KR20110052138A - Manufacturing method of solar cell - Google Patents

Manufacturing method of solar cell Download PDF

Info

Publication number
KR20110052138A
KR20110052138A KR1020090109061A KR20090109061A KR20110052138A KR 20110052138 A KR20110052138 A KR 20110052138A KR 1020090109061 A KR1020090109061 A KR 1020090109061A KR 20090109061 A KR20090109061 A KR 20090109061A KR 20110052138 A KR20110052138 A KR 20110052138A
Authority
KR
South Korea
Prior art keywords
electrode
solar cell
manufacturing
layer
printing
Prior art date
Application number
KR1020090109061A
Other languages
Korean (ko)
Inventor
김범석
한수광
김병찬
한덕희
Original Assignee
솔라눅스 주식회사
한수광
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔라눅스 주식회사, 한수광 filed Critical 솔라눅스 주식회사
Priority to KR1020090109061A priority Critical patent/KR20110052138A/en
Publication of KR20110052138A publication Critical patent/KR20110052138A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A method for manufacturing a solar battery is provided to maximize the contact area between a frontal electrode and a cathode layer to lower contact resistance, thereby increasing light conversion efficiency up to a theoretic efficiency value. CONSTITUTION: The first surface of a first conductive silicon wafer(110) is etched. A second conductive semiconductor layer is formed by injecting a dopant into the first surface. The second conductive semiconductor layer is oxidized. A second electrode paste, which corresponds to a second electrode, is printed on the second surface opposite to the first surface. A first electrode paste, which corresponds to a first electrode, is printed on the first surface. A reflection preventing layer(130) is formed on the first surface.

Description

태양전지의 제조방법{Manufacturing method of solar cell}Manufacturing method of solar cell {Manufacturing method of solar cell}

본 발명은 태양전지에 관한 것으로, 보다 상세하게는 반사방지층이 제1전극 형성 된 후에 형성되는 태양전지 전극의 제조방법에 관한 것이다. The present invention relates to a solar cell, and more particularly, to a method for manufacturing a solar cell electrode formed after the antireflection layer is formed of the first electrode.

최근 무공해, 설비의 간편성, 내구성 향상 등 여러 가지 이유로 인하여 태양전지의 보급이 급속도로 확산되고 있으며, 이에 따라 태양전지의 효율을 높일 수 있으며, 양산성이 우수한 태양전지의 제조방법들이 다양하게 연구되고 있다.Recently, the spread of solar cells is rapidly spreading due to various reasons such as pollution-free, convenience of equipment, and durability improvement. Accordingly, solar cell efficiency can be improved, and various methods of manufacturing solar cells with excellent mass production are being studied. have.

종래 태양전지는 1)사각형으로 절단된 단결정 또는 다결정의 p형의 실리콘 웨이퍼(110)를 전면에 표면자국을 없애기 위한 에칭을 실시한 후, 2)5족원소(P, As, Sb)를 도펀트로 하여 음극층(n형 반도체층;120)을 형성시키고, 3)반사방지층 (anti-reflection coating)층(130)을 음극층 상에 형성한다. 다음으로, 4)후면에 은 (silver) 버스(Bus) 전극을 형성하고, 5) 알루미늄으로 된 후면전극(150)을 순차적으로 인쇄한다. 6) 태양전지 전극 형성용 페이스트로 스크린 프린팅 기법으로 전면인쇄한 후 건조기에 웨이퍼를 건조하며, 7)저온 또는 고온으로 소성하여 전면전극을 형성하여 태양전지를 제조한다. 이 때, 태양전지의 실리콘 웨이퍼의 에칭 후 태양광이 닿는 면적을 넓히기 위해 텍스처링 공정이 더 포함될 수 있다.Conventional solar cells 1) etch a single crystal or polycrystalline p-type silicon wafer 110 cut into squares to remove surface traces on the entire surface, and then 2) pentagroup elements (P, As, Sb) with dopants. The cathode layer (n-type semiconductor layer; 120) is formed, and 3) an anti-reflection coating layer 130 is formed on the cathode layer. Next, 4) a silver bus electrode is formed on the rear surface, and 5) a rear electrode 150 made of aluminum is sequentially printed. 6) The solar cell electrode paste is printed on the front by screen printing method, and then the wafer is dried in the dryer. 7) The solar cell is manufactured by firing at low or high temperature. In this case, a texturing process may be further included to widen the area where sunlight is exposed after etching the silicon wafer of the solar cell.

한편, 전극의 건조과정은 페이스트의 용매를 제거하는 과정이며, 소성과정은 유기물 성분을 연소시키고 동시에 유리 프릿 성분이 펀치쓰루(punch through) 현상에 의해 반사방지층(ARC; Anti Reflection Coating)을 에칭하고 전도성 금속분말 중 미세분말이 에칭된 틈을 통해 침투되어 실리콘 웨이퍼의 음극층으로 접촉할 수 있게 한다.On the other hand, the drying process of the electrode is a process of removing the solvent of the paste, the firing process is to burn the organic components and at the same time the glass frit components etch the anti-reflection coating (ARC) by punch through phenomenon The fine powder of the conductive metal powder penetrates through the etched gap and makes contact with the cathode layer of the silicon wafer.

그러나, 소성과정에서 반사방지층이 에칭되는 과정에서 그 잔유물이 완전히 제거되지 않고 전극과 실리콘 웨이퍼 사이에 존재하게 되어 이론적인 접촉면적 보다 작은 면적만 접촉하게 된다. 따라서, 실제 효율은 이론 효율에 비해 낮은 효율을 나타내게 된다.However, during the sintering process, the antireflection layer is etched so that the residue is not completely removed and is present between the electrode and the silicon wafer so that only an area smaller than the theoretical contact area is in contact. Therefore, the actual efficiency is lower than the theoretical efficiency.

또한, 페이스트의 반사방지층에 대한 에칭은 소성온도와 시간, 페이스트의 조성물에 따라 매우 민감하게 달라지므로, 미세한 소성조건의 차이에도 제품간 효율편차가 매우 크게 나며, 불량률도 높다. 또한 통상적으로 많이 쓰는 반사방지층의 주 소재인 질화실리콘을 효과적으로 에칭시키기 위해서는 납이나 카드뮴과 같은 유해성 금속을 첨가해야만 하는 환경상의 문제점도 있다. In addition, since the etching of the anti-reflective layer of the paste is very sensitive to the firing temperature and time, and the composition of the paste, the difference in efficiency between products is very large and the defective rate is high even with the difference in the firing conditions. In addition, in order to effectively etch silicon nitride, which is a main material of an antireflection layer, which is commonly used, there is an environmental problem that a harmful metal such as lead or cadmium must be added.

본 발명은 전술한 문제점을 해결하기 위한 것으로, 반사방지층 형성을 전면 전극 형성 공정 이후에 실시함으로써 반사방지층을 에칭하지 않는 태양전지 제조방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a solar cell manufacturing method that does not etch the antireflective layer by performing the anti-reflective layer formation after the front electrode forming process.

본 발명의 일측면에 따른 반사방지층을 가지는 태양전지의 제조방법은, Method for manufacturing a solar cell having an antireflection layer according to an aspect of the present invention,

(a) 제공된 제1도전형 실리콘 웨이퍼의 제1면을 에칭하는 제1단계; (a) a first step of etching the first surface of the provided first conductive silicon wafer;

(b) 상기 제1면에 도펀트를 주입하여 제2도전형 반도체층을 형성하는 제2단계; (b) a second step of forming a second conductive semiconductor layer by implanting a dopant into the first surface;

(c) 상기 제2도전형 반도체층을 산화하는 제3단계; (c) a third step of oxidizing the second conductive semiconductor layer;

(d) 상기 제1면의 반대면인 제2면에 제2전극으로 될 제2전극 페이스트를 인쇄하고 건조하는 제4단계;(d) a fourth step of printing and drying a second electrode paste to be a second electrode on a second surface opposite to the first surface;

(e) 상기 제1면에 제1전극으로 될 제1전극 페이스트를 인쇄하고 건조하는 제5단계;(e) a fifth step of printing and drying the first electrode paste to be the first electrode on the first surface;

(f) 상기 5단계까지의 공정이 진행된 실리콘 웨이퍼를 소성하는 제6단계; 및 (f) a sixth step of firing the silicon wafer in which the process up to step 5 has been performed; And

(g) 상기 제1면에 상기 반사방지층을 형성하는 제7단계를 포함하는 태양전지 제조방법을 제시한다. (g) It provides a solar cell manufacturing method comprising a seventh step of forming the anti-reflection layer on the first surface.

이 때, 제1도전형은 p형이며, 제2도전형은 n형인 것이 바람직하다. At this time, it is preferable that the first conductivity type is p-type and the second conductivity type is n-type.

또한, 상기 반사방지층은 질화실리콘 또는 산화티타늄인 것이 바람직하다. In addition, the anti-reflection layer is preferably silicon nitride or titanium oxide.

또한, 상기 제1전극 페이스트는 도전성 분말, 수지조성물, 및 커플링제를 포함하는 것이 바람직하다. In addition, the first electrode paste preferably contains a conductive powder, a resin composition, and a coupling agent.

또한, 상기 제3단계와 제4단계 사이에 버스 전극 인쇄 및 건조단계를 더 포함하는 것이 바람직하다. In addition, it is preferable to further include a bus electrode printing and drying step between the third step and the fourth step.

또한, 상기 제1단계와 제2단계 사이에 태양광이 닿는 면적을 넓히기 위해 일정한 패턴을 형성하는 텍스처링 단계를 더 포함하는 것이 바람직하다. In addition, it is preferable to further include a texturing step of forming a predetermined pattern in order to widen the area that the sunlight hits between the first step and the second step.

또한, 상기 제6단계 후 전면전극의 연결단자를 테이프로 마스킹하는 단계를 더 포함하는 것이 바람직하다. The method may further include masking the connecting terminal of the front electrode with a tape after the sixth step.

본 발명의 다른 측면에 따른 태양전지의 제조방법은, Method for manufacturing a solar cell according to another aspect of the present invention,

제1면에 제1전극 및 반사방지층이 형성되고, 제2면에 제2전극이 형성된 태양전지의 제조방법으로서,A method of manufacturing a solar cell having a first electrode and an antireflection layer formed on a first surface and a second electrode formed on a second surface,

상기 반사방지층이 상기 제1전극보다 나중에 형성될 수 있다. The anti-reflection layer may be formed later than the first electrode.

본 발명에 따른 태양전지 제조방법은 첫째, 전면전극과 음극층의 접촉면적을 극대화 하여 접촉저항을 낮게 유지함으로써 직렬저항(Rs) 값을 낮게 하고 병렬저항(Rsh) 값을 높게 하여 광전환효율을 이론 효율치에 근접하게 높일 수 있는 효과가 있다.In the solar cell manufacturing method according to the present invention, first, by maximizing the contact area between the front electrode and the cathode layer to keep the contact resistance low, the series resistance (Rs) value is lowered and the parallel resistance (Rsh) value is increased to increase the light conversion efficiency. There is an effect of increasing the theoretical efficiency close to.

둘째, 전극 페이스트의 에칭성능에 대한 의존성이 없어져 소성조건이나 설비오차에 대한 민감성이 떨어져 제품간 효율 편차가 적게 되는 효과가 있다.Second, the dependency on the etching performance of the electrode paste is removed, the sensitivity to the firing conditions or equipment errors are reduced, there is an effect that the efficiency deviation between products is reduced.

셋째, 반사방지층의 질화실리콘을 에칭할 필요가 없으므로, 납, 캐드뮴과 같은 유해금속을 사용이 불필요하여 환경 친화적이다.Third, there is no need to etch the silicon nitride of the anti-reflection layer, so it is unnecessary to use harmful metals such as lead and cadmium, which is environmentally friendly.

이하에서는 본 발명의 실시예에 대한 도면을 참조하면서 본 발명을 더욱 상세하게 설명한다. 도 1 내지 도 7은 본 발명의 제1실시예에 따른 태양전지의 제조공정을 설명하는 도면이다. 이에 따르면, 태양전지의 제조방법은 전면 에칭단계, 음극층 형성단계, 전면 음극층 산화단계, 후면전극 인쇄 및 건조단계, 전면전극 인 쇄 및 건조단계, 소성단계 및 전면 반사방지층 형성단계를 포함한다. Hereinafter, the present invention will be described in more detail with reference to the drawings for embodiments of the present invention. 1 to 7 are diagrams illustrating a manufacturing process of a solar cell according to a first embodiment of the present invention. Accordingly, the method of manufacturing a solar cell includes a front etching step, a cathode layer forming step, a front cathode layer oxidation step, a back electrode printing and drying step, a front electrode printing and drying step, a firing step and a front antireflection layer forming step. .

전면 에칭단계는 제공된 실리콘 웨이퍼 전면을 5% 가성소다 용액으로 80℃ 15분간 에칭하는 공정이다. 제공된 실리콘 웨이퍼는 p형인 것이 바람직하며, 두께가 180∼240㎛ 범위값을 가지고, 비저항은 0.1-10 Ωㅇcm, 크기는 100 mm X 100 mm에서 150 mm X 150 mm 사이의 값을 가지는 것이 바람직하다(도 1참조).The front etching step is a process of etching the entire surface of the provided silicon wafer with 5% caustic soda solution for 15 minutes at 80 ° C. The silicon wafer provided is preferably p-type, has a thickness in the range of 180 to 240 μm, a resistivity of 0.1-10 Ω · cm, and a size of 100 mm × 100 mm to 150 mm × 150 mm. (See FIG. 1).

음극층 형성단계는 실리콘 웨이퍼의 전면에 n형 도전층을 형성하는 단계로서, 이 과정을 통해 p-n접합이 형성된다. 음극층은 5족원소인 P, As, Sb등을 PECVD, APCVD 방법으로 진공 도포한 후 열처리하여 제공된 p형 실리콘 웨이퍼로 확산시킴으로서 이루어진다(도 2 참조).The cathode layer forming step is to form an n-type conductive layer on the entire surface of the silicon wafer, through which a p-n junction is formed. The cathode layer is formed by vacuum-coating P, As, Sb, etc., which are Group 5 elements, by PECVD or APCVD, and then thermally diffusing them into the p-type silicon wafer provided (see FIG. 2).

전면 음극층 산화단계는 소성시 음극층 내에 포함되어 있는 도펀트 예컨대, 인 (P)의 표면 확산과 소멸을 방지하기 위해 음극층의 표면을 산화하여 실리콘옥사이드(SiO2)층을 형성하는 공정이다. 이는 대기 분위기에서 열처리함에 의해 이루어질 수 있는데, 열처리 온도는 300 ℃ 내외인 것이 바람직하다. (도 3 참조). The front cathode layer oxidation step is a process of oxidizing the surface of the cathode layer to form a silicon oxide (SiO 2) layer in order to prevent surface diffusion and annihilation of dopants, such as phosphorus (P), contained in the cathode layer during firing. This can be done by heat treatment in an atmosphere, the heat treatment temperature is preferably about 300 ℃. (See Figure 3).

후면전극 인쇄 및 건조단계는 후면 전극 페이스트를 도포하고, 약 200 ~ 300℃에서 건조한다. 이 후면 전극으로는 전형적으로 알루미늄이 사용될 수 있다. 알루미늄은 전도성이 우수할 뿐만 아니라 실리콘과의 친화력이 좋아 접합이 용이하게 이루어지고 반도체 P층을 형성하기 때문이다(도 4 참조).The back electrode printing and drying step is applied to the back electrode paste, and dried at about 200 ~ 300 ℃. Aluminum may typically be used as this back electrode. Aluminum is not only excellent in conductivity but also has a good affinity with silicon to facilitate bonding and form a semiconductor P layer (see FIG. 4).

전면전극 인쇄 및 건조단계는 전면전극 페이스트를 도포하고, 도포된 도막을 열처리함으로써 이루어진다. 예컨대, 스크린 프린팅 기법으로 전면인쇄한 후 컨베이어식 건조기에 약 200℃에서 웨이퍼를 건조할 수 있다.The front electrode printing and drying step is performed by applying the front electrode paste and heat-treating the applied coating film. For example, the wafer may be dried at about 200 ° C. in a conveyor dryer after front printing by screen printing.

이 때의 전면전극 페이스트는 종래의 기술과 달리 펀치스루(punch through)현상으로 반사방지층을 에칭할 필요가 없다. 따라서, 소성조건이나 설비오차에 대한 민감성이 떨어져 제품간 효율 편차를 적게할 수 있다. At this time, the front electrode paste does not need to etch the anti-reflection layer due to the punch through phenomenon unlike the prior art. Therefore, the sensitivity to the firing conditions and equipment errors is reduced, the efficiency variation between products can be reduced.

본 실시예에서 전면전극 페이스트는 도전성 분말, 수지조성물, 커플링제, 유리프릿을 포함한다. 이 때, 커플링제는 티탄계, 실리콘계, 지르코늄계, 알루미늄계의 커플링제를 사용할 수 있다(도 5참조). In the present embodiment, the front electrode paste includes a conductive powder, a resin composition, a coupling agent, and a glass frit. At this time, a coupling agent of titanium type, silicon type, zirconium type or aluminum type can be used (see Fig. 5).

도전성분말은 구형 또는 판상의 순수 은 분말이나 타 금속이 혼입된 합금 금속을 사용할 수 있고, 수지조성물은 일예로 수지중합체와 용매의 혼합물일 수 있다. 상기 중합체로는 에틸셀룰로오스, 에틸셀룰로오스와 페놀수지의 중합체, 목재 로진(rosin) 또는 알콜의 폴리메타크릴레이트 등을 사용할 수 있다. 바람직하기로는 에틸셀룰로오스가 좋다. 또한 상기 용매로는 부틸카비톨아세테이트, 부틸카비톨, 프필렌글리콜모노 메틸에테르, 디프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르프로피오네이트, 에틸에테르프로피오네이트, 터핀올, 프로필렌글리콜모노메틸에테르아세테이트, 디메틸아미노 포름알데히드, 메틸에틸케톤, 감마 부티로락톤, 또는 에틸락테이트 등을 단독 또는 2 종 이상 혼합하여 사용할 수 있다. The conductive powder may be a spherical or plate-like pure silver powder or an alloy metal mixed with other metals, and the resin composition may be, for example, a mixture of a resin polymer and a solvent. The polymer may be ethyl cellulose, a polymer of ethyl cellulose and a phenol resin, a wood rosin or a polymethacrylate of alcohol. Preferably, ethyl cellulose is preferable. As the solvent, butyl carbitol acetate, butyl carbitol, propylene glycol mono methyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether propionate, ethyl ether propionate, terpinol, propylene glycol monomethyl Ether acetate, dimethylamino formaldehyde, methyl ethyl ketone, gamma butyrolactone or ethyl lactate may be used alone or in combination of two or more thereof.

유리프릿은 통상적으로 태양전지 전극 페이스트에 사용되는 유리 프릿이 사용될 수 있으며, 일예로는 연화점이 400 내지 600 ℃인 납 실리케이트 유리, 납 보로실리케이트 유리, 비스무스계 유리 또는 리튬계 유리등을 사용할 수 있다.The glass frit may be a glass frit typically used in a solar cell electrode paste, and as an example, lead silicate glass, lead borosilicate glass, bismuth glass, or lithium glass having a softening point of 400 to 600 ° C. may be used. .

소성단계는 전술한 공정이 완료된 실리콘 웨이퍼를 소성하는 단계로서, 전극 페이시트에 포함된 유기물 성분을 연소시키는 공정으로서 조건에 따라 400℃ ~ 950℃의 온도 범위내에서 소성할 수 있다(도 6참조).The firing step is a step of firing the silicon wafer in which the above-described process is completed, and burning the organic component included in the electrode paysheet, which may be fired within a temperature range of 400 ° C. to 950 ° C. depending on the conditions (see FIG. 6). ).

전면 반사방지층 형성단계는 태양전지의 태양광에 대한 반사율을 낮추기 위한 막으로서, 화학기상증착법, 플라즈마화학기상증착법, 및 스퍼터링법등의 방법으로 형성된다. 반사방지층은 주로 질화실리콘 또는 산화티타늄으로 형성된다. 전면전극은 연결 단자 부분만을 제외하고는 모두 반사방지층으로 덮힐 수 있으며, 연결 단자 부분은 제거가 용이한 마스킹 테이프 등으로 붙여 보호하고 반사방지층 증착 후 탈착 제거하는 공정으로 다시 노출시킨다. The front anti-reflective layer forming step is a film for lowering the reflectance of the solar cell to sunlight, and is formed by a chemical vapor deposition method, a plasma chemical vapor deposition method, and a sputtering method. The antireflection layer is mainly formed of silicon nitride or titanium oxide. The front electrode may be covered with an antireflection layer except for the connection terminal part, and the connection terminal part may be protected by attaching a masking tape or the like that is easy to remove, and may be exposed again by a process of detaching and removing the antireflection layer after deposition.

이 때, 반사방지층은 최종적으로 전면전극이 형성된 이후(즉, 소성 이후)에 형성되므로 전면전극과 음극층이 직접 연결되어 접촉저항(Rs)을 낮게 유지하고 병렬저항(Rsh)값을 높힐 수 있다(도 7참조). At this time, since the anti-reflection layer is formed after the front electrode is finally formed (that is, after firing), the front electrode and the cathode layer are directly connected to maintain the contact resistance (Rs) low and increase the parallel resistance (Rsh) value. (See FIG. 7).

도 8은 본 발명의 제2실시예에 따른 태양전지의 제조공정을 설명하는 도면이다. 제2실시예는 후면에 버스전극 인쇄 및 건조단계를 더 포함한다는 점에서 제1실시예와 구별된다. 버스전극 인쇄 및 건조단계는 제1실시예의 형성단계 다음에 행해진다. 즉, 버스전극용 페이스트(예를들면, 은 페이스트)를 정해진 패턴으로 도포하고, 도포된 도막을 200~ 300℃에서 건조하고, 다시 버스 전극부위를 제외한 나머지 후면 전체에 후면전극을 도포함으로써 제조된다. 8 is a view illustrating a manufacturing process of a solar cell according to a second embodiment of the present invention. The second embodiment is distinguished from the first embodiment in that it further includes a bus electrode printing and drying step on the rear surface. The bus electrode printing and drying step is performed after the forming step of the first embodiment. That is, it is produced by applying a bus electrode paste (for example, silver paste) in a predetermined pattern, drying the applied coating film at 200 to 300 ° C., and then applying the rear electrode to the entire rear surface except the bus electrode part. .

도 9는 본 발명의 제3실시예에 따른 태양전지의 제조공정을 설명하는 도면이다. 제3실시예는 텍스처링 단계를 더 포함한다는 점에서 제2실시예와 구별된다. 텍스처링단계는 제1실시예의 전면에칭단계 다음에 이루어지며 태양광이 닿는 면적을 최대한 넓히기 위해 역피라미드 형식등의 스크래칭을 형성하는 공정이다.9 is a view for explaining a manufacturing process of the solar cell according to the third embodiment of the present invention. The third embodiment is distinguished from the second embodiment in that it further includes a texturing step. The texturing step is performed after the front etching step of the first embodiment and is a process of forming a scratch such as an inverse pyramid type in order to maximize the area to which sunlight hits.

이상에서는 본 발명의 여러 실시예에 따른 태양전지의 제조방법에 대해 설명하였으나, 본 발명은 상술한 실시예들에 한정되지 않으며, 본 발명이 속한 분야의 통상의 지식을 가진 자는 본 발명의 개념을 벗어나지 않고 변형이 가능하고 이러한 변형은 본 발명의 범위에 속한다. 예컨대, 전면과 후면을 뒤집어서 이루어지는 공정, P형과 N형을 변경하는 수준의 공정이 그러할 것이다.In the above described the manufacturing method of the solar cell according to various embodiments of the present invention, the present invention is not limited to the above-described embodiments, those skilled in the art belong to the concept of the present invention Modifications are possible without departing, and such modifications are within the scope of the present invention. For example, this may be a process of flipping the front and rear sides, and a process of changing the P-type and N-type.

전술한 발명에 대한 권리범위는 이하의 청구범위에서 정해지는 것으로서, 명세서 본문의 기재에 구속되지 않으며, 청구범위의 균등범위에 속하는 변형과 변경은 모두 본 발명의 범위에 속할 것이다. The scope of the above-described invention is defined in the following claims, not bound by the description in the text of the specification, all modifications and variations belonging to the equivalent scope of the claims will fall within the scope of the invention.

도 1 내지 도 7은 본 발명의 제1실시예에 따른 태양전지의 제조과정을 나타내는 도면.1 to 7 are views illustrating a manufacturing process of a solar cell according to a first embodiment of the present invention.

도 8은 본 발명의 제2실시예에 따른 태양전지의의 제조과정을 나타내는 도면.8 is a view showing a manufacturing process of a solar cell according to a second embodiment of the present invention.

도 9는 본 발명의 제3실시예에 따른 태양전지의의 제조과정을 나타내는 도면.9 is a view showing a manufacturing process of a solar cell according to a third embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

110 : 실리콘 웨이퍼 120 : 음극층110 silicon wafer 120 cathode layer

130 : 반사방지층 140 : 버스전극130: antireflection layer 140: bus electrode

150 : 제2전극 160 : 제1전극150: second electrode 160: first electrode

Claims (8)

반사방지층을 가지는 태양전지의 제조방법에 있어서,In the method of manufacturing a solar cell having an antireflection layer, (a) 제공된 제1도전형 실리콘 웨이퍼의 제1면을 에칭하는 제1단계; (a) a first step of etching the first surface of the provided first conductive silicon wafer; (b) 상기 제1면에 도펀트를 주입하여 제2도전형 반도체층을 형성하는 제2단계; (b) a second step of forming a second conductive semiconductor layer by implanting a dopant into the first surface; (c) 상기 제2도전형 반도체층을 산화하는 제3단계; (c) a third step of oxidizing the second conductive semiconductor layer; (d) 상기 제1면의 반대면인 제2면에 제2전극으로 될 제2전극 페이스트를 인쇄하고 건조하는 제4단계;(d) a fourth step of printing and drying a second electrode paste to be a second electrode on a second surface opposite to the first surface; (e) 상기 제1면에 제1전극으로 될 제1전극 페이스트를 인쇄하고 건조하는 제5단계;(e) a fifth step of printing and drying the first electrode paste to be the first electrode on the first surface; (f) 상기 5단계까지의 공정이 진행된 실리콘 웨이퍼를 소성하는 제6단계; 및 (f) a sixth step of firing the silicon wafer in which the process up to step 5 has been performed; And (g) 상기 제1면에 상기 반사방지층을 형성하는 제7단계를 포함하는 태양전지 제조방법. (g) A solar cell manufacturing method comprising a seventh step of forming the anti-reflection layer on the first surface. 제1항에 있어서, 제1도전형은 p형이며, 제2도전형은 n형인 태양전지의 제조방법.The method of claim 1, wherein the first conductivity type is p-type and the second conductivity type is n-type. 제1항에 있어서,The method of claim 1, 상기 반사방지층은 질화실리콘 또는 산화티타늄인 태양전지의 제조방법.The anti-reflection layer is a method of manufacturing a solar cell of silicon nitride or titanium oxide. 제1항에 있어서,The method of claim 1, 상기 제1전극 페이스트는 도전성 분말, 수지조성물, 및 커플링제를 포함하는 태양전지의 제조방법. The first electrode paste is a manufacturing method of a solar cell containing a conductive powder, a resin composition, and a coupling agent. 제1항에 있어서,The method of claim 1, 상기 제3단계와 제4단계 사이에 버스 전극 인쇄 및 건조단계를 더 포함하는 태양전지의 제조방법.A method of manufacturing a solar cell further comprising a bus electrode printing and drying step between the third and fourth steps. 제5항에 있어서,The method of claim 5, 상기 제1단계와 제2단계 사이에 태양광이 닿는 면적을 넓히기 위해 일정한 패턴을 형성하는 텍스처링 단계를 더 포함하는 태양전지의 제조방법. The method of manufacturing a solar cell further comprises a texturing step of forming a predetermined pattern in order to widen the area that the sunlight hits between the first step and the second step. 제1항에 있어서,The method of claim 1, 상기 제6단계 후 전면전극의 연결단자를 테이프로 마스킹하는 단계를 더 포함하는 태양전지의 제조방법. And masking the connecting terminal of the front electrode with a tape after the sixth step. 제1면에 제1전극 및 반사방지층이 형성되고, 제2면에 제2전극이 형성된 태양전지의 제조방법으로서,A method of manufacturing a solar cell having a first electrode and an antireflection layer formed on a first surface and a second electrode formed on a second surface, 상기 반사방지층이 상기 제1전극보다 나중에 형성되는 태양전지의 제조방법.The method of manufacturing a solar cell, wherein the anti-reflection layer is formed later than the first electrode.
KR1020090109061A 2009-11-12 2009-11-12 Manufacturing method of solar cell KR20110052138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090109061A KR20110052138A (en) 2009-11-12 2009-11-12 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090109061A KR20110052138A (en) 2009-11-12 2009-11-12 Manufacturing method of solar cell

Publications (1)

Publication Number Publication Date
KR20110052138A true KR20110052138A (en) 2011-05-18

Family

ID=44362303

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090109061A KR20110052138A (en) 2009-11-12 2009-11-12 Manufacturing method of solar cell

Country Status (1)

Country Link
KR (1) KR20110052138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210100851A (en) 2020-02-07 2021-08-18 (주)지리산황토예술촌 Axial Lightening Pergola

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210100851A (en) 2020-02-07 2021-08-18 (주)지리산황토예술촌 Axial Lightening Pergola

Similar Documents

Publication Publication Date Title
EP2626908B1 (en) Solar cell element and method for manufacturing same
WO2014156964A1 (en) Conductive paste for solar cell element surface electrodes and method for manufacturing solar cell element
JP2011096748A (en) Solar cell device and method of manufacturing the same
US20190044005A1 (en) Conductive paste and solar cell
JP2007081300A (en) Method of manufacturing solar cell
KR20090089526A (en) Method for preparing selective emitter for solar cell and paste for preparing mask pattern used therein
JP2007019069A (en) Paste composition and solar battery element using it
WO2011024587A1 (en) Electrically conductive paste, electrode for semiconductor device, semiconductor device, and process for production of semiconductor device
TW201532302A (en) Composition for forming impurity diffusion layer, composition and method for forming n-type diffusion layer, composition and method for forming p-type diffusion layer, and method for producing photovoltaic cell
US8741167B1 (en) Etching composition and its use in a method of making a photovoltaic cell
KR101194064B1 (en) Paste composition for etching and doping
KR20110052138A (en) Manufacturing method of solar cell
JP2014099660A (en) Composition for forming p-type diffusion layer, process of manufacturing p-type diffusion layer, and process of manufacturing solar cell element
KR20140074415A (en) Manufacturing method for back contact of solar cell and solar cell device using the same
JP2014179360A (en) Composition for n-type diffusion layer formation, method for manufacturing semiconductor substrate having n-type diffusion layer, and method for manufacturing solar battery device
JPWO2014024297A1 (en) Manufacturing method of solar cell
JP4903531B2 (en) Solar cell element
KR101312278B1 (en) Electrode paste for solar cell and manufacturing method of solar cell using the same
KR20150057457A (en) Aluminium paste composition and solar cell device using the same
KR101967164B1 (en) Silver paste composition and electrode using the same
US10804003B2 (en) Conductive paste for forming solar cell electrode
JP5316491B2 (en) Manufacturing method of solar cell
JP2008159997A (en) Manufacturing method for solar cell element, and conductive paste
JP2010238955A (en) Conductive composition, manufacturing method of solar cell using the same, and solar cell
KR20140120387A (en) Silver paste composition and electrode using the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application