KR20100116427A - Multi-functional material made with cellulose and covalently bonded metal or conductive oxide nanotubes, and method thereof - Google Patents

Multi-functional material made with cellulose and covalently bonded metal or conductive oxide nanotubes, and method thereof Download PDF

Info

Publication number
KR20100116427A
KR20100116427A KR1020090035116A KR20090035116A KR20100116427A KR 20100116427 A KR20100116427 A KR 20100116427A KR 1020090035116 A KR1020090035116 A KR 1020090035116A KR 20090035116 A KR20090035116 A KR 20090035116A KR 20100116427 A KR20100116427 A KR 20100116427A
Authority
KR
South Korea
Prior art keywords
cellulose
nanotubes
conductive oxide
carbon nanotubes
reacting
Prior art date
Application number
KR1020090035116A
Other languages
Korean (ko)
Inventor
김재환
김주형
윤성률
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020090035116A priority Critical patent/KR20100116427A/en
Publication of KR20100116427A publication Critical patent/KR20100116427A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon

Abstract

PURPOSE: A multi-functional material and a manufacturing method thereof are provided to uniformly disperse carbon nanotubes inside a cellulose-carbon nanotube flexible film by forming a carbonyl bond structure in between the carbon nanotubes and cellulose. CONSTITUTION: A manufacturing method of a multi-functional material including a metal or conductive oxide nanotube and cellulose comprises the following steps: carboxylating nanotubes by acid-treating, and reacting with carbonyldiimidazole to apply a functional group to the nanotubes; and reacting the resulting product with the cellulose. The step of applying the functional group includes a step of reacting the nanotubes including a carboxyl group with the carbonyldiimidazole to form imidazolide.

Description

금속 또는 전도성 산화물 나노튜브와 셀룰로오스가 결합된 다기능재료 및 이의 제조방법 {Multi-functional material made with cellulose and covalently bonded metal or conductive oxide nanotubes, and Method thereof}Multi-functional material made with cellulose and covalently bonded metal or conductive oxide nanotubes, and method thereof}

본 발명은 나노튜브가 결합된 셀룰로오스 다기능재료의 제조에 관한 것으로, 특히 나노튜브를 선택적으로 작용기화시키는 방법, 나노튜브와 셀룰로오스를 결합시키는 방법, 및 이러한 방법에 의해 만들어진 유연 필름 다기능성 재료에 관한 것이다. The present invention relates to the production of nanotubes-bound cellulose multifunctional materials, and more particularly to a method for selectively functionalizing nanotubes, a method for combining nanotubes and cellulose, and flexible film multifunctional materials made by such methods .

셀룰로오스는 우수한 자연 분해성과 생체 적합성을 지니고 있는 생체고분자로서, 의약품, 광학필름, 직물, 종이 등과 같은 많은 산업분야에서 활용되고 있다 [Klemm D et al. Angew. Chem. Int. Ed. 2005, 44, 3358-93]. 또한 셀룰로오스의 우수한 특성을 이용하여 생체 고분자와 합성된 복합재료, 및 단백질과 항체를 고정 하는데도 사용되고 있다. 지금까지 셀룰로오스를 유도체화하기 위해 크산틴염(Xanthate), 수산화나트륨/유레아, 산화메틸모르폴린(N-methylmorpholine-N-oxide), 디메틸아세트아마이드(N,N-Dimethylacetamide)/염화리튬 등 다양한 물질이 사용되어왔고, 이 중 디메틸아세트아마이드(N,N-Dimethyl-acetamide)/염화리튬을 사용한 방법은 1981년에 맥코믹(Mc Cormick)에 의해 처음 소개된 이래로 신속하고 간편한 공정으로 인식되고 있을 뿐만 아니라 셀룰로오스의 재생성이 우수한 공정으로 널리 사용되고 있다.Cellulose is a biopolymer having excellent biodegradability and biocompatibility, and is used in many industries such as pharmaceuticals, optical films, textiles, and papers [Klemm D et al. Angew. Chem. Int. Ed. 2005, 44, 3358-93]. It is also used to fix composite materials and proteins and antibodies synthesized with biopolymers by taking advantage of the excellent properties of cellulose. To the derivatized cellulose heretofore xanthan tinyeom (Xanthate), a variety of materials such as sodium / urea, oxidation-methyl morpholine (N-methylmorpholine-N-oxide ), dimethylacetamide (N, N -Dimethylacetamide) / lithium chloride, lithium hydroxide Among these, dimethylacetamide ( N, N- Dimethyl-acetamide) / lithium chloride method has been used since it was first introduced by McCormick in 1981 and has been recognized as a quick and easy process. It is widely used as a process having excellent reproducibility.

탄소 나노튜브는 우수한 전기전도성, 기계적 강성, 열특성을 가지고 있는 재료로서, 전기전자 분야뿐만 아니라 생체 의학 분야의 디바이스를 개발하는데 사용되고 있다 [Ferrer F et al . Appl . Phys . Lett . 2006, 88, 033116]. 탄소 나노튜브의 우수한 기계적 강성을 고분자 재료에 부여하기 위해 탄소 나노튜브/고분자 복합재료를 연구하였으나 [Sabba Y et al. Macromolecules 2004, 68, 2254]; [Li Q et al. Comp. Sci. Technol. 2008, 68, 2120]; [Blake R et al. J. Am. Chem. Soc. 2004, 126, 10226]. 부분적인 탄소 나노튜브의 응집과 상분리 현상으로 인해 탄소 나노튜브를 고분자 구조에 균일하게 분포시키는데 많은 어려움이 있어서 고분자 재료들은 탄소 나노튜브를 사용하는데 있어서 제한적인 기계적 특성 향상만 얻어왔다. 최근에는 탄소 나노튜브의 다양한 선택적 작용기화 방법들이 많이 연구되고 있고 이를 고분자와의 화학적 결합에 사용함으로써 탄소 나노튜브/고분자 복합재료에 내재했던 상기 문제들을 크게 개선하였는바 [Velasco-Santos C et al. Chem. Mater. 2003, 15, 4470], 이는 탄소 나노튜브/고분자 복합재료의 강성을 현저하게 증가하 는 결과를 가져왔다 [Paiva MC et al. Carbon 2004, 42, 2849]. Carbon nanotubes are materials that have excellent electrical conductivity, mechanical rigidity and thermal properties and are being used to develop devices in the field of biomedical as well as electrical and electronic fields [Ferrer F et al . Appl . Phys . Lett . 2006, 88, 033116. Carbon nanotubes / polymer composites have been studied to impart excellent mechanical stiffness to carbon nanotubes [Sabba Y et al. Macromolecules 2004, 68, 2254; Li Q et al. Comp. Sci. Technol. 2008, 68, 2120; Blake R et al. J. Am. Chem. Soc. 2004, 126, 10226. Due to the agglomeration and phase separation of partial carbon nanotubes, many difficulties in uniformly distributing the carbon nanotubes into the polymer structure have resulted in limited mechanical properties in the use of carbon nanotubes. Recently, various selective functionalization methods of carbon nanotubes have been studied, and the use of them in chemical bonding with polymers has greatly improved the problems inherent in carbon nanotube / polymer composites [Velasco-Santos C et al. Chem. Mater. 2003, 15, 4470], which resulted in a significant increase in the stiffness of the carbon nanotube / polymer composite [Paiva MC et al. Carbon 2004, 42, 2849].

그러나 현재까지 탄소 나노튜브를 생체에 적합한 재료로서 우수한 특성을 가진 셀룰로오스와 화학적으로 결합시킨 복합재료에 대한 연구는 미진하였다. 본 발명은 최근에 새로운 특성들이 밝혀지면서 차세대 재료로 각광받고 있는 셀룰로오스의 특성에 [Kim J et al. Macromolecules 2006, 39, 4202] 향상된 전기적 기계적 특성을 부여하여 이를 다양한 응용분야에 이용하고자 하며, 선택적으로 작용기화된 탄소 나노튜브를 셀룰로오스와 화학적으로 결합시킨 복합재료를 새로운 유연한 재료로 제공코자 하는 것이다.However, to date, there has been little research on composite materials in which carbon nanotubes are chemically bonded with cellulose having excellent properties as a suitable material for living bodies. The present invention is based on the characteristics of cellulose, which has been spotlighted as the next generation material as new properties are recently discovered [Kim J et al. Macromolecules 2006, 39, 4202] To provide improved electromechanical properties and use them in a variety of applications, to provide a new flexible material with a composite material that selectively chemically combines functionalized carbon nanotubes with cellulose.

본 발명은 탄소 나노튜브를 셀룰로오스와 화학적으로 결합시킨 복합재료 및 이의 제조에 관한 것이며, 선형 배열성이 우수한 셀룰로오스에 탄소 나노튜브를 결합시켜 전기적인 흐름을 형성한다면 두 가지 재료의 특성을 이용하여 복합적인 성능을 가진 재료형태로 유용하게 사용되어 질 수 있다. 셀룰로오스와 탄소 나노튜브의 결합은 셀룰로오스의 수산화기와 선택적으로 작용기화된 탄소 나노튜브 간의 반응에 의해 결합 고리를 형성함으로써 이루어지는바, 탄소 나노튜브가 결합된 셀룰로오스 유연 필름은 아래의 과정을 거쳐 제조된다. The present invention relates to a composite material in which carbon nanotubes are chemically bonded with cellulose and a method of manufacturing the composite material. When carbon nanotubes are combined with cellulose having excellent linear alignment to form an electric current, And can be usefully used in the form of a material having a high performance. Bonding between cellulose and carbon nanotube is accomplished by forming a bond ring by reaction between hydroxyl group of cellulose and selectively functionalized carbon nanotube. The cellulose flexible film having carbon nanotubes bonded thereto is manufactured through the following process.

탄소 나노튜브를 산 처리를 통해 카르복실기를 갖는 구조로 변화시킨 후, 디메틸아세트아마이드에 현탁시킨 탄소 나노튜브를 카르보닐디이미다졸 (N,N-Carbonyldiimidazole)과 반응시켜 이미다졸라이드 (Imidazolide)로 작용기화된 탄소 나노튜브를 제조한다. 본 작용기를 가진 탄소 나노튜브를 디메틸아세트아마이드/염화리튬에 녹인 셀룰로오스 용액과 반응시켜 탄소 나노튜브를 셀룰로오스 체인에 결합시키고, 본 용액을 웨이퍼 상에 회전 코팅한 후 이소프로필알콜 (Isopropyl alcohol)과 탈이온수의 비율을 달리하여 만든 용매 안에서 침지하여 고형화시킨다. 이를 탈이온수로 세정하고 나노 평탄성을 갖도록 오븐에서 건조시킨다. After converting the carbon nanotubes into a structure having a carboxyl group through acid treatment, the carbon nanotubes suspended in dimethylacetamide were reacted with carbonyldiimidazole ( N, N- Carbonyldiimidazole) to imidazolide. Prepare functionalized carbon nanotubes. The carbon nanotubes with the functional groups are reacted with a cellulose solution dissolved in dimethylacetamide / lithium chloride to bind the carbon nanotubes to the cellulose chains, and the solution is spun onto the wafer, followed by decoupling with isopropyl alcohol. It is solidified by immersion in a solvent made by varying the proportion of ionic water. It is washed with deionized water and dried in an oven to have nano flatness.

상기한 바와 같이 본 발명에 따라 개발된 탄소 나노튜브가 결합된 셀룰로오스 유연 필름은 자연 분해성과 생체 적합성이 좋은 셀룰로오스의 특성에 우수한 기계적 강성과 우수한 전기전도성이 부여되어 생체에 적합한 전자재료로 이용되거나 사람이나 동물들의 신체치료, 검출등에 사용되어 질 수 있으며, 움직임이나 굽힘변형이 있는 재료에도 사용되어 질 수 있다.As described above, the carbon nanotube-bonded flexible film of the present invention, which has been developed according to the present invention, is imparted with excellent mechanical strength and superior electrical conductivity to cellulose having good decomposition properties and biocompatibility and is used as an electronic material suitable for a living body, It can be used for physical treatment and detection of animals, and also for materials with movement or bending deformation.

탄소 나노튜브가 결합된 셀룰로오스 유연 필름은 자연에서 얻어지는 셀룰로오스를 기초로 화학적 반응을 통하여 나노 크기의 셀룰로오스 섬유질에 전도성이 우수한 나노튜브를 결합시킴으로써 제조된다. 셀룰로오스는 자연에 가장 많이 존재 하는 천연 재료이면서 전기적으로 유전성을 갖고 있는 재료이다. 각각의 글루코오스 단위체에 있는 3 개의 하이드록실 작용기로 인해서, 많은 수산기를 갖는 다른 분자들과 결합이 가능하다. 이러한 고기능성의 선형 사슬 호모중합체는 친수성, 키랄성, 생체내분해성, 광범위한 화학적 변형성, 및 가전성 반결정 형태의 형성을 가능케하는 특징이 있다.The cellulose flexible film in which carbon nanotubes are bonded is prepared by bonding nanotubes having excellent conductivity to nano-sized cellulose fibers through a chemical reaction based on cellulose obtained in nature. Cellulose is the most natural material in nature and an electrically dielectric material. Due to the three hydroxyl functional groups in each glucose unit, it is possible to bind to other molecules with many hydroxyl groups. These high functionality linear chain homopolymers are characterized by their hydrophilicity, chirality, bio-degradability, extensive chemical deformability, and the formation of an amorphous semi-crystalline form.

탄소 나노튜브는 1991년에 발견된 이후 많은 분야에서 연구가 활발히 진행되고 있는 물질로 뛰어난 기계적 강성과 전기전도성이 있을 뿐만 아니라 다양한 응용이 가능한 물질이다. 오늘날, 탄소 나노튜브의 다양한 물질로의 화학적 작용기화 방법들에 대해 많은 연구가 진행되고 있고, 선택적으로 작용기화한 탄소 나노튜브에 물질이 결합되었을 때 전기전도성이 바뀌는 특성을 이용하여 다양한 디바이스로의 적용을 연구하고 있다. 또한, 탄소 나노튜브의 우수한 재료특성을 고분자 재료의 기계적 강성과 전기전도성을 향상시키는데 이용하기 위해 탄소 나노튜브를 혼합한 고분자 복합재료 제조 및 특성에 대한 연구가 진행되었지만 탄소 나노튜브의 강한 응집력을 약화시켜 고분자내에서 균일한 분포를 이루는데 어려움이 있었다. 최근에 상기 문제를 해결하기 위한 노력으로 선택적으로 작용기화한 탄소 나노튜브를 다양한 고분자재료에 화학적으로 결합시킨 복합재료에 대한 연구가 활발히 진행되고 있지만, 탄소 나노튜브를 셀룰로오스와 화학적으로 결합시킨 복합재료에 대한 연구는 미진하였다. 본 발명은 탄소 나노튜브를 셀룰로오스와 화학적으로 결합시킨 복합재료의 제조에 관한 것이며, 배열성이 우수한 셀룰로오스에 탄소 나노튜브를 부착하여 전기적인 흐름을 형성한다면 두 가지 재료의 특성을 이용하여 복합적인 성능을 가진 재료형태로 유용하게 사용되어 질 수 있다. Carbon nanotubes have been actively studied in many fields since its discovery in 1991, and have excellent mechanical rigidity and electrical conductivity, as well as a wide range of applications. Today, many studies on chemical functionalization of carbon nanotubes into various materials have been conducted, and the properties of the conductive properties of carbon nanotubes to be changed to various devices by combining the materials with selectively functionalized carbon nanotubes I am studying the application. In order to utilize the excellent material properties of carbon nanotubes to improve the mechanical stiffness and electrical conductivity of polymer materials, researches on the manufacture and properties of polymer composite materials mixed with carbon nanotubes have been conducted, but the strong cohesion of carbon nanotubes has been weakened It was difficult to achieve a uniform distribution in the polymer. In recent years, in an effort to solve the above problem, research has been actively conducted on composite materials in which carbon nanotubes selectively chemically bonded to various polymeric materials are actively vaporized. However, a composite material in which carbon nanotubes are chemically bonded with cellulose . The present invention relates to the production of a composite material in which carbon nanotubes are chemically bonded to cellulose, and if the carbon nanotubes are attached to cellulose with excellent arrangement to form an electrical flow, a composite performance using the characteristics of two materials is achieved. Can be usefully used in the form of a material having a specific gravity.

이하 본 발명을 실시예를 통하여 설명하기로 한다.Hereinafter, the present invention will be described by way of examples.

실시예Example

펄프를 산 용매에 넣고 약 155℃로 가열하여 셀룰로오스 용액을 제조하되 녹지 않고 남아 있는 셀룰로오스는 원심분리를 이용하여 제거한다.The pulp is put into an acidic solvent and heated to about 155 ° C to prepare a cellulose solution. The remaining cellulose that is not dissolved is removed by centrifugation.

탄소 나노튜브를 산(예를 들어, 60% 질산 등) 처리를 통해 카르복실기를 갖는 구조로 변화시킨다. 즉, 탄소 나노튜브 0.3 g을 진한 질산 60 ml와 혼합하여 초음파 배스에서 1시간 동안 초음파 세척하고, 이렇게 균일하게 현탁된 탄소 나노튜브를 24시간 동안 100 ℃로 가열하면서 교반함으로써 카르복실기를 가진 탄소 나노튜브가 얻어진다. 얻어진 탄소 나노튜브를 비이온수로 여과하여 pH가 7이 되도록 한다.The carbon nanotubes are transformed into structures with carboxyl groups through acid (eg, 60% nitric acid, etc.) treatment. That is, 0.3 g of the carbon nanotube was mixed with 60 ml of concentrated nitric acid, and ultrasonically washed in an ultrasonic bath for 1 hour. The uniformly suspended carbon nanotubes were stirred for 24 hours while heating to 100 ° C to obtain a carbon nanotube having a carboxyl group Is obtained. The obtained carbon nanotubes are filtered with non-ionized water to a pH of 7.

카르복실기를 가진 탄소 나노튜브(6g)를 디메틸아세트아마이드(10g)에 현탁시키고, 카르보닐이미다졸(N,N-Carbonyldiimidazole) 120 mg을 디메틸아세트아미드 10g에 녹인다. Carbon nanotubes with carboxyl groups (6 g) are suspended in dimethylacetamide (10 g), and 120 mg of carbonylimidazole ( N, N- Carbonyldiimidazole) is dissolved in 10 g of dimethylacetamide.

상기와 같이 준비된 두 용액을 혼합하여 60 ℃로 12시간 동안 초음파 배스에서 초음파 세척함으로써 카르복실기를 가진 초기의 탄소 나노튜브는 이미다졸라이드 (Imidazolide)의 작용기를 갖게 된다( 도 1 참조). By mixing the two solutions prepared as described above and sonicated in an ultrasonic bath at 60 ° C. for 12 hours, the initial carbon nanotubes having a carboxyl group have functional groups of imidazolide (see FIG. 1).

다음 단계로, 탄소 나노튜브와 셀룰로오스 사이에 공유결합을 형성하기 위해서는 위에서 얻어진 탄소 나노튜브-이미다졸라이드 0.015 wt%를 디메틸아세트아마이드/염화리튬에 녹인 셀룰로오스 용액과 혼합하여 60 ℃에서 18시간 교반한다. 이렇게 혼합된 용액을 웨이퍼 상에서 회전 코팅한 후 이소프로필알콜 (Isopropyl alcohol)과 탈이온수의 비율(4:6)을 달리하여 만든 용매 안에서 침지하여 서서히 고형화시킨다. 이를 탈이온수로 세정하고 나노 평탄성을 갖도록 오븐에서 건조시킨다. Next, in order to form a covalent bond between the carbon nanotube and cellulose, 0.015 wt% of the carbon nanotube-imidazolide obtained above was mixed with a cellulose solution dissolved in dimethylacetamide / lithium chloride and stirred at 60 ° C. for 18 hours. do. The mixed solution is spin-coated on the wafer, and then solidified by immersion in a solvent made by varying the ratio of isopropyl alcohol and deionized water (4: 6). It is washed with deionized water and dried in an oven to have nano flatness.

상기한 바와 같이 형성된 탄소 나노튜브가 결합된 셀룰로오스 유연 필름의 표면과 단면의 조직을 도 2의 A, B에서 보여주고 있다. The structures of the surface and the cross-section of the cellulose flexible film having the carbon nanotubes formed as described above are shown in FIGS. 2A and 2B.

또한, 본 발명에 따른 탄소나노튜브-셀룰로오스에 대한 기계적 강도가 도 3에 나타낸 바와 같이 일반 재생 셀룰로오스보다 10 이상 큰 것을 알 수 있으며, 이는 탄소 나노튜브의 균일한 분포 및 셀룰로오스와 탄소 나노튜브의 공유결합에 기인한다.In addition, it can be seen that the mechanical strength of the carbon nanotube-cellulose according to the present invention is greater than 10 as compared to the normal regenerated cellulose, as shown in Figure 3, which is a uniform distribution of carbon nanotubes and sharing of cellulose and carbon nanotubes Lt; / RTI >

상기 실시예에서는 탄소 나노튜브에 한정하여 본 발명을 설명하였으나 알루미늄, 텅스텐, 니켈 및 티타늄을 포함한 금속 및 전도성 산화물 나노튜브가 이용될 수도 있다.Although the present invention has been described in connection with the carbon nanotubes in the above embodiments, metal and conductive oxide nanotubes including aluminum, tungsten, nickel, and titanium may also be used.

도 1은 탄소 나노튜브가 결합된 셀룰로오스를 형성하는 과정을 나타낸 화학 반응식,1 is a chemical reaction illustrating a process of forming carbon nanotubes bonded cellulose,

도 2는 탄소 나노튜브가 결합된 셀룰로오스 유연 필름의 주사전자현미경에 의한 사진, 및Figure 2 is a photograph by a scanning electron microscope of a cellulose flexible film bonded carbon nanotubes, and

도 3은 일반 재생 셀룰로오스와 본 발명에 따른 탄소 나노튜브가 결합된 셀룰로오스의 기계적 강도를 비교하여 나타낸 그래프이다.3 is a graph showing mechanical strengths of general regenerated cellulose and cellulose with carbon nanotubes according to the present invention.

Claims (8)

금속 또는 전도성 산화물 나노튜브와 셀룰로오스가 결합된 다기능재료의 제조방법에 있어서, 산처리를 통하여 나노튜브를 카르복실화 한 후에 이를 카르보닐디이미다졸과 반응시킴으로써 나노튜브에 선택적 작용기를 갖도록 하고 이를 셀룰로오스와 반응시키는 과정을 포함하는 금속 또는 전도성 산화물 나노튜브와 셀룰로오스가 결합된 다기능재료의 제조방법.In the method of manufacturing a multifunctional material in which metal or conductive oxide nanotubes and cellulose are combined, the nanotubes are carboxylated through acid treatment, and then reacted with carbonyldiimidazole to have a selective functional group in the nanotubes, and this And reacting the metal or conductive oxide nanotube with cellulose. 제 1 항에 있어서, 산처리를 통한 나노튜브의 카르복실화 과정은 초음파를 이용해 용매에 분산시키는 단계를 포함하는 금속 또는 전도성 산화물 나노튜브와 셀룰로오스가 결합된 다기능재료의 제조방법.The method according to claim 1, wherein the step of carboxylating the nanotubes by acid treatment comprises dispersing the carbon nanotubes in a solvent by using ultrasonic waves, wherein the metal or conductive oxide nanotubes are combined with cellulose. 제 1 항에 있어서, 선택적 작용기를 갖도록 하는 과정은 카르복실기를 가진 나노튜브를 카르보닐디이미다졸과 반응시켜 이미다졸라이드로 만드는 단계를 포함하는 금속 또는 전도성 산화물 나노튜브와 셀룰로오스가 결합된 다기능재료의 제조 방법.The method of claim 1, wherein the step of having a selective functional group comprises a step of reacting a carboxyl group with a carbonyldiimidazole to form an imidazolide. Manufacturing method. 제 1 항에 있어서, 화학적 반응을 통해 셀룰로오스에 이미다졸라이드로 선택적 작용기화된 나노튜브를 결합시키는 단계를 포함하는 금속 또는 전도성 산화물 나노튜브와 셀룰로오스가 결합된 다기능재료의 제조방법.The method of claim 1, wherein the metal or conductive oxide nanotube is bound to cellulosic nanotubes selectively functionalized with imidazolide through a chemical reaction. 제 1 항에 있어서, 테이프캐스팅 및 전기적 스피닝법, 스핀코팅법, 평판압착법을 이용하여 박막 형태의 유연 필름으로 제작하는 단계를 포함하는 나노튜브와 셀룰로오스가 결합된 다기능재료의 제조방법.The method of manufacturing a multifunctional material according to claim 1, comprising the step of forming the thin film flexible film by tape casting, electric spinning, spin coating, or flat plate pressing. 제 5 항에 있어서, 유연 필름 내에 남아있는 용매를 완전히 제거하여 고형화하는 단계를 포함하는 탄소 나노튜브와 셀룰로오스가 결합된 다기능재료의 제조방법.The method for producing a multifunctional material according to claim 5, wherein the solvent remaining in the flexible film is completely removed to solidify the carbon nanotube and cellulose. 제 5 항에 있어서, 유연 필름의 표면이 나노 평탄성을 유지하도록 건조하는 단계를 포함하는 탄소 나노튜브와 셀룰로오스가 결합된 다기능재료의 제조방법.6. The method of manufacturing a multifunctional material according to claim 5, wherein the surface of the flexible film is dried to maintain nano flatness. 산처리를 통하여 나노튜브를 카르복실화 한 후에 이를 카르보닐디이미다졸과 반응시킴으로써 나노튜브에 선택적 작용기를 갖도록 하고 이를 셀룰로오스와 반응시키는 과정을 포함하는 금속 또는 전도성 산화물 나노튜브와 셀룰로오스가 결합된 다기능재료.Multi-functional metal or conductive oxide nanotubes combined with cellulose, including the process of carboxylating the nanotubes through acid treatment and reacting them with carbonyldiimidazole to have selective functional groups in the nanotubes and reacting them with cellulose material.
KR1020090035116A 2009-04-22 2009-04-22 Multi-functional material made with cellulose and covalently bonded metal or conductive oxide nanotubes, and method thereof KR20100116427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090035116A KR20100116427A (en) 2009-04-22 2009-04-22 Multi-functional material made with cellulose and covalently bonded metal or conductive oxide nanotubes, and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090035116A KR20100116427A (en) 2009-04-22 2009-04-22 Multi-functional material made with cellulose and covalently bonded metal or conductive oxide nanotubes, and method thereof

Publications (1)

Publication Number Publication Date
KR20100116427A true KR20100116427A (en) 2010-11-01

Family

ID=43403429

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090035116A KR20100116427A (en) 2009-04-22 2009-04-22 Multi-functional material made with cellulose and covalently bonded metal or conductive oxide nanotubes, and method thereof

Country Status (1)

Country Link
KR (1) KR20100116427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400774B1 (en) * 2012-08-01 2014-06-19 이화여자대학교 산학협력단 Zwitterionic carbon nanotube, and composite of zwitterionic carbon nanotube- metallic nanoparticle
KR20170042349A (en) * 2014-08-15 2017-04-18 바스프 에스이 Composition comprising silver nanowires and fibers of crystalline cellulose for the preparation of electroconductive transparent layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400774B1 (en) * 2012-08-01 2014-06-19 이화여자대학교 산학협력단 Zwitterionic carbon nanotube, and composite of zwitterionic carbon nanotube- metallic nanoparticle
KR20170042349A (en) * 2014-08-15 2017-04-18 바스프 에스이 Composition comprising silver nanowires and fibers of crystalline cellulose for the preparation of electroconductive transparent layers

Similar Documents

Publication Publication Date Title
Han et al. Electrospun core–shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness
Hamedi et al. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes
Chen et al. Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles
Qi et al. Fabrication and characterization of poly (vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds
Gao et al. Interfacial microstructure and enhanced mechanical properties of carbon fiber composites caused by growing generation 1–4 dendritic poly (amidoamine) on a fiber surface
Xu et al. In situ polymerization approach to graphene-reinforced nylon-6 composites
Zhu et al. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites
Rajagopalan et al. Fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide
Xu et al. Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids
Gao et al. Bioinspired modification via green synthesis of mussel-inspired nanoparticles on carbon fiber surface for advanced composite materials
Huang et al. Simultaneous reinforcement and toughening of carbon nanotube/cellulose conductive nanocomposite films by interfacial hydrogen bonding
Zhu et al. In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets
Yang et al. Strong and highly conductive graphene composite film based on the nanocellulose-assisted dispersion of expanded graphite and incorporation of poly (ethylene oxide)
Yu et al. Facile synthesis of polyaniline− sodium alginate nanofibers
Chen et al. Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane
Sen et al. Electroactive behavior of graphene nanoplatelets loaded cellulose composite actuators
KR100702873B1 (en) Carbon nanotube-chitosan composites and method of manufacturing the same
Samyn Polydopamine and cellulose: two biomaterials with excellent compatibility and applicability
Mao et al. Progress in nanocellulose preparation and application
Zhang et al. Surface coating of aramid fiber by a graphene/aramid nanofiber hybrid material to enhance interfacial adhesion with rubber matrix
Marais et al. Coaxial spinning of oriented nanocellulose filaments and core–shell structures for interactive materials and fiber-reinforced composites
WO2019079882A9 (en) Modified boron nitride nanotubes and solutions thereof
Lay et al. Combined effect of carbon nanotubes and polypyrrole on the electrical properties of cellulose-nanopaper
Azimi et al. Relationship between production condition, microstructure and final properties of chitosan/graphene oxide–zinc oxide bionanocomposite
KR20170036558A (en) Conductive composites and compositions for producing the same and production methods thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application