd 등이 사용될 수 있다.Each of the nanostructure composites constituting the layer 107 of nanostructure composites may include a nanorod 107a and metal nanoparticles 107b coupled around the nanorod 107a. The nanostructure composites are aligned substantially vertically on the n-side electrode 106. Substantially vertically aligned means that the longitudinal direction of the nanorods 107a stands at approximately 90 degrees rather than being randomly disposed with respect to the surface of the n-side electrode 106. The nanorods 107a may be ZnO, Al doped ZnO (AZO), In doped ZnO (IZO), B doped ZnO (BZO), Ga doped ZnO (GZO), or the like. Au, Ag, Pt, Pd, Al, Ni, Ti, Cr, Mo, or the like may be used as the metal nanoparticles 107b. Preferably, as the metal nanoparticles 107b, unlike normal metals, noble metal particles, such as Au, Ag, Pt, and Pd, which are not easily oxidized, may be used.

상기와 같이, 나노로드(107a)와 금속 나노입자(107b)의 복합체를 형성하여 나노구조물 복합체들의 층(107)을 CIGS 박막형 태양전지 구조 상부에 위치시키면, 금속 나노입자들(107b)의 자유전자에 의한 분극(polarization)때문에 빛의 공명(resonance)이 발생하여 흡광도가 향상되는 표면 플라즈몬(plasmon) 효과가 발생할 수 있다. 또한, 나노로드(107a)의 표면 텍스쳐링(surface texturing) 효과에 의해 CIGS 박막형 태양전지 표면에서의 반사율이 감소할 수 있다. 결국, 태양광의 흡수율은 향상되고 반사율은 감소함으로써 결과적으로 광변환 효율이 크게 개선될 수 있다.As described above, when the nanorod 107a and the metal nanoparticle 107b are formed to form a layer 107 of the nanostructure composites on the CIGS thin film solar cell structure, the free electrons of the metal nanoparticles 107b are formed. Due to the polarization (polarization) due to the resonance of the light (resonance) may occur surface plasmon (plasmon) effect of improving the absorbance may occur. In addition, reflectance on the surface of the CIGS thin film solar cell may be reduced due to the surface texturing effect of the nanorods 107a. As a result, the absorption rate of the sunlight is improved and the reflectance is reduced, and as a result, the light conversion efficiency can be greatly improved.

나노로드(107a)와 금속 나노입자들(107b)의 복합체는 진공공정 뿐만 아니라 용액공정을 사용하여 제작가능하다. 나노로드(107a)를 용액공정으로 형성할 경우, 씨드층의 형성이 필요한데, 이러한 씨드층을 버퍼층 상부에 직접 용액공정으로 형성한다면 전용액 공정(all solution process)에 의한 저가격 CIGS 박막형 태양전지의 제작이 가능하다.The composite of the nanorod 107a and the metal nanoparticles 107b can be manufactured using a solution process as well as a vacuum process. When the nanorods 107a are formed by a solution process, a seed layer is required. If the seed layer is directly formed on the buffer layer by a solution process, a low-cost CIGS thin film solar cell is manufactured by an all solution process. This is possible.

도 2는 나노입자와 나노로드의 복합체를 가지는 CIGS 태양전지의 제조방법의 일 실시예를 나타내는 공정흐름도이다.2 is a process flow diagram showing an embodiment of a method for manufacturing a CIGS solar cell having a composite of nanoparticles and nanorods.

도 2를 참조하면, 전용액 공정으로 저가격 CIGS 박막형 태양전지를 제조할 수 있는 방법을 나타내고 있다. 단계 S1에서, 기판 위에 용액공정으로 CIGS 흡수층 을 형성한다. 용액공정을 통해 소자의 저가화를 실현할수 있으며, 전착, 스프레이 도포법, 나노파티클의 코팅법, 졸-겔 법 등 다양한 방법으로 흡수층이 제조될 수 있다.Referring to FIG. 2, a method of manufacturing a low-cost CIGS thin film solar cell by a dedicated liquid process is illustrated. In step S1, a CIGS absorber layer is formed on the substrate by a solution process. The solution process can realize low cost, and the absorbing layer can be manufactured by various methods such as electrodeposition, spray coating, nanoparticle coating, and sol-gel method.

단계 S2에서, 상기 CIGS 흡수층 위에 화학적인 용액증착으로 버퍼층을 형성한다. 단계 S3에서, 열처리를 거친 다음 단계 S4에서, 상기 버퍼층 위에 용액공정으로 금속 산화물의 씨드층을 형성하고 나노로드를 성장시킨다. 단계 S5에서, 금속 나노입자들의 전구체 용액에 상기 나노로드를 담그어 산화환원 반응을 일으켜 상기 나노로드 주위에 상기 금속 나노입자들을 부착시킨다. 단계 S6에서, 열처리를 함으로써 CIGS 박막형 태양전지가 제조될 수 있다. 상술한 전용액 공정을 사용할 경우, 별도의 진공증착을 통한 전극층 형성 공정이 생략될 수 있다.In step S2, a buffer layer is formed by chemical solution deposition on the CIGS absorber layer. In step S3, after the heat treatment, in step S4, a seed layer of metal oxide is formed on the buffer layer by a solution process and nanorods are grown. In step S5, the nanorods are immersed in a precursor solution of metal nanoparticles to cause a redox reaction to attach the metal nanoparticles around the nanorods. In step S6, the CIGS thin film solar cell may be manufactured by performing heat treatment. In the case of using the above-described exclusive liquid process, an electrode layer forming process through separate vacuum deposition may be omitted.

이하, 다양한 실시예를 들어 나노로드와 나노입자 복합층을 가지는 CIGS 박 막형 태양전지의 제조방법에 대해 더욱 구체적으로 설명하지만, 본 명세서에 개시된 기술은 CIGS 박막형 태양전지 뿐만 아니라 실리콘 태양전지, 화합물 태양전지, 유기태양전지, 염료감응태양전지 등 다양한 박막형 태양전지에 폭넓게 적용될 수 있다. 또한 실시예에서는 ZnO 나노로드에 대해서만 기술하였으나, 이에 한정되는 것은 아니며, 본 개시의 실시예들은 여러 가지로 변형될 수 있으며, 본 개시의 범위가 실시예에 의해 한정되는 것은 아니다.Hereinafter, various examples will be described in more detail with respect to the manufacturing method of a CIGS thin film solar cell having a nanorod and nanoparticle composite layer, but the technology disclosed herein is not only a CIGS thin film solar cell but also a silicon solar cell, a compound solar. It can be widely applied to various thin film solar cells, such as a battery, an organic solar cell, a dye-sensitized solar cell. In addition, the embodiment described only for the ZnO nanorods, but is not limited thereto, and embodiments of the present disclosure may be modified in various ways, and the scope of the present disclosure is not limited thereto.

[실시 예1] (용액공정에 의한 ZnO 박막(seed층) 제조) Example 1 (Manufacture of ZnO Thin Film (Seed Layer) by Solution Process)

ZnO 박막 형성을 위하여 Zn(OAc)2 (10~40mM)와 2-에탄올아민(2~5mM), 에탄올 혼합용액에 흡수층과 버퍼층이 형성된 기판을 딥 코팅(dip coating)또는 스핀코팅 한 후 100℃에서 건조하는 과정을 여러 번 반복하여 최종 두께가 100~500nm정도의 박막을 형성한다. 상기 ZnO의 전도도를 높여 n측 전극으로 사용하기 위해 n형 ZnO박막을 제작할 수도 있으며, 이를 위해 상기용액에 Al(OH)4가 도입된 혼합용액을 사용할 경우 Al도핑된 ZnO층을 형성할 수 있다. 바람직하게는 기존에 알려진것과 같이 ZnO 박막위에 n형 ZnO 박막을 형성하는 2층구조로 하는 것이 고효율 CIGS 박막형 태양전지를 제작하는데 유리하다. Zn (OAc) 2 (10 ~ 40mM), 2-ethanolamine (2 ~ 5mM) and ethanol mixed solution to form ZnO thin film after dip coating or spin coating on substrate with absorbent layer and buffer layer Repeat the drying process several times to form a thin film with a final thickness of about 100 ~ 500nm. In order to increase the conductivity of the ZnO, an n-type ZnO thin film may be fabricated for use as the n-side electrode. For this purpose, an Al-doped ZnO layer may be formed when a mixed solution in which Al (OH) 4 is introduced into the solution is used. . Preferably, as known in the art, a two-layer structure in which an n-type ZnO thin film is formed on a ZnO thin film is advantageous for manufacturing a high efficiency CIGS thin film solar cell.

[실시예 2] (진공증착공정에 의한 ZnO 박막(seed층) 제조)Example 2 (Manufacture of ZnO Thin Film (Seed Layer) by Vacuum Deposition Process)

ZnO 박막은 기존의 스퍼터, CVD등 진공증착방식으로도 형성할 수 있다. 이 경우에도 기존에 알려진 것과 같이 ZnO 박막위에 Al 이나 B 이 도핑된 n형 ZnO 박막을 형성하는 2층구조로 하는 것이 고효율 CIGS 박막형 태양전지를 제작하는 데 유리하다.ZnO thin films can also be formed by vacuum deposition such as sputtering and CVD. In this case as well, it is advantageous to manufacture a high efficiency CIGS thin film solar cell having a two-layer structure in which an n-type ZnO thin film doped with Al or B is formed on a ZnO thin film as is known in the art.

[실시예 3] (용액공정에 의한 ZnO 나노로드 제조)Example 3 (Manufacture of ZnO Nanorods by Solution Process)

형성된 ZnO박막층을 Zn(NO3)2 6H2O (1~40mM), 증류수, 암모니아수의 혼합용액에 60~90℃온도에서 2~4시간 정도 디핑(dipping)하여 ZnO 나노로드를 형성한다.The formed ZnO thin layer is dipped in a mixed solution of Zn (NO 3) 2 6H 2 O (1 to 40 mM), distilled water, and ammonia water at 60 to 90 ° C. for about 2 to 4 hours to form a ZnO nanorod.

[실시예 4] (비용액공정에 의한 ZnO 나노로드 제조)Example 4 (Manufacture of ZnO Nanorods by Non-Liquid Process)

ZnO 나노로드는 써멀 CVD법으로도 제조할 수 있다. Zn(C5H7O2)2xH2O를 Zn 증착원으로 사용하고 135℃정도에서 기화시킨 후, N2/O2의 캐리어가스에 의해 기판이 놓여진 350~450℃ 고온증착 영역으로 이송하여 기판에 ZnO 나노로드를 형성한다.ZnO nanorods can also be produced by thermal CVD. Zn (C 5 H 7 O 2 ) 2 xH 2 O was used as a Zn deposition source and vaporized at about 135 ° C., and then transferred to a 350 to 450 ° C. high temperature deposition area where a substrate was placed by a carrier gas of N 2 / O 2 . Thereby forming a ZnO nanorod on the substrate.

[실시예 5] (용액공정에 의한 Au or Ag 나노입자 형성)Example 5 (Formation of Au or Ag Nanoparticles by Solution Process)

ZnO 나노로드의 표면에 Au 또는 Ag 등 귀금속(noble metal)류의 나노입자를 형성하기 위해 상기 형성된 ZnO 나노로드를 HAuCl4/에탄올용액에 담그고, 365nm의 광을 조사하면 ZnO 나노로드표면에서 산화환원반응에 의해 Au 나노입자가 형성된다. 만일 Ag 나노입자를 형성할 경우에는, ZnO 나노로드 기판을 Ag(NH3)2 + 수용액에 담그고 CH2O(포름알데하이드)수용액을 떨어뜨리고, 초음파(100W, 40kHz)를 조사하면 ZnO 나노로드 표면에 Ag 나노입자가 형성된다. In order to form nanoparticles of noble metals such as Au or Ag on the surface of the ZnO nanorods, the formed ZnO nanorods were immersed in HAuCl 4 / ethanol solution, and irradiated with 365 nm light to redox at the surface of the ZnO nanorods. Au nanoparticles are formed by the reaction. If the Ag nanoparticles are formed, the ZnO nanorod substrate is immersed in Ag (NH 3 ) 2 + aqueous solution, the aqueous solution of CH 2 O (formaldehyde) is dropped, and the ultrasonic wave (100W, 40kHz) is applied to the surface of the ZnO nanorod. Ag nanoparticles are formed.

[실시예 6] (용액공정에 의한 CIGS 박막형 태양전지 제작)Example 6 (Manufacture of CIGS Thin Film Solar Cell by Solution Process)

기존에 확립된 CIGS 흡수층 용액공정(예를 들어, Bhattacharya et al., US Patent Number: 5,730,852에 개시된 방법)으로 형성된 흡수층/버퍼층 상에 상기 기술한 실시예 1, 실시예 3, 실시예 5의 방법을 순차적으로 적용한 후 일정온도(350~450℃)에서 열처리하면 전용액공정에 의해 CIGS 박막형 태양전지를 제작할 수 있고, 더욱이 본 발명에 의해 제작된 태양전지는 금속 나노입자에 의한 표면 플라즈몬 흡광증대 효과와 ZnO 나노로드에 의한 반사율 감소효과를 동시에 가지게 되어 고효율의 CIGS 박막형 태양전지를 제작할 수 있게 된다.The method of Examples 1, 3 and 5 described above on an absorbent layer / buffer layer formed by a previously established CIGS absorber layer solution process (e.g., the method disclosed in Bhattacharya et al., US Patent Number: 5,730,852). After sequentially applying and heat treatment at a constant temperature (350 ~ 450 ℃) can be produced a CIGS thin film solar cell by a dedicated liquid process, moreover, the solar cell produced by the present invention is the surface plasmon absorption increase effect by the metal nanoparticles It has the effect of reducing the reflectance by and ZnO nanorods at the same time, it is possible to manufacture a highly efficient CIGS thin-film solar cell.

[실시예 7] (혼합공정에 의한 CIGS 박막형 태양전지 제작)Example 7 (Manufacture of CIGS Thin Film Solar Cell by Mixing Process)

실시예 6에서 제시한 용액공정에 의한 박막형 태양전지 제작 이외에도, 실시예 2, 실시예 4, 실시예 5의 방법을 순차적으로 적용할 경우, 진공증착공정에 의해 나노로드까지 제작 후 최종 나노입자들을 형성함으로써 원하는 나노로드/나노입자 복합층을 제작할 수 있다. 또한 상기 실시예 1 내지 4를 서로 조합하여 ZnO 박막과 ZnO나노로드를 용액공정 또는 진공증착공정 또는 그것들의 혼합공정에 의해 형성할 수 있으며, 더 나아가 흡수층 및 버퍼층 역시 종래 확립된 진공증착공정과 용액공 정이 사용될 수 있으므로, 전체 CIGS 박막형 태양전지를 제작할 경우 공정의 용이성을 판단한 후에 취사 선택할 수 있다.In addition to fabrication of the thin film type solar cell by the solution process shown in Example 6, if the method of Example 2, Example 4, Example 5 is applied sequentially, the final nanoparticles are produced after fabricating to the nanorods by the vacuum deposition process By forming, a desired nanorod / nanoparticle composite layer can be produced. In addition, the ZnO thin film and ZnO nanorods may be formed by combining the embodiments 1 to 4 with each other by a solution process, a vacuum deposition process, or a mixing process thereof. Since the process can be used, the entire CIGS thin-film solar cell can be cooked after determining the ease of processing.

도 1은 본 개시의 일 실시예에 따른 CIGS 박막형 태양전지를 나타낸다.1 illustrates a CIGS thin film solar cell according to an embodiment of the present disclosure.

도 2는 나노입자와 나노로드의 복합체를 가지는 CIGS 태양전지의 제조방법의 일 실시예를 나타내는 공정흐름도이다.2 is a process flow diagram showing an embodiment of a method for manufacturing a CIGS solar cell having a composite of nanoparticles and nanorods.

Claims (5)

투광성 전극층; 및A translucent electrode layer; And 상기 투광성 전극층 위에 배치되며 상기 투광성 전극층에 대해 실질적으로 수직하게 정렬된 나노구조물 복합체들을 포함하되,Comprising nanostructured composites disposed on the light transmissive electrode layer and aligned substantially perpendicular to the light transmissive electrode layer, 상기 나노구조물 복합체는 나노로드 및 상기 나노로드 주위에 결합된 금속 나노입자들을 포함하는 박막형 태양전지.The nanostructure composite includes a nanorod and metal nanoparticles bonded around the nanorod. 제1항에 있어서, 상기 박막형 태양전지는 실리콘 태양전지, 화합물 태양전지, 유기 태양전지, 염료 감응형 태양전지로 이루어진 그룹 중에서 선택된 어느 하나인 것을 특징으로 하는 박막형 태양전지.The thin film solar cell of claim 1, wherein the thin film solar cell is any one selected from the group consisting of a silicon solar cell, a compound solar cell, an organic solar cell, and a dye-sensitized solar cell. 제1항에 있어서, 상기 금속 나노입자는 Au, Ag, Pt, Pd, Al, Cu, Ni, Zn, Fe, Ti, Cr, Mo로 이루어진 군 중에서 선택되는 1종 이상인 박막형 태양전지.The thin film solar cell of claim 1, wherein the metal nanoparticles are at least one selected from the group consisting of Au, Ag, Pt, Pd, Al, Cu, Ni, Zn, Fe, Ti, Cr, and Mo. 제1항에 있어서, 상기 나노로드는 ZnO, AZO(Al doped ZnO), IZO(In doped ZnO), BZO(B doped ZnO), GZO(Ga doped ZnO)로 이루어진 군 중에서 선택되는 1종 이상인 박막형 태양전지.The thin film solar cell of claim 1, wherein the nanorods are one or more selected from the group consisting of ZnO, Al doped ZnO (AZO), In doped ZnO (IZO), B doped ZnO (BZO), and Ga doped ZnO (GZO). battery. 기판 위에 용액공정으로 CIGS 흡수층을 형성하는 단계;Forming a CIGS absorber layer by a solution process on the substrate; 상기 CIGS 흡수층 위에 화학적인 용액증착으로 버퍼층을 형성하고 열처리하는 단계;Forming and heat treating a buffer layer by chemical solution deposition on the CIGS absorber layer; 상기 버퍼층 위에 용액공정으로 금속 산화물의 씨드 층을 형성하고 나노로드를 성장시키는 단계; 및Forming a seed layer of a metal oxide on the buffer layer and growing a nanorod; And 귀금속 나노입자들의 전구체 용액에 상기 나노로드를 담그어 산화환원 반응을 일으켜 상기 나노로드 주위에 상기 귀금속 나노입자들을 부착시키고 열처리하는 단계를 포함하는 박막형 태양전지의 제조방법.A method of manufacturing a thin film solar cell comprising immersing the nanorods in a precursor solution of noble metal nanoparticles to cause a redox reaction to attach and heat-treat the noble metal nanoparticles around the nanorods.
KR1020090131604A 2009-12-28 2009-12-28 Thin film type solar cell and manufacturing method thereof KR101056132B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090131604A KR101056132B1 (en) 2009-12-28 2009-12-28 Thin film type solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090131604A KR101056132B1 (en) 2009-12-28 2009-12-28 Thin film type solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20110075220A true KR20110075220A (en) 2011-07-06
KR101056132B1 KR101056132B1 (en) 2011-08-11

Family

ID=44915250

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090131604A KR101056132B1 (en) 2009-12-28 2009-12-28 Thin film type solar cell and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101056132B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305548B1 (en) * 2012-02-15 2013-09-06 영남대학교 산학협력단 Solar cell including ZnO single crystal nanorods and their preparation method
KR101530240B1 (en) * 2013-10-23 2015-06-29 국방기술품질원 Anti-reflection film and solar cell comprising the film
KR20180015597A (en) * 2016-08-03 2018-02-13 한양대학교 산학협력단 Structure for electrode and method of fabricating the same
KR102074177B1 (en) * 2018-08-01 2020-02-06 단국대학교 산학협력단 Photosynthetic microbial fuel cell containing nanostructure composite and manufacturing method thereof
CN114823962A (en) * 2022-04-22 2022-07-29 华南理工大学 Au nanoparticle modified TiO 2 Nanotube light trapping structure, gallium arsenide Schottky junction solar cell with nanotube light trapping structure and preparation method of gallium arsenide Schottky junction solar cell

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231430B1 (en) * 2010-07-30 2013-02-07 엘지이노텍 주식회사 Solar cell and method of fabricating the same
CN103030095B (en) * 2011-09-30 2015-07-01 中国科学院合肥物质科学研究院 Silver nanoparticle-modified zinc oxide nanorod array and preparation method and application thereof
KR101382486B1 (en) * 2012-10-24 2014-04-08 한국과학기술연구원 Bifacial thin film solar cell prepared by using a low cost paste coating method
KR101482445B1 (en) 2013-10-29 2015-01-14 주식회사 포스코 Counter electrode for dye sensitized solar cell having nanorods and method for manufacturing the same and dye sensitized solar cell using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820102B1 (en) * 2005-06-30 2008-04-10 한국화학연구원 Semiconductor nano-element
JP2009532851A (en) * 2006-02-16 2009-09-10 ソレクサント・コーポレイション Nanoparticle-sensitized nanostructure solar cell
WO2008057629A2 (en) 2006-06-05 2008-05-15 The Board Of Trustees Of The University Of Illinois Photovoltaic and photosensing devices based on arrays of aligned nanostructures
KR100939021B1 (en) * 2008-01-30 2010-01-27 아주대학교산학협력단 Polymer nanlrod containing nano particle and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305548B1 (en) * 2012-02-15 2013-09-06 영남대학교 산학협력단 Solar cell including ZnO single crystal nanorods and their preparation method
KR101530240B1 (en) * 2013-10-23 2015-06-29 국방기술품질원 Anti-reflection film and solar cell comprising the film
KR20180015597A (en) * 2016-08-03 2018-02-13 한양대학교 산학협력단 Structure for electrode and method of fabricating the same
KR102074177B1 (en) * 2018-08-01 2020-02-06 단국대학교 산학협력단 Photosynthetic microbial fuel cell containing nanostructure composite and manufacturing method thereof
CN114823962A (en) * 2022-04-22 2022-07-29 华南理工大学 Au nanoparticle modified TiO 2 Nanotube light trapping structure, gallium arsenide Schottky junction solar cell with nanotube light trapping structure and preparation method of gallium arsenide Schottky junction solar cell

Also Published As

Publication number Publication date
KR101056132B1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
KR101056132B1 (en) Thin film type solar cell and manufacturing method thereof
Kumar et al. Modulation of structural properties of Sn doped ZnO for UV photoconductors
Koo et al. Improvement of transparent conducting performance on oxygen-activated fluorine-doped tin oxide electrodes formed by horizontal ultrasonic spray pyrolysis deposition
Calnan Applications of oxide coatings in photovoltaic devices
CN102709402B (en) Thin film solar cell of graphic based metal substrate and preparation method thereof
Syed Zahirullah et al. Structural and optical properties of Cu-doped ZnO nanorods by silar method
US20130327385A1 (en) Solar cell having a double-sided structure, and method for manufacturing same
US20150034160A1 (en) Thin film photovoltaic device and method of making same
CN102779891A (en) CIGS thin film type solar cell device and preparation method thereof
US10032944B2 (en) Transparent cover for solar cells and modules
Chen et al. Enhanced solar cell efficiency and stability using ZnS passivation layer for CdS quantum-dot sensitized actinomorphic hexagonal columnar ZnO
Mohammadi et al. Improving the efficiency of perovskite solar cells via embedding random plasmonic nanoparticles: Optical–electrical study on device architectures
Sahoo et al. Construction of ZnO@ NiO heterostructure photoelectrodes for improved photoelectrochemical performance
Hu et al. Research advances in ZnO nanomaterials-based UV photode tectors: a review
Osorio-Rivera et al. Cd2SnO4/CdS/Cu2O/Ag solar cell obtained by chemical techniques
Esakki et al. Influence on the efficiency of dye-sensitized solar cell using Cd doped ZnO via solvothermal method
CN103736500B (en) A kind of Titanium dioxide/cadmium sulfide/titanium dioxide composite film and application thereof
Cai et al. Plasmonic Au-decorated hierarchical p-NiO/n-ZnO heterostructure arrays for enhanced photoelectrochemical water splitting
Wang et al. Photovoltaic conversion enhancement of a transparent NiO/CdO/ZnO pn junction device with a CdO transition layer
TW201508935A (en) Photovoltaic device and method of forming a photovoltaic device
Liau et al. Effect of a Cu2O buffer layer on the efficiency in p-Cu2O/ZnO hetero-junction photovoltaics using electrochemical deposition processing
CN103715280A (en) Thin-film solar cell with micron-nanometer two-stage array structure and manufacturing method thereof
KR20130030122A (en) Solar cell and method of fabricating the same
Mulyanti et al. Light absorption enhancement of perovskite solar cells by a modified anti-reflection layer with corrugated void-like nanostructure using finite difference time domain methods
Septiningrum et al. One-dimensional silver-titania nanocomposites as modification of photoanode for enhanced dye-sensitized solar cells–A review

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140721

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150721

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170628

Year of fee payment: 7