KR20100117164A - 난방비 절감형 온수 분배기 - Google Patents

난방비 절감형 온수 분배기 Download PDF

Info

Publication number
KR20100117164A
KR20100117164A KR1020090035762A KR20090035762A KR20100117164A KR 20100117164 A KR20100117164 A KR 20100117164A KR 1020090035762 A KR1020090035762 A KR 1020090035762A KR 20090035762 A KR20090035762 A KR 20090035762A KR 20100117164 A KR20100117164 A KR 20100117164A
Authority
KR
South Korea
Prior art keywords
header
return
heating
supply
water
Prior art date
Application number
KR1020090035762A
Other languages
English (en)
Other versions
KR101101796B1 (ko
Inventor
안상민
Original Assignee
안상민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안상민 filed Critical 안상민
Priority to KR1020090035762A priority Critical patent/KR101101796B1/ko
Publication of KR20100117164A publication Critical patent/KR20100117164A/ko
Application granted granted Critical
Publication of KR101101796B1 publication Critical patent/KR101101796B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1058Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system disposition of pipes and pipe connections
    • F24D3/1066Distributors for heating liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D10/00District heating systems
    • F24D10/003Domestic delivery stations having a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/13Heat from a district heating network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

본 발명은 집단 열공급 난방방식에 적용되는 온수 분배기에 관한 것으로서, 공동주택의 메인순환배관으로부터 각 세대별 난방수(공급수)가 공급되는 공급헤더에, 환수헤더로부터 유입된 환수를 열교환을 통해 온도를 상승시켜 다시 환수헤더로 배출하는 열교환 구조를 구비하고, 그로부터 환수헤더로부터 메인순환배관으로 배출되는 환수의 온도를 상승시킬 수 있도록 구성됨으로써, 개별 세대의 난방비 절감은 물론 공동주택의 난방시스템, 더 나아가 지역난방의 전체 시스템의 효율을 향상시킬 수 있는 집단 열공급 난방용 온수 분배기에 관한 것이다.
집단 열공급 난방, 지역난방, 열병합, 중앙집중난방, 온수 분배기, 온수분배기, 공급헤더, 환수헤더, 열교환, 열효율 개선, 재열사이클, 열량, 난방비 절감, 열량계

Description

난방비 절감형 온수 분배기{Manifold system for heating expense curtailment}
본 발명은 공동주택의 난방방식에 적용되는 난방용 온수 분배기에 관한 것으로서, 더욱 상세하게는 집단 열공급 난방방식(지역난방방식, 열병합발전 난방방식, 중앙집중난방방식) 건물의 개별 세대에서 외부(건물의 메인순환배관 등)로부터 공급된 난방수를 방이나 거실 등의 각 실내로 분배하는 공급헤더와, 상기 각 실내를 순환한 난방수를 수집하여 다시 세대 외부로 배출하는 환수헤더를 포함하여 구성되는 집단 열공급 난방용 온수 분배기에 관한 것이다.
주지된 바와 같이, 집단 열공급 난방이란 한 곳에서 난방을 위한 에너지를 발생시켜 여러 곳으로 공급하는 개념이며, 지역난방은 일정 지역의 여러 건물을 동시에 난방하는 것으로, 개별 공동주택이나 빌딩 등의 중앙집중난방 개념을 지역적으로 확대한 것이다. 지역난방에서는 중앙에 난방 플랜트(열병합발전소 등)를 설치하고, 그곳으로부터 배관을 통해 주변 건물에 난방수를 공급한다.
즉, 지역난방은 한 개의 도시 또는 일정 지역 내에 있는 주택, 상가, 사무실, 학교, 병원, 공장 등 각종 건물이 개별적으로 난방설비를 갖추지 않고 대규모 열생산시설인 열병합발전소를 건설한 뒤 이를 통해 난방 및 급탕에 필요한 중온수(80 ~ 120 ℃)를 생산하여 열수송관을 통해 각 수용가에 공급하는 시스템으로, 집단에너지 공급방식 중 하나이다.
최근 전국에 산재해 있는 상당수의 지역에서 아파트나 오피스텔, 빌딩 등의 대단위 공동주택에 지역난방시스템을 채용하여 각 가정이나 사무실에 난방수를 공급하고 있다.
지역난방시스템은 집단에너지를 공급하는 사업자가 다수의 개별 사용자에게 난방 및 급탕을 위하여 배관을 통해 집단에너지를 공급하는 시스템으로, 개별적으로 사용자가 난방설비를 갖추는 개별난방시스템과는 차이가 있다.
이러한 지역난방시스템의 열병합발전소는 보일러와 축열조, 열교환기, 순환펌프 등을 포함하며, 순환펌프에는 열공급대상지역까지 열(온수)을 수송 및 회수하는 열수송관과 사용자 열교환기(예, 공동주택의 기계실 등에 구비된 열교환기)가 연결된다. 여기서, 열수송관은 공급관과 회수관으로 이루어진다.
지역난방시스템은 열원 장치가 대규모로 건설되기 때문에 각 건물마다 개별적으로 열원을 놓는 경우보다 열원비가 싸다는 장점이 있다.
첨부한 도 1은 지역난방시스템에서 난방수 공급 및 열교환이 이루어지는 예를 도시한 개략도로서, 아파트와 같은 공동주택의 난방을 위한 시스템의 일 예를 도시한 것이다.
도시된 바와 같이, 공동주택의 개별 세대(각 가정, 오피스텔, 사무실 등) 난방을 위해 열원이 되는 지역난방사업자(열병합발전소)(1)로부터 지역 내 각 공동주택 단위별로 온수가 공급되며, 이때 순환펌프(도시하지 않음)에 의해 공급된 온수가 열수송관의 공급관(2)을 통해 공동주택의 기계실에 마련된 열교환기(100)로 공급된다.
지역난방사업자(1)는 공동주택 개별 세대의 수요공급온도를 유지시켜주기 위하여 온수를 끊임 없이 공급하고, 지역난방사업자로부터 공급되는 온수는 공동주택의 열교환기(100)를 통해 공동주택을 순환하는 난방수에 열을 공급하게 된다.
이와 같이 공동주택의 난방수를 가열한 뒤 열교환기(100)로부터 나온 물은 회수관(3)을 통해 다시 지역난방사업자(1)로 회수되어 재가열되고, 이후 공급관(2)을 통해 다시 각 공동주택으로 공급된다.
그리고, 공동주택의 난방수는 기계실의 열교환기(100)에 연결된 독립폐쇄회로 구조의 메인순환배관(101)을 통해 순환되며, 기계실의 열교환기에서 지역난방사업자(100)로부터 공급된 온수와의 열교환을 통해 가열된 뒤 각 세대로 분배된다.
이때, 공동주택의 난방수는 열교환기(100)에서 가열된 뒤 메인순환배관(101)에서 분기배관(102)을 통해 각 세대로 분배되며, 이어 각 세대에 설치된 온수 분배기의 공급헤더(난방수분배기)(210)를 통해 방 및 거실 등 각 실내에 설치된 난방코일로 분배된다.
이와 같이 개별 세대에서 방 및 거실 등 각 실내로 분배된 난방수는 해당 실내에 설치된 난방코일을 통해 흐르면서 난방을 하게 되고, 각 실내의 난방코일을 통과한 난방수는 다시 온수 분배기의 환수헤더(난방수수집기)(220)에서 수집된 뒤 회수배관(103)을 통해 세대 외부의 메인순환배관(101)으로 이동하여 다시 기계실의 열교환기(100)를 거치게 된다.
결국, 각 세대를 순환한 난방수는 기계실의 열교환기(100)에서 재가열된 뒤 다시 각 세대로 공급되는 바, 전체적으로는 열교환기(100)와 메인순환배관(101), 분기배관(102), 회수배관(103), 각 세대의 난방코일을 순환하면서 실내를 난방시키게 된다.
각 공동주택에서 난방수의 상세한 순환 경로는 열교환기(100), 독립폐쇄회로 구조의 메인순환배관(101), 분기배관(102), 온수 분배기의 공급헤더(210), 세대 내 각 실내의 난방코일, 온수 분배기의 환수헤더(220), 회수배관(103), 메인순환배관(101), 열교환기(100)의 순이 되며, 난방수가 이 경로를 순환하면서 지역난방사업자(1)로부터 공급된 열을 개별 세대의 실내에 전달하는 역할을 하게 된다.
위에서 각 세대별 실내 난방을 위해 온수 분배기가 사용되고 있음을 지역난방의 예를 들어 설명하였지만, 중앙의 개별 열원(기계실에 설치된 보일러 등)를 이용해 각 세대로 난방수를 공급하는 중앙집중난방방식의 공동주택에서도 동일한 역할의 온수 분배기가 사용되고 있다.
전술한 바와 같이, 지역난방시스템 또는 중앙집중난방시스템에서는 각 세대에서 개별 실내 공간으로 난방수를 분배하고 수집하는 온수 분배기가 설치되고 있는 바, 이에 대해 설명하면 다음과 같다.
첨부한 도 2는 온수 분배기(200)의 일 예를 도시한 구성도이고, 도 3은 공동 주택의 열교환기(100), 메인순환배관(101), 온수 분배기(200), 난방코일(300) 간을 순환하는 난방수 경로를 개략적으로 도시한 도면이다. 도 3을 참조하면, 공급관(2)과 회수관(3)에 의해 지역난방사업자(1)가 공급하는 온수가 열교환기(100)를 통과하고, 메인순환배관(101)을 통해 순환하는 공동주택의 난방수가 열교환기(100)를 통과함을 볼 수 있다.
도시된 바와 같이, 지역난방방식(중앙집중난방방식) 건물의 각 세대에 설치되는 온수 분배기(200)는 공동주택의 메인순환배관(101)으로부터 분기배관을 통해 공급되는 난방수를 방 및 거실 등 각 실내의 난방코일(300)로 분배하는 공급헤더(210)와, 각 실내의 난방코일(300)을 통과한 난방수를 수집하여 다시 메인순환배관(101)으로 배출하는 환수헤더(220)를 포함하여 구성된다.
이러한 온수 분배기(200)에서 공급헤더(210)와 환수헤더(220)는 난방수가 임시로 수용될 수 있도록 일정 체적의 내부공간을 가지는 통관 구조로 되어 있고, 각 실내의 난방코일(300)이 연결되는 다수의 포트(212,221)가 설치되어 있다.
물론, 공급헤더(210)의 포트(212)는 난방수가 난방코일(300)로 배출되는 배출포트가 되고, 환수헤더(220)의 포트(221)는 난방코일(300)에서 난방수가 유입되는 유입포트가 된다.
또한 공급헤더(210)에는 메인순환배관(101)으로부터 난방수를 공급받도록 메인순환배관에서 분기된 분기배관(도 1에서 도면부호 102임)이 연결되는데, 분기배관(102)은 공급헤더(210)의 공급포트(211)에 연결되어 메인순환배관(101)으로부터 각 세대로 분배된 난방수를 공급헤더(210)에 공급하게 된다.
또한 환수헤더(220)에는 회수포트(222)가 구비되는데, 이 회수포트(222)에는 회수배관(도 1에서 도면부호 103임)이 연결되며, 이 회수배관은 세대 외부의 메인순환배관(101)으로 연결된다. 결국, 환수헤더(220)에 수집된 난방수가 회수포트(222) 및 회수배관(103)을 통해 메인순환배관(101)으로 배출되어 열교환기(100)로 회수되게 된다.
한편, 지역난방방식(또는 중앙집중난방방식)이 채용된 공동주택에서 난방비는 각 세대에서 난방을 위해 소모한 누적 열량값을 반영하여 산출하고 있으며, 이를 위해 열량계(230)를 사용하는 것이 일반적이다.
즉, 열량계(230)를 기반으로 세대별 난방비를 산출하여 부과하고 있으며, 이때 열량계는 세대에 공급되는 난방수의 온도(T1)와, 해당 세대로부터 난방에 사용되고 나오는 난방수의 온도(T2)로부터 소모 열량을 계산하게 된다.
따라서, 열량계(230)를 기반으로 하는 시스템에서는 난방비 산출을 위해 세대에 공급되는 난방수(공급수)의 온도(T1)와, 세대에서 회수되는 난방수(환수)의 온도(T2)를 각각 계측해야 하며, 이를 위해 온도센서(231,232)가 사용된다.
도 3을 참조하여 설명하면, 환수헤더(220)와 메인순환배관(101) 사이의 각 세대별 회수배관에 열량계(230)가 설치되고, 이 열량계(230)에는 회수배관 내에 삽입된 상태의 온도센서(231)가 내장된다. 이에 상기 온도센서(231)를 통해 각 세대에서 환수헤더(220)로부터 회수배관을 거쳐 배출되는 난방수의 온도(T2)가 측정될 수 있게 된다.
또한 온수 분배기(200)의 공급헤더(210)에 별도의 온도센서(232)가 삽입되어 설치되며, 이를 통해 해당 세대에 공급되는 난방수의 온도(T1)를 계측하게 된다.
이때 열량계(230)는 회수배관에 삽입된 온도센서(231)와 공급헤더(210)에 삽입된 온도센서(232)의 출력값을 입력받게 되고, 두 온도센서(231,232)에 의해 계측된 온도값을 이용하여 소모된 열량값을 산출하게 된다.
이에 산출된 소모 열량의 누적값에 상응하는 각 세대별 난방비가 산출되어 부과될 수 있게 된다.
상기와 같이 산출되는 난방비는 두 온도센서(231,232)의 계측값인 공급수의 온도(T1)와 환수의 온도(T2) 차이(ΔT)에 상응한 값이 되고, 이때 온도 차이가 클수록 소모 열량값이 증가하므로 난방비는 증가된다.
한편, 최근 들어 집단 열 공급 난방방식, 즉 지역난방방식이나 중앙집중난방방식 등을 채용한 공동주택에서 상기한 온수 분배기와 난방비 민원을 해소하기 위한 열량계의 장착이 늘고 있으나, 난방비의 과다 문제와 열량 소모의 효율이 떨어지는 문제, 유량이 부정확한 문제, 설계유량보다 과다유량이 흐르는 문제 등으로 인해 열 수요자의 민원이 다수 발생하는 실정이다.
세대의 효과적 난방비 부과를 위한 열량 소모값의 측정을 위해 열량계가 많이 보급되고 있으나, 소모된 열량값을 난방비로 부과시키는 시스템의 열량 소모 효율에 대해서는 어떠한 기술도 접목되고 있지 못하다.
세대의 열량값 소모는 세대의 크기와 방향성, 위치에 따라 열량 소모가 계측되지만, 난방 사용량에 대한 계측값과 유량값의 변경을 통한 단순 사용량에 따른 계측정밀도와 유량정밀도로만 난방비와 난방효율을 제어하려 노력할 뿐이다.
이에 난방 열량의 효과적 소모와 일정 열량값 유지에 따른 난방시스템의 전반적인 효율을 높이지 못하는 열효율에 대해 난방비와 관련된 많은 민원이 제기되고 있는 실정이다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 발명한 것으로서, 각 세대별 난방비를 절감시켜주면서도 공동주택의 난방시스템, 더 나아가 지역난방과 같은 집단 열공급 시스템의 전반적인 시스템 효율을 향상시킬 수 있는 난방용 온수 분배기를 제공하는데 그 목적이 있는 것이다.
상기한 목적을 달성하기 위해, 본 발명은, 개별 세대에서 공동주택의 메인순환배관으로부터 공급되는 공급수를 각 실내에 설치된 난방코일로 분배하는 공급헤더와, 상기 각 실내의 난방코일을 순환한 환수를 수집하여 다시 공동주택의 메인순환배관으로 배출하는 환수헤더를 포함하는 집단 열공급 난방용 온수 분배기에 있어서,
상기 공급헤더에 환수헤더로부터 수집된 환수를 공급받아 공급수와의 열교환을 통해 온도를 상승시킨 뒤 다시 환수헤더로 배출하는 열교환부가 구비되고,
상기 환수헤더는 상기 공급헤더의 열교환부로부터 배출되는 환수를 공급받아 회수포트를 통해 메인순환배관으로 최종 배출하도록 구성되는 것을 특징으로 한다.
이에 따라, 본 발명에 따른 온수 분배기에 의하면, 공동주택의 메인순환배관 으로부터 난방수(공급수)가 공급되는 공급헤더에, 환수헤더로부터 유입된 환수를 열교환을 통해 온도를 상승시켜 다시 환수헤더로 배출하는 열교환 구조를 구비하여, 환수헤더로부터 메인순환배관으로 배출되는 환수의 온도를 상승시킬 수 있도록 구성됨으로써, 개별 세대의 난방비 절감은 물론 공동주택의 난방시스템, 더 나아가 지역난방의 전체 시스템의 효율을 향상시킬 수 있게 된다.
특히, 각 세대에서 온수 분배기를 통해 최종 배출되는 환수의 온도를 높여줌으로써, 열수요의 효과적인 제어 및 이를 통한 각 공동주택의 공급열량 감소 효과을 얻을 수 있으며, 결국 이는 열량공급처에 영향을 주어, 기존의 설비와 열량을 유지하더라도 기존의 각 공동주택의 열량소모의 감소량에 비례하여 잉여 열량을 발생시킬 수 있는 바, 더욱 많은 열수요처를 확보할 수 있는 장점을 제공한다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명하면 다음과 같다.
본 발명은 지역난방방식 및 중앙집중난방방식을 포함한 공동난방방식(집단 열 공급 난방방식)을 채용하고 있는 공동주택(아파트, 오피스텔, 빌딩, 다세대 건물 등)에서 각 세대(가정, 사무실 등)에 구비되는 것으로서, 개별 세대에서 외부(건물의 메인순환배관 등)로부터 공급된 난방수를 방이나 거실 등의 각 실내로 분배하는 공급헤더와, 상기 각 실내를 순환한 난방수를 수집하여 다시 세대 외부로 배출하는 환수헤더를 포함하여 구성되는 난방용 시스템 분배에 관한 것이다.
특히, 본 발명에 따른 온수 분배기는 공급헤더와 환수헤더의 구조를 개선한 것으로서, 공동주택의 메인순환배관으로부터 난방수(공급수)가 공급되는 공급헤더에, 환수헤더로부터 유입된 환수를 열교환을 통해 온도를 상승시켜 다시 환수헤더로 배출하는 열교환 구조를 구비하여, 개별 세대의 난방비 절감은 물론 공동주택의 난방시스템, 더 나아가 지역난방의 전체 시스템의 효율을 향상시키고자 한 것이다.
첨부한 도 4a와 도 4b는 본 발명에 따른 온수 분배기(200)에서 공급헤더(210)와 환수헤더(220)를 도시한 사시도로서, 도 4b는 내부 구조를 보여주기 위한 절개 사시도이다.
또한 첨부한 도 5는 본 발명에 따른 온수 분배기(200)에서 공급헤더(210)와 환수헤더(220)의 단면도로서, 공급수와 환수의 경로를 나타낸 도면이다.
또한 첨부한 도 6은 본 발명에 따른 온수 분배기(200) 적용시 난방수 이동경로를 나타낸 개략도로서, 환수의 온도가 높아지고 이를 통해 난방비가 절감될 수 있음을 설명하기 위한 예시도이다.
이하, 본 명세서에서는 명확한 설명을 위해 공동주택의 메인순환배관(101)으로부터 분기배관(도 1에서 도면부호 102임)을 통해 각 세대의 공급헤더(210)로 공급되는 난방수를 공급수(이후 공급헤더에서 난방코일로 분배됨)라 칭하고, 각 실내의 난방코일(300)을 거쳐 환수헤더(220)로 회수되는 난방수를 환수(이후 환수헤더에서 회수배관을 통해 메인순환배관으로 회수됨)라 칭하기로 한다.
도 4a 및 도 4b, 도 5 및 도 6에 도시된 바와 같이, 공동주택의 각 세대에 설치되는 온수 분배기(200)는 각 실내(방, 거실 등)로 난방수를 분배하는 공급헤 더(210)와, 각 실내를 순환한 난방수가 수집되는 환수헤더(220)를 주된 구성으로 한다.
여기서, 공급헤더(210)에는 공급수가 공급되는 공급포트(211)와, 공급수가 배출되는 다수의 배출포트(212)가 설치되고, 상기 공급포트(211)에는 메인순환배관(101)으로부터 연결된 분기배관이, 각 배출포트(212)에는 해당 세대의 각 실내(바닥 등)에 설치된 난방코일(300)이 연결된다.
이에 따라 공급헤더(210)의 공급포트(211)로는 공동주택의 메인순환배관(101)으로부터 분기배관을 통해 공급수가 공급되고, 공급포트(211)로 유입된 공급수가 공급헤더(210)의 내부공간을 거친 뒤 각 배출포트(212)를 통해 배출된다. 결국, 공급수는 공급헤더(210)에서 배출포트(212)에 의해 각 실내의 난방코일(300)로 분배될 수 있게 된다.
각 개별 난방코일(300)로 분배된 공급수는 난방코일(300)을 순환하면서 해당 실내를 난방한 뒤 환수헤더(220)로 회수되게 된다.
상기 환수헤더(220)에는 환수가 유입되는 다수의 유입포트(221)와, 환수가 배출되는 회수포트(222)가 설치되는데, 각 유입포트(221)에는 해당 세대의 각 실내에 설치된 난방코일(300)이 연결되고, 회수포트(222)에는 메인순환배관(101)으로 연결된 회수배관(도 1에서 도면부호 103임)이 연결된다.
이에 따라 환수헤더(220)의 각 유입포트(221)로는 난방코일(300)을 순환하여 해당 실내를 난방한 환수가 유입되어 회수되고, 환수헤더(220)의 회수포트(222)로는 실내 난방 후 회수된 환수가 메인순환배관(101)으로 최종 배출될 수 있게 된다.
환수헤더(220)의 회수포트(222)로 배출된 환수는 회수배관을 통해 메인순환배관(101)으로 이동한 뒤, 공동주택의 기계실로 이동하여 열교환기(100)에서 다시 열을 공급받게 되고, 열교환기(100)에서 가열된 난방수는 메인순환배관(101) 및 분기배관을 통해 각 세대의 공급헤더(210)로 재공급되어 다시 실내 난방에 사용되게 된다.
한편, 본 발명에 따른 온수 분배기(200)에서 공급헤더(210)에는 환수헤더(220)로부터 유입되는 환수를 열교환을 통해 온도를 높여주는 열교환 구조가 구비된다.
상기 열교환 구조는 환수헤더(220)로부터 환수를 공급받은 뒤 공급헤더(210) 내 공급수와의 열교환을 통해 환수의 온도를 상승시키고 온도가 상승한 환수는 다시 환수헤더(220)로 배출하는 구조로 되어 있다.
즉, 환수가 환수헤더(220), 공급헤더(210)의 열교환 구조, 다시 환수헤더(220)의 경로를 거쳐 온도가 상승한 상태로 환수헤더(220)의 회수포트(222)를 통해 메인순환배관(101)으로 최종 배출되도록 하는 것이다.
상기 열교환 구조에 대해 좀더 구체적으로 설명하면, 먼저 환수헤더(220)는 난방코일(300)로부터 각 유입포트(221)를 통해 유입된 환수가 통과하도록 마련된 제1내부공간부(224)와, 공급헤더(210)에서 열교환을 통해 가열된 환수가 유입되도록 마련되고 회수포트(222)틀 구비하여 회수배관으로 환수를 최종 배출하는 제2내부공간부(225)를 가진다.
상기 제1내부공간부(224)와 제2내부공간부(225)는 환수헤더(220)에서 서로 분리된 개별 공간으로 구비된다.
바람직한 실시예에서, 환수헤더(220)는 내부공간에서 길이방향(축방향)을 따라 길게 설치된 격판(223)에 의해 제1내부공간부(224)와 제2내부공간부(225)가 구획된 구조로 구성될 수 있다.
이때, 격판(223)은 환수헤더(220)의 단면상에서 중앙에 설치될 수 있으며, 제1내부공간부(224)와 제2내부공간부(225) 사이에 열교환이 최소화될 수 있도록 단열소재로 설치되는 것이 바람직하다.
상기 제2내부공간부(225)에 회수배관이 연결되는 회수포트(222)가 구비되므로, 결국 제2내부공간부(225)의 환수는 회수포트(222)를 통해 회수배관, 메인순환배관(101)을 차례로 거쳐 기계실의 열교환기(100)로 최종 회수되게 된다.
공급헤더(210)는 환수헤더(220)의 제1내부공간부(224)로부터 공급된 환수가 내부공간을 통과하도록 되어 있으면서 공급헤더(210)로 유입된 공급수에 열교환 가능하게 접촉되어 내부공간을 통과하는 환수와 주변을 통과하는 공급수 간의 열교환이 이루어지는 열교환부(213)가 설치된다.
바람직한 실시예에서, 상기 열교환부(213)는 공급헤더(210)의 내부공간에 삽입 설치되는 구조물로서, 공급헤더(210)의 내부공간에서 그 길이방향(축방향)을 따라 길게 배치되도록 설치된다.
상기 열교환부(213)는 공급포트(211)에서 공급헤더(210)의 내부공간을 통과하여 배출포트(212)로 이동하는 공급수의 유동을 최대한 방해하지 않도록 구비되어야 하는 바, 도시된 바와 같이 반원형의 단면 구조로 형성되어 공급헤더(210)의 내 부공간 상부에 설치되는 것이 바람직하다.
여기서, 열교환부(213)의 단면 구조는 다양한 형상으로 변경이 가능하나, 공급헤더(210)의 내부공간에 삽입되어 설치되는 경우라면, 공급헤더(210)의 내부공간을 통과하는 공급수의 최적 유동상태를 고려해야 한다.
또한 열교환부(213)는 내부의 환수가 주변의 공급수와 접촉하여 열교환이 이루어지는 부분이므로, 열교환 효율을 높일 수 있도록 열전도가 높은 소재(예, 동(銅))를 사용하여 설치된다.
이와 같이 공급헤더(210)의 내부공간에 삽입 설치된 열교환부(213)는 환수헤더(220)의 제1내부공간부(224)와 제2내부공간부(225)에 각각 연결배관(214,215)을 통해 연결되는데, 열교환부(213)의 일단부가 환수헤더(220)의 제1내부공간부(224)와, 열교환부(213)의 타단부가 환수헤더(220)의 제2내부공간부(225)와 연결배관(214,215)으로 연결된다.
결국, 난방코일(300)을 거친 환수가 환수헤더(220)에서 각 유입포트(221)를 통해 제1내부공간부(224)로 유입되고, 이어 제1내부공간부(224)로 유입된 환수는 연결배관(214), 열교환부(213), 연결배관(215), 제2내부공간부(225)를 차례로 통과한 뒤, 제2내부공간부(225)에서 회수포트(222)를 통해 회수배관으로 최종 배출되어 메인순환배관(101)을 통해 기계실 열교환기(100)로 회수되게 된다.
상기한 본 발명의 온수 분배기(200)의 구조에서, 난방코일(300)을 순환한 환수가 환수헤더(220)의 제1내부공간부(224)에서 연결배관(214)을 통해 공급헤더(210)의 열교환부(213)로 이동하게 되면, 환수는 열교환부(213)에서 열교환에 의 해 주변의 공급수로부터 열을 빼앗아 온도가 상승하게 되고, 이어 열교환부(213)에서 온도가 상승한 환수는 연결배관(215)을 통해 환수헤더(220)의 제2내부공간부(225)로 이동하여 회수포트(222)를 통해 최종 배출되게 된다.
환수헤더(220)의 제2내부공간부(225)에서 최종 배출되는 환수는 열교환부(213)에서 공급수에 의해 온도가 상승한 상태의 환수로서 최종 배출되게 된다.
도 6을 참조하여 설명하면, 일 예로서, 지역난방사업자로부터 100℃의 온수가 공동주택 단위의 열교환기(100)로 공급되고, 환수헤더(220)로부터 배출된 환수가 열교환기(100)를 통과하므로, 열교환기(100)에서 환수는 열교환에 의해 50℃로 다시 가열되어 온수 분배기(200)에 공급수로서 공급된다.
이때, 지역난방사업자로부터 공급된 온수는 열교환기(100)에서 환수헤더(220)로부터 배출된 환수와의 열교환에 의해 온도가 낮은 상태가 되며, 열교환 후의 온도는 열교환이 이루어지는 환수의 온도, 즉 환수헤더(220)로부터 배출된 환수의 온도에 영향을 받게 된다.
열교환기(100)에서 가열된 공급수의 온도는 지역난방사업자가 공급하는 온수의 온도에 영향을 받으며, 지역난방사업자는 계절 등 여러 조건을 고려하여 공급 온수와 공급수의 온도를 설정한다. 지역난방에서 공급하는 온도값 기준은 혹한기와 난방철로 구분되어 공급되고 있다(예, 지역난방공급기준에 의거 공급수의 온도는 50℃/60℃, 환수의 온도는 35℃/45℃).
한편, 50℃로 온수 분배기(200)로 공급된 공급수, 즉 공급헤더(210)로 공급된 공급수는 공급헤더(210)에서 열교환부(213)를 통과하는 환수와의 열교환에 의해 온도가 하강하며, 이후 공급헤더(210)의 배출포트(212)를 통해 각 실내의 난방코일(300)로 분배된다.
그리고, 각 실내의 난방코일(300)을 통과한 뒤 환수헤더(220)의 제1내부공간부(224)로 회수된 환수는 공급헤더(210)의 열교환부(213)로 이동하여 공급수에 의해 온도가 상승한 뒤 다시 환수헤더(220)로 이동하는데, 이때 환수헤더(220)의 제2내부공간부(225)로 들어오게 된다.
결국, 온도가 상승한 환수가 제2내부공간부(225)에서 회수포트(222)를 통해 배출되며, 제2내부공간부(225)로 들어온 환수는 제1내부공간부(224)의 환수에 비해 온도가 높아진 상태로 배출된다.
또한 공급헤더(210)에서 공급수와 환수 간의 열교환이 이루어지면, 실질적으로 공급헤더(210)에서 각 난방코일(300)로 분배되는 공급수의 온도는 초기 유입시의 온도, 즉 50℃보다는 다소 낮은 상태가 되는데, 도 6의 예를 참조하면, 열교환부(213)의 환수에 열을 빼앗기게 되어 48℃로 낮아진 상태로 난방코일(300)에 공급된다.
그리고, 난방비 산출을 위한 열량계(230)는 종래와 같이 회수배관에 설치되고, 이때 회수배관을 통과하는 환수의 온도(T2)를 계측하는 온도센서(231)가 내장된다. 또한 공급헤더(210)에 공급수의 온도(T1)를 계측하는 온도센서(232)가 삽입 설치되는데, 이때 온도센서(T1)는 열교환부(213)의 환수와 열교환이 이루어진 공급수의 온도(T1)를 계측하게 된다.
이에 따라 환수헤더(220)에서 최종 배출되는 환수, 즉 열교환부(213)를 거치 면서 상대적으로 온도가 높아진 환수가 회수배관으로 배출되어 온도센서(231)에 의해 온도가 계측되고, 공급헤더(210)에서는 열교환부(213)의 환수에 열을 빼앗겨 온도가 초기 유입시보다 상대적으로 낮아진 공급수의 온도(T1)가 온도센서(232)에 의해 계측된다.
결국, 두 온도센서(231,232)의 계측값으로부터 얻어지는 온도차(ΔT = T1 - T2)는 종래와 같이 열교환부(213)가 설치되지 않은 상태에서 얻어지는 온도차보다 줄어들게 되고, 곧 줄어든 온도차에 대해 각 세대별 난방비를 절감할 수 있게 된다.
특히, 공급헤더(210)에 구비된 열교환부(213)를 거친 환수가 종래에 비해 상대적으로 높은 온도(T2)로 환수헤더(220)에서 배출되어 열교환기(100)에 회수되므로, 열교환기(100)에서 회수된 환수, 즉 공동주택측의 열교환을 하는 난방수의 온도를 높일 수 있는 장점과, 지역난방사업자가 보내온 열교환을 위한 온수의 공급량을 낮출 수 있는 장점이 있게 된다.
다시 말해, 각 세대에서 이루어진 열교환에 의해 초기 환수의 온도를 상승시킴으로써, 각 공동주택의 기계실 열교환기(100)로 흘러가는 환수(열교환으로 가열된 환수)의 온도(T2)를 높여주게 되며, 결국 공동주택의 난방을 위해 공급 설정한 온도 50℃를 얻기 위한 지역난방사업자, 열병합발전소 등 열공급처의 열공급량 및 온수와의 열교환량(회수된 환수로부터 50℃의 공급수를 얻기 위한 열공급량)을 낮출 수 있게 되는 것이다.
주지된 바와 같이, 지속적인 난방 공급이 특징인 지역난방사업자(열병합발전 소) 등의 열공급처는 일정한 설비와 용량을 가지고 있으므로 공급할 수 있는 세대가 한정적이다. 따라서, 공동주택의 난방수요와 공동주택의 증가에 따른 난방수요의 증가에 대응하기 위해서는 공급열량의 증가와 설비의 증설이 필요하나, 열수요의 효과적인 제어를 통한 각 공동주택의 공급열량 감소 효과는 열량공급처에 영향을 주어, 기존의 설비와 열량을 유지하더라도 기존의 각 공동주택의 열량소모의 감소량에 비례하여 잉여 열량을 발생시킬 수 있는 바, 더욱 많은 열수요처를 확보할 수 있는 장점이 있게 된다.
첨부한 도 7은 본 발명에 따른 온수 분배기(200)에서 환수헤더(220) 내 격판(223)의 형상을 달리하여 구성한 실시예의 단면 사시도로서, 본 발명에서 격판(223)의 형상은 도 7에 나타낸 바와 같이 반원 형상으로 변경이 가능하다.
이는 환수헤더(220) 내에서 유입포트(221)를 통해 들어오는 환수의 유동을 고려한 형상으로, 도 4a 및 도 4b의 실시예에서는 평판 형상의 격판(223)을 환수헤더(220)의 단면상에서 중앙에 설치하였으나, 도 7의 실시예에서는 반원형 단면의 격판(223)을 제작하여 설치한다.
단, 격판(223)이 환수헤더(220)의 내부공간에서 길이방향(축방향)을 따라 길게 설치되어, 이 격판(223)에 의해 제1내부공간부(224)와 제2내부공간부(225)가 구획되는 것은 도 4a 및 도 4b의 실시예와 동일하다.
상기와 같은 반원형 단면의 격판(223)은 환수헤더(220) 내에서 유입포트(221)의 설치부위 반대쪽을 향해 구부러진 곡면판이 되므로, 환수헤더(220) 내에서 곡면판 구조의 격판(223)이 유입포트(221)의 설치부위 반대쪽의 내벽면을 따라 소정 간극을 두고 위치되는 동시에, 환수가 유입되는 유입포트(221)와는 일정 거리를 두고 위치되며, 특히 중앙에 설치된 격판(도 4a 및 도 4b의 격판)과 비교할 때 유입포트(221)와는 좀더 먼 거리에 위치하게 된다.
상기한 곡면판 구조의 격판(223)이 설치될 경우, 격판이 유입포트(221)와는 적정 거리를 유지할 수 있기 때문에(도 4a 및 도 4b의 격판보다는 유입포트로부터 상대적으로 먼 거리에 위치), 난방코일을 거친 환수가 유입포트(221)로 유입되더라도, 환수가 격판(223)을 타격하여 발생하는 진동 및 소음을 최소화할 수 있고, 환수의 타격에 따른 격판(223)의 변형 발생 등을 최소화할 수 있게 된다.
다음으로, 첨부한 도 8은 본 발명의 다른 실시예에 따른 온수 분배기를 도시한 단면도로서, 환수헤더(220)가 메인헤더(220a)와 서브헤더(220b)로 분리 구성된 실시예의 단면도이다.
도 8에 도시된 실시예는, 도 4a 및 도 4b의 실시예와 비교하여 볼 때, 환수헤더(220) 내부에 격판(도 4a 및 도 4b에서 도면부호 223임)을 설치하는 것 대신에, 환수헤더(220) 자체를 2개의 헤더(220a,220b)로 분리하여 구성한 실시예이다.
즉, 환수헤더(220)에서 제1내부공간부와 제2내부공간부의 구획을 위한 격판(223) 대신, 환수헤더(220)를 별도 2개의 헤더인 메인헤더(220a)와 서브헤더(220b)로 분리 구성하여, 제1내부공간부(224)와 제2내부공간부(225)를 형성하는 것이다.
도 8은 도 5에 대응되는 단면도로서, 환수헤더(220)가 2개의 헤더, 즉 메인헤더(220a)(제1내부공간부(224)가 됨)와 서브헤더(220b)(제2내부공간부(225)가 됨) 로 분리 구성됨을 잘 보여주고 있다.
상기 메인헤더(220a)는 제1내부공간부(224)를 형성하는 헤더로서, 각 실내의 난방코일(도 6에서 도면부호 300임)을 거친 환수가 유입되는 다수의 유입포트(221)가 설치된다.
그리고, 상기 메인헤더(220a) 일측과 공급헤더(210)의 열교환부(213) 일측 사이에는 유입포트(221)를 통해 유입된 환수가 공급헤더(210)의 열교환부(213)로 흐를 수 있도록 연결배관(214)이 연결 설치된다.
또한 상기 서브헤더(220b)는 제2내부공간부(225)를 형성하는 헤더로서, 열교환에 의해 가열된 환수가 최종 배출되는 회수포트(222)가 설치된다.
상기 서브헤더(220b) 일측과 공급헤더(210)의 열교환부(213) 타측 사이에는 공급수와의 열교환을 마친 환수가 온도가 상승한 상태로 열교환부(213)에서 서브헤더(220b)로 흐를 수 있도록 연결배관(215)이 연결 설치된다.
공급헤더(210)의 경우에는 도 8에 나타낸 바와 같이 열교환부(213)가 연결배관(214,215)을 통해 메인헤더(220a)와 서브헤더(220b)에 각각 연결되는 것을 제외하고는 열교환부(213), 공급포트(211), 배출포트(212) 등의 전체적인 구조가 도 4a 및 도 4b, 도 5의 실시예와 차이가 없다.
결국, 난방코일(300)을 거친 환수가 각 유입포트(221)를 통해 제1내부공간부(224)가 되는 환수헤더(220)의 메인헤더(220a)로 유입되고, 이어 메인헤더(220a)로 유입된 환수는 연결배관(214), 공급헤더(210) 내 열교환부(213), 연결배관(215), 제2내부공간부(225)가 되는 환수헤더(220)의 서브헤더(220b)를 차례로 통 과한 뒤, 서브헤더(220b)에서 회수포트(222)를 통해 회수배관으로 최종 배출되어 메인순환배관(101)을 통해 기계실 열교환기(100)로 회수되게 된다.
상기한 본 발명의 온수 분배기(200)의 구조에서, 난방코일(300)을 순환한 환수가 환수헤더(220)의 메인헤더(220a)에서 연결배관(214)을 통해 공급헤더(210)의 열교환부(213)로 이동하게 되면, 환수는 열교환부(213)에서 열교환에 의해 주변의 공급수로부터 열을 빼앗아 온도가 상승하게 되고, 이어 열교환부(213)에서 온도가 상승한 환수는 연결배관(215)을 통해 환수헤더(220)의 서브헤더(220b)로 이동하여 회수포트(222)를 통해 최종 배출되게 된다.
이와 같이 하여, 열교환 구조를 가지는 본 발명의 온수 분배기(200)에 대해 상술하였는 바, 환수헤더(220)의 서브헤더(220b)에서 최종 배출되는 환수는 열교환부(213)에서 공급수에 의해 온도가 상승한 상태의 환수로서 최종 배출되게 된다.
다음으로, 온도센서(231,232)에 의해 계측되는 온도의 차이(ΔT = T1 - T2)로 난방비 감소됨을 아래와 같이 설명하기로 한다.
1. 공동주택 내의 개별 수요처(각 세대)의 열 공급과 소모의 형태를 비교해 보기로 한다.
- [가정]
각 세대로 공급되는 공급수의 온도(T1) : 60℃
환수의 온도(T2) : 45℃
ΔT = 15℃
(지역난방 열공급 기준안의 일 예, 이는 열교환부에 의한 열교환이 없는 상태로, 기존의 통상적인 온수 분배기의 일 예가 된다)
Figure 112009024849684-PAT00001
- [예 1]
본 발명의 온수 분배기(200)(열교환부가 있는 경우)에서 열교환부(213)에 의해 공급수와 환수 간 열교환이 1℃ 이루어진 경우
초기 60℃의 공급수가 59℃로 낮아져 난방코일(300)에 공급된다. 이때, 열량 감소에 따른 1.69%의 열공급량 감소가 있게 된다. 또한 초기 45℃로 환수된 환수는 열교환부(213)에서 46℃로 상승한 뒤 환수헤더(220)로 이동하여 최종 배출되며, 환수가 46℃로 환수될 경우, 환수의 온도 증가에 따른 온도차 ΔT는 13℃가 된다.
ΔT = 15℃ 에서 ΔT = 13℃로 ΔT 값이 변화될 경우 난방비는 13.3%가 절감된다.
- [예 2]
본 발명의 온수 분배기(200)(열교환부가 있는 경우)에서 열교환부(213)에 의해 공급수와 환수 간 열교환이 2℃ 이루어진 경우
초기 60℃의 공급수가 58℃(T1)로 낮아져 난방코일(300)에 공급된다. 이때, 열량 감소에 따른 3.38%의 열공급량 감소가 있게 된다. 또한 초기 45℃로 환수된 환수는 열교환부(213)에서 47℃로 상승한 뒤 환수헤더(220)로 이동하여 최종 배출되며, 환수가 47℃로 환수될 경우, 환수의 온도(T2) 증가에 따른 온도차 ΔT( = T1 - T2)는 11℃가 된다.
ΔT = 15℃ 에서 ΔT = 11℃로 ΔT 값이 변화될 경우 난방비는 26.6%가 절감된다.
- [결론 1]
열공급의 온도값 감소에 따른 열량의 감소는 난방비에 미치는 효율에 비교해 볼 때, 1℃ 열교환값(ΔT 2℃ 감소) 당 13.3%의 난방비 감소 효과가 있게 된다. 또한 난방 공급열량 감소에 다른 효과는 부수적인 환경효과도 있겠지만, 이론적으로는 기존 온도에서 1℃ 열교환될 때 열량 감소는 1.69% 감소된다.
- [결론 2]
각 개별 수요처의 환수 온도의 증가는 결국 지역난방측과의 열교환이 이루어지는 공동주택 기계실 환수 온도를 상승시키며, 이러한 효과는 공동주택의 기계실에서 이루어지는 열교환값의 차이를 감소시키므로, 전체적으로 난방비 감소의 효과가 있게 되는 효율적인 난방시스템이 된다.
2. 열역학적 효용을 살펴보기로 한다.
열역학적 효용 측면에서 살펴볼 때, 열역학 상태량인 엔탈피값으로 추정해보면, 아래 표 2와 같이 나타낼 수 있다.
Figure 112009024849684-PAT00002
- [가정]
지역난방 공급기준의 일 예에서 공급수 온도(50℃/60℃)와 환수 온도(35℃/45℃)(지역난방에서 공급하는 온도값 기준은 혹한기와 난방철로 구분되어 공급되고 있음)에 근거해보면,
- [결론]
공급수 온도 50℃, 환수 온도 35℃일 경우, 열역학 상태량 엔탈피는 209.31로 공급되며, 본 발명에 따른 열교환부(213)에 의해 1℃ ~ 2℃ 가량 공급수 온도가 낮아질 경우, 1℃ 낮아질 때마다 1.99%의 열역학 상태량의 감소는 있으나, 난방비 계량 기준인 열량값에 대한 온도차에 따른 난방비의 차이는 13.33%씩 감소한다. 공급수 온도 2℃ 감소시에는 3.98% 열역학 상태량의 감소가 있고, 난방비는 26.66%가 감소한다.
- [결론]
공급수 온도 60℃, 환수 온도 45℃일 경우에도, 1℃ 낮아질 때마다 1.66%의 열역학 상태량의 감소는 있으나, 난방비 계량 기준인 열량값에 대한 온도차에 따른 난방비의 차이는 13.33%씩 감소한다. 공급수 온도 2℃ 감소시에는 3.98% 열역학 상태량의 감소가 있고, 난방비는 26.66%가 감소한다.
3. 열량값에 대해 살펴보기로 한다.
Figure 112009024849684-PAT00003
- [가정] 난방 용적 84.8㎡ 일 경우, 시간당 소요 열량 4160.01kcal/hr
- [결론]
공급수 온도 50℃일 때 시간당 소요 열량에 대한 공급 총 유량은 83.19kg이고, 공급수 온도 49℃일 때 시간당 소요 열량에 대한 공급 총 유량은 84.89kg이며, 공급수 온도 60℃일 때 시간당 소요 열량에 대한 공급 총 유량은 69.34kg, 공급수 온도 59℃일 때 시간당 소요 열량에 대한 공급 총 유량은 70.52kg이다.
소모 열량값을 계산하는 공식에 의해 총 사용되는 열량값을 단순한 수치식으로 해석해보면 아래 표 4와 같이 나타낼 수 있으며, 난방비 감소 효과는 아래 표 5와 같이 정리될 수 있다.
Figure 112009024849684-PAT00004
Figure 112009024849684-PAT00005
4. 각 방으로 공급되는 온도의 하강에 의한 영향 고려
- [참고]
열전달은 Q = a×(Ts-Tr)이며, 이것을 면적에 의한 열전달 총량으로 계산하면 Q = A×a×(Ts-Tr)가 된다. 여기서, 단면적(A)과 열전달계수(a:누셀트수) 및 Ts(50℃)는 고정값이며, Tr이 변화하는 변수로 볼 수 있습니다.
- [검사체적(control volume)의 설정]
단순히 공급헤더(210)와 환수헤더(220)에서의 열교환을 가지고 설정되는 것이 아니며, 공급헤더(210)로 공급되는 온수의 열량이 일정한 값(50℃ 온수)으로 공급되는 것을 포함한 검사체적을 설정한다.
- [가정 1] 공급헤더(210)와 환수헤더(220) 사이의 열교환율(열손실율)이 일정함
가정① : 공급헤더(210)의 초기 공급수와, 각 실내(방)의 열교환 뒤 수집된 환수헤더(220)의 환수 사이 열교환율
* 공급 온도 50℃ → 공급헤더(210)의 공급수 온도 50℃ → 환수헤더(220) 환수 온도 35℃ : 30%
가정② : 열교환부(213)를 통한 열교환율
* 각 방을 거친 환수헤더(220)의 초기 환수 온도 35℃ → 공급헤더(210)의 열교환부(213)에 의해 열교환된 뒤 환수헤더(220)로 이동한 환수의 온도(T1) 37℃ : 13.3%
- 가정을 통한 유량의 순환과 온도의 변화 과정
초기 공급수 온도 50℃ → 환수와 열교환된 공급헤더(210)의 공급수 온도(T1) 48℃ → 각 실내의 열교환 뒤 수집된 환수헤더(220)의 초기 환수 온도 33.6℃(가정①의 열교환 적용)→ 열교환부(213)에 의해 열교환된 뒤 환수헤더(220)로 이동한 환수의 온도(T2) 35.86℃(가정②의 열교환 적용) → 열량계(230) 검침 온도(T2) 35.86℃
* ΔT( = T1 - T2 ) = 12.14℃
- [결론 1]
공급헤더(210)로 공급되는 공급수 유량의 온도(T1' = Ts)는 50℃로, 이것이 지속적으로 공급된다. 지속적인 온도(Ts)의 공급과 순환 후 환수헤더(220)로 수집되는 환수 유량의 온도(T2' = Tr)를 35℃라 가정하면, 초기의 열교환부(213)에 의한 열전달량은 Q1 = 15Aa가 된다. 흐름이 지속적으로 유지되어 열교환부(213)의 열교환이 일어나는 순간부터 공급헤더(210)의 공급수 온도(T1)는 48℃로 떨어지며, 동일한 환경에서 공급헤더(210)와 환수헤더(220) 사이의 난방코일(300)과 방에서 일어나는 일정한 열교환율을 가정하면, 50℃ 공급수에 35℃ 환수라면 열교환량은 단순 산술치로 환경에 의해 30% 가량의 열손실을 입게 된다.
공급수 온도(T1)의 하강에 따른 환수 온도의 하강을 예상할 수 있는데, 예를 들어 공급헤더(210)의 공급수 온도(T1) 48℃의 물이 전달되어 같은 양의 열전달이 이루어진 경우, 환경(난방코일과 각 방사이의 열교환)과의 열교환율이 일정하므로, 환수헤더(220)로 수집된 초기 환수의 온도(T2')를 33.6℃라 할 수 있으며, 열교환부(213)를 거친 환수헤더(220)의 재수집된 환수의 온도(T2)는 35.86℃가 된다. 결국, ΔT(= T1 - T2) 감소에 따른 난방비의 감소가 나타나게 된다.
- [가정 2] 공급헤더(210)와 환수헤더(220) 사이의 열교환량(열손실량)이 동일함
가정① : 공급헤더(210)의 초기 공급수와, 각 실내(방)의 열교환 뒤 수집된 환수헤더(220)의 환수 사이 열교환율
* 공급 온도 50℃ → 공급헤더(210)의 공급수 온도 50℃ → 환수헤더(220) 환수 온도 35℃ : ΔT = 15℃
가정② : 열교환부(213)를 통한 열교환율
* 각 방을 거친 환수헤더(220)의 초기 환수 온도 35℃ → 공급헤더(210)의 열교환부(213)에 의해 열교환된 뒤 환수헤더(220)로 이동한 환수의 온도(T2) 37℃ : ΔT = 15℃
- 가정을 통한 유량의 순환과 온도의 변화 과정
초기 공급수 온도 50℃ → 환수와 열교환된 공급헤더(210)의 공급수 온도(T1) 48℃ → 각 실내의 열교환 뒤 수집된 환수헤더(220)의 초기 환수 온도 33℃(가정①의 열교환 적용)→ 열교환부(213)에 의해 열교환된 뒤 환수헤더(220)로 이동한 환수의 온도(T1) 35℃(가정②의 열교환 적용) → 열량계(230) 검침 온도(T1`) 35℃
* ΔT( = T1 - T2 ) = 13℃
- [결론 2]
공급헤더(210)로 공급되는 공급수 유량의 온도(T1' = Ts)는 50℃로, 이것이 지속적으로 공급된다. 지속적인 온도(Ts)의 공급과 순환 후 환수헤더(220)로 수집되는 환수 유량의 온도(T2' = Tr)를 35℃라 가정하면, 열교환부(213)의 열교환이 일어나는 순간부터 공급헤더(210)의 공급수 온도(T2)는 48℃로 떨어진다. 이때, 동일한 환경에서 공급헤더(210)와 환수헤더(220) 사이의 난방코일(300)과 방에서 일어나는 일정한 열교환율을 가정하면, 공급수 온도의 하강에 따른 환수 온도의 하강을 예상할 수 있으나, 예를 들어 공급헤더(210)에서 온도(T2) 48℃의 공급수가 전달되어, 실내에서 같은 양의 열전달이 이루어진 후, 환수헤더(220)로 수집된 환수의 온도(T2')를 33℃라 가정할 때, 열교환부(213)를 통과해 환수헤더(220)로 재수집된 환수의 온도(T2)는 35℃가 되며, 결국 ΔT(= T1 - T2) 감소에 따른 난방비의 감소가 나타나게 된다.
- [가정 3] 일정한 온도의 공급수 공급과 각 실내(방) 사이의 변화되는 열전달량
가정① : 공급수가 50℃의 온도로 일정하게 공급헤더(210)에 공급되고, 공급헤더(210)에 삽입 설치된 열교환부(213)에 의해 지속적으로 열교환이 이루어짐
가정② : 공급헤더(210)를 통과한 공급수와 각 실내(방) 사이의 열교환이 일정하게 이루어지고, 열을 흡수하는 각 실내(방)의 온도가 상승함에 따라 열교환율은 지속적으로 떨어짐, 이러한 난방코일(300) 전달 유체의 온도와 방 온도 사이의 열교환값을 Q2라 할 때, Q2 값은 시간이 지남에 따라 감소하는 현상을 보임.
* 초기 환경의 열 공급(난방코일 → 각 방 사이의 열교환)에서, 50℃ → 35℃일 때, 열전달량은 Q1 = 15Aa가 되며, 35℃의 환수 온도는 열교환부(213)에 의해 37℃의 온도(T2)로 상승하고, 이때 각 방에 공급되는 공급수의 온도(T1)는 48℃로 하강한다.
48℃의 온도값을 가진 공급수는 환경과의 열교환을 거친 뒤 환수헤더(220)에 수집되는데, 환경에 의한 열교환이 일정하다고 보면, 환수헤더(220)(제1내부공간부)에는 상기 [가정 1], [가정 2]에서와 같이 33 ~ 33.6 ℃ 정도의 온도를 가진 환수가 수집된다. 이러한 환수는 다시 공급헤더(210)의 열교환부(213)를 통해 온도값이 증가하여 상기 [가정 1], [가정 2]에서와 같이 35 ~ 35.86 ℃의 환수가 환수헤더(220)(제2내부공간부)에 재수집되며, 이 온도값은 ΔT 값을 낮추어, 결국 난방비의 감소를 가져온다.
각 실내(방)를 거친 환수헤더(220)의 환수 온도가 지속적으로 상승함을 감안해 볼 경우에도, 공급헤더(210)에 공급되는 공급수의 온도 50℃보다 낮은 온도의 환수가 환수헤더(220)에 수집되므로, 공급헤더(210) 내에 설치된 열교환부(213)를 통해 ΔT 값을 지속적으로 낮추어주게 되어, 난방비의 감소를 달성할 수 있게 된다.
도 1은 지역난방시스템에서 난방수 공급 및 열교환이 이루어지는 예를 도시한 개략도,
도 2는 종래기술에 따른 온수 분배기의 일 예를 도시한 구성도,
도 3은 종래기술에서 공동주택의 열교환기, 메인순환배관, 온수 분배기, 난방코일 간을 순환하는 난방수 경로를 개략적으로 도시한 도면,
도 4a와 도 4b는 본 발명에 따른 온수 분배기에서 공급헤더와 환수헤더를 도시한 사시도,
도 5는 본 발명에 따른 온수 분배기에서 공급헤더와 환수헤더의 단면도로서, 공급수와 환수의 경로를 나타낸 도면,
도 6은 본 발명에 따른 온수 분배기 적용시 난방수 이동경로를 나타낸 개략도로서, 환수의 온도가 높아지고 이를 통해 난방비가 절감될 수 있음을 설명하기 위한 예시도,
도 7은 본 발명에 따른 온수 분배기에서 환수헤더 내 격판의 형상을 달리하여 구성한 실시예의 단면 사시도,
도 8은 본 발명의 다른 실시예에 따른 온수 분배기를 도시한 단면도로서, 환수헤더가 서브헤더와 메인헤더로 분리 구성된 실시예의 단면도.
<도면의 주요 부분에 대한 부호의 설명>
1 : 지역난방사업자 2 : 공급관
3 : 회수관 100 : 열교환기
101 : 메인순환배관 102 : 분기배관
103 : 회수배관 200 : 온수 분배기
210 : 공급헤더 211 : 공급포트
212 : 배출포트 213 : 열교환부
214, 215 : 연결배관 220 : 환수헤더
220a : 메인헤더 220b : 서브헤더
221 : 유입포트 222 : 회수포트
223 : 격판 224 : 제1내부공간부
225 : 제2내부공간부 230 : 열량계
231, 232 : 온도센서 300 : 난방코일

Claims (10)

  1. 개별 세대에서 공동주택의 메인순환배관(101)으로부터 공급되는 공급수를 각 실내에 설치된 난방코일(300)로 분배하는 공급헤더(210)와, 상기 각 실내의 난방코일(300)을 순환한 환수를 수집하여 다시 공동주택의 메인순환배관(101)으로 배출하는 환수헤더(220)를 포함하는 난방비 절감형 온수 분배기(200)에 있어서,
    상기 공급헤더(210)에 환수헤더(220)로부터 수집된 환수를 공급받아 공급수와의 열교환을 통해 온도를 상승시킨 뒤 다시 환수헤더(220)로 배출하는 열교환부(213)가 구비되고,
    상기 환수헤더(220)는 상기 공급헤더(210)의 열교환부(213)로부터 배출되는 환수를 공급받아 회수포트(222)를 통해 메인순환배관(101)으로 최종 배출하도록 구성되는 것을 특징으로 하는 난방비 절감형 온수 분배기.
  2. 청구항 1에 있어서,
    상기 환수헤더(220)는,
    해당 세대의 각 실내에 설치된 난방코일(300)로부터 유입포트(221)를 통해 유입된 환수가 통과하도록 마련된 제1내부공간부(224)와;
    상기 제1내부공간부(224)와 분리된 개별 공간으로서 공급헤더(210)의 열교환부(213)에서 가열된 환수를 공급받아 회수포트(222)틀 통해 최종 배출하는 제2내부 공간부(225)를 가지며,
    상기 제1내부공간부(224)와 제2내부공간부(225)가 각각 연결배관((214,215)을 통해 상기 열교환부(213)와 연결되어, 각 실내의 난방코일(300)을 순환한 환수가 제1내부공간부(224), 연결배관(214), 열교환부(213), 연결배관(215), 제2내부공간부(225)의 경로로 최종 배출되는 것을 특징으로 하는 난방비 절감형 온수 분배기.
  3. 청구항 2에 있어서,
    상기 제1내부공간부(224)와 제2내부공간부(225)는 환수헤더(220)의 내부공간에 길이방향을 따라 격판(223)을 설치하여 구획 형성되는 것을 특징으로 하는 난방비 절감형 온수 분배기.
  4. 청구항 3에 있어서,
    상기 격판(223)은 단면상으로 유입포트(221)의 설치부위 반대쪽을 향해 구부러진 곡면판 구조로 설치되는 것을 특징으로 하는 난방비 절감형 온수 분배기.
  5. 청구항 3에 있어서,
    상기 격판(223)은 제1내부공간부(224)와 제2내부공간부(225) 사이의 열교환이 최소화될 수 있도록 단열소재로 설치되는 것을 특징으로 하는 난방비 절감형 온수 분배기.
  6. 청구항 2에 있어서,
    상기 환수헤더(220)는, 2개의 헤더(220a,220b)로 분리 구성되는 것으로서,
    상기 난방코일(300)이 연결되는 유입포트(221)를 구비하여 상기 제1내부공간부(224)를 형성하는 메인헤더(220a)와;
    상기 공급헤더(210)의 열교환부(213)에서 가열된 환수가 최종 배출되는 회수포트(222)를 구비하여 상기 제2내부공간부(225)를 형성하는 서브헤더(220b);
    로 분리 구성되고,
    상기 메인헤더(220a)와 서브헤더(220b)가 각각 연결배관((214,215)을 통해 상기 열교환부(213)와 연결되어, 각 실내의 난방코일(300)을 순환한 환수가 메인헤더(220a), 연결배관(214), 열교환부(213), 연결배관(215), 서브헤더(220b)의 경로로 최종 배출되는 것을 특징으로 하는 난방비 절감형 온수 분배기.
  7. 청구항 1에 있어서,
    상기 열교환부(213)는 내부공간을 통과하는 환수와 주변을 통과하는 공급수 간의 열교환이 이루어지도록 상기 공급헤더(210)의 내부공간에 삽입 설치되는 것을 특징으로 하는 난방비 절감형 온수 분배기.
  8. 청구항 7에 있어서,
    상기 열교환부(213)는 공급헤더(210)의 내부공간에서 공급헤더(210)의 길이방향을 따라 길게 배치되도록 설치되는 것을 특징으로 하는 난방비 절감형 온수 분배기.
  9. 청구항 8에 있어서,
    상기 열교환부(213)는 공급헤더(210)의 내부공간 상부에 설치되는 것을 특징으로 하는 난방비 절감형 온수 분배기.
  10. 청구항 8 또는 청구항 9에 있어서,
    상기 열교환부(213)는 반원형의 단면 구조로 형성되어 공급헤더(210)의 내부공간에 설치되는 것을 특징으로 하는 난방비 절감형 온수 분배기.
KR1020090035762A 2009-04-24 2009-04-24 난방비 절감형 온수 분배기 KR101101796B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090035762A KR101101796B1 (ko) 2009-04-24 2009-04-24 난방비 절감형 온수 분배기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090035762A KR101101796B1 (ko) 2009-04-24 2009-04-24 난방비 절감형 온수 분배기

Publications (2)

Publication Number Publication Date
KR20100117164A true KR20100117164A (ko) 2010-11-03
KR101101796B1 KR101101796B1 (ko) 2012-01-05

Family

ID=43403820

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090035762A KR101101796B1 (ko) 2009-04-24 2009-04-24 난방비 절감형 온수 분배기

Country Status (1)

Country Link
KR (1) KR101101796B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110388675A (zh) * 2019-06-27 2019-10-29 宁波方太厨具有限公司 一种分集水器
CN114738982A (zh) * 2022-04-13 2022-07-12 北京柏穗科技有限公司 一种缓冲水箱及辐射空调***
KR20220002288U (ko) 2021-03-17 2022-09-26 조재훈 압착연결식 온수분배기

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377130B1 (ko) * 2013-05-20 2014-03-26 강영희 에너지 절약형 온수분배기 및 주택 난방 방법
KR102130788B1 (ko) * 2019-07-08 2020-07-06 한혜숙 온수 분배기
KR102130789B1 (ko) * 2019-07-08 2020-07-06 이동렬 온수 분배 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143989A (ja) * 1983-12-29 1985-07-30 Canon Inc 印字制御方式
JPS60143989U (ja) * 1984-03-07 1985-09-24 ピ−エス工業株式会社 流体分配装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110388675A (zh) * 2019-06-27 2019-10-29 宁波方太厨具有限公司 一种分集水器
KR20220002288U (ko) 2021-03-17 2022-09-26 조재훈 압착연결식 온수분배기
CN114738982A (zh) * 2022-04-13 2022-07-12 北京柏穗科技有限公司 一种缓冲水箱及辐射空调***

Also Published As

Publication number Publication date
KR101101796B1 (ko) 2012-01-05

Similar Documents

Publication Publication Date Title
KR101101796B1 (ko) 난방비 절감형 온수 분배기
Yang et al. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating
Bøhm Production and distribution of domestic hot water in selected Danish apartment buildings and institutions. Analysis of consumption, energy efficiency and the significance for energy design requirements of buildings
Reiners et al. Heat pump efficiency in fifth generation ultra-low temperature district heating networks using a wastewater heat source
US8346679B2 (en) Modular geothermal measurement system
Macía et al. Influence parameters on the performance of an experimental solar-assisted ground-coupled absorption heat pump in cooling operation
CN102494810A (zh) 单管串联式供暖管网***的分户热计量装置及方法
Benakopoulos et al. Strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators
Szreder et al. Effect of heat capacity modulation of heat pump to meet variable hot water demand
Østergaard et al. What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently
Naiker et al. Monitoring and performance analysis of a large non-domestic ground source heat pump installation
KR101265970B1 (ko) 지역 또는 중앙 냉/난방 및 급탕겸용 세대별 열교환기 모듈
KR101077255B1 (ko) 대표세대 모니터링에 의한 열에너지 공급방법
Grasmanis et al. Heat consumption assessment of the domestic hot water systems in the apartment buildings
Fan et al. Analytical and experimental study of an innovative multiple-throughout-flowing micro-channel-panels-array for a solar-powered rural house space heating system
CN100371693C (zh) 一种集中采暖分室计量方法及专用计量装置
ITBS20090083A1 (it) Metodo e impianto di accumulo a stratificazione e di circolazione di acqua calda
RU2374566C1 (ru) Система измерения и учета поквартирного потребляемого тепла в системах теплоснабжения
EP4288713A1 (en) Heating installations, methods and systems
WO2022168049A1 (en) Heating installations, methods and systems
Naicker Performance analysis of a large-scale ground source heat pump system
US20150369547A1 (en) Energy measurement system for fluid systems
KR101387936B1 (ko) 공동주택용 다기능 열에너지 공급 시스템
CN206517319U (zh) 一种利用热管温差发电的***
CN1111272C (zh) 集中供热***使用热水表计量采暖用户用热量的方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141226

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee