KR20110057692A - A manufacturing method of vanadium dioxide - Google Patents

A manufacturing method of vanadium dioxide Download PDF

Info

Publication number
KR20110057692A
KR20110057692A KR1020090114186A KR20090114186A KR20110057692A KR 20110057692 A KR20110057692 A KR 20110057692A KR 1020090114186 A KR1020090114186 A KR 1020090114186A KR 20090114186 A KR20090114186 A KR 20090114186A KR 20110057692 A KR20110057692 A KR 20110057692A
Authority
KR
South Korea
Prior art keywords
vanadium dioxide
tungsten
powder
producing
hours
Prior art date
Application number
KR1020090114186A
Other languages
Korean (ko)
Inventor
최승훈
이춘부
이영로
정효성
김상우
Original Assignee
최승훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최승훈 filed Critical 최승훈
Priority to KR1020090114186A priority Critical patent/KR20110057692A/en
Publication of KR20110057692A publication Critical patent/KR20110057692A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: A producing method of vanadium dioxide for obtaining a thermochromic material is provided to economically produce the vanadium dioxide using a reducing process and a ball-milling process. CONSTITUTION: A producing method of vanadium dioxide comprises the following steps: preparing beginning powder formed with vanadium pentoxide and tungsten compounds(S110); reducing the beginning powder for 1~5hours at 400~600deg C(S120); adding an additive into the reduced beginning powder, and uniformly mixing by ball-milling; reducing the ball-milled particles for 1~5hours at 300~600deg C(S140); and heat-processing the reduced particles for stabilizing(S150).

Description

이산화바나듐의 제조방법{A manufacturing method of vanadium dioxide}A manufacturing method of vanadium dioxide

본 발명은 이산화바나듐을 제조하는 방법에 관한 것으로, 더욱 상세하게는 오산화바나듐과 텅스텐화합물 분말을 시초분말로 하여 볼밀링 및 환원공정과 같은 일반적인 공정을 통해 이중의 스위칭온도를 갖는 이산화바나듐을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing vanadium dioxide, and more particularly to the production of vanadium dioxide having a dual switching temperature through a general process such as ball milling and reduction process using vanadium pentoxide and tungsten compound powder as an initial powder. It is about a method.

바나듐산화물의 여러 형태 중 하나인 이산화바나듐은 68℃주위에서 2~3㎛의 적외선 투과도가 급격히 감소하고, 전기저항도 102 내지 105 Ω 정도로 급격히 변하는 써모크로믹(thermochromic) 스위칭 특성을 갖고 있다. 이러한 특성으로 인해 이산화바나듐은 전기소자, 전기 센서 및 외부 온도에 따라 태양광 투과를 차단하여 실내온도를 자동으로 제어하는 에너지절약형 창문(smart window) 등의 원료물질로 많이 사용되고 있다.Vanadium dioxide, one of several forms of vanadium oxide, has a thermochromic switching characteristic that rapidly decreases the infrared transmittance of 2 to 3 μm and rapidly changes the electrical resistance to around 10 2 to 10 5 에서 around 68 ° C. . Due to these characteristics, vanadium dioxide is widely used as a raw material such as an energy-saving window (smart window) that automatically controls the room temperature by blocking solar transmission according to an electric device, an electric sensor, and an external temperature.

한편 미국등록특허 4,401,690호 및 5,427,763호에 의하면, 이산화바나듐의 전이온도(스위칭온도)는 텅스텐, 몰리브덴, 나이오뮴, 탄탈륨, 이리듐 등의 높은 원자가를 갖는 금속을 첨가제(dopant)로 사용하면 실온에 가까운 온도로 낮출 수 있으며, 첨가하는 양에 따라 전이온도도 조절할 수 있다고 알려져 있다.Meanwhile, according to US Patent Nos. 4,401,690 and 5,427,763, the transition temperature (switching temperature) of vanadium dioxide is close to room temperature when a metal having a high valence such as tungsten, molybdenum, niobium, tantalum, or iridium is used as an additive. It is known that the temperature can be lowered and the transition temperature can be adjusted according to the amount added.

써모크로믹(thermochromic) 스위칭 특성을 나타내는 이산화바나듐은 단사정계(monoclinic)의 결정형태로 존재할 경우에는 반도체 특성을 갖고 있어 적외선 투과도가 높고, 전기전도도가 낮은 물질이다. 그러나 스위칭온도에 도달하여 루틸(rutile)과 같은 정방정계(tetragonal) 결정으로 상전이하면서 적외선 투과도가 현저히 줄어들고, 전기저항이 커지는 등 광학적, 전기적 특성의 변화를 일으킨다.Vanadium dioxide, which exhibits thermochromic switching characteristics, has a semiconductor characteristic when present in the form of a monoclinic system, and thus has a high infrared transmittance and a low electrical conductivity. However, as the phase transitions to tetragonal crystals such as rutile and reaches a switching temperature, infrared transmittance is significantly reduced, and electrical resistance is increased, resulting in changes in optical and electrical properties.

일반적으로 이산화바나듐 분말을 제조하는 방법으로는 오산화바나듐을 일산화탄소(CO), 수소(H2), 이산화황(SO2)등의 환원가스로 서서히 환원하는 방법과 오산화바나듐(V2O5))과 유기산 융제를 혼합하여 용융함으로서, 검푸른 색의 이산화바나듐을 제조하는 방법이 있다. In general, the method for preparing vanadium dioxide powder is a method of slowly reducing vanadium pentoxide to reducing gases such as carbon monoxide (CO), hydrogen (H 2 ) and sulfur dioxide (SO 2 ), and vanadium pentoxide (V 2 O 5 )) and There is a method of producing dark blue vanadium dioxide by mixing and melting an organic acid flux.

유리창에 쉽게 활용할 수 있게 하기 위한 이산화바나듐 박막을 제조하는 방법으로는 알에프 마그네트론 스퍼터링(rf magnetron sputtering)에 의한 방법, 반응성 전자빔 증발(reactive electron-beam evaporation) 혹은 이온빔 스퍼터링(ion-beam sputtering) 등에 의한 방법 등 다양한 방법이 있다.The method of manufacturing vanadium dioxide thin film for easy application to a glass window is based on RF magnetron sputtering, reactive electron-beam evaporation or ion-beam sputtering. There are many ways, including the method.

기존의 박막 제조법은 균일한 이산화바나듐 박막을 제공하기는 하지만, 비싼 공정설비, 매우 미세한 공정기술로 인한 대형 시편 제조의 어려움, 오염방지를 위한 클린룸 설치 등 환경적, 생산 공정적 차원에서 비용이 비싸다는 단점이 있었다.Conventional thin film manufacturing method provides uniform vanadium dioxide thin film, but it is expensive in terms of environmental and production process such as expensive process equipment, difficulty of manufacturing large specimens due to very fine process technology, and clean room installation to prevent contamination. It was expensive.

또한 이산화바나듐의 스위칭온도를 실온 부근으로 내리려는 연구가 많이 진행되었는데, 텅스텐이 3% 함유된 경우에는 28℃ 정도로서, 실온 영역으로서 매우 매력적이기 하나, 태양에너지를 제어해야 하는 경우와 태양에너지를 활용하고자 하는 경우의 에너지 효율 모두를 만족시킬 수 없는 단점이 있었다.In addition, many studies have been conducted to reduce the switching temperature of vanadium dioxide to room temperature. When tungsten is contained 3%, it is about 28 ° C, which is very attractive as a room temperature region, but it is necessary to control solar energy and use solar energy. There was a disadvantage in that not all of the energy efficiency to be satisfied.

예를 들면 겨울철 또는 쌀쌀한 우기에 태양에너지를 받고자 할 경우, 너무 낮은 온도에서 태양에너지가 차단되어 실내 난방에 도움이 되질 못한다.For example, if you want to get solar energy in winter or in cold rainy days, solar energy is cut off at too low temperature, which does not help indoor heating.

이와 같이 태양에너지의 난방활용과 냉방을 위한 태양에너지의 차단을 모두 만족시키고, 실내온도 자동 조절창 (smart window), 자동차용 썬팅 코팅 등 다양한 분야에서 희망 스위칭 온도에 맞춰 적용할 수 있는 써모크로믹(thermochromic) 물질은 아직 개발되지 못하였다.In this way, thermochromic which satisfies both the solar energy blocking for heating and cooling of solar energy, and can be applied to the desired switching temperature in various fields such as automatic temperature control window, smart coating for automobiles, etc. (thermochromic) materials have not been developed yet.

본 발명이 해결하고자 하는 기술적 과제는, 환원과 볼밀링과 같은 일반적인 공정을 사용함으로써 비용 및 환경적인 부담을 경감시키면서 이중의 전이온도를 갖는 이산화바나듐을 제조할 수 있는 이산화바나듐의 제조방법을 제공하는데 있다.The technical problem to be solved by the present invention is to provide a method for producing vanadium dioxide which can produce vanadium dioxide having a double transition temperature while reducing the cost and environmental burden by using a general process such as reduction and ball milling have.

상기 과제를 이루기 위한 본 발명에 따른 이산화바나듐의 제조방법은 오산화바나듐과 텅스텐 화합물로 이루어진 시초분말을 제조하는 시초분말 제조단계, 상기 시초분말을 수소가스에 의해 환원시키는 제1환원단계, 상기 환원된 시초분말에 첨가제를 첨가하고 볼밀링에 의해 균일하게 혼합하는 메카노케미칼 공정단계, 상기 볼밀링된 분말 입자를 환원시키는 제2환원단계 및 상기 환원된 분말입자를 열처리하여 안정화시키는 열처리단계를 구비하는 것을 특징으로 한다. Method for producing vanadium dioxide according to the present invention for achieving the above object is an initial powder manufacturing step of preparing an initial powder consisting of vanadium pentoxide and tungsten compound, a first reduction step of reducing the initial powder by hydrogen gas, the reduced A mechanochemical process step of adding an additive to the starting powder and uniformly mixing by ball milling, a second reduction step of reducing the ball milled powder particles, and a heat treatment step of stabilizing the reduced powder particles by heat treatment. It is characterized by.

본 발명에 따른 이산화바나듐의 제조방법에 의하면, 30℃ 이내와 60℃ 부근 에서의 이중의 전이온도를 갖는 이산화바나듐 분말을 평이하고 단순한 공정을 사용하여 제조할 수 있으며, 두 온도조건에서 스위칭이 가능하여 적외선과 전기의 활용에 대한 선택폭이 넓어져 실질적인 온도 조건하에서 스마트 윈도우 또는 자동차 유리용 코팅 등 다양한 분야에 적용할 수 있는 장점이 있다.According to the method for producing vanadium dioxide according to the present invention, vanadium dioxide powder having a dual transition temperature within 30 ° C. and around 60 ° C. can be prepared using a simple and simple process, and switching at two temperature conditions is possible. Therefore, the choice of application of infrared rays and electricity is widened, which can be applied to various fields such as smart window or automotive glass coating under practical temperature conditions.

이하에서는 본 발명의 구체적인 실시예를 도면을 참조하여 상세히 설명하도록 한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 이산화바나듐의 제조방법에 대한 공정 흐름도이다.1 is a process flow diagram for a method for producing vanadium dioxide according to the present invention.

도 1에 도시된 바와 같이 본 발명에 따른 이산화바나듐의 제조방법은 오산화바나듐과 텅스텐 화합물로 이루어진 시초분말을 제조하는 시초분말 제조단계(S110), 상기 시초분말을 수소가스에 의해 환원시키는 제1환원단계(S120), 상기 환원된 시초분말에 첨가제를 첨가하고 볼밀링에 의해 균일하게 혼합하는 메카노케미칼 공정단계(S130), 상기 볼밀링된 분말 입자를 환원시키는 제2환원단계(S140) 및 상기 환원된 분말입자를 열처리하여 안정화시키는 열처리단계(S150)를 구비한다.As shown in FIG. 1, in the method for preparing vanadium dioxide according to the present invention, an initial powder preparation step (S110) of preparing an initial powder comprising vanadium pentoxide and a tungsten compound is performed, and a first reduction for reducing the initial powder by hydrogen gas is performed. Step (S120), a mechanochemical process step (S130) of adding an additive to the reduced starting powder and uniformly mixing by ball milling, a second reduction step (S140) of reducing the ball milled powder particles, and the It is provided with a heat treatment step (S150) to stabilize the reduced powder particles by heat treatment.

상기 시초분말 제조단계(S110)에서는 오산화바나듐 분말에 수용성 텅스텐화합물인 텅스텐산암모늄(ammonium tungstate)을 정해진 무게 비에 따라 가하고, 1~2g 정도의 옥살산과 구연산을 가하여 초기젖음법으로 함침시킨다. In the initial powder manufacturing step (S110), ammonium tungstate (ammonium tungstate), which is a water-soluble tungsten compound, is added to the vanadium pentoxide powder according to a predetermined weight ratio, and immersed by an initial wet method by adding oxalic acid and citric acid in an amount of about 1 to 2 g.

이후 텅스텐이 함침된 오산화바나듐을 103~106℃에서 6시간 이상 건조시키고, 400~600℃조건에서 6시간 산화시켜 오산화바나듐-산화텅스텐 시초분말을 제조한다. 상기 제조과정 중에서 소량의 옥살산과 구연산을 가함으로서, 물에 잘 녹지 않는 오산화바나듐에 텅스텐이온의 분산성이 좋아져, 이후 건조-산화 공정에서 텅스텐이 일정 성분비로 균일하게 존재하게 된다.Thereafter, tungsten-impregnated vanadium pentoxide was dried at 103-106 ° C. for at least 6 hours, and oxidized at 400-600 ° C. for 6 hours to prepare vanadium pentoxide-tungsten oxide initial powder. By adding a small amount of oxalic acid and citric acid in the manufacturing process, the dispersibility of tungsten ions in vanadium pentoxide, which is insoluble in water, is improved, and then tungsten is uniformly present in a constant component ratio in the drying-oxidation process.

상기 제1환원단계(S120)에서는 오산화바나듐-산화텅스텐 시초분말을 30~100cc/min의 수소기체 흐름조건과 400~600℃ 온도조건에서 1~5시간 동안 환원시킨다. 환원조건에 도달하기 위하여 2~4℃/min의 조건으로 승온시키며, 환원이 완료되었을 때는 2~4℃/min의 조건으로 서냉하여 실온에 도달하게 한다. In the first reduction step (S120), the vanadium pentoxide-tungsten oxide initial powder is reduced for 1 to 5 hours under a hydrogen gas flow condition of 30 to 100 cc / min and a temperature of 400 to 600 ° C. In order to reach the reduction condition, the temperature is raised to 2-4 ° C./min. When the reduction is completed, the temperature is slowly cooled to 2-4 ° C./min to reach room temperature.

이 과정에서 텅스텐 금속원자는 이산화바나듐의 결정 속으로 균일하게 들어가게 되어 텅스텐-이산화바나듐의 결정(W/VO2)을 형성하게 된다.In this process, the tungsten metal atom is uniformly introduced into the crystal of vanadium dioxide to form a crystal of tungsten-vanadium dioxide (W / VO 2).

도 2는 제1환원단계를 거쳐 제조된 이산화바나듐의 X선회절 분석 결과를 나타내는 도면이다. 2 is a view showing the results of X-ray diffraction analysis of vanadium dioxide prepared through a first reduction step.

도 2를 참조하면 여러 피크 중에서 이산화바나듐의 여러 결정면에 대한 회절피크가 나타나고 있으며, 텅스텐 입자의 피크도 나타나고 있다. 이로써 제1환원단계(S120)를 통해 텅스텐 금속원자가 이산화바나듐의 결정 속으로 균일하게 들어가 있음을 알 수 있다. Referring to FIG. 2, diffraction peaks of various crystal planes of vanadium dioxide are shown among various peaks, and peaks of tungsten particles are also shown. As a result, it can be seen that the tungsten metal atom is uniformly introduced into the crystal of vanadium dioxide through the first reduction step S120.

도 3은 제1환원단계를 거쳐 제조된 이산화바나듐 결정에 대한 DSC 분석결과를 나타내는 도면이다.FIG. 3 is a diagram showing a DSC analysis result of vanadium dioxide crystals prepared through a first reduction step.

DSC(Differential Scanning Calorimeter) 분석은 써모크로믹(thermochromic) 물질의 전이특성을 확인할 수 있는 분석으로서, 광학 및 전기적특성이 전이온도에서 급변할 때 금속산화물 결정은 사방정계(monoclinc) 결정에서 정방정계(tetragonal) 결정으로 변하게 되는데, 이 때 흡열(endothermic)이 나타나므로 이 흡열과정은 써모크로믹(thermochromic) 물질을 나타내는 결정적인 단서가 된다. 이 흡열피크가 존재함으로써 전이온도에서 적외선차단, 전기전도도 증가 등의 써모크로믹(thermochromic) 특성이 나타나게 된다.Differential Scanning Calorimeter (DSC) analysis is used to determine the transition characteristics of thermochromic materials. When optical and electrical properties change rapidly at the transition temperature, metal oxide crystals are used in tetragonal (monoclinc) crystals. It turns into tetragonal crystals, where endothermics appear, and this endothermic process is the definitive clue for thermochromic materials. The presence of the endothermic peak results in thermochromic characteristics such as infrared cut-off and increased electrical conductivity at the transition temperature.

도 3을 참조하면 67.77℃에서 흡열피크가 나타났으며, 이 결과를 볼 때 상기 시초분말 제조단계(S110) 및 상기 제1환원단계(S120)를 거친 이후의 이산화바나듐 분말은 67.77℃에서 광학적, 전기적 특성이 급변하는 써모크로믹(thermochromic) 물질임을 알 수 있다.Referring to FIG. 3, an endothermic peak appeared at 67.77 ° C., and the vanadium dioxide powder after the initial powder manufacturing step (S110) and the first reduction step (S120) was optically formed at 67.77 ° C. It can be seen that the thermochromic material whose electrical properties change rapidly.

상기 메카노케미칼 공정단계(S130)에서는 상기 환원된 텅스텐-이산화바나듐(W/VO2) 분말에 삼산화텅스텐(WO3)을 일정량 첨가하여 지르코니아 볼밀링에 의해 균일하게 분쇄 및 혼합하게 된다. 이때 이산화바나듐에는 1 내지 6% 정도의 텅스텐, 몰리브덴 또는 루테늄이 첨가되는 것이 바람직하다. In the mechanochemical process step (S130), a predetermined amount of tungsten trioxide (WO 3 ) is added to the reduced tungsten-vanadium dioxide (W / VO 2 ) powder to be uniformly ground and mixed by zirconia ball milling. In this case, it is preferable that tungsten, molybdenum or ruthenium of about 1 to 6% is added to vanadium dioxide.

상기 메카노케미칼 공정단계(S130)에서의 볼밀링 과정은 볼의 중력에너지와 볼과 입자간의 마찰에너지를 이용함으로서, 화학적 결합에 필요한 활성화에너지를 공급받고, 결국 산화텅스텐과 텅스텐-이산화바나듐(W/VO2)의 결합이 생성되는 공정이다. 상기 공정을 통하여 텅스텐-이산화바나듐(W/VO2) 결정의 외부에서 산화텅스텐이 결합하게 된다.The ball milling process in the mechanochemical process step (S130) uses the gravity energy of the ball and the friction energy between the ball and the particles, thereby receiving activation energy necessary for chemical bonding, and eventually, tungsten oxide and tungsten-vanadium dioxide (W). / VO 2 ) is a process by which a bond is produced. Through the above process, tungsten oxide is bonded to the outside of the tungsten-vanadium dioxide (W / VO 2 ) crystal.

또한 결정크기가 100nm 내지 1000nm, 더욱 바람직하게는 200nm 내지 500nm 정도가 되어야 써모크로믹(thermochromic) 특성이 더욱 발현되며, 향후 유리창에 도포되는 활용 공정 및 활용분야에 유리하므로, 이 크기로 분쇄하는 공정이 이루어지게 된다.In addition, when the crystal size is 100 nm to 1000 nm, more preferably, 200 nm to 500 nm, the thermochromic properties are further expressed, and it is advantageous to the application process and the application field applied to the glass window in the future, so that the process of grinding to this size This is done.

따라서 상기 메카노케미칼 공정단계(S130)에서는 흄실리카, 티타니아 또는 지르코니아와 같은 세라믹 성장억제제를 첨가함으로써 결정크기가 500nm 보다 커지지 않도록 하는 것이 바람직하다.Therefore, in the mechanochemical process step (S130), it is preferable to add a ceramic growth inhibitor such as fume silica, titania or zirconia so that the crystal size is not larger than 500 nm.

상기 제2환원단계(S140)에서는 상기 밀링된 산화텅스텐-W/VO2 분말입자를 수소, 일산화탄소, 아황산가스 등의 환원성 기체 또는 탄소나 금속 분말의 비산화성 분위기로 환원하게 된다. 환원조건은 온도 300℃ 내지 600℃, 환원반응시간 1~5시간, 가스 유량 10~200cc/min이며, 승온 조건은 1~3℃/min이다.In the second reduction step (S140), the milled tungsten oxide-W / VO 2 powder particles are reduced to a reducing gas such as hydrogen, carbon monoxide, or sulfur dioxide, or to a non-oxidizing atmosphere of carbon or metal powder. Reducing conditions are the temperature of 300 degreeC-600 degreeC, reduction reaction time 1-5 hours, gas flow volume 10-200 cc / min, and temperature rising conditions are 1-3 degreeC / min.

제2환원단계(S140)에서는 상기 메카노케미칼 공정단계(S130)에서 형성된 산화텅스텐-W/VO2 입자를 환원시킴으로써, 각각 이산화바나듐 결정의 내부에서 텅스텐과 이산화바나듐이 결정격자 내에 존재하게 되고, 결정의 외부에 텅스텐이 존재하게 된다. In the second reduction step (S140), by reducing the tungsten oxide-W / VO 2 particles formed in the mechanochemical process step (S130), tungsten and vanadium dioxide are present in the crystal lattice inside the vanadium dioxide crystal, respectively, Tungsten will be present outside the crystal.

이와 같이 텅스텐과 이산화바나듐이 결정내부와 결정외부에서 서로 다른 형태로 존재함으로서, 이중의 전이온도 특성을 갖게 된다.As such, tungsten and vanadium dioxide exist in different forms inside and outside of the crystal, thereby providing a double transition temperature characteristic.

도 4는 본 발명에 따른 이산화바나듐의 SEM 분석 사진이다.Figure 4 is a SEM analysis of vanadium dioxide according to the present invention.

도 4를 참조하면 약간 눌린 사각기둥 모양의 단사정계 W/VO2 결정이 잘 생성 되었고, 그 크기도 200nm~1㎛ 범위의 결정크기를 갖고 있음을 알 수 있다.Referring to Figure 4 it can be seen that the monoclinic W / VO 2 crystals of the slightly pressed square pillar shape is well generated, the size also has a crystal size in the range of 200nm ~ 1㎛.

상기 열처리단계(S150)에서는 상기 환원된 분말입자를 질소, 아르곤, 네온과 같은 불활성 기체 분위기에서 열처리를 통해 안정화시킨다. 불활성 기체는 유량 20~100cc/min 범위 내에서 흘려주고, 열처리온도는 300~600℃, 열처리시간은 0.5~5시간의 범위에서 처리한다. In the heat treatment step (S150), the reduced powder particles are stabilized by heat treatment in an inert gas atmosphere such as nitrogen, argon, and neon. Inert gas flows in the range of 20-100 cc / min flow rate, heat treatment temperature is 300 ~ 600 ℃, heat treatment time is treated in the range of 0.5 ~ 5 hours.

도 5는 본 발명에 따른 이산화바나듐의 DSC 분석 결과를 나타내는 도면이다.5 is a view showing the results of DSC analysis of vanadium dioxide according to the present invention.

도 5를 참조하면 시초분말 제조단계(S110) 내지 상기 열처리단계(S150)를 거쳐 제조된 텅스텐/이산화바나듐의 흡열피크가 이중으로 나타났음을 알 수 있다. 56℃에서부터 시작되어 60℃에 걸쳐 이루어진 흡열피크가 주된 피크가 되며, 13℃부터 시작되어 40℃에 걸쳐 이루어진 완만한 흡열피크가 2차 피크가 된다.Referring to Figure 5 it can be seen that the endothermic peak of the tungsten / vanadium dioxide prepared through the initial powder manufacturing step (S110) to the heat treatment step (S150) appeared twice. The endothermic peaks starting at 56 ° C and over 60 ° C become the main peak, and the endothermic peaks starting at 13 ° C and over 40 ° C become the secondary peak.

60℃의 흡열피크는 이산화바나듐 결정내로 텅스텐이 들어간 W/VO2 화합물에 해당되는 피크이며, 18℃의 흡열피크는 메카노케미칼 공정에서 결합된 텅스텐-W/VO2에 해당되는 피크이다. The endothermic peak at 60 ° C. is the peak corresponding to the W / VO 2 compound having tungsten in the vanadium dioxide crystal, and the endothermic peak at 18 ° C. is the peak corresponding to tungsten-W / VO 2 bound in the mechanochemical process.

따라서 상기 공정에 따라서 제조된 텅스텐/이산화바나듐은 이중 전이온도를 갖는 써모크로믹(thermochromic) 물질임을 알 수 있다.Therefore, it can be seen that tungsten / vanadium dioxide prepared according to the above process is a thermochromic material having a double transition temperature.

이상에서는 본 발명에 대한 기술사상을 첨부 도면과 함께 서술하였지만 이는 본 발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 이라면 누구나 본 발명의 기술적 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방 이 가능함은 명백한 사실이다.In the above description, the technical idea of the present invention has been described with the accompanying drawings. In addition, it is obvious that any person having ordinary knowledge in the technical field to which the present invention belongs can make various modifications and imitations without departing from the scope of the technical idea of the present invention.

도 1은 본 발명에 따른 이산화바나듐의 제조방법에 대한 공정 흐름도이다.1 is a process flow diagram for a method for producing vanadium dioxide according to the present invention.

도 2는 제1환원단계를 거쳐 제조된 이산화바나듐의 X선회절 분석 결과를 나타내는 도면이다. 2 is a view showing the results of X-ray diffraction analysis of vanadium dioxide prepared through a first reduction step.

도 3은 제1환원단계를 거쳐 제조된 이산화바나듐 결정에 대한 DSC 분석결과를 나타내는 도면이다.FIG. 3 is a diagram showing a DSC analysis result of vanadium dioxide crystals prepared through a first reduction step.

도 4는 본 발명에 따라 제조된 이산화바나듐의 SEM 분석 사진이다.Figure 4 is a SEM analysis of vanadium dioxide prepared according to the present invention.

도 5는 본 발명에 따라 제조된 이산화바나듐의 DSC 분석결과를 나타내는 도면이다.5 is a view showing the DSC analysis results of vanadium dioxide prepared according to the present invention.

Claims (9)

(a) 오산화바나듐과 텅스텐 화합물로 이루어진 시초분말을 제조하는 시초분말 제조단계;(a) an initial powder preparation step of preparing an initial powder comprising vanadium pentoxide and a tungsten compound; (b) 상기 시초분말을 수소가스에 의해 환원시키는 제1환원단계;(b) a first reduction step of reducing the starting powder by hydrogen gas; (c) 상기 환원된 시초분말에 첨가제를 첨가하고 볼밀링에 의해 균일하게 혼합하는 메카노케미칼 공정단계;(c) a mechanochemical process step of adding an additive to the reduced starting powder and uniformly mixing by ball milling; (d) 상기 볼밀링된 분말 입자를 환원시키는 제2환원단계; 및(d) a second reduction step of reducing the ball milled powder particles; And (e) 상기 환원된 분말입자를 열처리하여 안정화시키는 열처리단계를 구비하는 것을 특징으로 하는 이산화바나듐의 제조방법.(e) a method for producing vanadium dioxide, characterized in that it comprises a heat treatment step of stabilizing the reduced powder particles by heat treatment. 제1항에 있어서, 상기 (a)단계는The method of claim 1, wherein step (a) (a1) 옥살산과 구연산을 가하여 오산화바나듐 분말에 텅스텐을 함침시키는 단계;(a1) impregnating vanadium pentoxide powder with tungsten by adding oxalic acid and citric acid; (a2) 텅스텐이 함침된 오산화바나듐을 103℃ 내지 106℃의 범위에서 6시간 이상 건조시키는 단계; 및(a2) drying tungsten-impregnated vanadium pentoxide for 6 hours or more in a range of 103 ° C to 106 ° C; And (a3) 400℃ 내지 600℃의 범위에서 6시간 이상 산화시키는 단계를 구비하는 것을 특징으로 하는 이산화바나듐의 제조방법.(a3) A method for producing vanadium dioxide, comprising the step of oxidizing for at least 6 hours in the range of 400 ° C to 600 ° C. 제1항에 있어서, 상기 (b)단계는The method of claim 1, wherein step (b) 400℃ 내지 600℃의 온도범위에서, 1 내지 5시간 동안 수소가스를 30 내지 100cc/min의 속도로 흘려보내 상기 시초분말을 환원시키는 것을 특징으로 하는 이산화바나듐의 제조방법.Method of producing vanadium dioxide, characterized in that the initial powder is reduced by flowing hydrogen gas at a rate of 30 to 100cc / min for 1 to 5 hours in the temperature range of 400 ℃ to 600 ℃. 제1항에 있어서, 상기 (c)단계는The method of claim 1, wherein step (c) 텅스텐, 몰리브덴 또는 루테늄이 첨가된 이산화바나듐에 삼산화텅스텐을 첨가하여 진행하는 것을 특징으로 하는 이산화바나듐의 제조방법.A method for producing vanadium dioxide, characterized in that it proceeds by adding tungsten trioxide to vanadium dioxide to which tungsten, molybdenum or ruthenium is added. 제4항에 있어서, 상기 (c)단계는The method of claim 4, wherein step (c) 흄실리카, 티타니아 또는 지르코니아와 같은 세라믹 성장억제제를 첨가하여 진행하는 것을 특징으로 하는 이산화바나듐의 제조방법.A method for producing vanadium dioxide, characterized in that it proceeds by adding a ceramic growth inhibitor such as fume silica, titania or zirconia. 제5항에 있어서, The method of claim 5, 상기 (c)단계에서 형성된 텅스텐-이산화바나듐 분말의 입자 크기는 200nm 내지 500nm인 것을 특징으로 하는 이산화바나듐의 제조방법.Method for producing vanadium dioxide, characterized in that the particle size of the tungsten-vanadium dioxide powder formed in step (c) is 200nm to 500nm. 제1항에 있어서, 상기 (d)단계는The method of claim 1, wherein step (d) 300℃ 내지 600℃의 온도범위에서, 1 내지 5시간 동안 수소가스를 10 내지 200cc/min의 속도로 흘려보내 상기 (c)단계에서 형성된 분말을 환원시키는 것을 특징으로 하는 이산화바나듐의 제조방법.In the temperature range of 300 ℃ to 600 ℃, by flowing a hydrogen gas at a rate of 10 to 200 cc / min for 1 to 5 hours to reduce the powder formed in step (c) characterized in that the method for producing vanadium dioxide. 제7항에 있어서, The method of claim 7, wherein 상기 (d)단계에서 형성된 텅스텐-이산화바나듐 분말은The tungsten-vanadium dioxide powder formed in step (d) 단사정계의 결정구조를 가지며 입자 크기는 200nm 내지 500nm인 것을 특징으로 하는 이산화바나듐의 제조방법.Method for producing vanadium dioxide, characterized in that the monoclinic crystal structure and the particle size is 200nm to 500nm. 제1항에 있어서, 상기 (e)단계는The method of claim 1, wherein step (e) 불활성가스를 20 내지 100cc/min의 유량으로 공급하고, 300℃ 내지 600℃의의 온도범위에서, 0.5 내지 5시간 동안 진행하는 것을 특징으로 하는 이산화바나듐의 제조방법.Supplying an inert gas at a flow rate of 20 to 100cc / min, a method of producing vanadium dioxide, characterized in that for 0.5 to 5 hours in a temperature range of 300 ℃ to 600 ℃.
KR1020090114186A 2009-11-24 2009-11-24 A manufacturing method of vanadium dioxide KR20110057692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090114186A KR20110057692A (en) 2009-11-24 2009-11-24 A manufacturing method of vanadium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090114186A KR20110057692A (en) 2009-11-24 2009-11-24 A manufacturing method of vanadium dioxide

Publications (1)

Publication Number Publication Date
KR20110057692A true KR20110057692A (en) 2011-06-01

Family

ID=44393273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090114186A KR20110057692A (en) 2009-11-24 2009-11-24 A manufacturing method of vanadium dioxide

Country Status (1)

Country Link
KR (1) KR20110057692A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014035176A2 (en) 2012-09-03 2014-03-06 Na Jongju Endosurgical operating device and endoscopic device comprising same
CN103693691A (en) * 2013-12-20 2014-04-02 中国科学院上海硅酸盐研究所 Method of preparing vanadium dioxide by double-temperature area reduction process
KR101477143B1 (en) * 2013-02-28 2014-12-30 한국세라믹기술원 Method of manufacturing Vanadiun dioxide film and bolometer, and bolometer and IR detector manufactured by the same
WO2015047016A1 (en) * 2013-09-30 2015-04-02 코닝정밀소재 주식회사 Thermochromic window and method for manufacturing same
KR20180070015A (en) 2016-12-16 2018-06-26 한국세라믹기술원 Manufacturing method of vanadium dioxide powder having thermochromic properties and optical properties and manufacturing method of vanadium dioxide thin film using the vanadium dioxide powder
CN111186860A (en) * 2020-01-06 2020-05-22 济南大学 Preparation method for preparing monoclinic-phase vanadium dioxide nano powder from precursor obtained by thermal decomposition and ball milling
CN112456555A (en) * 2020-12-22 2021-03-09 济南大学 Solid phase preparation method of doped vanadium dioxide nano powder
KR102613426B1 (en) * 2023-09-19 2023-12-13 전상남 Surface protection film for anti static and infrared reflection

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014035176A2 (en) 2012-09-03 2014-03-06 Na Jongju Endosurgical operating device and endoscopic device comprising same
KR101477143B1 (en) * 2013-02-28 2014-12-30 한국세라믹기술원 Method of manufacturing Vanadiun dioxide film and bolometer, and bolometer and IR detector manufactured by the same
WO2015047016A1 (en) * 2013-09-30 2015-04-02 코닝정밀소재 주식회사 Thermochromic window and method for manufacturing same
CN103693691A (en) * 2013-12-20 2014-04-02 中国科学院上海硅酸盐研究所 Method of preparing vanadium dioxide by double-temperature area reduction process
KR20180070015A (en) 2016-12-16 2018-06-26 한국세라믹기술원 Manufacturing method of vanadium dioxide powder having thermochromic properties and optical properties and manufacturing method of vanadium dioxide thin film using the vanadium dioxide powder
CN111186860A (en) * 2020-01-06 2020-05-22 济南大学 Preparation method for preparing monoclinic-phase vanadium dioxide nano powder from precursor obtained by thermal decomposition and ball milling
CN112456555A (en) * 2020-12-22 2021-03-09 济南大学 Solid phase preparation method of doped vanadium dioxide nano powder
KR102613426B1 (en) * 2023-09-19 2023-12-13 전상남 Surface protection film for anti static and infrared reflection

Similar Documents

Publication Publication Date Title
KR20110057692A (en) A manufacturing method of vanadium dioxide
Seyfouri et al. Sol-gel approaches to thermochromic vanadium dioxide coating for smart glazing application
Zhou et al. Surface plasmon resonance induced excellent solar control for VO 2@ SiO 2 nanorods-based thermochromic foils
CN101700909B (en) Method of preparing intelligent energy-saving vanadium dioxide by hydrothermal method
Singh et al. Lifetime and quantum yield studies of Dy3+ doped GdVO4 nanoparticles: concentration and annealing effect
Guan et al. Toward room-temperature thermochromism of VO2 by Nb doping: magnetic investigations
Zhou et al. Microemulsion-based synthesis of V 1− x W x O 2@ SiO 2 core–shell structures for smart window applications
Shi et al. Effect of annealing on the structural and luminescent properties of ZnO nanorod arrays grown at low temperature
Kong et al. Rapid thermal annealing assisted facile solution method for tungsten-doped vanadium dioxide thin films on glass substrate
Guo et al. Preparation of W/Zr co-doped VO2 with improved microstructural and thermochromic properties
Li et al. A facile one-step annealing route to prepare thermochromic W doped VO2 (M) particles for smart windows
Kang et al. The thermochromic characteristics of Zn-doped VO2 that were prepared by the hydrothermal and post-annealing process and their polyurethane composite films
Sharma et al. Structural and optical properties of manganese substituted nanocrystalline bismuth ferrite thin films by sol–gel process
Singh et al. Fabrication of Co-and Ce-doped ZnO nanoparticles: a structural, morphological and optical properties investigation
Liu et al. Thermochromic behavior of yttrium-substituted bismuth oxides
CN105540667A (en) Preparation method of doping modified vanadium dioxide powder with lower phase transition temperature
Zhao et al. Thermochromic performances of tungsten-doping porous VO 2 thin films
Chen et al. Deep‐red‐emitting Ca2ScSbO6: Mn4+ phosphors with a double perovskite structure: Synthesis, characterization and potential in plant growth lighting
Kalu et al. Enhanced optical properties of Cd–Mg-co-doped ZnO nanoparticles induced by low crystal structure distortion
Luo et al. Optimized thermochromic properties of VO2/CoFe2O4 nanocomposite films via band gap engineering
KR101387138B1 (en) Process for preparing composite of tungsten doped vanadium dioxide deposited on hollow silica
KR20140050249A (en) Process for preparing tungsten doped vanadium dioxide
Du et al. VO2@ SiO2 nanoparticle-based films with localized surface plasmon resonance for smart windows
CN112919820B (en) Zn-doped VO2Powder and method for preparing composite film by using same
CN114538924A (en) Method for preparing electronic phase-change ceramic material by doping transition metal oxide with vanadium oxide

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee