KR20100136079A - Highly conductive foam composition having carbon composite - Google Patents

Highly conductive foam composition having carbon composite Download PDF

Info

Publication number
KR20100136079A
KR20100136079A KR1020090054259A KR20090054259A KR20100136079A KR 20100136079 A KR20100136079 A KR 20100136079A KR 1020090054259 A KR1020090054259 A KR 1020090054259A KR 20090054259 A KR20090054259 A KR 20090054259A KR 20100136079 A KR20100136079 A KR 20100136079A
Authority
KR
South Korea
Prior art keywords
resin
weight
parts
carbon nanotubes
carbon
Prior art date
Application number
KR1020090054259A
Other languages
Korean (ko)
Other versions
KR101594494B1 (en
Inventor
정만우
전성윤
한주희
오주석
이진서
도승회
홍성철
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Priority to KR1020090054259A priority Critical patent/KR101594494B1/en
Priority to TW098139891A priority patent/TWI406301B/en
Priority to PCT/KR2009/006909 priority patent/WO2010059008A2/en
Publication of KR20100136079A publication Critical patent/KR20100136079A/en
Application granted granted Critical
Publication of KR101594494B1 publication Critical patent/KR101594494B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Abstract

PURPOSE: A highly conductive foam composition, and a conductive foam product manufactured therefrom are provided to ensure high dispersibility, excellent foam ability and conductivity even though expensive carbon nanotube is used in a small amount. CONSTITUTION: A highly conductive foam composition comprises 100 parts by weight of thermoplastic resin, 0.1~5 parts by weight of surface-modified carbon nanotube based on 100 parts by weight of thermoplastic resin, 1~20 parts by weight of based on 100 parts by weight of thermoplastic resin, and 0.01~5 parts by weight of foaming agent based on 100 parts by weight of thermoplastic resin.

Description

복합탄소소재를 포함하는 전도성 발포수지조성물{Highly conductive foam composition having carbon composite}Highly conductive foam composition having carbon composite

본 발명은 복합탄소소재를 포함하는 고전도성 발포수지조성물에 관한 것으로, 경제적이며 전도성이 우수한 복합탄소소재를 포함하는 전도성 발포수지조성물에 관한 것이다.The present invention relates to a highly conductive foamed resin composition comprising a composite carbon material, and to a conductive foamed resin composition comprising a composite carbon material with excellent economical and conductive properties.

열가소성 수지는 가공성 및 성형성이 우수하여 각종 생활용품, 사무자동화 기기, 전기·전자제품 등에 광범위하게 적용되고 있다. 또한, 이러한 열가소성 수지가 사용되는 제품의 종류 및 특성에 따라, 상기 우수한 가공성 및 성형성에 더하여 열가소성 수지를 발포하면 가볍고 충격완화 성능이 우수한 장점을 누릴 수 있다. Thermoplastic resins are excellent in processability and formability, and are widely applied to various household goods, office automation equipment, electrical and electronic products, and the like. In addition, depending on the type and characteristics of the product in which the thermoplastic resin is used, in addition to the excellent processability and moldability, foaming the thermoplastic resin can enjoy the advantages of light weight and excellent impact relaxation performance.

이 중에서도, 열가소성 수지에 전기 전도성을 부여하여, 이러한 전기 전도성 열가소성 수지를 자동차, 각종 전기 장치나 전자 조립체 또는 케이블이 전자파 차폐 성능 등을 나타내게 하기 위한 용도로 사용하기 위한 많은 시도가 이루어지고 있다.Among these, many attempts have been made to impart electrical conductivity to thermoplastic resins, and to use such electrically conductive thermoplastic resins for applications such as automobiles, various electrical devices, electronic assemblies, or cables to exhibit electromagnetic shielding performance.

이러한 전기 전도성 열가소성 수지는 통상적으로 열가소성 수지에 카본블랙, 탄소섬유, 금속 분말, 금속 코팅 무기 분말 또는 금속 섬유 등의 전도성 첨가제를 혼합한 전기 전도성 열가소성 수지 조성물을 사용하여 제조된다. 그런데, 상기 전도성 첨가제의 상당량이 첨가되지 않는 한 상기 전기 전도성 열가소성 수지의 전기 전도성을 원하는 정도로 충분히 확보하기 어렵다. Such electrically conductive thermoplastic resins are typically prepared using an electrically conductive thermoplastic resin composition in which a thermoplastic resin is mixed with a conductive additive such as carbon black, carbon fiber, metal powder, metal coated inorganic powder or metal fiber. By the way, it is difficult to ensure the electrical conductivity of the electrically conductive thermoplastic resin sufficiently to a desired degree unless a substantial amount of the conductive additive is added.

또한 카본블랙이나 탄소섬유 등의 탄소소재를 이용한 고분자 복합재의 경우 다량의 무기소재 투입으로 인한 수지의 고경도화, 표면 거칠음, 물성 저하가 초래되고 요구되는 고전도성을 구현하기도 어려울 뿐 아니라 투입된 첨가제로 인해 발포고분자 제조 시 발포가 잘 이루어지지 않는 단점이 있다.In the case of polymer composites using carbon materials such as carbon black or carbon fiber, high hardness of the resin, surface roughness, and physical properties are deteriorated due to the addition of a large amount of inorganic materials, and it is difficult to realize the required high conductivity, There is a disadvantage that the foaming is not well made in the production of foamed polymer.

한편, 상기 전도성 첨가제로서 탄소나노튜브를 사용해 상기 전기 전도성 열가소성 수지에 우수한 전기 전도성을 부여하고자 하는 시도가 있었다.On the other hand, there has been an attempt to impart excellent electrical conductivity to the electrically conductive thermoplastic resin using carbon nanotubes as the conductive additive.

그러나, 열가소성 수지에 탄소나노튜브를 혼합하고 이를 사출하여 전기 전도성 열가소성 수지를 얻고자 하면, 상기 사출 가공 중에 발생하는 전단 응력으로 인해 탄소나노튜브의 집괴나 배향이 나타나고 상기 전기 전도성 열가소성 수지 내에 탄소나노튜브가 불량하게 분산됨에 따라, 원하는 정도의 충분한 전기 전도성을 얻기가 어렵다. However, when carbon nanotubes are mixed with the thermoplastic resin and injected to obtain the electrically conductive thermoplastic resin, the shear stress generated during the injection processing causes the agglomeration or orientation of the carbon nanotubes, and the carbon nanotubes in the electrically conductive thermoplastic resin appear. As the tubes are poorly dispersed, it is difficult to achieve the desired degree of electrical conductivity.

이에 대한민국 특허발명 제706652호에 있어서, 열가소성 수지의 80~99 중량부; 탄소나노튜브의 0.1~10 중량부; 및 유기 나노 클레이의 0.1~10 중량부를 포함하는 전기 전도성 열가소성 수지 조성물이 제안된 바 있다. In Korean Patent Inventive No. 706652, 80 to 99 parts by weight of a thermoplastic resin; 0.1 to 10 parts by weight of carbon nanotubes; And it has been proposed an electrically conductive thermoplastic resin composition comprising 0.1 to 10 parts by weight of the organic nanoclay.

또한, 대한민국 특허공개 제2006-52657호에 있어서, A ) 99. 6 내지 10 중량 부의 하나 이상의 열가소성 수지,B) 0 내지 50 중량 부의 하나 이상의 고무-탄성 중합체, C) 0.2 내지 10.0 중량 부의 탄소나노피브릴, D)0.2 내지 10.0 중량부의 하나 이상의 미립자 탄소화합물, 바람직하게는 카본블랙 또는 흑연 분말, E ) 0 내지 50중량부의 하나이상의 충전제 및/ 또는 강화 물질을 포함하는 조성물이 제안된 바 있다.Further, according to Korean Patent Publication No. 2006-52657, A) 99. 6 to 10 parts by weight of at least one thermoplastic resin, B) 0 to 50 parts by weight of at least one rubber-elastic polymer, C) 0.2 to 10.0 parts by weight of carbon nano A composition has been proposed comprising fibrils, D) from 0.2 to 10.0 parts by weight of at least one particulate carbon compound, preferably carbon black or graphite powder, E) from 0 to 50 parts by weight of at least one filler and / or reinforcing material.

그러나 상기 특허 방법은 탄소나노튜브의 성능을 최대로 발휘하기 위해 탄소나노튜브가 수지 내에 분산하는데 여전히 어려움이 있으며, 많은 양의 탄소나노튜브를 투입해야 전도성을 발휘하게 되어 기존의 카본블랙이나 탄소섬유 등의 탄소소재를 사용하는 것보다 고가의 원료소비가 많아지게 되어 경제성이 부족한 문제가 있다.However, the patented method is still difficult to disperse the carbon nanotubes in the resin in order to maximize the performance of the carbon nanotubes, and a large amount of carbon nanotubes must be added to demonstrate the conductivity, so that the existing carbon black or carbon fiber There is a problem that the consumption of expensive raw materials is more expensive than using carbon materials, such as the economy.

상기와 같은 문제점을 해결하기 위하여 본 발명의 목적은 분산성이 증진되도록 탄소나노튜브와 다른 탄소화합물을 복합화하여 분산성이 우수하고, 충격완화성을 갖으며, 고전도성이며 경제성이 우수한 고분자 조성물을 제공하는 데 있다.In order to solve the problems described above, an object of the present invention is to composite a carbon nanotube and another carbon compound so as to improve dispersibility, thereby providing a polymer composition having excellent dispersibility, impact relieving property, high conductivity, and economic efficiency. To provide.

본 발명자들은 수지 조성물에 발포제를 포함시킴으로써 전도성 재료로서의 신뢰성을 저하시키지 않고, 전도성을 현저히 향상시킬 수 있음을 발견하고, 본 발명을 완성하였다.The present inventors have found that by including the blowing agent in the resin composition, the conductivity can be significantly improved without lowering the reliability as the conductive material, and completed the present invention.

상기 목적을 달성하기 위해 본 발명은 열가소성수지 100중량부;상기 열가소성수지 100중량부에 대하여 표면개질된 탄소나노튜브 0.1~5중량부; 및 상기 열가소성수지 100중량부에 대하여 탄소화합물 1~20중량부; 및 상기 열가소성수지 100 중량부에 대하여 발포제 0.01~5 중량부;를 포함하는 전도성 발포수지조성물에 관한 것이다.The present invention to achieve the above object is 100 parts by weight of a thermoplastic resin; 0.1 to 5 parts by weight of surface-modified carbon nanotubes based on 100 parts by weight of the thermoplastic resin; 1 to 20 parts by weight of carbon compound based on 100 parts by weight of the thermoplastic resin; And 0.01 to 5 parts by weight of a blowing agent based on 100 parts by weight of the thermoplastic resin.

상기 표면개질된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계수 또는 초임계수 조건에서 탄소나노튜브 표면을 산화처리하여 얻어진 것을 사용할 수 있으며, 상기 탄소화합물은 카본블랙, 흑연, 탄소섬유 및 이들의 혼합물로 이루어진 군에서 선택하여 평균입경이 0.001㎛~300㎛인 것을 사용할 수 있다. The surface-modified carbon nanotubes are oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds And oxidizing the surface of the carbon nanotubes under subcritical water or supercritical water conditions at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from a mixture thereof. The carbon compound is carbon black. In the group consisting of graphite, carbon fibers and mixtures thereof, those having an average particle diameter of 0.001 μm to 300 μm may be used.

또한, 본 발명은 상기 전도성 발포조성물을 압출하여 제조된 표면저항을 조절하여 전자파 차폐, 정전분산 또는 정전기 방지가 탁월하게 향상되고, 충격완화성이 부여된 전도성 발포 성형물을 제공한다.In addition, the present invention provides a conductive foam molded article is excellent in that the electromagnetic shielding, electrostatic dispersion or anti-static is improved by controlling the surface resistance produced by extruding the conductive foam composition, the impact cushioning is given.

이하 본 발명에 본 발명의 바람직한 일 실시예를 상세히 설명하기로 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.Hereinafter, a preferred embodiment of the present invention to the present invention will be described in detail. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.

본 명세서에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.The terms " about ", " substantially ", etc. used to the extent that they are used herein are intended to be taken to mean an approximation to or in the numerical value of the manufacturing and material tolerances inherent in the meanings mentioned, Accurate or absolute numbers are used to help prevent unauthorized exploitation by unauthorized intruders of the referenced disclosure.

본 발명은 열가소성수지에 표면개질된 탄소나노튜브와 탄소화합물의 복합소재를 사용함으로써, 표면개질된 탄소나노튜브를 사용하여 분산성을 증진시킴에 따라 전도성의 증가 효과를 달성하고 고가의 탄소나노튜브를 다량 사용하는 데 따른 경제적 효과의 보완을 위해 탄소나노튜브 만큼의 기능성은 부족하지만 이를 뒷받침해 줄 수 있는 카본블랙, 흑연, 탄소섬유 등의 탄소화합물을 탄소나노튜브와 함께 사용함으로써 이들의 상호 상승작용을 발휘하여 기능성 및 경제성을 제공하며, 발포제를 첨가함으로써 탁월한 전도성의 향상과 함께 충격완화성(완충성)을 나타내는 전도성 조성물의 응용성을 확대시키고자 함이다.The present invention by using a composite material of carbon nanotubes and carbon compounds surface-modified in thermoplastic resin, by using a surface-modified carbon nanotubes to improve the dispersibility, to achieve the effect of increasing the conductivity and expensive carbon nanotubes In order to compensate for the economic effect of using a large amount of carbon nanotubes, the functionalities of carbon nanotubes are insufficient, but carbon compounds such as carbon black, graphite, and carbon fiber can be used together with carbon nanotubes to mutually increase them. It is intended to expand the applicability of conductive compositions exhibiting impact relaxation (buffering properties) together with excellent conductivity enhancement by adding a blowing agent to exert their function and economy.

본 발명은 열가소성수지 100중량부; 상기 열가소성수지 100중량부에 대하여 탄소나노튜브 0.1~5.0중량부; 및 상기 열가소성수지 100중량부에 대하여 탄소화합물 1~20중량부; 및 상기 열가소성수지 100중량부에 대하여 발포제 0.01~5중량부;를 포함하는 전도성 발포수지조성물을 제공한다.The present invention 100 parts by weight of thermoplastic resin; 0.1 to 5.0 parts by weight of carbon nanotubes based on 100 parts by weight of the thermoplastic resin; 1 to 20 parts by weight of carbon compound based on 100 parts by weight of the thermoplastic resin; And 0.01 to 5 parts by weight of a blowing agent based on 100 parts by weight of the thermoplastic resin.

본 발명에 사용되는 열가소성수지는 폴리아세탈 수지, 아크릴계 수지, 폴리카보네이트 수지, 스티렌계 수지, 폴리에스테르 수지, 비닐계 수지, 폴리페닐렌에테르 수지, 폴리올레핀 수지, 아크릴로니트릴-부타디엔-스티렌 공중합체 수지, 폴리아릴레이트 수지, 폴리아미드 수지, 폴리아미드이미드 수지, 폴리아릴설폰 수지, 폴리에테르이미드 수지, 폴리에테르설폰 수지, 폴리페닐렌 설피드 수지, 불소계 수지, 폴리이미드 수지, 폴리에테르케톤 수지, 폴리벤족사졸 수지, 폴리옥사디아졸 수지, 폴리벤조티아졸 수지, 폴리벤지미다졸 수지, 폴리피리딘 수지, 폴리트리아졸 수지, 폴리피롤리딘 수지, 폴리디벤조퓨란 수지, 폴리설폰 수지, 폴리우레아 수지, 폴리포스파젠 수지 및 액정중합체 수지로 이루어진 군에서 선택된 하나의 수지, 둘 이상의 공중합체 수지 또는 둘 이상의 혼합물이 사용될 수 있다. 폴리올레핀 수지 또는 폴리에스테르 수지가 바람직하며, 그 중 폴리에틸렌이 더욱 바람직하다.The thermoplastic resin used in the present invention is polyacetal resin, acrylic resin, polycarbonate resin, styrene resin, polyester resin, vinyl resin, polyphenylene ether resin, polyolefin resin, acrylonitrile-butadiene-styrene copolymer resin , Polyarylate resin, polyamide resin, polyamideimide resin, polyarylsulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene sulfide resin, fluorine resin, polyimide resin, polyetherketone resin, poly Benzoxazole resin, polyoxadiazole resin, polybenzothiazole resin, polybenzimidazole resin, polypyridine resin, polytriazole resin, polypyrrolidine resin, polydibenzofuran resin, polysulfone resin, polyurea resin, poly One resin, two or more copolymers selected from the group consisting of phosphazene resins and liquid crystal polymer resins Resins or mixtures of two or more may be used. Polyolefin resin or polyester resin is preferable, and polyethylene is more preferable among them.

또한, 본 발명의 탄소나노튜브는 상기 열가소성수지 100중량부에 대하여 표면개질된 탄소나노튜브 0.1~5.0중량부로 사용할 수 있다. 본 발명의 표면개질된 탄소나노튜브는 기계적 물성과 전기 전도성의 밸런스를 우수하게 할 수 있다. 상기의 탄소나노튜브를 0.1중량부 미만으로 사용하면, 전도성 향상효과가 미미하며, 5.0중량부를 초과 사용하면 열가소성수지의 기계적 물성이 저하될 우려가 있으며 초과사용에 따른 전도성 상승이 나타나지 않고, 고가의 원료 낭비가 초래된다. In addition, the carbon nanotubes of the present invention may be used in 0.1 to 5.0 parts by weight of the surface-modified carbon nanotubes with respect to 100 parts by weight of the thermoplastic resin. The surface modified carbon nanotubes of the present invention can make excellent balance between mechanical properties and electrical conductivity. If the carbon nanotubes are used in less than 0.1 parts by weight, the effect of improving the conductivity is insignificant. If the carbon nanotubes are used in excess of 5.0 parts by weight, the mechanical properties of the thermoplastic resin may be deteriorated. Waste of raw materials is caused.

본 발명의 표면개질된 탄소나노튜브는 탄소나노튜브 100중량부에 대하여 산소, 질소 및 이들의 혼합물로 이루어진 군에서 선택되는 물질이 0.01~10중량부로 포함되도록 것이 좋다. 상기 산소, 질소 등의 기능성 물질의 존재에 의해 탄소나노튜브는 수지와의 혼합에 있어 분산성이 현저하게 높아져 전도성에 영향을 줄 수 있다. 또한, 상기 범위로 포함되도록 함으로써 열가소성 수지뿐만 아니라 다른 탄소소재 또는 탄소화합물과의 혼합도 용이하게 될 수 있다.The surface-modified carbon nanotubes of the present invention may include 0.01 to 10 parts by weight of a material selected from the group consisting of oxygen, nitrogen, and mixtures thereof, based on 100 parts by weight of carbon nanotubes. Due to the presence of functional materials such as oxygen and nitrogen, the carbon nanotubes may significantly increase dispersibility in mixing with the resin, thereby affecting conductivity. In addition, by being included in the above range it can be easily mixed with other carbon materials or carbon compounds as well as the thermoplastic resin.

따라서 본 발명의 상기 표면개질된 탄소나노튜브는 산을 가하여 표면의 산화작용을 일으키는 방법이나, 고온 고압하의 물의 반응성에 의해 탄소나노튜브의 표면이 산화처리된 방법 등을 포함한다.Therefore, the surface-modified carbon nanotubes of the present invention include a method of causing oxidation of a surface by adding an acid, a method of oxidizing a surface of a carbon nanotube by reactivity of water under high temperature and high pressure.

이에 대한 예로 본 발명의 표면개질된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계수 또는 초임계수 조건에서 탄소나노튜브 표면을 산화처리하여 얻어질 수 있다. 아임계 또는 초임계 조건에서 유해하지 않으며, 취급 및 폐수처리가 용이한 산화제를 사용하여 환경친화적으로 탄소나노튜브가 얻어질 수 있다. 상기의 아임계수 또는 초임계수 조건의 표면개질은 산화제가 용이하게 도입되어 탄소나노튜브의 표면개질 효과가 상승되며 그에 따른 분산성이 증가하게 된다.For example, the surface-modified carbon nanotube of the present invention is oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds And oxidizing the surface of the carbon nanotubes under subcritical water or supercritical water conditions at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from a mixture thereof. Environmentally friendly carbon nanotubes can be obtained using oxidizing agents that are not harmful in subcritical or supercritical conditions and are easy to handle and treat wastewater. The surface modification of the subcritical water or supercritical water conditions is such that the oxidant is easily introduced to increase the surface modification effect of the carbon nanotubes, thereby increasing dispersibility.

본 발명에서 사용되는 탄소화합물은 상기 열가소성수지 100중량부에 대하여 탄소화합물 1~20중량부로 포함될 수 있다. 상기 탄소화합물이 1중량부 미만이면 탄소화합물 첨가에 따른 경제성 보완의 효과가 없게 되며, 20중량부를 초과하면 초과 량의 전도성이나 경제성의 상승효과가 없다.The carbon compound used in the present invention may be included as 1 to 20 parts by weight of the carbon compound based on 100 parts by weight of the thermoplastic resin. If the carbon compound is less than 1 part by weight, there is no effect of economic supplementation due to the addition of the carbon compound, and if it exceeds 20 parts by weight, there is no synergistic effect of the excess amount or conductivity.

본 발명의 표면개질된 탄소나노튜브에 사용되는 탄소나노튜브는 단일벽(Single-walled), 이중벽(Double walled), 얇은 다중벽(Thin multi-walled), 다중벽(Multi-walled), 다발형(Roped) 및 이들의 혼합물로 이루어진 군에서 선택되는 어떤 형태이든 가능하다.Carbon nanotubes used in the surface-modified carbon nanotubes of the present invention are single-walled, double-walled, thin multi-walled, multi-walled, bundle type. Any form selected from the group consisting of (Roped) and mixtures thereof is possible.

또한, 본 발명에 사용되는 탄소화합물은 카본블랙, 흑연 또는 탄소섬유를 포함하며 탄소를 함유하는 물질이라면 어떤 것이든 사용가능하고 이에 한정되지 않는다. 상기 탄소화합물은 카본블랙의 경우는 평균입경이 0.001~0.5㎛인 것이 좋으며, 흑연은 분말형태로 평균입경 1~300㎛인 것이 좋다. 또한, 탄소섬유 또한 평균입경 0.01~0.1㎛의 미세 섬유가 바람직하다. 상기 범위의 탄소화합물을 사용함으로써 본 발명의 발포수지 조성물을 사용한 발포 시 발포성이 높고, 우수한 전도성을 유지하면서도 원가절감의 효과가 있다.In addition, the carbon compound used in the present invention may be used as long as the carbon compound, carbon black, graphite or carbon fiber and any material containing carbon is not limited thereto. In the case of carbon black, the carbon compound may have an average particle diameter of 0.001 to 0.5 μm, and graphite may have an average particle diameter of 1 to 300 μm in powder form. Moreover, the carbon fiber is also preferably a fine fiber having an average particle diameter of 0.01 to 0.1 mu m. By using the carbon compound in the above range is highly foamable when foaming using the foaming resin composition of the present invention, there is an effect of reducing the cost while maintaining excellent conductivity.

본 발명은 상기 탄소화합물 외에도 평균입경 0.001~0.1㎛의 납(Pb), 알루미늄(Al) 등의 금속분말, 금속코팅 무기분말 또는 금속섬유 등의 전도성 첨가제를 탄소복합소재와 혼합하여 사용할 수 있다.In addition to the carbon compound, the present invention may be used by mixing a carbon composite material with conductive additives such as metal powders such as lead (Pb) and aluminum (Al), metal-coated inorganic powders or metal fibers having an average particle diameter of 0.001 to 0.1 μm.

또한, 본 발명의 전도성 발포수지조성물에는 열가소성수지 100중량부에 대하여 발포제 0.01~5중량부를 포함할 수 있으며, 상기 발포제는 전도성을 향상시킬 수 있는 성분으로, 아조디카르복실아미드, 아조비스테트라졸디아미노구아니딘, 아조비스테트라졸구아니딘, 5-페닐테트라졸, 비스테트라졸구아니딘, 비스테트라졸피페라진, 비스테트라졸디암모늄, N,N-디니트로소펜타메틸렌테트라민, 히드라조디카르복 실아미드 및 이들의 혼합물로부터 선택하여 열가소성수지에 따라 적절하게 선택하여 사용할 수 있다. 본 발명에서 발포제를 0.01~5중량부로 사용함으로써 표면개질된 탄소나노튜브와 탄소화합물와 함께 분산성이 좋으며, 트러블 없이 양호한 폼(foam)의 형성과 동시에 전도성이 탁월하게 향상될 수 있다.In addition, the conductive foamed resin composition of the present invention may include 0.01 to 5 parts by weight of the blowing agent with respect to 100 parts by weight of the thermoplastic resin, the blowing agent is a component that can improve the conductivity, azodicarboxyamide, azobistetrazole Diaminoguanidine, azobistetrazolguanidine, 5-phenyltetrazole, bistetrazguanidine, bistetrazolpiperazine, bistetrazoldiammonium, N, N-dinitrosopentamethylenetetramine, hydrazodicarboxyamide And a mixture thereof, and may be appropriately selected and used according to the thermoplastic resin. In the present invention, by using the foaming agent in 0.01 to 5 parts by weight, the dispersibility is good together with the surface-modified carbon nanotubes and the carbon compound, it is possible to excellently improve the conductivity and at the same time forming a good foam (foam) without trouble.

본 발명은 상기의 각각의 전도성 발포수지조성물을 혼합하여 이미 공지된 방법에 의해 제조될 수 있다. 이러한 각 성분들의 혼합은 통상적인 압출에 의해 펠렛으로 제조하여 여러 용도에 사용가능하며 상기 제조된 펠렛으로 발포기능이 있는 시트, 필름 등의 용도에 맞도록 성형물로 제조하여 사용한다.The present invention can be prepared by a known method by mixing each of the above conductive foam resin composition. The mixing of each of these components can be made into pellets by conventional extrusion, which can be used for various purposes, and the prepared pellets can be used as a molded product to suit the purpose of sheet, film and the like having a foaming function.

또한 본 발명은 상기 성형물의 표면저항을 유연하게 변화시켜 전자파 차폐, 정전분산 및 정전기 방지가 가능한 충격완화(완충성) 플라스틱 성형물을 제공한다.In another aspect, the present invention provides a shock-absorbing (buffered) plastic molding that can flexibly change the surface resistance of the molding to shield electromagnetic waves, electrostatic dispersion and antistatic.

상술한 바와 같이 본 발명의 복합탄소소재를 포함하는 전도성 발포수지조성물은 열가소성수지에 표면개질된 탄소나노튜브를 사용하고, 흑연, 카본블랙, 탄소섬유 등의 탄소화합물을 발포제와 함께 복합소재로 사용하여 각 조성물 간의 분산성이 높고, 발포성이 좋으며, 전도성이 탁월하게 발휘되는 효과가 있다. As described above, the conductive foamed resin composition including the composite carbon material of the present invention uses carbon nanotubes surface-modified in thermoplastic resin, and uses carbon compounds such as graphite, carbon black, and carbon fiber as the composite material together with the foaming agent. Thus, the dispersibility between the compositions is high, the foamability is good, and the conductivity is excellently exerted.

또한, 본 발명의 전도성 발포수지 조성물은 고가의 탄소나노튜브를 적은양으로 사용하여도 높은 전도성을 나타내는 경제적 효과가 있다.In addition, the conductive foamed resin composition of the present invention has an economic effect of showing high conductivity even when using a small amount of expensive carbon nanotubes.

또한, 본 발명의 전도성 발포수지 조성물로 제조되는 성형물은 우수한 발포에 따른 완충성을 나타내어 전도성과 함께 우수한 충격완화 효과가 있다. In addition, the molded article prepared from the conductive foamed resin composition of the present invention exhibits excellent buffering properties due to excellent foaming, and has excellent impact relaxation effect with conductivity.

또한, 본 발명의 복합탄소소재를 포함하는 전도성 발포수지조성물은 펠렛으 로 제조되어 용도에 따라 응용성을 넓힐 수 있는 효과가 있다.In addition, the conductive foamed resin composition comprising the composite carbon material of the present invention is produced by the pellets has the effect of extending the applicability according to the application.

하기의 실시예를 통하여 좀 더 상세하게 설명하고자 한다. Through the following examples will be described in more detail.

제조예Production Example 1 One

다중벽탄소나노튜브(Multi Wall Carbon Nano Tube;이하 MWCNT)(한화나노텍,상품명:CM95) 12g을 증류수 988g과 순환펌프로 혼합하여 전처리조에서 MWCNT용액을 준비하였다. 상기 MWCNT용액을 고압주입펌프를 통해 30g/min유속으로 예열조에 투입되기 전, 이와 함께 245atm 내지 252atm으로 압축된 기상상태의 산소는 열교환기의 전단에서 0.8g/min의 유속으로 MWCNT용액과 혼합되어 상기 혼합액은 열교환기를 통해 200 내지 260℃로 예열된 예열조에 투입하였다. 상기 예열된 혼합액은 350℃ 및 230atm 내지 250atm의 아임계수 상태의 표면개질반응기에 주입되어 표면개질되고, 상기 생성물은 다시 열교환기로 이송되어 200℃로 1차 냉각 후, 다시 냉각장치를 통해 약 25℃의 온도로 냉각한 후 연속적으로 11.8g의 다층탄소나노튜브를 얻었다.MWCNT solution was prepared in a pretreatment tank by mixing 12 g of Multi Wall Carbon Nano Tube (hereinafter referred to as MWCNT) (HANWHA NANOTECH, product name: CM95) with 988 g of distilled water and a circulation pump. Before the MWCNT solution is introduced into the preheater at a flow rate of 30 g / min through a high pressure injection pump, the oxygen in the gaseous state compressed at 245 atm to 252 atm is mixed with the MWCNT solution at a flow rate of 0.8 g / min at the front end of the heat exchanger. The mixed solution was added to a preheating tank preheated to 200 to 260 ° C. through a heat exchanger. The preheated mixed solution is injected into a surface reforming reactor in a subcritical water state of 350 ° C. and 230 atm to 250 atm, and the surface is reformed. The product is again transferred to a heat exchanger, and first cooled to 200 ° C., and then again about 25 ° C. through a cooling device. After cooling to a temperature of 11.8g of multilayer carbon nanotubes were obtained continuously.

제조예Production Example 2 2

산화제로 산소대신 공기를 사용하는 것을 제외하고, 제조예 1과 동일하게 제조하였다.Except for using air instead of oxygen as the oxidizing agent was prepared in the same manner as in Preparation Example 1.

제조예Production Example 3 3

산화제로 산소대신 오존을 사용하는 것을 제외하고, 제조예 1과 동일하게 제조하였다.Except for using ozone instead of oxygen as the oxidizing agent was prepared in the same manner as in Preparation Example 1.

제조예Production Example 4 4

산화제로 산소대신 50%과산화수소 수용액 108.8g(1.6M)을 첨가하는 것을 제외하고, 제조예 1과 동일하게 제조하였다. It was prepared in the same manner as in Preparation Example 1, except that 108.8 g (1.6 M) of 50% hydrogen peroxide aqueous solution was added instead of oxygen as the oxidizing agent.

제조예Production Example 5 5

산화제로 산소대신 질산 25.2g(0.4M)을 첨가하는 것을 제외하고, 제조예 1과 동일하게 제조하였다.It was prepared in the same manner as in Preparation Example 1, except that 25.2 g (0.4 M) of nitric acid was added instead of oxygen as the oxidizing agent.

실시예Example 1 One

회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE 830;HCC) 938g, 제조예 1의 탄소나노튜브(MWCNT) 10g, 카본블랙(VXC500;CABOT) 50g, 아조디카르복실아미드 2g을 투입하였다. 150℃로 유지되는 압출기내에서 회전하는 스크류에 의해 고분자 수지가 용융되고 탄소소재와 혼련되어 압출기 다이(die)를 통해 시트가 연속적으로 빠져 나오게 하였다. 이 시트를 200℃의 oven에 넣어 발포시트를 얻었다.938 g of low density polyethylene (LDPE 830; HCC), 10 g of carbon nanotubes (MWCNT) of Preparation Example 1, 50 g of carbon black (VXC500; CABOT), and 2 g of azodicarboxyamide were added to a hopper of a rotating twin screw extruder. . The polymer resin was melted and kneaded with the carbon material by the rotating screw in the extruder maintained at 150 ° C. to continuously eject the sheet through the extruder die. This sheet was placed in an oven at 200 ° C. to obtain a foam sheet.

실시예Example 2 2

이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE 830;HCC) 903g, 제조예 2의 탄소나노튜브(MWCNT;Multi Wall Carbon Nano Tube) 5g, 카본블랙(VXC500;CABOT) 90g을 투입하는 것을 제외하고, 실시예 1과 동일하게 실시하였다.903 g of low density polyethylene (LDPE 830; HCC), 5 g of carbon nanotubes (MWCNT) of Manufacturing Example 2, and 90 g of carbon black (VXC500; CABOT) were added to the hopper of the twin screw extruder. , It carried out similarly to Example 1.

실시예Example 3 3

제조예 1의 탄소나노튜브 대신 제조예 3의 탄소나노튜브 10g, 카본블랙 50g 대신 평균입경 0.1㎛ 의 탄소섬유 50g을 사용하는 것을 제외하고, 실시예 1과 동일하게 실시하였다.Instead of the carbon nanotubes of Preparation Example 1 was carried out in the same manner as in Example 1 except that 10g of carbon nanotubes of Preparation Example 3 and 50g of carbon black instead of 50g of carbon black.

실시예Example 4 4

제조예 1의 탄소나노튜브 대신 제조예 4의 탄소나노튜브 5g, 카본블랙 90g 대신 평균입경 10.0㎛ 의 탄소섬유 90g을 사용하는 것을 제외하고, 실시예 2와 동일하게 실시하였다.Instead of the carbon nanotubes of Preparation Example 1 was carried out in the same manner as in Example 2, except that 5g of carbon nanotubes of Preparation Example 4 and 90g of carbon black instead of 90g of carbon black.

실시예Example 5 5

제조예 1의 탄소나노튜브 대신 제조예 5의 탄소나노튜브 5g, 카본블랙 90g 대신 평균입경 10.0㎛ 의 탄소섬유 90g을 사용하는 것을 제외하고, 실시예 2와 동일하게 실시하였다.Instead of the carbon nanotubes of Preparation Example 1 was carried out in the same manner as in Example 2, except that 5g of carbon nanotubes of Preparation Example 5 and 90g of carbon black instead of 90g of carbon black.

비교예Comparative example 1 One

회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE 830;HCC) 968g, 표면개질되지 않은 탄소나노튜브(MWCNT) 30g, 아조디카르복실아미드 2g을 투입한 것을 제외하고는 실시예 1과 동일하게 실시하였다. Same as Example 1, except that 968 g of low density polyethylene (LDPE 830; HCC), 30 g of unmodified carbon nanotube (MWCNT), and 2 g of azodicarboxyamide were added to the hopper of the rotating twin screw extruder. It was carried out.

비교예Comparative example 2 2

표면개질되지 않은 탄소나노튜브 대신 제조예 1의 표면개질된 탄소나노튜브 30g을 사용하는 것을 제외하고, 비교예 1과 동일하게 실시하였다.Except for using the surface-modified carbon nanotubes of Preparation Example 1 instead of the surface-modified carbon nanotubes were carried out in the same manner as in Comparative Example 1.

비교예Comparative example 3 3

회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE830;HCC) 648g, 카본블랙(VXC500;CABOT) 350g을 투입하는 것을 제외하고, 비교예 1과 동일하 게 실시하였다.The same procedure as in Comparative Example 1 was carried out except that 648 g of low density polyethylene (LDPE830; HCC) and 350 g of carbon black (VXC500; CABOT) were added to a hopper of a rotating twin screw extruder.

비교예Comparative example 4 4

회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE830;HCC) 748g, 평균입경 0.1㎛ 의 탄소섬유 250g을 투입하는 것을 제외하고, 비교예 1과 동일하게 실시하였다.The same procedure as in Comparative Example 1 was conducted except that 748 g of low density polyethylene (LDPE830; HCC) and 250 g of carbon fiber having an average particle diameter of 0.1 µm were added to a hopper of a rotating twin screw extruder.

비교예Comparative example 5 5

표면개질되지 않은 탄소나노튜브(MWCNT) 5g을 사용하는 것을 제외하고, 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was conducted except that 5 g of unmodified carbon nanotubes (MWCNT) were used.

비교예Comparative example 6 6

표면개질되지 않은 탄소나노튜브(MWCNT) 5g을 사용하는 것을 제외하고, 실시예 2와 동일하게 실시하였다.The same procedure as in Example 2 was conducted except that 5 g of unmodified carbon nanotubes (MWCNT) were used.

비교예Comparative example 7 7

표면개질되지 않은 탄소나노튜브(MWCNT) 10g을 사용하는 것을 제외하고, 실시예 3과 동일하게 실시하였다.The same procedure as in Example 3 was conducted except that 10 g of unmodified carbon nanotubes (MWCNT) were used.

비교예Comparative example 8 8

표면개질되지 않은 탄소나노튜브(MWCNT) 5g을 사용하는 것을 제외하고, 실시예 4와 동일하게 실시하였다.The same procedure as in Example 4 was conducted except that 5 g of unmodified carbon nanotubes (MWCNT) were used.

비교예Comparative example 9 9

아조디카르복실아미드를 사용하지 않고 저밀도폴리에틸렌(LDPE 830;HCC)을 940g으로 조정한 것을 제외하고, 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that low density polyethylene (LDPE 830; HCC) was adjusted to 940 g without using azodicarboxyamide.

*시험방법*Test Methods

1. 표면저항측정1. Surface Resistance Measurement

미쯔비시 사의 Loresta GP(MCP-T600)를 사용하여 JISK 7194/ASTM D991에 따라 측정하였다. It was measured according to JISK 7194 / ASTM D991 using Mitsubishi's Loresta GP (MCP-T600).

[표 1]TABLE 1

Figure 112009036863324-PAT00001
Figure 112009036863324-PAT00001

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. It will be clear to those who have knowledge of.

Claims (11)

열가소성수지 100중량부;100 parts by weight of thermoplastic resin; 상기 열가소성수지 100중량부에 대하여 표면개질된 탄소나노튜브 0.1~5중량부; 및0.1 to 5 parts by weight of surface-modified carbon nanotubes based on 100 parts by weight of the thermoplastic resin; And 상기 열가소성수지 100중량부에 대하여 탄소화합물 1~20중량부;및1 to 20 parts by weight of a carbon compound based on 100 parts by weight of the thermoplastic resin; and 상기 열가소성수지 100 중량부에 대하여 발포제 0.01~5 중량부;0.01 to 5 parts by weight of a blowing agent based on 100 parts by weight of the thermoplastic resin; 를 포함하는 전도성 발포수지조성물.Conductive foam resin composition comprising a. 제1항에 있어서,The method of claim 1, 상기 표면개질된 탄소나노튜브는 탄소나노튜브 100중량부에 대하여 산소, 질소 및 이들의 혼합물로 이루어진 군에서 선택되는 물질이 0.1~10중량부로 포함되도록 개질된 것인 전도성 발포수지조성물.The surface-modified carbon nanotubes are conductive foamed resin composition modified to include 0.1 to 10 parts by weight of a material selected from the group consisting of oxygen, nitrogen, and mixtures thereof, based on 100 parts by weight of carbon nanotubes. 제2항에 있어서,The method of claim 2, 상기 표면개질된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계수 또는 초임계수 조건에서 탄소나노튜브 표면을 산화처리하여 얻어진 것인 전도성 발포수지조성물.The surface-modified carbon nanotubes are oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds And a conductive foamed resin composition obtained by oxidizing a surface of carbon nanotubes under subcritical or supercritical water conditions at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from a mixture thereof. 제3항에 있어서, The method of claim 3, 상기 표면개질된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계수 또는 초임계수 조건에서 탄소나노튜브 표면을 산화처리하고, 이어서 카르복실, 카르복실염, 아민, 아민염, 4가-아민, 인산기, 인산염, 황산기, 황산염, 알코올, 티올, 에스테르, 아미드, 에폭사이드, 알데하이드, 케톤 및 이들의 혼합물로 이루어진 군에서 선택된 하나 이상의 관능기를 지닌 기능성화합물을 50 내지 400atm의 압력과 100내지 600℃ 온도로 표면개질반응조에 주입하여 표면 처리되어 얻어진 전도성 발포수지조성물.The surface-modified carbon nanotubes are subcritical water or supercritical condition at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds, and mixtures thereof. Oxidation of the surface of the carbon nanotubes, followed by carboxyl, carboxyl salt, amine, amine salt, tetra-amine, phosphate group, phosphate, sulfate group, sulfate, alcohol, thiol, ester, amide, epoxide, aldehyde, ketone And a conductive foam resin composition obtained by surface treatment by injecting a functional compound having at least one functional group selected from the group consisting of a mixture thereof into a surface reforming reaction tank at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. 제2항에 있어서,The method of claim 2, 상기 표면개질된 탄소나노튜브는 탄소나노튜브에 카르복실산, 질산, 인산 또는 황산을 첨가하여 탄소나노튜브 표면의 산화작용으로 얻어진 것인 전도성 발포수지조성물.The surface-modified carbon nanotubes are conductive foamed resin compositions obtained by oxidation of the surface of carbon nanotubes by adding carboxylic acid, nitric acid, phosphoric acid or sulfuric acid to the carbon nanotubes. 제1항에 있어서,The method of claim 1, 상기 열가소성수지는 폴리아세탈 수지, 아크릴계 수지, 폴리카보네이트 수지, 스티렌계 수지, 폴리에스테르 수지, 비닐계 수지, 폴리페닐렌에테르 수지, 폴리올레핀 수지, 아크릴로니트릴-부타디엔-스티렌 공중합체 수지, 폴리아릴레이트 수지, 폴리아미드 수지, 폴리아미드이미드 수지, 폴리아릴설폰 수지, 폴리에테르이 미드 수지, 폴리에테르설폰 수지, 폴리페닐렌 설피드 수지, 불소계 수지, 폴리이미드 수지, 폴리에테르케톤 수지, 폴리벤족사졸 수지, 폴리옥사디아졸 수지, 폴리벤조티아졸 수지, 폴리벤지미다졸 수지, 폴리피리딘 수지, 폴리트리아졸 수지, 폴리피롤리딘 수지, 폴리디벤조퓨란 수지, 폴리설폰 수지, 폴리우레아 수지, 폴리포스파젠 수지 및 액정중합체 수지로 이루어진 군에서 선택된 하나의 수지, 둘 이상의 공중합체 수지 또는 둘 이상의 혼합물인 전도성 발포수지조성물.The thermoplastic resin is polyacetal resin, acrylic resin, polycarbonate resin, styrene resin, polyester resin, vinyl resin, polyphenylene ether resin, polyolefin resin, acrylonitrile-butadiene-styrene copolymer resin, polyarylate Resin, polyamide resin, polyamideimide resin, polyarylsulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene sulfide resin, fluorine-based resin, polyimide resin, polyetherketone resin, polybenzoxazole resin, Polyoxadiazole resin, polybenzothiazole resin, polybenzimidazole resin, polypyridine resin, polytriazole resin, polypyrrolidine resin, polydibenzofuran resin, polysulfone resin, polyurea resin, polyphosphazene resin and One resin, two or more copolymer resins or two selected from the group consisting of liquid crystal polymer resins Mixture of conductive resin composition on the foam. 제1항에 있어서,The method of claim 1, 상기 탄소화합물은 카본블랙, 흑연, 탄소섬유 및 이들의 혼합물로 이루어진 군에서 선택되는 전도성 발포수지조성물.The carbon compound is a conductive foam resin composition selected from the group consisting of carbon black, graphite, carbon fibers and mixtures thereof. 제7항에 있어서,The method of claim 7, wherein 상기 탄소화합물은 평균입경이 0.001㎛~300㎛인 전도성 발포수지조성물.The carbon compound is conductive foamed resin composition having an average particle diameter of 0.001㎛ ~ 300㎛. 제1항에 있어서,The method of claim 1, 상기 발포제는 아조디카르복실아미드, 아조비스테트라졸디아미노구아니딘, 아조비스테트라졸구아니딘, 5-페닐테트라졸, 비스테트라졸구아니딘, 비스테트라졸피페라진, 비스테트라졸디암모늄, N,N-디니트로소펜타메틸렌테트라민, 히드라조디카르복실아미드 및 이들의 혼합물로부터 선택되는 전도성 발포수지조성물. The blowing agent is azodicarboxyamide, azobistetrazoldiaminoguanidine, azobistetrazolguanidine, 5-phenyltetrazole, bistetrazoleguanidine, bistetrazole piperazine, bistetrazolediammonium, N, N-di A conductive foamed resin composition selected from nitrosopentamethylenetetramine, hydrazodicarboxyamide and mixtures thereof. 제1항 내지 제9항 중 어느 한 항의 전도성 발포조성물을 압출하여 제조된 전도성 발포 성형물.A conductive foamed molded article prepared by extruding the conductive foamed composition of any one of claims 1 to 9. 제10항에 있어서,The method of claim 10, 상기 전도성 발포 성형물은 표면저항을 조절하여 전자파 차폐, 정전분산 또는 정전기 방지가 가능한 충격완화 플라스틱인 전도성 발포 성형물.The conductive foamed molding is a conductive foamed molding is a shock-absorbing plastic that can shield the electromagnetic wave, electrostatic dispersion or antistatic by controlling the surface resistance.
KR1020090054259A 2008-11-24 2009-06-18 Highly conductive foam composition having carbon composite KR101594494B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020090054259A KR101594494B1 (en) 2009-06-18 2009-06-18 Highly conductive foam composition having carbon composite
TW098139891A TWI406301B (en) 2008-11-24 2009-11-24 Highly conductive resin composition having carbon composite
PCT/KR2009/006909 WO2010059008A2 (en) 2008-11-24 2009-11-24 Conductive resin composition including carbon composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090054259A KR101594494B1 (en) 2009-06-18 2009-06-18 Highly conductive foam composition having carbon composite

Publications (2)

Publication Number Publication Date
KR20100136079A true KR20100136079A (en) 2010-12-28
KR101594494B1 KR101594494B1 (en) 2016-02-16

Family

ID=43510198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090054259A KR101594494B1 (en) 2008-11-24 2009-06-18 Highly conductive foam composition having carbon composite

Country Status (1)

Country Link
KR (1) KR101594494B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099334A2 (en) * 2011-01-19 2012-07-26 주식회사 한나노텍 Conductive polymer filler including a carbon nanotube microcapsule encapsulated by a thermoplastic resin layer, and method for forming same
KR101223873B1 (en) * 2011-02-16 2013-01-17 이무균 Manufacturing method for electric conductive form sheet
WO2021107722A1 (en) * 2019-11-29 2021-06-03 롯데케미칼 주식회사 Polyolefin-based resin foam, and molded product produced therefrom
WO2022045711A1 (en) * 2020-08-28 2022-03-03 롯데케미칼 주식회사 Polyolefin-based expanded particles and molded product manufactured therefrom
KR20220030529A (en) * 2020-09-03 2022-03-11 한국항공우주산업 주식회사 EMI shielding lightweight conductive foam and manufacturing method of that
KR20220094383A (en) * 2020-12-29 2022-07-06 한국신발피혁연구원 Sponge-forming composition for absorbing static electricity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263607A (en) * 2004-03-22 2005-09-29 Univ Shinshu Cnt surface modification method and cnt
KR20080053924A (en) * 2005-08-08 2008-06-16 캐보트 코포레이션 Polymeric compositions containing nanotubes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263607A (en) * 2004-03-22 2005-09-29 Univ Shinshu Cnt surface modification method and cnt
KR20080053924A (en) * 2005-08-08 2008-06-16 캐보트 코포레이션 Polymeric compositions containing nanotubes

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099334A2 (en) * 2011-01-19 2012-07-26 주식회사 한나노텍 Conductive polymer filler including a carbon nanotube microcapsule encapsulated by a thermoplastic resin layer, and method for forming same
WO2012099334A3 (en) * 2011-01-19 2012-11-15 주식회사 한나노텍 Conductive polymer filler including a carbon nanotube microcapsule encapsulated by a thermoplastic resin layer, and method for forming same
KR101223873B1 (en) * 2011-02-16 2013-01-17 이무균 Manufacturing method for electric conductive form sheet
WO2021107722A1 (en) * 2019-11-29 2021-06-03 롯데케미칼 주식회사 Polyolefin-based resin foam, and molded product produced therefrom
KR20210067390A (en) * 2019-11-29 2021-06-08 롯데케미칼 주식회사 Polyolefin based resin foam and molded article manufactured therefrom
CN114746492A (en) * 2019-11-29 2022-07-12 乐天化学株式会社 Polyolefin-based resin foam and molded product produced therefrom
CN114746492B (en) * 2019-11-29 2024-04-19 乐天化学株式会社 Polyolefin resin foam and molded product produced therefrom
WO2022045711A1 (en) * 2020-08-28 2022-03-03 롯데케미칼 주식회사 Polyolefin-based expanded particles and molded product manufactured therefrom
CN116034129A (en) * 2020-08-28 2023-04-28 乐天化学株式会社 Expanded polyolefin particles and molded articles produced therefrom
CN116034129B (en) * 2020-08-28 2024-04-19 乐天化学株式会社 Expanded polyolefin particles and molded articles produced therefrom
KR20220030529A (en) * 2020-09-03 2022-03-11 한국항공우주산업 주식회사 EMI shielding lightweight conductive foam and manufacturing method of that
KR20220094383A (en) * 2020-12-29 2022-07-06 한국신발피혁연구원 Sponge-forming composition for absorbing static electricity

Also Published As

Publication number Publication date
KR101594494B1 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
KR101090729B1 (en) Highly conductive resin composition having carbon composite
JP6096806B2 (en) Resin composition for electromagnetic shielding containing composite carbon material
Mousavi et al. A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles
Yang et al. Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes
TWI406301B (en) Highly conductive resin composition having carbon composite
Sathyanarayana et al. Thermoplastic nanocomposites with carbon nanotubes
Navidfar et al. Graphene type dependence of carbon nanotubes/graphene nanoplatelets polyurethane hybrid nanocomposites: Micromechanical modeling and mechanical properties
CN110591283B (en) Conductive graphene composite material and preparation method and application thereof
Akhina et al. Plasticized PVC graphene nanocomposites: Morphology, mechanical, and dynamic mechanical properties
Burgaz et al. Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures
KR20100136079A (en) Highly conductive foam composition having carbon composite
JP2010514883A (en) Conductive thermoplastic resin composition and plastic molded article
WO2013125280A1 (en) Production method for conductive resin composition, and conductive resin composition
Arjmandi et al. Polylactic acid green nanocomposites for automotive applications
Shi et al. Reinforcement of mechanical properties of silicone rubber foam by functionalized graphene using supercritical CO2 foaming technology
KR20150041400A (en) Polymer nanocomposites containing nano carbon materials having multiple hydrogen bonding motifs and their fabrication method
You et al. High-performance polyketone nanocomposites achieved via plasma-assisted mechanochemistry
Soheilmoghaddam et al. Bionanocomposite regenerated cellulose/single-walled carbon nanotube films prepared using ionic liquid solvent
Zubkiewicz et al. Comparing multi-walled carbon nanotubes and halloysite nanotubes as reinforcements in EVA nanocomposites
Ogbonna et al. A review on recent advances on the mechanical and conductivity properties of epoxy nanocomposites for industrial applications
Banerjee et al. Nanocarbon-containing polymer composite foams: a review of systems for applications in electromagnetic interference shielding, energy storage, and piezoresistive sensors
Charoeythornkhajhornchai et al. Effect of graphene treated with cyclohexyl diamine by diazonium reaction on cure kinetics, mechanical, thermal, and physical properties of natural rubber/graphene nanocomposite foam
TW201402671A (en) Masterbatch for electrically conductive resin, and electrically conductive resin
Fu et al. Combined graphene and poly (butylene terephthalate)-block-poly (tetramethylene glycol) enhance the mechanical performance of polyamide-6
Zhang et al. Study on the effect of tailoring the segmented PU molecules on electrically conductive properties and percolation threshold of PU/MWCNTs nanocomposites

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 4