KR20100092190A - Recombinant microorganism having enhanced glycerol metabolism and succinic acid-productivity and method for preparing succinic acid using the same - Google Patents

Recombinant microorganism having enhanced glycerol metabolism and succinic acid-productivity and method for preparing succinic acid using the same Download PDF

Info

Publication number
KR20100092190A
KR20100092190A KR1020090011453A KR20090011453A KR20100092190A KR 20100092190 A KR20100092190 A KR 20100092190A KR 1020090011453 A KR1020090011453 A KR 1020090011453A KR 20090011453 A KR20090011453 A KR 20090011453A KR 20100092190 A KR20100092190 A KR 20100092190A
Authority
KR
South Korea
Prior art keywords
glycerol
succinic acid
gene encoding
recombinant
microorganism
Prior art date
Application number
KR1020090011453A
Other languages
Korean (ko)
Other versions
KR101093199B1 (en
Inventor
이상엽
전용재
송효학
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020090011453A priority Critical patent/KR101093199B1/en
Priority to PCT/KR2010/000755 priority patent/WO2010093150A2/en
Publication of KR20100092190A publication Critical patent/KR20100092190A/en
Application granted granted Critical
Publication of KR101093199B1 publication Critical patent/KR101093199B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: A recombinant microorganism with improved glycerol metabolic ability and succinic acid producing ability is provided to reduce production cost of a target metabolite. CONSTITUTION: A recombinant microorganism with improved glycerol metabolic ability and succinic acid producing ability is produced by introducing a recombinant vector comprising a gene encoding glycerol-3-phosphate dehydrogenase or glycerol dehydrogenase to a microorganism having succinic acid producing ability. The microorganism is genus Mannheimia, genus Actinobacillus, or genus Anaerobiospillium. A method for producing succinic acid comprises: a step of culturing the recombinant microorganism in a culture medium containing glycerol as a carbon source; and a step of collecting succinic acid.

Description

글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물 및 이를 이용한 숙신산의 제조방법{Recombinant Microorganism Having Enhanced Glycerol Metabolism and Succinic Acid-Productivity and Method for Preparing Succinic Acid Using the Same}Recombinant Microorganism Having Enhanced Glycerol Metabolism and Succinic Acid-Productivity and Method for Preparing Succinic Acid Using the Same}

본 발명은 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물 및 이를 이용한 숙신산의 제조방법에 관한 것으로, 보다 상세하게는 저가의 글리세롤을 효율적으로 세포의 탄소원으로 사용하여 숙신산을 고농도로 생산할 수 있도록 개량된 재조합 미생물 및 이를 이용한 숙신산의 제조방법에 관한 것이다. The present invention relates to a recombinant microorganism having improved glycerol metabolism and succinic acid production capacity, and to a method for producing succinic acid using the same, and more particularly, to produce succinic acid at a high concentration by efficiently using low-cost glycerol as a carbon source for cells. It relates to a recombinant microorganism and a method for producing succinic acid using the same.

과도한 화석원료 물질의 사용으로 인한 고유가와 환경오염 등의 문제를 해결하기 위한 방안으로 재생가능한 원료물질을 이용한 에너지 및 화학물질 생산기술의 개발이 요구되고 있다. 특히 재생 가능한 식물유래 오일을 이용한 바이오디젤 생산이 주목받고 있으나, 상기의 공정은 바이오디젤 합성과정에서 전체무게의 약 10%에 해당하는 글리세롤이 부산물로 발생한다는 단점이 있다. 최근 들어 전 세계적인 바 이오디젤 생산 산업의 급격한 성장과 함께, 이의 부산물로 발생하는 글리세롤의 공급과잉으로 인하여 가격이 하락하고 있으며, 이의 적절한 처리방법의 개발도 요구되고 있다 (McCoy M, Chem . Eng . News ., 84:7, 2006). 이에 가격이 저렴하면서 환원력이 높은 글리세롤을 고가의 포도당을 대신할 탄소원으로 사용하여 미생물 발효를 위한 원료물질로 사용하거나, 화학물질을 생산하기 위한 기술의 개발이 주목되고 있다. In order to solve problems such as high oil prices and environmental pollution due to excessive use of fossil raw materials, development of energy and chemical production technology using renewable raw materials is required. In particular, biodiesel production using renewable plant-derived oils has been attracting attention, but the above process has a disadvantage in that about 10% of the total weight of glycerol is generated as a byproduct during biodiesel synthesis. In recent years, with the rapid growth of the global biodiesel production industry, the price has been falling due to the oversupply of glycerol generated as a by-product thereof, and development of an appropriate treatment method is also required (McCoy M, Chem . Eng .). News . , 84: 7, 2006). In this regard, the development of a technology for producing a chemical or using a low-cost, high reducing glycerol as a carbon source to replace expensive glucose as a raw material for the fermentation of microorganisms.

비록 글리세롤을 업테이크하여 이를 탄소원으로 사용할 수 있는 능력을 보유하지 않은 일부의 미생물들이 존재하지만, 글리세롤을 주 탄소원 혹은 보조 탄소원으로 사용할 수 있는 많은 종류의 미생물들이 보고되고 있다. 특히 화학구조식이 C3H8O3인 글리세롤은 미생물 발효를 통한 바이오 기반 에너지 및 화학물질 생산에 있어서 탄소원으로 사용되는 포도당보다 환원력이 높아서, 높은 환원력을 요구하는 물질의 원료물질 대비 수율 및 생산성을 향상시킬 수 있다는 장점을 가지고 있다. 이에 대사특성 및 유전학적 연구가 가장 많이 진행된 대장균을 이용하여 글리세롤 사용에 관한 연구, 특히 글리세롤을 사용하여 보다 환원된 에너지 및 화학물질을 생산하는 연구가 활발히 진행되고 있다 (Dharmadi et al., Biotechnol . Bioeng ., 94:822, 2006).Although there are some microorganisms that do not have the ability to uptake and use glycerol as a carbon source, many types of microorganisms have been reported that can use glycerol as a primary or secondary carbon source. In particular, glycerol with a chemical formula of C 3 H 8 O 3 has a higher reducing power than glucose, which is used as a carbon source for bio-based energy and chemical production through microbial fermentation, resulting in higher yield and productivity compared to raw materials of materials requiring high reducing power. It has the advantage of being able to improve. As a result, studies on the use of glycerol using E. coli, which has undergone the most metabolic characteristics and genetic studies, in particular, research on producing more reduced energy and chemicals using glycerol (Dharmadi et al. al ., Biotechnol . Bioeng . , 94: 822, 2006).

E. coli K-12 MG1655 균주의 글리세롤 대사 관련 유전자로 알려진 glpF , glpK, glpD를 함유하 재조합 벡터를 개발하여 글리세롤을 탄소원으로서 사용하는 대사능력을 가지지 않는 Corynebacterium glutamicum에 도입함으로써, 글리세 롤을 탄소원으로 사용하여 lysine과 glutamate 등의 아미노산을 생산을 시도한 보고가 있다. (Doris Rittmann et al ., Appl . Environ . Microbiol ., 74(20):6216, 2008). 상기의 연구는 호기 조건하에서 진행되었으며, 연구에 사용된 GlpD는 대장균에서 호기조건에서만 작용한다고 알려진 단백질이다. GlpF , glpK, and known genes related to glycerol metabolism of E. coli K-12 MG1655 strain Development of a recombinant vector containing glpD , a non-metabolizing Corynebacterium that uses glycerol as a carbon source By introducing glutamicum , there have been reports of attempting to produce amino acids such as lysine and glutamate using glycerol as a carbon source. Doris Rittmann et al ., Appl . Environ . Microbiol . , 74 (20): 6216, 2008). The study was conducted under aerobic conditions, and GlpD used in the study is a protein known to work only in aerobic conditions in E. coli.

두 번째 가능한 경로는 글리세롤을 글리세롤 세포 내 수송 촉진자(glpF)에 의해 도입한 후, 세포 내에서 디하이드록시아세톤(DHA)로 분해하고, 이를 디하이드록시아세톤 포스페이트(DHAP)로 분해하여 해당경로로 향하는 경우이다. 현재까지, 디하이드록시아세톤 카이네이즈를 코딩하는 유전자인 dhaK를 함유하는 재조합 벡터를 개발하여 대장균에 도입하므로써 혐기조건에서 글리세롤 발효를 통해 숙신산 합성을 시도한 예(Ramon Gonzalez et al ., Metabolic Engineering , 10:234, 2008)가 있다. 하지만, 상기 대장균의 경우, dhaK 유전자를 결실시키고, C. freundiidhaKL를 함유하는 재조합 벡터를 도입한 MG1655균주에서 숙신산 생산을 제시하였으나, 숙신산 생산 수율이 낮고, 세포 성장 속도가 느린 단점이 낮으며, 포름산을 포함한 다른 발효 부산물을 생산한다는 단점이 있다. The second possible route is the introduction of glycerol by a glycerol intracellular transport promoter (glpF), followed by digestion with dihydroxyacetone (DHA) in the cell, which is digested with dihydroxyacetone phosphate (DHAP). If headed. To date, an example of attempting to synthesize succinic acid through glycerol fermentation under anaerobic conditions by developing a recombinant vector containing dhaK , a gene encoding a dihydroxyacetone kinase, and introducing it into Escherichia coli (Ramon Gonzalez et al. al ., Metabolic Engineering , 10: 234, 2008). However, in the case of E. coli, succinic acid was produced in the strain MG1655 which deleted the dhaK gene and introduced a recombinant vector containing dhaKL of C. freundii , but the yield of succinic acid was low and the cell growth rate was low. The disadvantage is that it produces other fermentation byproducts, including formic acid.

현재까지 글리세롤 조절자(regulator)관련 효소인 cAMP receptor protein에 대하여 대장균에서 글로벌 조절자로서의 특정 부위와 결합으로 전사를 촉진하는 메커니즘을 규명하고, 다른 glycerol과 다른 탄소원들을 사용할 때 생기는 catabolite repression관련된 연구가 진행되었다(Hanamura A. et al ., Mol . Microbiol., 6(17):2489, 1992; Boris Gorke et al ., Nature Reviews Microbiology, 6:613, 2008). 하지만, 맨하이미아 속, 액티노바실러스 속의 루멘박 테리아 군에서의 crp 유전자의 기능 규명은 이루어 있지 않고, crp를 함유하는 재조합 벡터를 상기 숙주세포에 도입하였을 때 글리세롤을 탄소원으로 사용하여 혐기 조건에서 발효를 통한 숙신산 생산을 증가시킨 예는 보고된바 없다. 이는 대다수의 미생물들이 글리세롤을 세포 내로 수송한 후 이를 분해하여 해당과정으로 연결시키는데 관련된 효소들의 조절(repressor, activator)에 관련된 메커니즘을 완전히 가지고 있지 않고, 글리세롤 대사 경로가 전혀 없거나 혹은 불완전하게 가지고 있음으로 글리세롤을 탄소원으로 이용할 수 없기 때문이다. 비록 대장균의 crp 유전자의 연구는 많이 이루어져 있으나, 글리세롤을 분해하는 속도가 느리고, 숙신산과 같은 혐기 발효를 통해 생산되는 목적 대사산물을 효율적으로 생산할 수 없는 것으로 알려져 있다. To date, we have identified mechanisms that promote transcription by binding to specific sites as a global regulator in E. coli for the cAMP receptor protein, a glycerol regulator-associated enzyme, and catabolite repression associated with the use of other glycerol and other carbon sources. (Hanamura A. et al ., Mol . Microbiol., 6 (17): 2489, 1992; Boris Gorke et al . , Nature Reviews Microbiology, 6: 613, 2008). However, the function of the crp gene in the lumen bacterium group of the genus Manhattan and Actinobacillus has not been established. When a recombinant vector containing crp is introduced into the host cell, glycerol is used as a carbon source under anaerobic conditions. No increase in succinic acid production through fermentation has been reported. This is because most microorganisms do not have complete mechanisms involved in the repressors and activators of enzymes involved in transporting glycerol into the cell, then breaking it down and linking it to glycolysis, with no or incomplete glycerol metabolic pathways. This is because glycerol cannot be used as a carbon source. Although many studies have been conducted on E. coli crp genes, it is known that the degradation of glycerol is slow and the target metabolites produced through anaerobic fermentation such as succinic acid cannot be efficiently produced.

한편, 글리세롤을 탄소원으로 사용할 수 있는 대사능력을 가지는 Anaerobiospirillum succiniciproducens 균주를 글리세롤을 함유한 배지에서 배양함으로써 숙신산 생산수율 증대를 시도한 예가 보고된 바가 있으나 (한국등록특허 제10-0313134호), 이는 부산물로서 발생하는 초산의 생성이 억제된 결과이다. 또한, 상기 균주의 혐기성 발효 시 초산 이외에 부산물로서 생성되는 포름산, 피루브산, 에탄올 등의 억제에 관한 연구 (미국등록특허 US 5,143,834A)가 보고되었으나, 글리세롤 대사에 관계하는 유전자를 조작하여 글리세롤 대사능력이 향상된 재조합 균주를 제작하여 100% 순수한 숙신산 생산에 성공한 예는 보고된 바가 없다.On the other hand, Anaerobiospirillum succiniciproducens with metabolic ability to use glycerol as carbon source An example of attempting to increase the yield of succinic acid by culturing the strain in a medium containing glycerol has been reported (Korean Patent No. 10-0313134), but this is the result of the production of acetic acid generated as a by-product is suppressed. In addition, a study on the inhibition of formic acid, pyruvic acid, ethanol, and the like produced as a by-product in addition to acetic acid during anaerobic fermentation of the strain has been reported (US Pat. There have been no reports of successful production of 100% pure succinic acid by constructing an improved recombinant strain.

이에 본 발명자들은 균주의 글리세롤의 이용능을 향상시켜 숙신산 생산을 향상시키고자 예의 노력한 결과, 글리세롤 관련 유전자인 글리세롤-3-포스페이트 디 하이드로지네이즈 (glpABC) 또는 글리세롤 디하이드로지네이즈를 코딩하는 유전자(sldAB)를 숙신산 생성능을 가지는 숙주세포에 도입한 결과, 상기 글리세롤 관련 유전자의 도입이 숙주세포에서 글리세롤 대사능 및 숙신산 생성능의 향상을 가져옴을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to improve succinic acid production by improving the utilization of glycerol in strains, and as a result, a gene encoding glycerol-3-phosphate dihydrogenase ( glpABC ) or glycerol dehydrogenase ( As a result of introducing sldAB ) into a host cell having succinic acid production ability, it was confirmed that the introduction of the glycerol related gene resulted in an improvement in glycerol metabolism and succinic acid production capacity in the host cell, thereby completing the present invention.

본 발명의 목적은 보다 빠르고 효율적으로 글리세롤을 탄소원으로 사용할 수 있는 글리세롤 대사능력이 향상된 재조합 미생물 및 이의 제조방법을 제공하는 데 있다.An object of the present invention is to provide a recombinant microorganism with improved glycerol metabolism capable of using glycerol as a carbon source more quickly and efficiently and a method for producing the same.

본 발명의 다른 목적은 상기 재조합 미생물을 이용한 숙신산의 생산방법을 제공하는 데 있다.Another object of the present invention to provide a method for producing succinic acid using the recombinant microorganism.

상기 목적을 달성하기 위하여, 본 발명은 숙신산 생성능을 가지는 미생물에, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자를 함유하는 재조합 벡터가 도입되어 있는, 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물을 제공한다. In order to achieve the above object, the present invention encodes a gene encoding glycerol-3-phosphate dehydrogenase or glycerol dehydrogenase to a microorganism having a succinic acid production ability Provided is a recombinant microorganism having improved glycerol metabolism and succinic acid production capacity, into which a recombinant vector containing a gene is introduced.

본 발명은 또한, 숙신산 생성능을 가지는 미생물의 염색체에, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자가 삽입되어 있는, 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물을 제공한다.The present invention also provides a gene encoding glycerol-3-phosphate dehydrogenase or a gene encoding glycerol dehydrogenase on a chromosome of a microorganism having succinic acid production ability. Provided are recombinant microorganisms with improved glycerol metabolism and succinic acid production capacity.

본 발명은 또한, 숙신산 생성능을 가지는 미생물에, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자를 함유하는 재조합 벡터를 도입하는 것을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물의 제조방법을 제공한다.The present invention also provides a microorganism having a succinic acid producing ability, comprising a gene encoding glycerol-3-phosphate dehydrogenase or a gene encoding glycerol dehydrogenase. Provided is a method for producing a recombinant microorganism having improved glycerol metabolism and succinic acid production capacity, characterized by introducing a recombinant vector.

본 발명은 또한, 숙신산 생성능을 가지는 미생물의 염색체에, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자가 삽입하는 것을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물의 제조방법을 제공한다.The present invention also provides a gene encoding glycerol-3-phosphate dehydrogenase or a gene encoding glycerol dehydrogenase on a chromosome of a microorganism having succinic acid production ability. Provided is a method for producing a recombinant microorganism having improved glycerol metabolism and succinic acid production capacity, characterized in that the insertion.

본 발명은 또한, 상기 재조합 미생물을 글리세롤을 탄소원으로 함유하는 배양배지에서 배양하는 단계; 및 상기 배양액으로부터 숙신산을 회수하는 단계를 포함하는 숙신산의 제조방법을 제공한다.The present invention also comprises the steps of culturing the recombinant microorganism in a culture medium containing glycerol as a carbon source; And it provides a method for producing succinic acid comprising the step of recovering succinic acid from the culture.

본 발명은 또한, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자를 함유하는 재조합 벡터를 제공한다.The present invention also provides a recombinant vector containing a gene encoding glycerol-3-phosphate dehydrogenase or a gene encoding glycerol dehydrogenase.

본 발명은 보다 빠르고 효율적으로 글리세롤을 탄소원으로 사용하여 숙신산을 생산할 수 있는 글리세롤 대사능이 향상된 재조합 미생물 및 이를 이용한 숙신 산의 제조방법을 제공하는 효과가 있다. The present invention has the effect of providing a recombinant microorganism with improved glycerol metabolism capable of producing succinic acid using glycerol as a carbon source more quickly and efficiently and a method for producing succinic acid using the same.

본 발명은 종래 글리세롤을 탄소원으로 가장 큰 문제점으로 지적되는 느린 세포 내 수송과 대사작용을 보다 빠르게 증가시켜 저가의 글리세롤을 효율적으로 세포의 탄소원으로 사용하는 방안을 제시함과 동시에, 현재 화학공정으로 생산되고 있는 유용물질인 숙신산을 종래 화학공정을 대체하여 생산효율이 우수한 생물공정을 통해 생산할 수 있게 하여 숙신산과 같은 목적 대사산물의 생산가격 절감을 가져올 수 있으므로 유용하다. 더욱이 본 발명에 따른 재조합 미생물은 종래 기술에서는 단순히 약간의 아세트산, 젖산, 포름산, 피루브산 등의 부산물의 저감효과만을 얻었던 것과 달리, 부산물의 생산 없이 100% 순수한 숙신산을 생산할 수 있게 하는 장점이 있다. The present invention provides a method of efficiently using low-cost glycerol as a carbon source of cells by increasing the slow intracellular transport and metabolism, which is pointed out as the biggest problem as a carbon source as a conventional carbon source. It is useful because it is possible to produce succinic acid, which is a useful substance, through a biological process with excellent production efficiency in place of the conventional chemical process, thereby bringing down the production price of a target metabolite such as succinic acid. Moreover, the recombinant microorganism according to the present invention has the advantage of being able to produce 100% pure succinic acid without the production of by-products, unlike the prior art, which merely obtains a reduction effect of by-products such as acetic acid, lactic acid, formic acid and pyruvic acid.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

본 발명에서는 숙신산 생성능을 가지는 미생물에, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자를 도입한 결과, 상기 유전자가 도입된 숙주세포의 글리세롤 대사능과 숙신산 생성능의 향 상을 가져옴을 규명하였다. In the present invention, as a result of introducing a gene encoding glycerol-3-phosphate dehydrogenase or a gene encoding glycerol dehydrogenase into a microorganism having succinic acid production ability, The gene was found to bring about an improvement in glycerol metabolism and succinic acid production ability of the host cell introduced.

따라서, 본 발명은 일 관점에서, 숙신산 생성능을 가지는 미생물에, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자를 함유하는 재조합 벡터가 도입되어 있는, 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물에 관한 것이다. Therefore, in one aspect, the present invention is a gene encoding glycerol-3-phosphate dehydrogenase or glycerol dehydrogenase to a microorganism having succinic acid production ability The present invention relates to a recombinant microorganism having improved glycerol metabolism and succinic acid production capacity, into which a recombinant vector containing a gene is introduced.

이때, 본원에서, "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용 하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) (Neumann, et al., EMBO J., 1:841, 1982) 등을 사용해서 용이하게 달성될 수 있다. As used herein, "vector" refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host. Vectors can be plasmids, phage particles or simply potential genomic inserts. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of current vectors, "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use plasmid vectors. Typical plasmid vectors that can be used for this purpose include (a) a replication initiation point that allows for efficient replication, including several to hundreds of plasmid vectors per host cell, and (b) host cells transformed with plasmid vectors. It has a structure that includes an antibiotic resistance gene that allows it to be used and a restriction enzyme cleavage site (c) into which foreign DNA fragments can be inserted. Although no suitable restriction enzyme cleavage site is present, the use of synthetic oligonucleotide adapters or linkers according to conventional methods facilitates ligation of the vector and foreign DNA. After ligation, the vector should be transformed into the appropriate host cell. Transformation can be readily accomplished using calcium chloride methods or electroporation (Neumann, et al., EMBO J. , 1: 841, 1982) and the like.

본 발명에 따른 유전자의 과발현을 위하여 사용되는 벡터는 당업계에 공지된 발현 벡터가 사용될 수 있다. As the vector used for overexpression of the gene according to the present invention, an expression vector known in the art may be used.

염기서열은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑 터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다. Sequences are "operably linked" when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to enable gene expression when appropriate molecules (eg, transcriptional activating proteins) are bound to regulatory sequence (s). For example, the DNA for a pre-sequence or secretion leader is operably linked to the DNA for the polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation. In general, "operably linked" means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame. However, enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used.

당업계에 주지된 바와 같이, 숙주세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 재조합벡터 내에 포함되게 된다. 숙주세포가 진핵세포인 경우에는, 재조합벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다. As is well known in the art, to raise the expression level of a transgene in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that function in the chosen expression host. Preferably, the expression control sequence and the corresponding gene will be included in one recombinant vector containing the bacterial selection marker and the replication origin. If the host cell is a eukaryotic cell, the recombinant vector must further comprise an expression marker useful in the eukaryotic expression host.

상술한 재조합 벡터에 의해 형질전환된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다. Host cells transformed with the recombinant vectors described above constitute another aspect of the present invention. As used herein, the term “transformation” means introducing DNA into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.

물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. Of course, it should be understood that not all vectors function equally well to express the DNA sequences of the present invention. Likewise not all hosts function equally for the same expression system. However, those skilled in the art can make appropriate choices among various vectors, expression control sequences and hosts without departing from the scope of the present invention without undue experimental burden. For example, in selecting a vector, the host must be considered, since the vector must be replicated in it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered.

아울러, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자는 숙주세포의 게놈에 도입되어 염색체 상 인자로서 존재하는 것을 특징으로 할 수 있다. 본 발명이 속하는 기술분야의 당업자에게 있어 상기 유전자를 숙주세포의 게놈 염색체에 삽입하여서도 상기와 같이 재조합 벡터를 숙주세포에 도입한 경우와 동일한 효과를 가질 것은 자명하다 할 것이다.In addition, a gene encoding glycerol-3-phosphate dehydrogenase or a gene encoding glycerol dehydrogenase is introduced into the genome of a host cell to exist as a chromosome factor. It can be characterized by. It will be apparent to those skilled in the art that the present invention may have the same effect as when the recombinant vector is introduced into the host cell even when the gene is inserted into the genomic chromosome of the host cell.

따라서, 본 발명은 다른 관점에서,숙신산 생성능을 가지는 미생물의 염색체에, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자가 삽입되어 있는, 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물에 관한 것이다. Therefore, in another aspect, the present invention provides a gene encoding glycerol-3-phosphate dehydrogenase or glycerol dehydrogenase on a chromosome of a microorganism having succinic acid production ability. The present invention relates to a recombinant microorganism having improved glycerol metabolism and succinic acid production capacity, into which a gene encoding the gene is inserted.

본 발명에서 상기 유전자를 숙주세포의 염색체상에 삽입하는 방법으로는 통상적으로 알려진 유전자조작방법을 사용할 수 있으며, 일 예로는 레트로바이러스 벡터, 아데노바이러스 벡터, 아데노-연관 바이러스 벡터, 헤르페스 심플렉스 바이러스 벡터, 폭스바이러스 벡터, 렌티바이러스 벡터 또는 비바이러스성 벡터를 이용하는 방법을 들 수 있다.As the method for inserting the gene on the chromosome of the host cell in the present invention can be used a commonly known genetic engineering method, for example, retrovirus vector, adenovirus vector, adeno-associated virus vector, herpes simplex virus vector , Poxvirus vectors, lentiviral vectors or non-viral vectors.

본 발명자들은 한우의 반추위로부터 동정한 숙신산 생성 균주인 Mannheimia succiniciproducens MBEL55E (KCTC 0769BP)의 전체 유전정보 및 대사특성을 규명하였으며 (Hong et al ., Nature Biotechnol ., 22:1275, 2004), 본 발명의 일 실시예 에서는 상기 균주의 유전정보 및 대사특성을 바탕으로 다른 균주와의 유사성 비교방법을 통하여 글리세롤-3-포스페이트 디하이드로지네이즈(GlpABC,MS1993-1995)를 코딩하는 유전자 glpABC (MS1993-1995: 서열번호 1) 및 glpF, glpK, glpABC 오페론의 프로모터 특정부위에 전사 활성자로 기능하는 것으로 알려진 cAMP 수용체(cAMP receptor)를 코딩하는 유전자 crp (MS1934: 서열번호 2)를 분리하였다. The present inventors have investigated the overall genetic information and metabolic characteristics of succinic acid-producing strain Mannheimia succiniciproducens MBEL55E (KCTC 0769BP) identified from the rumen of Hanwoo (Hong et al . , Nature Biotechnol . , 22: 1275, 2004), In one embodiment of the present invention, glycerol-3-phosphate dehydrogenase (GlpABC, MS1993-1995) by comparing the similarity with other strains based on the genetic information and metabolic characteristics of the strain Genes glpABC (MS1993-1995: SEQ ID NO: 1) and genes crp (MS1934: SEQ ID NO: 2) was separated.

또한, 글리세롤을 탄소원으로 사용할 수 있는 대사능력을 가진 것으로 알려진 C. acetobutylicum ATCC824로부터 글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자인 glpA (CAC1322: 서열번호 3)를 분리하였고, E. coli K-12 MG1655로부터 글리세롤을 세포 내로 확산시키는 것을 촉진하는 효소인 글리세롤 업테이크 촉진자 (glycerol uptake faciitator)를 코딩하는 유전자인 glpF (B3927: 서열번호 4) 및 상기 글리세롤을 글리세롤-3-포스페이트로 전환시키는 효소인 글리세롤 카이네이즈 (glycerol kinase)를 코딩하는 유전자인 glpK (B3926: 서열번호 5)를 분리하였다. 또한, Gluconobacter oxydans로부터 역시 글리세롤 디하이드로지네이즈를 코딩하는 유전자인 sldAB (GOX0854, 0855: 서열번호 6) 및 디하이드록시아세톤 디하이드로지네이즈를 코딩하는 유전자 dhaK (GOX2222: 서열번호 7)을 분리하였다. In addition, glpA (CAC1322: SEQ ID NO: 3), a gene encoding glycerol-3-phosphate dehydrogenase, was isolated from C. acetobutylicum ATCC824, which is known to have a metabolic ability to use glycerol as a carbon source, and E. coli K. -12 glpF (B3927: SEQ ID NO: 4), a gene encoding the glycerol uptake faciitator, an enzyme that promotes diffusion of glycerol into cells from MG1655 and an enzyme that converts the glycerol into glycerol-3-phosphate GlpK (B3926: SEQ ID NO: 5), a gene encoding phosphorus glycerol kinase, was isolated. In addition, Gluconobacter sldAB , a gene that also encodes glycerol dehydrogenase from oxydans (GOX0854, 0855: SEQ ID NO: 6) and the gene dhaK (GOX2222: SEQ ID NO: 7) encoding dihydroxyacetone dehydrogenase were isolated.

아울러 본 발명의 일 실시예에서는 상기 분리한 유전자를 이용하여, glpABC 유전자 (서열번호 1)를 포함하는 재조합 벡터 pFglpABC를 제작하여 이를 도입한 형질전환 균주 Mannheimia succiniciproducens MBEL55E/pFglpABC(JYJM01) 균주를 제조하였고, glpA 유전자를 포함하는 재조합 벡터 pEglpA를 도입하여 형질전환 균주 Mannheimia succiniciproducens PALK/pEglpA(JYJM02)를 제조하였다. 또한, glpA crp 유전자를 포함하는 재조합 벡터인 pACRP를 제작하여 이를 도입한 형질전환 균주 Mannheimia succiniciproducens PALK/ACRP(JYJM03) (KCTC11458BP)를 제조하고, glpA , glpF glpK유전자를 포함하는 재조합 벡터인 pAFK를 제조하여 이를 도입한 형질전환균주인 Mannheimia succiniciproducens PALK/AFK (JYJM04) (KCTC11459BP)를 제조하였으며, sldABdhaK 유전자를 포함하는 재조합 벡터인 pSDGOX를 제작하여 이를 도입한 형질전환균주인 Mannheimia succiniciproducens PALK/SDGOX(JYJM05) (KCTC11460BP)를 제조하였다. 상기 균주는 모두 2009년 1월 23일자에 한국생명공학연구원 생물자원센터 유전자은행에 상기 기탁번호로 기탁되었다.In addition, in one embodiment of the present invention, using the isolated gene, a recombinant vector pFglpABC comprising a glpABC gene (SEQ ID NO: 1) was prepared and introduced into the transformed strain Mannheimia succiniciproducens MBEL55E / pFglpABC (JYJM01) strain was prepared, and transgenic strain Mannheimia was introduced by introducing a recombinant vector pEglpA containing the glpA gene. succiniciproducens PALK / pEglpA (JYJM02) was prepared. Also, pACRP , a recombinant vector containing glpA and crp genes, was prepared and the transformed strain Mannheimia succiniciproducens PALK / ACRP (JYJM03) (KCTC11458BP) was prepared, and glpA and glpF were prepared. And a recombinant vector pAFK comprising a glpK gene and a transgenic strain of Mannheimia succiniciproducens PALK / AFK (JYJM04) (KCTC11459BP) was prepared, and a recombinant strain, Mannheimia , which was produced by introducing pSDGOX, a recombinant vector containing sldAB and dhaK genes, was introduced. succiniciproducens PALK / SDGOX (JYJM05) (KCTC11460BP) was prepared. All of the strains were deposited on January 23, 2009 with the accession number to the Korea Institute of Bioscience and Biotechnology Center Gene Resource Bank.

본 발명의 다른 실시예에서는 상기 제조된 Mannheimia succiniciproducens MBEL55E/pFglpABC(JYJM01) 균주와 이의 모균주인 M. succiniciproducens MBEL55E를 대비하여 글리세롤 대사능력 및 숙신산 생산능력을 측정한 결과, 모균주에 비하여 본 발명에 따른 균주인 Mannheimia succiniciproducens MBEL55E/pFglpABC(JYJM01) 균주의 글리세롤 대사능력 및 숙신산 생산능력이 현저히 향상된 것으로 나타났으며, 이에 글리세롤-3-포스페이트 디하이드로지네이즈 유전자인 glpABC의 도입이 숙신산을 생산하는 숙주세포를 글리세롤 대사능력 및 숙신산 생산능력이 향상되도록 형질전환시킴을 확인하였다. 아울러, 이와 달리 다른 글리세롤 대사 관련 유전자인 글리세롤 업테이크 촉진자를 코딩하는 유전자인 glpF나 글리세롤 카이네이즈인 glpK의 단독 도입은 오히려 숙주세포에 부정적인 영향을 가져오는 것으로 나타났다. 이에 글리세롤-3-포스페이트 디하이드로지네이즈 유전자의 도입이 글리세롤 대 사능력 및 숙신산 생산능력 향상에 필수적이며 단순히 글리세롤 대사관련 유전자를 도입이 바로 글리세롤 대사능력이 향상을 가져온다는 의미가 아님을 확인하였다. In another embodiment of the present invention Mannheimia prepared above succiniciproducens MBEL55E / pFglpABC (JYJM01) strain and its parent strain M. succiniciproducens As a result of measuring glycerol metabolism and succinic acid production in comparison to MBEL55E, Mannheimia , the strain according to the present invention compared to the parent strain succiniciproducens MBEL55E / pFglpABC (JYJM01) was found to be substantially the glycerol metabolic activity and acid production capacity of a strain improved, whereby glycerol-3-phosphate-dihydro centipede rise to the introduction of the gene of the host cell to produce the glpABC acid glycerol metabolic activity and It was confirmed that the transformation to improve the succinic acid production capacity. In contrast, the introduction of glpF , a gene encoding glycerol uptake promoter, a gene related to other glycerol metabolism, or glpK , a glycerol kinase, had a negative effect on host cells. Therefore, it was confirmed that the introduction of glycerol-3-phosphate dehydrogenase gene is essential for improving glycerol metabolism and succinic acid production ability, and simply introducing glycerol metabolism related gene does not mean that glycerol metabolism ability is improved.

본 발명의 또 다른 실시예에서는 멘하이미아 속 균주가 아닌 클로스트리디움 속 유래의 글리세롤-3-포스페이트 디하이드로지네이즈 유전자인 glpA를 숙신산을 생산하는 균주인 M. succiniciproducens PALK (KCTC 10973BP)에 도입한 Mannheimia succiniciproducens PALK/pEglpA(JYJM02)균주의 글리세롤 업테이크 효율, 숙신산 생산량, 글리세롤 소비량을 측정한 결과, 역시 글리세롤 대사능 및 숙신산 생산능이 증가함을 확인하여 숙신산을 생산하는 맨하이미아 균주의 글리세롤-3-포스페이트 디하이드로지네즈 유전자를 과발현시키는 경우뿐만 아니라, 타 속의 균주에서 분리한 글리세롤-3-포스페이트 디하이드로지네이즈 유전자를 도입하여 발현시키는 경우에도 글리세롤 대사능 및 숙신산 생산능이 증가함을 보였다. In another embodiment of the present invention M. succiniciproducens is a strain that produces succinic acid glpA , a glycerol-3-phosphate dehydrogenase gene from Clostridium sp. Mannheimia introduced to PALK (KCTC 10973BP) succiniciproducens Glycerol uptake efficiency, succinic acid production, and glycerol consumption of PALK / pEglpA (JYJM02) strains were measured, and it was also confirmed that glycerol metabolism and succinic acid production increased. Glycerol metabolism and succinic acid production were increased not only when overexpressing the dehydrogenase gene but also when the glycerol-3-phosphate dehydrogenase gene isolated from other strains was introduced and expressed.

아울러, 상기 Mannheimia succiniciproducens PALK/ACRP(JYJM03) (KCTC11458BP), Mannheimia succiniciproducens PALK/AFK(JYJM04) (KCTC11459BP), 및 Mannheimia succiniciproducens PALK/SDGOX(JYJM05) (KCTC11460BP)의 글리세롤 업테이크 효율, 숙신산 생산량, 글리세롤 소비량을 측정한 결과, 역시 글리세롤 대사능 및 숙신산 생산능이 현저히 증가됨을 확인하였다. 이에 본 발명은 바람직하게는 추가적으로 글리세롤 업테이크 촉진자(glycerol uptake facilitator)를 코딩하는 유전자, 글리세롤 카이네이즈(glycerol kinase)를 코딩하는 유전자, cAMP 수용체 (cAMP receptor)를 코딩하는 유전자 및 디하이드록시 아세톤 카이네이즈(dehydroxyaceton kinase)를 코딩하는 유전자 중 어느 하나 이상을 추가적으로 함유하는 것을 특징으로 할 수 있다. 이때, 상기 균주 중 Mannheimia succiniciproducens PALK/ACRP(JYJM03) (KCTC11458BP)균주의 글리세롤 대사능력 및 숙신산 생산능력이 가장 우수한 것으로 확인되었다. In addition, the Mannheimia succiniciproducens PALK / ACRP (JYJM03) (KCTC11458BP), Mannheimia succiniciproducens PALK / AFK (JYJM04) (KCTC11459BP), and Mannheimia succiniciproducens Glycerol uptake efficiency, succinic acid production, and glycerol consumption of PALK / SDGOX (JYJM05) (KCTC11460BP) were measured, and the results showed that glycerol metabolism and succinic acid production were significantly increased. Therefore, the present invention preferably further includes a gene encoding a glycerol uptake facilitator, a gene encoding a glycerol kinase, a gene encoding a cAMP receptor, and a dihydroxy acetone kinase ( It may be characterized in that it additionally contains any one or more of the genes encoding dehydroxyaceton kinase. At this time, Mannheimia of the strain succiniciproducens PALK / ACRP (JYJM03) Glycerol metabolism and succinic acid production ability of strain (KCTC11458BP) were confirmed to be the best.

숙신산 생산능을 가지는 숙주세포에 도입하여 발현된 효소 단백질의 숙신산 대사경로 참여는 상기와 같은 실험결과 및 유전정보와 대사특성에 관한 연구로 예측될 수 있으며, 이는 도 1과 같다. Participation in the succinic acid metabolic pathway of the enzyme protein introduced into the host cell having succinic acid production ability can be predicted by the above experimental results and studies on genetic information and metabolic characteristics, as shown in FIG.

이때, 본 발명에 있어서, 상기 숙신산 생산능을 가지는 숙주세포는 바람직하게는 맨하이미아 속(genus Mannheimia), 액티노바실러스 속(genus Actinobacillus) 및 언애로우바이오스필리움 속(genus Anaerobiospillium)으로 구성되는 군에서 선택된 미생물임을 특징으로 할 수 있다. 특히 액티노바실러스 속 및 언애로우바이오스필리움 속의 균주의 경우 맨하이미아 속의 균주와 동일한 숙신산 생산 대사경로와 유전정보를 가짐이 알려져 있는 바(Zeikus et al ., Appl Microbiol . Biotechnol., 51:545, 1999; McKinlay et al ., Appl Microbiol . Biotechnol ., 76:727, 2007), 본 발명의 실시예에서는 맨하이미아 속의 균주를 이용하여 실험하였으나, 동일한 숙신산 대사경로를 가지는 액티노바실러스 속 및 언애로우바이오스필리움 속의 균주를 숙주세포로 사용하여도 동일한 결과를 얻을 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 자명한 사항이라 할 것이다. At this time, in the present invention, the host cell having the succinic acid production capacity is preferably composed of genus Mannheimia , genus Actinobacillus and genus Anaerobiospillium . Characterized in that the microorganism selected from the group. In particular, the strains of the genus Actinobacillus and Unarrow biosphylium are known to have the same metabolic pathway and genetic information as the strains of the genus of Mania. et al ., Appl Microbiol . Biotechnol. , 51: 545, 1999; Mckinlay et al ., Appl Microbiol . Biotechnol . , 76: 727, 2007), In the embodiment of the present invention was tested using strains of the genus Maniamia, strains of the genus Actinobacillus and Unarrow biophyllium having the same succinic acid metabolic pathway as a host cell The same result will be apparent to those of ordinary skill in the art.

또한, 보다 바람직한 글리세롤 대사능 향상 및 숙신산 생산효과를 얻기 위하여 숙주세포로서 Mannheimia succiniciproducens MBEL55E (KCTC 0769BP), Mannheimia succiniciproducens MBEL55E로부터 젖산 탈수소화효소 유전자인 ldhA와 피르브산-개미산 분해효소 유전자인 pfl을 결실시켜 숙신산 생성능을 향상시킨 Mannheimia succiniciproducens LPK (KCTC 10558BP), Mannheimia succiniciproducens LPK 균주에서 추가적으로 포스포트랜스아세틸화효소 유전자인 pta와 아세트산 키나제 유전자인 ackA를 결실시켜 숙신산 생성능을 향상시킨 Mannheimia succiniciproducens LPK7 (KCTC 10626BP) (LEE et al ., Appl . Environ . Microbiol., 72:1939, 2006), Mannheimia succiniciproducens PALK(KCTC 10973BP), Mannheimia succiniciproducens PALK 균주에서 포스포트랜스아세틸화효소 유전자 pta를 과발현시킨 Mannheimia succiniciproducens ALK 및 Mannheimia succiniciproducens MBEL55E로부터 젖산 탈수소화효소 유전자 ldhA와 아세트산키나제 유전자 ackA를 결실시킨 변이균주 Mannheimia succiniciproducens ALKt로 구성된 군에서 선택되는 것이 바람직하나, 맨하이미아 속의 균주는 모두 동일한 숙신산 생산의 대사경로, 즉 PEP 카복시카이네이즈 대사경로(PEP carboxkinase pathway)에 의하여 숙신산을 생산하는 바 이에 한정되지 않고 맨하이미아 속에서 선택된 숙주세포를 사용하는 경우 본 발명에 따른 재조합 미생물을 수득할 수 있음은 자명하다고 할 것이다. In addition, Mannheimia as a host cell in order to obtain more desirable glycerol metabolism enhancement and succinic acid production effect succiniciproducens MBEL55E (KCTC 0769BP), Mannheimia succiniciproducens Mannheimia improves succinic acid production by deleting ldhA , a lactic acid dehydrogenase gene, and pfl , a pyrvic acid-formate enzyme, from MBEL55E succiniciproducens LPK (KCTC 10558BP), Mannheimia succiniciproducens Mannheimia succiniciproducens improved succinic acid production ability by additionally deleting phosphotransacetylase gene pta and acetic acid kinase gene ackA in LPK strain LPK7 (KCTC 10626BP) (LEE et al ., Appl . Environ . Microbiol. , 72: 1939, 2006), Mannheimia succiniciproducens PALK (KCTC 10973BP), Mannheimia succiniciproducens Mannheimia overexpresses the phosphotransacetylase gene pta in PALK strains Mutant strain Mannheimia which deleted lactic acid dehydrogenase gene ldhA and acetate kinase gene ackA from succiniciproducens ALK and Mannheimia succiniciproducens MBEL55E It is preferable to select from the group consisting of succiniciproducens ALKt, but all strains of the genus of Maniamia produce succinic acid by the same metabolic pathway of succinic acid production, ie, PEP carboxkinase pathway. It will be apparent that the recombinant microorganism according to the present invention can be obtained by using the host cell selected in the embryo.

한편, 본 발명에 따른 재조합 미생물은 우수한 숙신산 생산효과를 가지는바, 본 발명은 다른 관점에서, 상기 숙신산 생성능이 향상된 재조합 미생물을 글리세롤을 탄소원으로 함유하는 배양배지에서 배양하는 단계; 및 상기 배양액으로부터 숙신산을 회수하는 단계를 포함하는 숙신산의 생산방법에 관한 것이다. 이때, 본 발명에서 글리세롤-3-포스페이트 디하이드로지네이즈로 glpABC를 도입하여 사용하는 경우 혐기조건에서 작용하는바, 상기 배양은 혐기조건에서 수행하는 것이 바람직하다. On the other hand, the recombinant microorganism according to the present invention has an excellent succinic acid production effect, the present invention in another aspect, the step of culturing the recombinant microorganism with improved succinic acid production capacity in a culture medium containing glycerol as a carbon source; And it relates to a production method of succinic acid comprising the step of recovering succinic acid from the culture. At this time, when using glpABC as glycerol-3-phosphate dihydrogenase in the present invention is used under anaerobic conditions, the culture is preferably carried out under anaerobic conditions.

또한, 상기 배양배지에서 글리세롤은 글리세롤 이외의 다른 탄소원과 함께 함유되어 있는 것을 특징으로 할 수 있으며, 이때, 상기 글리세롤 이외의 다른 탄소원은 수크로오스(sucrose)인 것을 특징으로 할 수 있다. In addition, glycerol in the culture medium may be characterized in that it is contained together with other carbon sources other than glycerol, wherein, other carbon sources other than the glycerol may be characterized in that sucrose (sucrose).

이하 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Through the following examples will be described the present invention in more detail. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

특히, 하기 실시예에서는 Mannheimia succiniciproducens를 숙주세포로 하여 실험하여 숙신산 생성능 향상 효과를 확인하였으나, 다른 맨하이미아 속 균주 및 동일한 숙신산 생산 대사경로를 가지는 액티노바실러스 속(genus Actinobacillus) 및 언애로우바이오스필리움 속(genus Anaerobiospirillum)의 균주를 숙주세포로 사용하여서도 동일한 결과를 얻을 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 자명한 사항이라 할 것이다. In particular, in the examples below, Mannheimia Although the experiment by the succiniciproducens host cells determine the acid producing ability-improving effect, the other top high lost in strain and the liquid Martino Bacillus having the same acid production pathway (genus Actinobacillus) and unloading arrow bio spill Solarium genus (genus Anaerobiospirillum) Using the strain as a host cell to obtain the same results will be apparent to those of ordinary skill in the art.

또한, 숙신산 생산을 위한 배양에 있어 회분식 배양만을 예시하였으나, 역시 유가식과 연속식 배양방법에 의하여 재조합 미생물을 배양하여서도 숙신산을 수득할 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 자명한 사항이라 할 것 이다. In addition, although only batch culture is illustrated in the culture for succinic acid production, it is apparent to those skilled in the art that succinic acid can be obtained even by culturing recombinant microorganisms by fed-batch and continuous culture methods. I will say.

실시예Example 1: 글리세롤  1: glycerol 디하이드로지네이즈를Dehydrogenase 코딩하는 유전자의 분리 Isolation of the coding gene

1-1: 1-1: 맨하이미아Maniamia 유래  origin glpABCglpABC And crpcrp 유전자의 분리 Isolation of genes

맨하이미아 속 균주인 M. succiniciproducens MBEL55E(KCTC0769BP)로부터 다음과 같이, 글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자인 glpABC 및 cAMP 수용체(receptor) 단백질을 코딩하는 유전자인 crp를 분리하였다.From the M. succiniciproducens MBEL55E (KCTC0769BP), a strain of the genus of Maniaia, glpABC, which is a gene encoding glycerol-3-phosphate dehydrogenase, and crp , which are genes encoding a cAMP receptor (receptor) protein, were isolated as follows.

M. succiniciproducens MBEL55E(KCTC0769BP)의 게놈 DNA를 주형으로 하고, 다음의 서열번호 8 및 9와, 10 및 11의 프라이머들을 사용하여 PCR을 수행함으로써 맨하이미아 속에서 강한 프로모터로 사용되는 fumC 유전자의 프로모터 DNA와 glpABC(MS1993,1994,1995)오페론 유전자의 DNA를 증폭하였고, 이들을 혼합한 것을 주형으로 서열번호 8과 11의 프라이머들을 사용하여 오버래핑 PCR(overlapping PCR)을 수행하였다. 마찬가지로, 서열번호 12 및 13와, 14 및 15의 프라이머를 사용한 PCR을 수행하여 맨하이미아 속에서 강한 프로모터인 Enolase 유전자의 프로모터 DNA와 crp(MS1934)의 DNA를 증폭하였고, 이들을 혼합한 것을 주형으로 서열번호 12과 15의 프라이머들을 사용하여 오버래핑 PCR을 수행하여 glpABCcrp를 분리하였다. A promoter of the fumC gene, which is used as a strong promoter in Manhattan by using genomic DNA of M. succiniciproducens MBEL55E (KCTC0769BP) as a template and performing PCR using primers of SEQ ID NOs: 8 and 9 and 10 and 11 DNA and the glpABC (MS1993, 1994 , 1995) operon gene DNA were amplified, and the mixtures were subjected to overlapping PCR (overlapping PCR) using primers of SEQ ID NOs: 8 and 11 as templates. Similarly, PCR was performed using primers of SEQ ID NOs: 12 and 13 and 14 and 15 to amplify the DNA of crp (MS1934) and the DNA of promoter of Enolase gene, a strong promoter in Manhattan , and the mixture of these was used as a template. Using overlapping PCR using primers of SEQ ID NOs: 12 and 15, glpABC and crp were isolated.

서열번호 8: 5'-TATACTGCAGACATCGGCATCAGTTATATCG-3’SEQ ID NO: 5'-TATACTGCAGACATCGGCATCAGTTATATCG-3 '

서열번호 9: 5'-CGCAACCCAACATTGTATCACCTCATTGTAATA-3’SEQ ID NO: 5'-CGCAACCCAACATTGTATCACCTCATTGTAATA-3 '

서열번호 10: 5'-TGAGGTGATACAATGTTGGGTTGCGTATTTTA-3’SEQ ID NO: 10'-TGAGGTGATACAATGTTGGGTTGCGTATTTTA-3 '

서열번호 11: 5'-TATGGGATCCTTATTGGTTTATTGACATAG-3’SEQ ID NO: 5'-TATGGGATCCTTATTGGTTTATTGACATAG-3 '

서열번호 12: 5'-TAGTGAGCTCTACTCTGTTACCGCAAATTG-3’SEQ ID NO: 12'-TAGTGAGCTCTACTCTGTTACCGCAAATTG-3 '

서열번호 13: 5'-TTGTTCTAGCATTTTTATTTTCCTCTTAGTTA-3’SEQ ID NO: 5'-TTGTTCTAGCATTTTTATTTTCCTCTTAGTTA-3 '

서열번호 14: 5'-AGGAAAATAAAAATGCTAGAACAAGTGAATGCG-3’SEQ ID NO: 14'-AGGAAAATAAAAATGCTAGAACAAGTGAATGCG-3 '

서열번호 15: 5'-TGTCCATATGCTTATCTCGTACCGAATACC-3’SEQ ID NO: 15'-TGTCCATATGCTTATCTCGTACCGAATACC-3 '

1-2: 1-2: 클로스트리디움Clostridium 아세토부틸리컴Acetobutylicum 유래  origin glpAglpA 유전자의 분리 Isolation of genes

클로스트리디움 속 균주인 Clostridium acetobutylicum ATCC824로부터 다음과 같이, 글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자인 glpA 를 분리하였다. Clostridium, a strain of Clostridium From the acetobutylicum ATCC824, glpA , a gene encoding glycerol-3-phosphate dehydrogenase, was isolated as follows.

먼저 Clostridium acetobutylicum ATCC824의 게놈 DNA를 주형으로 하고, 서열번호 18 및 19의 프라이머들을 이용해 glpA(CAC1322) 유전자의 DNA를 증폭하였고, 서열번호 16 및 17의 프라이머를 이용해 상기 실시예 1-1에 기재된 것과 같이, 맨하이미아 Enolase 프로모터 DNA를 증폭하였다. 이들을 혼합한 것을 주형으로 서열번호 16와 19의 프라이머들을 사용하여 오버래핑 PCR을 수행하여 glpA를 분리하였다. First Clostridium The genomic DNA of acetobutylicum ATCC824 was used as a template, and the DNA of the glpA (CAC1322) gene was amplified using the primers of SEQ ID NOs: 18 and 19, and the primers of SEQ ID NOs: 16 and 17 were used as described in Example 1-1 above. The Mannheimia Enolase promoter DNA was amplified. These mixtures were subjected to overlapping PCR using primers of SEQ ID NOs: 16 and 19 as templates to isolate glpA .

서열번호 16: 5'-AGGAAAATAAAAATGCTAGAACAAGTGAATGCG-3’SEQ ID NO: 16: 5'-AGGAAAATAAAAATGCTAGAACAAGTGAATGCG-3 '

서열번호 17: 5'-TGTCCATATGCTTATCTCGTACCGAATACC-3’SEQ ID NO: 17'-TGTCCATATGCTTATCTCGTACCGAATACC-3 '

서열번호 18: 5'-AGGAAAATAAAAATGCTAGAACAAGTGAATGCG-3’SEQ ID NO: 18'-AGGAAAATAAAAATGCTAGAACAAGTGAATGCG-3 '

서열번호 19: 5'-TGTCCATATGCTTATCTCGTACCGAATACC-3’SEQ ID NO: 19'-TGTCCATATGCTTATCTCGTACCGAATACC-3 '

1-3: 대장균 유래 1-3: E. coli derived glpF glpF And glpK glpK 유전자의 분리Isolation of genes

에스케리키아 속 균주인 E. coli K-12 MG1655로부터 다음과 같이, 글리세롤 업테이크 촉진자(Glycerol uptake facilitator)를 코딩하는 유전자인 glpF 및 글리세롤 카이네이즈(Glycerol kinase)를 코딩하는 유전자인 glpK 유전자를 분리하였다. 즉, E. coli K-12 MG1655의 게놈 DNA를 주형으로 하고, 서열번호 20 및 21의 프라이머들을 사용하여 PCR을 수행하여 glpF(B3927)와 glpK(B3926) 유전자들을 포함하는 DNA를 증폭하였다. S as from Escherichia sp of E. coli K-12 MG1655 and then, to separate the glycerol uptake facilitator of a gene encoding (Glycerol uptake facilitator) gene glpF and glycerol kinase (Glycerol kinase) encoding the glpK gene . That is, genomic DNA of E. coli K-12 MG1655 was used as a template, and PCR was performed using primers of SEQ ID NOs: 20 and 21 to amplify DNA including glpF (B3927) and glpK (B3926) genes.

서열번호 20: 5'-TGTGTCTAGAATGAGTCAAACATCAACCTT-3’SEQ ID NO: 20'-TGTGTCTAGAATGAGTCAAACATCAACCTT-3 '

서열번호 21: 5'-TATACTGCAGACATTATTCGTCGTGTTCTT-3’SEQ ID NO: 21'-TATACTGCAGACATTATTCGTCGTGTTCTT-3 '

1-4: 글루코노박터 옥시단스 유래 1-4: derived from gluconobacter oxidans sldAB, dhaKsldAB, dhaK 유전자의 분리 Isolation of genes

글루코노박터 속 균주인 Gluconobacter oxydans로부터 다음과 같이, 글리세롤 디하이드로지네이즈를 코딩하는 유전자인 sldAB 및 디하이드록시아세톤 카이네이즈를 코딩하는 유전자인 dhaK를 분리하였다. sldAB(GOX0854,0855)는 관용명으로는 디-소비톨 디하이드로지네이즈 혹은 퀴노프로테인 글루코즈 디하이드로지네이즈(D-sorbitol dehydrogenase subunit SldA, subunit SldB)이지만, 글리세롤 디하이드로지네이즈로써도 기능하는 유전자이다. 즉, Gluconobacter oxydans의 게놈 DNA를 주형으로하고, 서열번호 22 및 23와 서열번호 24 및 25의 프라이머들을 사용하여 PCR을 수행하여 각각 sldAB(GOX0854,0855)와 dhaK(GOX2222) 유전자의 DNA를 증폭하였다. Gluconobacter , a genus of Gluconobacter sldAB , a gene encoding glycerol dehydrogenase, from oxydans : And dhaK , which is a gene encoding dihydroxyacetone kinase. sldAB (GOX0854,0855) is a gene commonly used as a glycerol dehydrogenase, although its conventional name is di-sorbitol dehydrogenase or quinoprotein glucose dehydrogenase (D-sorbitol dehydrogenase subunit SldA, subunit SldB). Ie Gluconobacter Genomic DNA of oxydans was used as a template, and PCR was performed using primers of SEQ ID NOs: 22 and 23 and SEQ ID NOs: 24 and 25 to amplify DNA of sldAB (GOX0854,0855) and dhaK (GOX2222) genes, respectively.

서열번호 22: 5'-TCCGAATTCATGCCGAATACTTATGGCAGC-3’SEQ ID NO: 22'-TCCGAATTCATGCCGAATACTTATGGCAGC-3 '

서열번호 23: 5'-TATTGGTACCTTTCTCAGCCCTTGTGATCA-3’SEQ ID NO: 23'-TATTGGTACCTTTCTCAGCCCTTGTGATCA-3 '

서열번호 24: 5'- TATAGGTACCCTGGGGAGAATATCATGACCAAGATCTGCGGTGA-3’SEQ ID NO: 24'-TATAGGTACCCTGGGGAGAATATCATGACCAAGATCTGCGGTGA-3 '

서열번호 25: 5'-TATTGCATGCGGACGGGCTATAGATTACCG-3’SEQ ID NO: 25'-TATTGCATGCGGACGGGCTATAGATTACCG-3 '

실시예Example 2: 재조합 벡터의 제조 2: Preparation of Recombinant Vectors

2-1: 재조합 벡터 2-1: Recombinant Vector pFglpABCpFglpABC 의 제조Manufacture

맨하이미아 유래의 글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자인 glpABC(MS1993,1994,1995)를 포함한 발현벡터를 다음과 같이 제작하였다. An expression vector containing glpABC (MS1993,1994,1995), a gene encoding glycerol-3-phosphate dehydrogenase derived from Manhattan, was prepared as follows.

실시예 1-1에서 증폭된 glpABC(MS1993,1994,1995)유전자를 포함하는 PCR 절편을 PstI BamHI으로 절단하고, 이를 같은 절단효소로 자른 맨하이미아-대장균 셔틀벡터인 pME19-2 (Kim et . al ., FEMS Microbiol Lett.,278: 78-85, 2008)와 결합시켜 pME19-2FglpABC(MSU)를 제작하고, 이를 pFglpABC라고 명명하였다. 제작된 벡터는 도 2의 개열지도에 나타난 바와 같다. PCR fragments containing the glpABC (MS1993, 1994 , 1995) gene amplified in Example 1-1 were prepared using PstI. PME19-2 (Kim et . Al . , FEMS Microbiol Lett., 278: 78-85, 2008), which were cleaved with and BamHI, and cut with the same cleavage enzyme, to the pME19-2 FglpABC ( MSU) and named pFglpABC. The produced vector is as shown in the cleavage map of FIG.

이때, 상기 pME19-2 벡터는, 맨하이미아로부터 분리 보고된 pMVSCS1 (Kehrenberg et al., J. Antimicrob. Chemother., 49:383, 2002)과 대장균 벡터 puc19 (New England Biolabs)으로부터 맨하이미아/대장균 셔틀벡터 pME19-2를 이용하여 제조하였는데, 먼저 대장균 ori와 암피실린 내성유전자를 포함하는 puc19를 AatII으로 제한한 후, 회수한 단편과 pMVSCS1로부터 얻은 origin 단편(1.96kb; 서 열번호 26)을 AatII으로 제한한 후 회수한 단편을 T4 DNA ligase를 이용하여 접합하여 맨하이미아/대장균 셔틀벡터 pME19-2(4.7kb)를 제작하였다.At this time, the pME19-2 vector was isolated from pneumonia from pMVSCS1 (Kehrenberg et al., J. Antimicrob. Chemother., 49: 383, 2002) and E. coli vector puc19 (New England Biolabs). It was prepared using the E. coli shuttle vector pME19-2. First, puc19 containing E. coli ori and ampicillin resistance gene was restricted to AatII, and then the recovered fragment and the origin fragment obtained from pMVSCS1 (1.96kb; SEQ ID NO: 26) were AatII. After the restriction, the recovered fragment was conjugated using T4 DNA ligase to prepare a maniamia / E. Coli shuttle vector pME19-2 (4.7kb).

2-2: 재조합 벡터 pEglpA의 제작2-2: Construction of Recombinant Vector pEglpA

클로스트리디움 속 유래의 글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자인 glpA 를 포함한 발현벡터를 다음과 같이 제작하였다. An expression vector containing glpA , a gene encoding glycerol-3-phosphate dehydrogenase derived from Clostridium spp., Was prepared as follows.

상기 실시예 1-2에서 얻은 DNA단편을 HindIII PstI 로 절단하고, 이를 같은 절단효소로 자른 맨하이미아-대장균 셔틀벡터인 pME19-2와 결합시켜 pME19-2glpA(CAC)를 제작하고, 이를 pEglpA라고 명명하였다. 제작된 벡터는 도 3의 개열지도에 나타난 바와 같다. Example 1-2 and cut the DNA fragment obtained by HindIII and PstI in coming, this top high Mia cut into cutting enzymes such - combined with the E. coli shuttle vector to prepare a pME19-2 pME19-2glpA (CAC), this It was named pEglpA. The produced vector is as shown in the cleavage map of FIG.

2-3: 재조합 벡터 pACRP의 제작2-3: Construction of Recombinant Vector pACRP

클로스트리디움 속 유래의 글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자인 glpA 및 맨하이미아 속 유래의 cAMP 수용체(receptor) 단백질을 코딩하는 유전자인 crp를 포함한 발현벡터를 다음과 같이 제작하였다. Expression vectors containing glpA , a gene encoding glycerol-3-phosphate dehydrogenase derived from Clostridium genus and crp , a gene encoding cAMP receptor protein derived from the genus Manheimia , were prepared as follows. .

상기 실시예 1-1에서 증폭된 crp(MS1932) 유전자를 포함하는 PCR 절편을 SacI NdeI으로 절단하고, 이를 같은 절단효소로 자른 실시예 2-2에서 제작된 pEglpA 에 결합시켜 pME19-2glpA(CAC)crp(MSU)를 제작하고, 이를 pACRP라고 명명하였다. 제작된 벡터는 도 4의 개열지도에 나타난 바와 같다. The PCR fragment containing the amplified crp (MS1932) gene in Example 1-1 was cleaved with SacI and NdeI , and bound to pEglpA prepared in Example 2-2 cut with the same cleavage enzyme to pME19-2glpA (CAC). ) crp (MSU) was constructed and named pACRP. The produced vector is as shown in the cleavage map of FIG.

2-4: 재조합 벡터 pAFK의 제작2-4: Construction of Recombinant Vector pAFK

클로스트리디움 속 유래의 글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자인 glpA와, 대장균 유래의 글리세롤 업테이크 촉진자(Glycerol uptake facilitator)를 코딩하는 유전자인 glpF 및 글리세롤 카이네이즈(Glycerol kinase)를 코딩하는 유전자인 glpK 유전자를 포함한 발현벡터를 다음과 같이 제작하였다. GlpA , a gene encoding glycerol-3-phosphate dehydrogenase derived from Clostridium, and glpF and glycerol kinase, genes encoding glycerol uptake facilitator from E. coli An expression vector including a glpK gene, which is a gene, was prepared as follows.

먼저, 상기 실시예 1-2에서 얻은 DNA 단편을 각각 HindIII PstI 로 절단하고, 이를 같은 절단효소로 자른 맨하이미아-대장균 셔틀벡터인 pMS3와 결합시켜 pMS3EglpA(CAC)를 제작하였다. 다음으로, 실시예 1-3에서 증폭된 glpF(B3927)와 glpK(B3926)를 동시에 포함하는 DNA 조각을 XbaIPstI으로 절단하고, 이를 같은 절단효소로 자른 발현벡터 pMS3EglpA(CAC)와 결합시켜 pMS3EglpA(CAC)glpF(B3927)glpK(B3926)를 제작하고, 이를 pAFK라고 명명하였다. 제작된 벡터는 도 5의 개열지도에 나타난 바와 같다. First, the embodiment 1-2, and cutting the DNA fragment in HindIII and PstI, respectively coming from the obtained, high-Mia top cut into cutting enzyme such as this, - combined with the E. coli shuttle vector which was prepared pMS3 pMS3EglpA (CAC). Next, DNA fragments containing amplified glpF (B3927) and glpK (B3926) simultaneously in Example 1-3 were cleaved with XbaI and PstI , and then combined with the expression vector pMS3EglpA (CAC) cut with the same cleavage enzyme to form pMS3EglpA. (CAC) glpF (B3927) glpK (B3926) was constructed and termed pAFK. The produced vector is as shown in the cleavage map of FIG.

2-5: 재조합 벡터 pSDGOX의 제작2-5: Construction of Recombinant Vector pSDGOX

글루코노박터 속 유래의 글리세롤 디하이드로지네이즈를 코딩하는 유전자인 sldAB(GOX0854,0855) 및 디하이드록시아세톤 카이네이즈를 코딩하는 유전자인 dhaK(GOX2222)를 포함한 발현벡터를 다음과 같이 제작하였다. Expression vectors containing sldAB (GOX0854,0855), a gene encoding glycerol dehydrogenase derived from Gluconobacter genus, and dhaK (GOX2222), a gene encoding dihydroxyacetone kinase were prepared as follows.

실시예 1-4에서 증폭된 sldAB(GOX0854,0855) 유전자의 DNA를 포함하는 PCR 절편을 각각 EcoRI KpnI으로 절단하고, 이를 같은 절단효소로 자른 맨하이미아- 대장균 셔틀벡터인 pMS3 (Jang et . al ., APPL. Environ. Microbiol.,,73(17) 5411-5420, 2007)와 결합시켜 pMS3sldAB를 제작하였다.PCR fragments containing DNA of the sldAB (GOX0854,0855) gene amplified in Examples 1-4 were each EcoRI. PMS3 (Jang et . Al . , APPL. Environ. Microbiol. ,, 73 (17) 5411-5420, 2007), which is cleaved with KpnI and cut with the same cleavage enzyme, to the p.3. Was produced.

다음으로, 실시예 1-4에서 증폭된 dhaK(GOX2222) DNA 조각을 KpnISphI으로 절단하고, 이를 같은 절단효소로 자른 발현벡터 pMS3sldAB와 결합시켜 pMS3sldABdhaK를 제작하고, 이를 pSDGOX라고 명명하였다. 제작된 벡터는 도 6의 개열지도에 나타난 바와 같다. Next, dhaK (GOX2222) DNA fragments amplified in Examples 1-4 were cleaved with KpnI and SphI and combined with an expression vector pMS3sldAB cut with the same cleavage enzyme to prepare pMS3sldABdhaK, which was named pSDGOX. The produced vector is as shown in the cleavage map of FIG.

실시예Example 3: 재조합 균주의 제조 3: Preparation of Recombinant Strain

3-1: 3-1: MannheimiaMannheimia succiniciproducenssucciniciproducens MBEL55EMBEL55E /Of pFglpABCpFglpABC (( JYJM01JYJM01 ) 균주의 제작Preparation of Strains

글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자인 glpABC(MS1993,1994,1995)를 포함한 발현벡터인 pFglpABC를 다음과 같이 도입하여 재조합 균주를 제조하였다. 균주의 제작을 위하여 숙주세포로는 글리세롤 대사능이 미약한 M. succiniciproducens MBEL55E(KCTC0769BP) 균주를 모델 미생물로 하기의 실험을 진행하였다. A recombinant strain was prepared by introducing pFglpABC, an expression vector containing glpABC (MS1993, 1994 , 1995), a gene encoding glycerol-3-phosphate dehydrogenase, as follows. For the production of strains, the following experiment was carried out as a model microorganism using M. succiniciproducens MBEL55E (KCTC0769BP) strain having poor glycerol metabolism as a host cell.

M. succiniciproducens MBEL55E (KCTC0769BP)를 10g/L의 포도당을 함유한 LB-포도당 고체배지에 도말하여 36시간 동안 37℃에서 배양한 후, 콜로니를 LB-포도당 액체배지 10 mL에 접종하여 12 시간 배양하였다. 충분히 자란 배양액을 LB-포도당 액체배지 100 mL에 1% 접종하여 200 rpm, 37℃ 진탕 배양기에서 배양하였다.약 4~5 시간 후, OD600가 0.3 ~ 0.4 정도가 되면 4℃, 4,500 rpm, 20분 조건으로 원심분리하여 세포를 수득한 다음, 4℃ 상태의 10% 글리세롤 용액 200 mL로 세포를 재현탁 하였다. 그리고 4℃, 5,500 rpm, 20 분 조건으로 원심분리하여 세포를 수득하였다. 재현탁시 사용되는 글리세롤 용액을 반으로 줄여가며 이를 두 번 연속 실행한 후, 세포와 글리세롤 용액 부피비가 1:1이 되도록 재현탁하여 세포 농축액을 수득하였다. 상기 수득된 세포 농축액과 상기 실시예 2-1에서 제작된 pFglpABC를 혼합한 다음, 2.5 kV, 25 μF, 400 ohms의 조건으로 전기천공법(electroporation)을 수행함으로써, 상기 발현 벡터를 배양된 M. succiniciproducens MBEL55E에 도입시켰다. M. succiniciproducens MBEL55E (KCTC0769BP) was plated in LB-glucose solid medium containing 10 g / L of glucose and incubated at 37 ° C for 36 hours, and colonies were incubated in 10 mL of LB-glucose liquid medium for 12 hours. . Fully grown cultures were inoculated in 100% LB-glucose liquid medium at 1% and incubated in a 200 rpm, 37 ° C. shake incubator. After about 4-5 hours, when the OD600 reached 0.3-0.4, 4 ° C., 4,500 rpm, 20 minutes. Cells were obtained by centrifugation under conditions, and the cells were resuspended with 200 mL of a 10% glycerol solution at 4 ° C. And cells were obtained by centrifugation at 4 ℃, 5,500 rpm, 20 minutes. The glycerol solution used for resuspension was cut in half and run twice in succession, and then the cell concentrate was resuspended so that the volume ratio of the cells and the glycerol solution was 1: 1. The expression vector was cultured by mixing the obtained cell concentrate with the pFglpABC prepared in Example 2-1, and then performing electroporation under the conditions of 2.5 kV, 25 μF, and 400 ohms . succiniciproducens Introduced to MBEL55E.

전기충격 후, LB-포도당 액체배지 1 mL을 가하여 200 rpm, 37℃ 진탕 배양기에서 1시간 동안 배양하였다. 배양액을 항생제 암피실린(최종농도 50 ㎍/L)를 함유한 LB 고체 배지에 도말하여, 37℃에서 12 시간 이상 배양하였다. 형성된 콜로니를 암피실린 항생제가 함유된 LB-포도당 액체배지에서 12시간 이상 배양하여, M. succiniciproducens MBEL55E pFglpABC를 준비하였고, 이를 Mannheimia succiniciproducens MBEL55E/pFglpABC(JYJM01) 균주라고 명명하였다.After the electric shock, 1 mL of LB-glucose liquid medium was added and incubated for 1 hour in a 200 rpm, 37 ° C. shaking incubator. The culture was plated in LB solid medium containing antibiotic ampicillin (final concentration 50 μg / L) and incubated at 37 ° C. for at least 12 hours. The colonies formed were incubated for at least 12 hours in LB-glucose liquid medium containing ampicillin antibiotics, and the M. succiniciproducens MBEL55E pFglpABC was prepared, which was Mannheimia succiniciproducens It was named MBEL55E / pFglpABC (JYJM01) strain.

3-2: 3-2: MannheimiaMannheimia succiniciproducenssucciniciproducens PALKPALK /Of pEglpApEglpA (( JYJM02JYJM02 ), ), MannheimiaMannheimia succiniciproducenssucciniciproducens PALK/ACRP(JYJM03), PALK / ACRP (JYJM03), MannheimiaMannheimia succiniciproducenssucciniciproducens PALKPALK /Of AFKAFK (( JYJM04JYJM04 ), ), MannheimiaMannheimia succiniciproducenssucciniciproducens PALK/SDGOX(JYJM05) 및PALK / SDGOX (JYJM05) and M.M. succiniciproducenssucciniciproducens PALKPALK pMS3pMS3 균주의 제작Construction of the strain

상기 실시예 3-1에 기재된 방법과 동일한 방법으로 Mannheimia succiniciproducens PALK(KCTC 10973BP)를 실시예 2-2, 2-3, 2-4 및 2-5 에서 제작된 pEglpA, pACRP, pAFK 및 pSDGOX를 이용하여 형질전환시켰고, 이들을 Mannheimia succiniciproducens PALK/pEglpA(JYJM02), Mannheimia succiniciproducens PALK/ACRP(JYJM03), Mannheimia succiniciproducens PALK/AFK(JYJM04) 및 Mannheimia succiniciproducens PALK/SDGOX(JYJM05) 균주라고 명명하고, 이 중 Mannheimia succiniciproducens PALK/ACRP(JYJM03), Mannheimia succiniciproducens PALK/AFK(JYJM04), 및 Mannheimia succiniciproducens PALK/SDGOX(JYJM05)를 각각 한국생명공학연구원 생물자원센서 유전자은행에 2009년 1월 23일자에 각각 기탁번호 KCTC11458BP, KCTC11459BP 및 KCTC11460BP로 기탁하였다. 또한, 같은 방법으로 대조군으로 pMS3를 M.succiniciproducens PALK로 형질전환을 수행하여 M. succiniciproducens PALK pMS3 균주를 준비하였다. Mannheimia succiniciproducens PALK (KCTC 10973BP) was prepared in the same manner as described in Example 3-1 using pEglpA, pACRP, pAFK and pSDGOX prepared in Examples 2-2, 2-3, 2-4 and 2-5 And transformed them into Mannheimia succiniciproducens PALK / pEglpA (JYJM02), Mannheimia succiniciproducens PALK / ACRP (JYJM03), Mannheimia succiniciproducens PALK / AFK (JYJM04) and Mannheimia succiniciproducens PALK / SDGOX (JYJM05) strains, named Mannheimia succiniciproducens PALK / ACRP (JYJM03), Mannheimia succiniciproducens PALK / AFK (JYJM04), and Mannheimia succiniciproducens PALK / SDGOX (JYJM05) were deposited with KICTC11458BP, KCTC11459BP and KCTC11460BP, respectively, on January 23, 2009, respectively, to the Korea Institute of Biotechnology and Biotechnology Sensor Gene Bank. In addition, the pMS3 as a control in the same way as do the transgenic M.succiniciproducens PALK was prepared M. succiniciproducens PALK pMS3 strain.

실시예Example 4 :  4 : MannheimiaMannheimia succiniciproducenssucciniciproducens MBEL55EMBEL55E /Of pFglpABCpFglpABC (( JYJM01JYJM01 ) 균주 및 ) Strains and 모균주(MBEL55E)간의Liver strain (MBEL55E) 글리세롤 발효 및 숙신산 생산 양상 비교 Comparison of Glycerol Fermentation and Succinic Acid Production

글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자인 glpABC(MS1993,1994,1995)를 도입한 본 발명에 따른 Mannheimia succiniciproducens MBEL55E/pFglpABC(JYJM01) 균주의 글리세롤 대사능 및 숙신산 생산능의 향상 여부를 살피기 위하여 다음의 실험을 수행하였다. Mannheimia according to the present invention incorporating glpABC (MS1993,1994,1995), a gene encoding glycerol-3-phosphate dehydrogenase succiniciproducens The following experiment was performed to examine whether the glycerol metabolism and the succinic acid production of the MBEL55E / pFglpABC (JYJM01) strain were improved.

상기 실시예 2-1에서 만들어진 재조합 JYJM01 균주를 BHI (BactoTM Brain Heart Infusion; Becton, Dickinson and Company, Sparks, MD) 배양배지에서 8시간 정도 배양한 다음, 1ml을 수득하여 20ml의 MH5 글리세롤 배양 배지 (liter 당: 2.5g of yeast extract, 2.5g of polypeptone, 1g of NaCl, 8.7g of K2HPO4, 10g of NaHCO3, 0.02g of CaCl22H2O, 0.2g of MgCl26H2O 및 5g of glycerol)에서 혐기조건으로 39℃에서 16 시간 동안 배양한 후, 4번 정도 계대 배양하였다. 이를 다시 같은 조성의 250ml의 배양배지가 들어있는 플라스크에 5ml 옮겨 39℃에서 약 16시간 배양하였다. 이때 모든 배양 과정에서 항생제로 100μg/L 암피실린을 첨가하였다. The recombinant JYJM01 strain prepared in Example 2-1 was incubated for 8 hours in a BHI (BactoTM Brain Heart Infusion; Becton, Dickinson and Company, Sparks, MD) culture medium, and then 1 ml was obtained to obtain 20 ml of MH5 glycerol culture medium ( per liter: 2.5g of yeast extract, 2.5g of polypeptone, 1g of NaCl, 8.7g of K 2 HPO 4 , 10g of NaHCO 3 , 0.02g of CaCl 2 2H 2 O, 0.2g of MgCl 2 6H 2 O and 5g of glycerol) incubated for 16 hours at 39 ℃ under anaerobic conditions, followed by passage 4 times. This was again transferred to a flask containing 250ml culture medium of the same composition 5ml and incubated at 39 ℃ for about 16 hours. At this time, 100μg / L ampicillin was added as an antibiotic in all culture processes.

그 다음 상기 플라스크의 Mannheimia succiniciproducens MBEL55E/pFglpABC(JYJM01) 균주 배양액을 표 1의 복합배지 2.25L에 접종한 다음 회분식 발효를 수행하였다. 발효조건은 44시간 동안 5g/L 초기 글리세롤 농도, pH 6.8, 배양 온도 39℃로 하였다. 발효 중 pH의 조정을 위하여 암모니아수를 사용하였으며, 항생제 암피실린의 농도는 상기와 같이 100μg/L로 하였다. Then Mannheimia in the flask succiniciproducens MBEL55E / pFglpABC (JYJM01) strain cultures were inoculated in 2.25 L of the mixed medium of Table 1, followed by batch fermentation. Fermentation conditions were 5 g / L initial glycerol concentration, pH 6.8, the culture temperature 39 ℃ for 44 hours. Ammonia water was used for the adjustment of pH during fermentation, and the concentration of antibiotic ampicillin was 100 μg / L as described above.

발효 중 샘플은 주기적으로 채취하였으며, 배양액 내의 세포농도는 분광광도계를 이용하여 OD600의 값으로 측정하였다(1 OD600=0.451gDCWL-1; Lee et al.,Appl. Environ. Microbiol. 72(3): 1939-1948,2006). 채취된 시료는 13,000 rpm에서 5분 동안 원심분리한 후, 상등액의 글리세롤 및 대사산물의 농도를 액체크로마토그래피(HPLC)로 분석하였다. 한편, 대조군으로서 모균주(Mannheimia succiniciproducens MBEL55E)를 동일한 조건으로 회분식 발효를 수행하여 분석하였다. Samples were taken periodically during fermentation, and the cell concentration in the culture was measured at a value of OD 600 using a spectrophotometer (1 OD 600 = 0.451 g DCWL -1 ; Lee et al., Appl. Environ. Microbiol. 72 (3). ): 1939-1948,2006). The collected sample was centrifuged at 13,000 rpm for 5 minutes, and then the concentration of glycerol and metabolite of the supernatant was analyzed by liquid chromatography (HPLC). On the other hand, the parent strain ( Mannheimia succiniciproducens MBEL55E) as a control was analyzed by batch fermentation under the same conditions.

[표 1]MH5 복합배지 조성(회분식발효용)Table 1 Composition of MH5 Medium (For Batch Fermentation)

Glycerol 55, 110mMGlycerol 55, 110 mM 12.5g, 25g12.5g, 25g Yeast extractYeast extract 12.5g12.5 g PolypeptonePolypeptone 12.5g12.5 g NaClNaCl 2.5g2.5g K2HPO4 K 2 HPO 4 21.77g21.77 g NaHCO3 NaHCO 3 24.99g24.99 g CaCl22H20CaCl 2 2H 2 0 0.05g0.05g MgCl26H20MgCl 2 6H 2 0 0.5g0.5 g DWDW 2.25L2.25L

[표 2]TABLE 2

StrainStrain PlasmidPlasmid Final Succinic acid production
for 44h(g/L)
Final Succinic acid production
for 44h (g / L)
Glycerol consumed
for 44h(g/L)
Glycerol consumed
for 44h (g / L)
Overall glycerol consumption rate(g/l/h/gDCW)Overall glycerol consumption rate (g / l / h / gDCW)
MBEL55EMBEL55E -- 3.313.31 1.811.81 0.01700.0170 MBEL55EMBEL55E pFglpABCpFglpABC 4.684.68 4.024.02 0.04470.0447

그 결과, 표 2 및 도 7에 나타난 바와 같이, 상기와 같은 혐기조건에서 44시간 동안 본 발명에 따른 균주인 Mannheimia succiniciproducens MBEL55E/pFglpABC(JYJM01) 균주의 경우 4.02 g/L의 글리세롤을 소모하였고, 그 결과 4.68 g/L의 숙신산, 1.41 g/L의 아세트산을 생산하였다. 또한, 전체 균체 무게당 글리세롤 업테이크 속도(overall glycerol uptake rate)는 대조군인 모균주 MBEL55E에 비해 약 2배 정도 향상되었다. As a result, as shown in Table 2 and Figure 7, Mannheimia which is a strain according to the present invention for 44 hours under anaerobic conditions as described above succiniciproducens The MBEL55E / pFglpABC (JYJM01) strain consumed 4.02 g / L glycerol, resulting in 4.68 g / L succinic acid and 1.41 g / L acetic acid. In addition, the overall glycerol uptake rate per cell weight was about two times improved compared to the parental strain MBEL55E.

이러한 실험 결과는 글리세롤-3-포스페이트 디하이드로지네이즈의 도입이 글리세롤의 업테이크 속도를 향상시키면서 숙신산의 생산능은 증가시켰음을 보여준다. 또한, 모균주와 대비하여 Mannheimia succiniciproducens MBEL55E/pFglpABC(JYJM01) 균주의 생장능 역시 향상된 것으로 나타난 바, glpABC 유전자의 과발현이 글리세롤 배지상에서 생장에도 효과적임을 알 수 있다.These experimental results show that the introduction of glycerol-3-phosphate dihydrogenase increased the production capacity of succinic acid while improving the uptake rate of glycerol. In addition, Mannheimia in contrast to the parent strain succiniciproducens The growth ability of the MBEL55E / pFglpABC (JYJM01) strain was also shown to be improved. It can be seen that overexpression of the glpABC gene is effective for growth on glycerol medium.

한편, M. succiniciproducens MBEL55E(KCTC0769BP)로부터 글리세롤 업테이크 촉진자(glycerol uptake facilitator)를 코딩하는 glpF (MS1990) 및 글리세롤 카이네이즈(glycerol kinase)를 코딩하는 glpK(MS1988)의 재조합벡터를 각각 도입한 균주에 상기와 같은 동일한 실험을 수행하였다. 상기 glpF (MS1990)를 포함하는 재조합 벡터와 glpK(MS1988)를 포함하는 재조합벡터는 실시예 1-1과 동일하게 다음과 같이 제조하였다. On the other hand, glpF encoding a glycerol uptake facilitator M. succiniciproducens MBEL55E (glycerol uptake facilitator) from (KCTC0769BP) (MS1990) and the same experiment as described above was carried out to the strain introduced with the recombinant vector of glpK (MS1988) encoding glycerol kinase (MS1988). GlpF The recombinant vector including (MS1990) and the recombinant vector containing glpK (MS1988) was prepared in the same manner as in Example 1-1.

먼저, M. succiniciproducens MBEL55E(KCTC0769BP)의 게놈 DNA를 주형으로 하고, 다음의 서열번호 27 및 28와, 29 및 30의 프라이머들을 사용하여 PCR을 수행함으로써 맨하이미아 속에서 강한 프로모터로 사용되는 fumC 유전자의 프로모터 DNA와 glpF(MS1990)오페론 유전자의 DNA를 증폭하였고, 이들을 혼합한 것을 주형으로 서열번호 27과 30의 프라이머들을 사용하여 오버래핑 PCR(overlapping PCR)을 수행하였다. 상기와 같은 방법으로, 다음의 서열번호 31 및 32와, 33 및 34의 프라이머들을 사용하여 PCR을 수행함으로써 맨하이미아 속에서 강한 프로모터로 사용되는 fumC 유전자의 프로모터 DNA와 glpK(MS1988)오페론 유전자의 DNA를 증폭하였고, 이들을 혼합한 것을 주형으로 서열번호 31과 34의 프라이머들을 사용하여 오버래핑 PCR(overlapping PCR)을 수행하였다.First, the fumC gene is used as a strong promoter in Manhattan by performing genomic DNA of M. succiniciproducens MBEL55E (KCTC0769BP) as a template and performing PCR using primers of SEQ ID NOs: 27 and 28 and 29 and 30. Promoter DNA and DNA of the glpF (MS1990) operon gene were amplified, and a mixture of these was carried out using an overlapping PCR using primers of SEQ ID NOs: 27 and 30 as templates. By the above method, PCR of the primers of SEQ ID NOs: 31 and 32 and 33 and 34 was performed to enhance the promoter DNA and the glpK (MS1988) operon gene of the fumC gene, which is used as a strong promoter in Mania . DNA was amplified, and the mixtures were subjected to overlapping PCR (overlapping PCR) using primers of SEQ ID NOs: 31 and 34 as templates.

서열번호 27: 5'-TATAGAGCTCACATCGGCATCAGTTATATC-3SEQ ID NO: 27'-TATAGAGCTCACATCGGCATCAGTTATATC-3

서열번호 28: 5'-GAAAAGAGGCAATGTATCACCTCATTGTAATA-3SEQ ID NO: 28: 5'-GAAAAGAGGCAATGTATCACCTCATTGTAATA-3

서열번호 29: 5'-TGAGGTGATACATTGCCTCTTTTCTTTTATTT-3SEQ ID NO: 29'-TGAGGTGATACATTGCCTCTTTTCTTTTATTT-3

서열번호 30: 5'-GTAGAAGCTTGTTATATATTTGTGATTTTA-3SEQ ID NO: 30'-GTAGAAGCTTGTTATATATTTGTGATTTTA-3

서열번호 31: 5'-TAACGGATCCACATCGGCATCAGTTATATC-3SEQ ID NO: 31: 5'-TAACGGATCCACATCGGCATCAGTTATATC-3

서열번호 32: 5'-AATATGTGTTCAATGTATCACCTCATTGTAATA-3SEQ ID NO: 32: 5'-AATATGTGTTCAATGTATCACCTCATTGTAATA-3

서열번호 33: 5'-TGAGGTGATACATTGAACACATATTTTATAAA-3SEQ ID NO: 33: 5'-TGAGGTGATACATTGAACACATATTTTATAAA-3

서열번호 34: 5'-TACGCTGCAGTTATTCCACGTCTTCTTTCG-3SEQ ID NO: 34: 5'-TACGCTGCAGTTATTCCACGTCTTCTTTCG-3

그 다음, 맨하이미아 유래의 글리세롤 업테이크 촉진자를 코딩하는 유전자인 glpF(MS1990)를 포함한 발현벡터는, 증폭된 glpF(MS1990)유전자를 포함하는 PCR 절편을 SacI HindIII으로 절단하고, 이를 같은 절단효소로 자른 맨하이미아-대장균 셔틀벡터인 pME19-2 (Kim et . al ., FEMS Microbiol Lett., 278: 78-85, 2008)와 결합시켜 pME19-2FglpF(MSU)를 제작하고, 이를 pFglpF라고 명명하였다. The next, PCR fragments to an expression vector, including the top of the high lost of the gene encoding a glycerol uptake facilitator origin of glpF (MS1990) are, including the amplified glpF (MS1990) gene SacI PME19-2 (Kim et . Al . , FEMS Microbiol Lett., 278: 78-85, 2008), which were cleaved with and HindIII, and cut with the same cleavage enzyme, to the pME19-2 FglpF ( MSU) and named pFglpF.

또한, 증폭된 glpK(MS1988)유전자를 포함하는 PCR 절편을 SalI PstI으로 절단하고, 이를 같은 절단효소로 자른 맨하이미아-대장균 셔틀벡터인 pME19-2 (Kim et . al., FEMS Microbiol Lett.,278: 78-85, 2008)와 결합시켜 pME19-2FglpK(MSU)를 제작하고, 이를 pFglpK라고 명명하였다. In addition, PCR fragments containing the amplified glpK (MS1988) gene were SalI And PstI , which were combined with pME19-2 (Kim et . Al. , FEMS Microbiol Lett., 278: 78-85, 2008), a manheimia-E . Coli shuttle vector cut with the same cleavage enzyme . MSU) and named pFglpK.

상기 제작된 두 벡터는 각각 M. succiniciproducens PALK 균주에 도입하여 그 결과를 살펴보았다.The two vectors prepared above were introduced into M. succiniciproducens PALK strain, respectively, and the results were examined.

그 결과, glpF를 단독으로 도입한 경우 도 8과 같이 글리세롤 업테이크 효율과 숙신산 생산 효율이 본 발명에 따른 균주처럼 현저히 증가하지 않음을 확인할 수 있었다. 더욱이, 이를 pMS3 벡터만을 도입한 M. succiniciproducens PALK pMS3 균주와 대비 시 오히려 숙신산 생산효율이 좋지 않은 것으로 나타났다. As a result, when the glpF alone was introduced as shown in Figure 8 it was confirmed that the glycerol uptake efficiency and succinic acid production efficiency does not significantly increase as the strain according to the present invention. Moreover, it was shown that the succinic acid production efficiency was not good when compared to the M. succiniciproducens PALK pMS3 strain which introduced only pMS3 vector.

또한, glpK를 단독으로 도입한 경우 세포 용해(cell lysis)가 발생하여 회분식 발효자체가 불가능하였으며, 이는 글리세롤에서 glpK의 과발현이 세포 성장에 부정적인 영향을 준다는 보고 (Marie M. Zhu et al ., Biotechnol . Prog ., 18:694, 2002)와 일치하는 것으로 보인다.In addition, when glpK alone was introduced, cell lysis occurred, which resulted in the impossibility of batch fermentation itself. This report indicates that overexpression of glpK in glycerol has a negative effect on cell growth (Marie M. Zhu et. al ., Biotechnol . Prog . , 18: 694, 2002).

이러한 실험 결과는 글리세롤-3-포스페이트 디하이드로지네이즈 유전자의 도입이 글리세롤 대사능 및 숙신산 생산능 향상에 필수적임을 보여준다. These experimental results show that the introduction of glycerol-3-phosphate dehydrogenase gene is essential for improving glycerol metabolism and succinic acid production.

실시예Example 5:  5: MannheimiaMannheimia succiniciproducenssucciniciproducens PALKPALK /Of pEglpApEglpA (( JYJM02JYJM02 ), ), MannheimiaMannheimia succiniciproducens  succiniciproducens PALKPALK /Of ACRPACRP (( JYJM03JYJM03 ), ), MannheimiaMannheimia succiniciproducenssucciniciproducens PALK/AFK(JYJM04), 및 PALK / AFK (JYJM04), and MannheimiaMannheimia succiniciproducenssucciniciproducens PALKPALK /Of SDGOXSDGOX (( JYJM05JYJM05 ) 균주 균주의 글리세롤 발효 및 숙신산 생산 양상 분석Analysis of Glycerol Fermentation and Succinic Acid Production of Strains

추가적으로 멘하이미아 속 균주 유래 글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자인 glpABC 이외의 다른 속의 균주 유래 글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자를 도입한 경우에도 동일하게 글리세롤 대사능 및 숙신산 향상 효과를 가져오는지 확인하기 위하여, 실시예 4의 클로스트리디움 속 유래의 글리세롤-3-포스페이트 디하이드로지네이즈를 코딩하는 유전자인 glpA 를 도입한 Mannheimia succiniciproducens PALK/pEglpA(JYJM02) 균주에 대하여 실험하였다. In addition, the same glycerol metabolism was performed even when a gene encoding glycerol-3-phosphate dehydrogenase derived from a strain other than glpABC, which was a gene encoding glycerol-3-phosphate dehydrogenase derived from a Menheimia spp. Strain, was introduced. Mannheimia introduced glpA , a gene encoding glycerol-3-phosphate dehydrogenase derived from Clostridium sp. succiniciproducens Experiments were carried out against PALK / pEglpA (JYJM02) strains.

또한, 추가적으로 글리세롤 업테이크 촉진자(glycerol uptake facilitator)를 코딩하는 유전자, 글리세롤 카이네이즈(glycerol kinase)를 코딩하는 유전자 및 cAMP 수용체 단백질을 코딩하는 유전자를 함께 도입한 경우의 글리세롤 대사능 및 숙신산 향상 효과를 살펴보기 위하여, 실시예 4의 Mannheimia succiniciproducens PALK/ACRP(JYJM03), Mannheimia succiniciproducens PALK/AFK(JYJM04) 및 Mannheimia succiniciproducens PALK/SDGOX(JYJM05) 균주에 대하여 실험을 수행하였다. In addition, the effects of glycerol metabolism and succinic acid on the glycerol uptake facilitator, gene encoding glycerol kinase, and gene encoding cAMP receptor protein were examined. To see, Mannheimia succiniciproducens PALK / ACRP (JYJM03) of Example 4, Mannheimia succiniciproducens Experiments were performed on PALK / AFK (JYJM04) and Mannheimia succiniciproducens PALK / SDGOX (JYJM05) strains.

실험은 Mannheimia succiniciproducens MBEL55E(KCTC0769BP)를 기반으로 대사공학적으로 개량된 genome-engineered 균주인 PALK(KCTC 10973BP)를 모델로 하여 진행하였다. 실시예 4에서 설명한 방법과 같은 방법으로, 상기의 Mannheimia succiniciproducens PALK/pEglpA(JYJM02), Mannheimia succiniciproducens PALK/ACRP (JYJM03), Mannheimia succiniciproducens PALK/AFK (JYJM04), Mannheimia succiniciproducens PALK/SDGOX (JYJM05) 균주 및 대조군인 PALKpMS3 균주들을 회분식 발효를 수행하였다. 발효 배지는 상기 표1에 나타난 바와 같으며, 이중 글리세롤 110mM를 탄소원으로 사용하여 진행하였다. Experiment is Mannheimia Based on succiniciproducens MBEL55E (KCTC0769BP), we proceeded to model PALK (KCTC 10973BP), which is a genome-engineered strain that has been metabolically modified. In the same manner as described in Example 4, the above Mannheimia succiniciproducens PALK / pEglpA (JYJM02), Mannheimia succiniciproducens PALK / ACRP (JYJM03), Mannheimia succiniciproducens PALK / AFK (JYJM04), Mannheimia succiniciproducens PALK / SDGOX (JYJM05) strains and control PALKpMS3 strains were subjected to batch fermentation. Fermentation medium was as shown in Table 1 above, and proceeded using double glycerol 110mM as a carbon source.

그 결과, 도 9에 나타난 바와 같이, 글리세롤을 단일 탄소원으로 포함한 MH5 복합배지에서 대조군인 PALK pMS3균주에 비하여, Mannheimia succiniciproducens PALK/pEglpA(JYJM02), Mannheimia succiniciproducens PALK/ACRP (JYJM03), Mannheimia succiniciproducens PALK/AFK (JYJM04), Mannheimia succiniciproducens PALK/SDGOX (JYJM05) 균주의 글리세롤 업테이크 효율과 소비율, 숙신산 생산능 모두 더 우수함을 확인할 수 있었다. As a result, as shown in Figure 9, compared to the control PALK pMS3 strain in the MH5 complex medium containing glycerol as a single carbon source, Mannheimia succiniciproducens PALK / pEglpA (JYJM02), Mannheimia succiniciproducens PALK / ACRP (JYJM03), Mannheimia succiniciproducens PALK / AFK (JYJM04), Mannheimia succiniciproducens Glycerol uptake efficiency, consumption rate, and succinic acid production capacity of PALK / SDGOX (JYJM05) strains were more excellent.

특히 도 10에 나타난 바와 같이, 글리세롤-3-포스페이트 디하이드로지네이즈 를 코딩하는 유전자 및 cAMP 수용체 단백질을 코딩하는 유전자를 도입한 Mannheimia succiniciproducens PALK/ACRP (JYJM03) 균주는, 다른 균주들보다 훨씬 빠른 15시간 동안 8.06 g/l의 글리세롤을 대사하여, Maximum OD600이 2.31로 바이오매스의 증가를 보였다. In particular, as shown in FIG. 10, Mannheimia succiniciproducens incorporating a gene encoding glycerol-3-phosphate dehydrogenase and a gene encoding a cAMP receptor protein. The PALK / ACRP (JYJM03) strain metabolized 8.06 g / l glycerol for 15 hours much faster than other strains, resulting in an increase in biomass with a Maximum OD 600 of 2.31.

또한, Mannheimia succiniciproducens PALK/ACRP (JYJM03) 균주는 30시간 동안 8.78g/L의 글리세롤을 소모하며, 최종적으로 숙신산을 11.42g/L 생산하였다. 이는, 1.30 g Succinic acid/g Glycerol의 수율로 생산한다는 것을 의미하며, 이론치에 근접한 상당히 높은 수율이다. 이때, 부산물인 아세트산, 젖산, 포름산, 피루브산이 전혀 생산되지 않아, 100% 순수한 숙신산이 생산해 낼 수 있었다.Also, Mannheimia succiniciproducens The PALK / ACRP (JYJM03) strain consumed 8.78 g / L glycerol for 30 hours and finally produced 11.42 g / L succinic acid. This means that it produces in a yield of 1.30 g Succinic acid / g Glycerol, which is a fairly high yield close to theory. At this time, by-products of acetic acid, lactic acid, formic acid and pyruvic acid were not produced at all, and 100% pure succinic acid could be produced.

이러한 실험결과는 숙신산을 생산하는 맨하이미아 균주에서 자체 글리세롤-3-포스페이트 디하이드로지네즈 유전자를 과발현시키는 경우뿐만 아니라, 타 속의 균주에서 분리한 글리세롤-3-포스페이트 디하이드로지네이즈 또는 글리세롤 디하이드로지네이즈 유전자를 도입하여 발현시키는 경우에도 글리세롤 대사능 및 숙신산 생산능이 증가하는 것을 의미한다. These results indicate that overexpression of its own glycerol-3-phosphate dehydrogenase gene in the strains of succinic acid produced in Maniamia, as well as glycerol-3-phosphate dehydrogenase or glycerol dehydrogenated from other strains In the case of introducing and expressing the genase gene, glycerol metabolism and succinic acid production capacity are increased.

또한, 상기 글리세롤-3-포스페이트 디하이드로지네이즈 또는 글리세롤 디하이드로지네이즈 유전자 이외에 글리세롤 업테이크 촉진자(glycerol uptake facilitator)를 코딩하는 유전자, 글리세롤 카이네이즈(glycerol kinase)를 코딩하는 유전자 및 cAMP 수용체 단백질을 코딩하는 유전자를 함께 도입하여 글리세롤 대사능 및 숙신산 생산능이 증가시킬 수 있음을 나타낸다. Furthermore, in addition to the glycerol-3-phosphate dehydrogenase or glycerol dehydrogenase gene, a gene encoding a glycerol uptake facilitator, a gene encoding a glycerol kinase, and a cAMP receptor protein are encoded. Introducing the gene together to increase the ability of glycerol metabolism and succinic acid production.

이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those skilled in the art, such a specific description is only a preferred embodiment, which is not limited by the scope of the present invention Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 숙신산 생산 루멘 박테리아 균주인 Mannheimia succiniciproducens 에서 글리세롤을 섭취하고 분해되어 해당과정을 통해 대사되는 경로를 나타내는 모식도이다 (가는 선: 재조합 맨하이미아가 원래 가지고 있는 해당과정의 대사경로를 나타냄. 굵은 선: 도입한 Gluconobacter oxydans 유래의 글리세롤 대사관련 효소들에 의해 관장될 것으로 예상되는 대사경로를 나타냄). 1 is Mannheimia , a succinic acid producing lumen bacterial strain Schematic diagram showing the pathways of glycerol ingesting and digesting glycerol from succiniciproducens and metabolizing it through glycolysis (thin line: the metabolic pathway of glycolysis originally in recombinant maniamia. metabolic pathways expected to be governed by glycerol metabolism-related enzymes from oxydans ).

도 2는 재조합 벡터 pFglpABC의 개열 지도이다. 2 is a cleavage map of the recombinant vector pFglpABC.

도 3은 재조합 벡터 pEglpA의 개열 지도이다. 3 is a cleavage map of the recombinant vector pEglpA.

도 4는 재조합 벡터 pACRP의 개열 지도이다.4 is a cleavage map of the recombinant vector pACRP.

도 5는 재조합 벡터 pAFK의 개열 지도이다.5 is a cleavage map of the recombinant vector pAFK.

도 6는 재조합 벡터 pSDGOX의 개열 지도이다.6 is a cleavage map of the recombinant vector pSDGOX.

도 7은 모균주 MBEL55E와 JYJM01균주의 글리세롤 배지상에서의 회분식 발효 결과의 비교하는 그래프이다.7 is a graph comparing the results of batch fermentation on glycerol medium of parent strains MBEL55E and JYJM01 strains.

도 8은 pFglpF를 도입한 M. succiniciproducens PALK pFglpF 균주의 글리세롤 배지상에서의 회분식 발효결과를 나타내는 그래프이다.8 is a graph showing the results of batch fermentation on glycerol medium of M. succiniciproducens PALK pFglpF strain incorporating pFglpF.

도 9는 본 발명에 따른 재조합 균주인 Mannheimia succiniciproducens PALK/pEglpA(JYJM02), Mannheimia succiniciproducens PALK/ACRP(JYJM03), Mannheimia succiniciproducens PALK/AFK(JYJM04), Mannheimia succiniciproducens PALK/SDGOX(JYJM05) 및 대조군인 PALKpMS3 균주의 글리세롤 배지상에서의 회분식 발효 결과를 비교한 그래프로, (A)는 전체 균체 무게당 글리세롤 업테이크 속 도(Overall glycerol uptake rate)을 나타내며, 그 단위는 g/L/h/gDCW이고, (B)는 최종 숙신산 생산 (Final succinic acid production)을 나타내는 그래프로, 그 단위는 g/L이며, (C)는 소비된 글리세롤의 량을 나타내는 그래프이며, 그 단위는 g/L이다.9 is a recombinant strain Mannheimia according to the present invention succiniciproducens PALK / pEglpA (JYJM02), Mannheimia succiniciproducens PALK / ACRP (JYJM03), Mannheimia succiniciproducens PALK / AFK (JYJM04), Mannheimia succiniciproducens A graph comparing batch fermentation results on glycerol medium of PALK / SDGOX (JYJM05) and control PALKpMS3 strain, (A) shows the overall glycerol uptake rate per total cell weight, and the unit is g / L / h / gDCW, (B) is a graph showing final succinic acid production, the unit is g / L, and (C) is a graph showing the amount of glycerol consumed. The unit is g / L.

도 10은 Mannheimia succiniciproducens PALK/ACRP (JYJM03)균주의 글리세롤 배지상에서의 회분식 발효 결과를 나타내는 그래프이다.10 is Mannheimia succiniciproducens It is a graph which shows the result of a batch fermentation on the glycerol medium of PALK / ACRP (JYJM03) strain.

<110> Korea Advanced Institute of Science and Technology <120> Recombinant Microorganism Having Enhanced Glycerol Metabolism and Succinic Acid-Productivity and Method for Preparing Succinic Acid Using the Same <130> P08-B166 <160> 34 <170> KopatentIn 1.71 <210> 1 <211> 4317 <212> DNA <213> glpABC gene isolated from Mannheimia succiniciproducens MBEL55E <400> 1 atgttgggtt gcgtatttta tttaacaacc aatcaattta ctttcactcg tgggggcatt 60 atgggaatgt catctcaact ttataaaaat gttggtgatt tttcacctat taatactgat 120 gtgattatta tcgggggcgg tgccaccggt gccggtgtgg ctcgagattg ttcattacgc 180 ggtttgaaat gcgtattgtt agagcgtcat gatattgcga ccggtgcgac gggccgtaat 240 cacggcttgc tccacagcgg cggtcgttat gcagtcaatg atcgtgaatc cgccgaagaa 300 tgtatcaaag aaaatcttat tttaaaacgt attgcccgtc attgtgtgga tgacacgaaa 360 ggcttattta tcactctgcc ggaagatgat cttgactatc agaaaaaatt tatcgaggct 420 tgtcaggcat ccggcattga agcggaagcc attgatccgg ctttagcaaa atttatggaa 480 ccttccgtga atccggattt agtcggcgcg gtagtagttc ccgacggttc tatcgacccg 540 tttcgtttaa ccgcagccaa tatgattgat gcggttgaaa acggcgctca ggttttcact 600 tactgcgaag taaaaggctt aatccgtgag ggcggacgcg ttatcggggt caatgtttac 660 gatcataaaa ataaaatcaa ccgtcagttc tttgcgccga tggtggtcaa tgccggcggg 720 atctggggtc agggtatcgc agaatacgcg gatttaaaaa ttcgtatgtt cccggcaaaa 780 ggggcgttat tagtcatggg gcaccgtatc aacggcatgg ttattaaccg ctgtcgtaaa 840 cctgcggatg cggatattct ggtacccggc gatacgattt gtgtaatagg taccacatcc 900 gaccgcattc cttacgatca gatcgataac atggaagtaa cgccggaaga agtggatatt 960 cttatccgcg agggggaaaa attagcaccg agcctgcgtc atacccgcgt acttcgcgcc 1020 tatgcggggg taagaccgtt agtggcgacg gatgatgacc cgtccggtcg taatgtaagc 1080 cgaggtatca tattgctgga tcacgcacaa cgtgacggtt tggatggttt tattaccatt 1140 accggcggta aattaatgac ttatcgttta atggctgaat gggcgacgga tttagtctgt 1200 caaaaactca ataacagcaa aaaatgcgaa acgtccgacc gtactttacc gggttctaac 1260 gaaagccgtg aagaaaccag ccaaaaagtg gtttctctac cgactacgat tcgtaactcc 1320 gccgtttatc gccatggttc gcgcgctacc cgtttattgg aaaacgaacg tttagatcgt 1380 tctttagtct gtgaatgcga agcggttacc gcaggcgaag tgcgttatgc ggttgatgaa 1440 cttaacgtca acaatcttat tgacttacgc cgtcgcaccc gtgtgggaat gggaacctgc 1500 caggcggaac tttgcgcctg tcgtgccgcc ggtttaatgg cgcgttttga cgtggcgaca 1560 cctcgtcagt caacggaaca attagcctca tttatggaag aacgctggaa aggcattcgc 1620 cctattgcct ggggcgatgc ggtgcgtgaa gccgaattca caagctggat ttattacagc 1680 ctgcttggtt taaatgatgt attaccagaa gatgcgcaag gagtgaataa caatgaattt 1740 tgaatgaatt ttgatgtcgt gattatcggt gcgggaatcg ccggtttaac ctgcggtctc 1800 accctacaag aaaaaggcgt tcgttgtgca atcattaata acggtcaggc ggcactggat 1860 ttttcttccg gttctatgga tttattaagc cgcttaccaa acggaagtac ggtggattct 1920 tttgcacaat cttatgccgc acttgcgcaa caatcaccaa accaccctta tgttatttta 1980 ggcaaagatg tggtattaga caaaatacaa caattcgaaa cccttgccaa atcactcaat 2040 ttatctttgg tcggttcaag cgacaaaaat cataaaagag taaccgcact tggcggtctg 2100 cgcggtacat ggctttcacc gaacagtgtg ccgacagtca gccttgaggg caaattcccg 2160 cacgataaca tcgtattgct gggtattgaa ggctatcatg attttcaacc gcaattatta 2220 gcggataacc tcaaacaaaa tccgcaattt gctcattgtg aaattacgac gaatttcttg 2280 catattccgg aattagatca tttgcgccaa aacagtcgcg aattccgaag tgtaaatatc 2340 gctcaagtgc ttgaatataa attgtcgttc aataatcttg tggatgaaat caaacaagcg 2400 gtcggtaatg ccaaagcggc atttttaccc gcctgtttcg ggcttgacga ccaatcgttc 2460 tttgaatcgc tcaaacaagc gaccggcatc gaactttatg agctaccgac acttccgcct 2520 tcattattgg gtattcgcca acaccgccaa ttacgtcatc gttttgaaaa gctaggcggt 2580 gtaatgttta acggtgaccg cgcattacgt tccgaattcg aaggtaataa agtcgcccgt 2640 attttcacac aattacatct tgaaaacgcc gttacggcaa aatattttgt gttagcttcc 2700 ggcggattct ttagtaacgg tttagtatcc gaatttgaag aaatttatga accgttattc 2760 agatccgaca tcgtaaaaac cgagcggttt aatgcaacgg atcgtttctc ctggatcagt 2820 aaacgctttg ccgatccgca accttaccaa tccgccggcg tagtcattaa tgccgaatgt 2880 caggtacaaa aagacggaaa caacgtggaa aatctgtttg ccattggtgc tgtcatcggc 2940 ggctataacg gtattgaact gggttgcggc tcaggagttg ccgttacaac ggcattgaaa 3000 gttgcagaca atattatcgc taaagaaagc agcaattaga tgaatattca agaattgatt 3060 aagcaagcaa aacaagatat gcaatctcct atcgcggcgg aaatctttca tgataaaagt 3120 tttgaaagtt gtataaaatg taccgcttgt accgccgttt gtccggtttc ccgcaacaat 3180 ccgttgtatc cggggcctaa acaggcgggt cccgacggcg aacgtttacg cttaaaaagc 3240 ccttcattct atgatgaagc attaaaatac tgcttaaact gtaaacgttg tgaagttgct 3300 tgtccgtcag atgtaaaaat cggcgacatc atcgttcgtg cgagaaataa acacttagcg 3360 cagcaaaaca aacctttcgt acaaaaatta cgcgatgcga ttttaagtaa tacggatatt 3420 atgggcacgc ttgcaacacc gttcgccccg attgtgaaca ccgtaacggg tttaaaagct 3480 acaaaattcg tgctggaaaa aaccattcag gtaagcaaac accgcacttt gcctaaatac 3540 tcctttggta cgtttcgcag ctggtacatg aaaaacgcgg caaaagaaca ggcaaaattc 3600 gaccaaaaag tggcgtatta tcacggttgc tacgttaact ataataatcc gcaattaggt 3660 aaagaattta ttcaggtctt taatgccatg gatatcggcg tggtattgct cgaaaaagaa 3720 aaatgctgtg ggttgccatt gagtgtgaac gctttccctg aacgagcgaa aaaacttgcg 3780 caattcaaca cggattacat tgaaaaaatg ttggatgaaa acggattgga tgttatcagt 3840 gaagcttcaa gctgcacctt aaaccttcgt gacgaatatc atcatatttt aggtatcgac 3900 aacgccaaag tgcgcccgca cattcacatg gtaacgccgt tcctatataa attattccaa 3960 caaggcaaaa cattaccgtt aaaaccgctt aaactccgtg tcgcctatca tacggcctgc 4020 catgtagaaa aagccggctg ggcgccatac acccttgaaa ttttaaaaca aattccggga 4080 ctggaagtgg ttgtgttgcc gtcgcaatgc tgcggtatcg ccggaactta cggtttcaaa 4140 gcggaaaact atgaaacctc ccaagccatc ggtaaaacgc tgtttgataa catcaacgaa 4200 ggcggttttg actacgtaat ctcggaatgt caaacctgta aatggcaaat tgatatgtca 4260 agtaatgtaa cctgtatcca cccgattaca ttattggcta tgtcaataaa ccaataa 4317 <210> 2 <211> 684 <212> DNA <213> crp gene isolated from Mannheimia succiniciproducens MBEL55E <400> 2 atgctagaac aagtgaatgc gcatcaaaca aatgtgttac cacagaccca accggttcaa 60 cccgcgtcgc cgatggatcc gacgcttgat tggtttcttt ctcattgcca tattcataaa 120 tatccggcta aaacgacttt aattcatgcg ggtgaacgcg ccgatacgct ttattatatt 180 gtaaagggtt ccgctgcggt aatggttaaa gatgaagagg gaaaagaaat gatcctttct 240 tatttaagcc agggtgagtt tttcggcgaa gtcggtttat ttgaagaagg tcaggttcgt 300 tctgcctggg tgaaagccaa aaacgcctgt gaaattgccg aggtgtctta caaaaaattc 360 cgtcaattat tacaggttaa tcccgagatt ctgatgtatt tgtcggcaca actttccaga 420 cgcttgcaaa atacctcaaa acaagtgagt aatctggcat tcttggatgt aaccgggcgt 480 attgcgcaaa ccctgttgaa tctggcaaaa atgccggatg ccatgactca cccggacggg 540 atgcaaatca agattacccg tcaggaaatc gggcaaatgg tgggttgttc ccgtgaaacc 600 gtaggccgca ttttaaaaat gctggaagat caaaatctga ttgccgctca tggtaaaact 660 atcgtggtat tcggtacgag ataa 684 <210> 3 <211> 1428 <212> DNA <213> glpA gene isolated from C.acetobutylicum ATCC824 <400> 3 atgtatgatg ttgcaataat tggagcaggt gttattggat gctcaatatt tagagagtta 60 accaaatatg atctaagggt agttgtttta gaaaaagaaa aggatgtttc tatgggaaca 120 agcaaggcaa attctgcaat agttcatgct ggatatgatc ctgaagaagg tactttaatg 180 gcaaagtata atgtaaaagg aaatgagatg tttgaagagt tatgcaaaga attaagtgta 240 ccgtttaaaa gaaatggatc attggtatta gcctttgata aagaagatat gtttaaagta 300 aaacatcttt atgaaaatgg aagtaagtta ggtgtaaaag gattaaagat tttaaatagg 360 gatgaagtat taaaaatgga accaaacctt aatgacaaaa tagagggagc attatatgca 420 ccaactggtg gtatagttgg tccgtttgaa tatacaattg cattagcaga aaatggagtt 480 acaaatggtg gaaaaataaa actaaagaag gaagttgttt caataaaaaa gagagatgtg 540 tttaagattg gaactgaaga tggggaaaca attgaggcaa agtttgtaat aaatgctgct 600 ggggtttatg cagataaaat tcataattta gtttgcaaag agagttttaa gatatctcca 660 agaagtggag agtattttgt aatggataaa agccaaggaa atgttgtaaa acatacaata 720 tttcaatgcc catcaaaatt gggtaaagga gttttaataa caccaacagt acatggtaat 780 ttacttgtag gacctgatgc tagggatgtg gaggataaag aagacgttgg aactgttttt 840 gagggacttg actatgtaaa agaggcctct atgcgttcta caaaagaagt gaatttcaga 900 gagtctataa gaaactttgc aggacttaga gctaatccag atacaggaga ttttatagtt 960 gaagaaaacg atgaagttaa agggtttatt gatgttgcag ggatgaaatc accaggatta 1020 tcatcagcgc cagctattgc cgtagatgtg gttaatatac tgagttcagc gggatgtagt 1080 ttgaaaaaga aagatgattt tataaaagaa agagaacaaa tacattttat ggagttatcg 1140 cctgaaaaaa aagcagaatt aataaagaaa aatgatatgt atggaaaaat aatatgcaga 1200 tgcgaaagta taacagaagg tgaaattgta gctgcaatta aaaggagttt tggagtactt 1260 tccttagatg gaattaagag aagatgtaga ccaggaatgg gaaggtgcca gggaggtttc 1320 tgtggaccaa gagtccaaga aataattgca agggaatata atatcccact agaaaatgtt 1380 gttttggaaa aggataattc ttatatttta gtaggaaaaa ctaaatag 1428 <210> 4 <211> 846 <212> DNA <213> glpF gene isolated from E.coli K-12 MG1655 <400> 4 atgagtcaaa catcaacctt gaaaggccag tgcattgctg aattcctcgg taccgggttg 60 ttgattttct tcggtgtggg ttgcgttgca gcactaaaag tcgctggtgc gtcttttggt 120 cagtgggaaa tcagtgtcat ttggggactg ggggtggcaa tggccatcta cctgaccgca 180 ggggtttccg gcgcgcatct taatcccgct gttaccattg cattgtggct gtttgcctgt 240 ttcgacaagc gcaaagttat tccttttatc gtttcacaag ttgccggcgc tttctgtgct 300 gcggctttag tttacgggct ttactacaat ttatttttcg acttcgagca gactcatcac 360 attgttcgcg gcagcgttga aagtgttgat ctggctggca ctttctctac ttaccctaat 420 cctcatatca attttgtgca ggctttcgca gttgagatgg tgattaccgc tattctgatg 480 gggctgatcc tggcgttaac ggacgatggc aacggtgtac cacgcggccc tttggctccc 540 ttgctgattg gtctactgat tgcggtcatt ggcgcatcta tgggcccatt gacaggtttt 600 gccatgaacc cagcgcgtga cttcggtccg aaagtctttg cctggctggc gggctggggc 660 aatgtcgcct ttaccggcgg cagagacatt ccttacttcc tggtgccgct tttcggccct 720 atcgttggcg cgattgtagg tgcatttgcc taccgcaaac tgattggtcg ccatttgcct 780 tgcgatatct gtgttgtgga agaaaaggaa accacaactc cttcagaaca aaaagcttcg 840 ctgtaa 846 <210> 5 <211> 1509 <212> DNA <213> glpK gene isolated from E.coli K-12 MG1655 <400> 5 atgactgaaa aaaaatatat cgttgcgctc gaccagggca ccaccagctc ccgcgcggtc 60 gtaatggatc acgatgccaa tatcattagc gtgtcgcagc gcgaatttga gcaaatctac 120 ccaaaaccag gttgggtaga acacgaccca atggaaatct gggccaccca aagctccacg 180 ctggtagaag tgctggcgaa agccgatatc agttccgatc aaattgcagc tatcggtatt 240 acgaaccagc gtgaaaccac tattgtctgg gaaaaagaaa ccggcaagcc tatctataac 300 gccattgtct ggcagtgccg tcgtaccgca gaaatctgcg agcatttaaa acgtgacggt 360 ttagaagatt atatccgcag caataccggt ctggtgattg acccgtactt ttctggcacc 420 aaagtgaagt ggatcctcga ccatgtggaa ggctctcgcg agcgtgcacg tcgtggtgaa 480 ttgctgtttg gtacggttga tacgtggctt atctggaaaa tgactcaggg ccgtgtccat 540 gtgaccgatt acaccaacgc ctctcgtacc atgttgttca acatccatac cctggactgg 600 gacgacaaaa tgctggaagt gctggatatt ccgcgcgaga tgctgccaga agtgcgtcgt 660 tcttccgaag tatacggtca gactaacatt ggcggcaaag gcggcacgcg tattccaatc 720 tccgggatcg ccggtgacca gcaggccgcg ctgtttggtc agttgtgcgt gaaagaaggg 780 atggcgaaga acacctatgg cactggctgc tttatgctga tgaacactgg cgagaaagcg 840 gtgaaatcag aaaacggcct gctgaccacc atcgcctgcg gcccgactgg cgaagtgaac 900 tatgcgttgg aaggtgcggt gtttatggca ggcgcatcca ttcagtggct gcgcgatgaa 960 atgaagttga ttaacgacgc ctacgattcc gaatatttcg ccaccaaagt gcaaaacacc 1020 aatggtgtgt atgtggttcc ggcatttacc gggctgggtg cgccgtactg ggacccgtat 1080 gcgcgcgggg cgattttcgg tctgactcgt ggggtgaacg ctaaccacat tatacgcgcg 1140 acgctggagt ctattgctta tcagacgcgt gacgtgctgg aagcgatgca ggccgactct 1200 ggtatccgtc tgcacgccct gcgcgtggat ggtggcgcag tagcaaacaa tttcctgatg 1260 cagttccagt ccgatattct cggcacccgc gttgagcgcc cggaagtgcg cgaagtcacc 1320 gcattgggtg cggcctatct cgcaggcctg gcggttggct tctggcagaa cctcgacgag 1380 ctgcaagaga aagcggtgat tgagcgcgag ttccgtccag gcatcgaaac cactgagcgt 1440 aattaccgtt acgcaggctg gaaaaaagcg gttaaacgcg cgatggcgtg ggaagaacac 1500 gacgaataa 1509 <210> 6 <211> 2232 <212> DNA <213> sldAB gene isolated from Gluconobacter oxydans <400> 6 atgcgcagat cccatcttct cgccaccgtt gcctgtgcca cgctggcctg cgcaccgctg 60 gctgccaatg cccagttcgc ccccgcaggc agcggtggct cgccgacctc ctccgtgccg 120 ggccccggca atggcagcgg caattccttc gagccgaccg agaacacgcc ggccgcgaag 180 agccgctttt ccggcccgtc cccctatgcg ccccaggctc cgggtgtgaa cgcggccaac 240 ctgccggata tcgggtccat ggatccgaac gacgttccgc agatggcccc gcagcagagt 300 gccagccccg cctccggaga ctgggccgcc tacggccatg acgacagtca gatgcgctat 360 tcgccgctgt ccgagatcac gccgcagaac gccgatcagc tcaaggtcgc tttcgtctat 420 cacaccggta gctatccgcg tccgggccag acgaacaaat gggctgccga aaccaccccg 480 atcaaggtgg gtgacggcct ctacatgtgc tcggcacaga acgacatcat gaagatcgac 540 ccggcgacgg gtaaggagat ctggcgtcac aacatcaacg agaaatacga agccatcccc 600 tacaccgcag cgtgcaaggg cgtgacgtat ttcacgtcgt ctcaggtgcc cgaaggccag 660 ccctgccata accgtatcct tgaaggcacg ctcgacatgc gcctgatcgc ggttgatgcc 720 gcgaccggca atctgtgcga aggcttcggc aatggcggcc aggtcaacct gatgcagggt 780 cttggcgaat ccgtccccgg cttcgtctcc atgacgacgc cgccgccggt cgtgaacggt 840 gtggttgtgg tcaaccacga agttctcgac ggtcagcgcc gctgggctcc gtcgggtgtg 900 atccgtggct atgatgccga gagcggcaag ttcctgtggg cctgggacgt gaaccgcccc 960 aacgatcaca gccagccgac cggcaacaac cattacagcc gtggtacgcc gaactcctgg 1020 gctgcgatga ccggcgacaa tgcgctgggc ctcgtctacg tcccgaccgg caactcggct 1080 tccgattact acagtgccct gcgtagccct gaagaaaaca aggtctcgtc cgcagttgtc 1140 gcgcttgacg taaagacggg ttcgccgcgc tgggtcttcc agaccgttca caaggacgtc 1200 tgggactatg acatcggctc gcaggccacc ctcatggaca tgcccggcca ggatggtcag 1260 cctgttcccg cactcatcat gccgaccaag cgtggccaga ccttcgtgct cgaccgtcgt 1320 gacggcaagc cgatcctgcc ggtcgaagag cgtcccgctc cgtcgccggg cgtgatcccg 1380 ggcgatccgc gttcgccgac gcagccctgg tccacgggaa tgccggctct gcgcgtgccg 1440 gatctgaaag agacggatat gtggggcatg tcccccatcg accagctctt ctgccgtatc 1500 aagttccgcc gtgcgaacta tacgggtgag ttcacgccac cgagcgtcga caagccctgg 1560 atcgagtatc cgggctataa cggcggcagc gactggggtt ccgtgtccta tgacccgcag 1620 agcggcatcc tgattgcgaa ctggaacatc accccgatgt acgaccagct cgtaacccgc 1680 aagaaggccg acgaacttgg cctgatgccg atcgatgacc cgaactacaa gccgggtggc 1740 ggtggcgccg aaggtaacgg cgccatggac ggcacgcctt acggtatcgt cgtgaccccg 1800 ttctgggatc agtacacggg tatgatgtgc aaccgcccgc cctacggcat gatcacggcc 1860 atcgacatga agcacggcca gaaggtgctg tggcagcacc cgctgggaac ggcccgcgcc 1920 aatggtccgt ggggcctgcc gaccggtctt ccctgggaaa tcggtacgcc gaataatggt 1980 ggctcggtcg tgacggccgg tggcgtggtg ttcatcgcgg cagctacgga taaccagatc 2040 cgtgccatcg acgagcacac cggcaaggtg gtctggagcg cggtcctgcc gggcggcggt 2100 caggctaacc cgatgaccta cgaagccaat ggtcatcagt acgtcgccat catggcgggt 2160 ggtcatcact tcatgatgac gccggtcagc gatcagctgg tggtttacgc actgcctgat 2220 cacaagggct ga 2232 <210> 7 <211> 1776 <212> DNA <213> dhaK gene isolated from Gluconobacter oxydans <400> 7 atgaccaaga tctgcggtga cgcatcgact ttcgcggcgt ccgcccttcg ggggttcagc 60 cttcttcatc ccgatctcgt gcgatatgtg cgcggcggtg tgcttcgggc aaccccgggc 120 cgtcgcggca aggtggctgt tgtgctgggc ggtggctcgg gacattatcc ggcctttgcg 180 ggctatgtcg gtccgggctt cggcgatgcg gcagtggcgg gggatatctt cgcctcgccc 240 tccacgcagg ccatcaagag cattgctcgc caggccgatc tggacggcgg gatcattctc 300 ggttacggca actatgccgg ggacgtgctc aatttcggga tcgcagcgga ccgcctgcgc 360 gaagagggct atgacgtccg tgttctggcg acggcagatg atgtggccag ctcggatgcc 420 tctacacggg agaagcggcg cggaattgcc ggggatctgg tgattttccg gatcgtgggc 480 gctgcagccg aggcggggct gacgctcgac gaagtcgagg aagtcgcgca gcgggtgaac 540 cgtcagacct gcacgttcgg cgtggcgttc gatggctgca cgctgccggg cgagaaggaa 600 aagttgttcg aagttccgaa gaaccgcatg gcgctcgggt taggggtgca tggcgagccc 660 ggcattgacg agcaggatgt tccggacccg gagcatctgg cgcagatcct gttcgaccgt 720 ctgctggcag agcttccgga aggggcgtcg cgccgggtag ccgtcctgct gaacggtctg 780 ggcagcacca agcaggaaga gctgttcgtc ctgtgggacc ggctggtgcc aatgttcgaa 840 aaggcaggtc tgacgctcgt ggcgccgctg gtgggtgagt acgttacgag ccttgatatg 900 gcgggctgct cgctaacgct gacctggctc gatgaggatc tggagcggta ctggcgatcc 960 cctgtggaat ctgcagcgct gagccatggg cagctgagcg gggacggaat cacgcggctt 1020 gaagtccctg aggaaaccga gatcctgtac atgcgctccg gaacggcgca ggggcgtcgt 1080 ggcggaacct gtgtggccgc tgtcatggat catctggccc ggacactggc ggaagcggag 1140 tctgacctgg ggcatatcga tgctgtggtt ggggacgggg accatggaca gggcatggct 1200 cgcggctcgg cggcagcagc gaaggtagcg cgggctgcgg cggatgccgg cgctgggcca 1260 gcgacggttc tggcctcggc ggcggacgcc tgggcggaca gggccggggg aacatccggg 1320 gcgctctggg gcgaggggct gcgggccttc agtctggcgt tcgatgacaa cagcctgccc 1380 gatgcacagc agctttcagg cggtgcacgg aacagcatgg aacgcatcat ggagcttggc 1440 cgggcaaaac ccggcgacaa gacactggta gatgcgctgg tgccgtttgt tgaaacgctg 1500 gagaaggctc tggccgcggg gcatgggctt gtggaagcct ggcagatggg ggcgcaggcg 1560 tctcatgaag cagcgcaggc cacgcgtgat cttctacccc ggatgggacg tgcgaaaatg 1620 catggtgagc gtagcaaggg ccacccggat gcaggtgcgc tctcgctggc actgtgtgcg 1680 cggatcgtgg gggaagatct gggcaggggc ctggcctctc cgggcggaga aggcgatcag 1740 acagaggcgg ttcgtctggt gaaagccggc cggtaa 1776 <210> 8 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 tatactgcag acatcggcat cagttatatc g 31 <210> 9 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 cgcaacccaa cattgtatca cctcattgta ata 33 <210> 10 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tgaggtgata caatgttggg ttgcgtattt ta 32 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tatgggatcc ttattggttt attgacatag 30 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 tagtgagctc tactctgtta ccgcaaattg 30 <210> 13 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 ttgttctagc atttttattt tcctcttagt ta 32 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 aggaaaataa aaatgctaga acaagtgaat gcg 33 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 tgtccatatg cttatctcgt accgaatacc 30 <210> 16 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 aggaaaataa aaatgctaga acaagtgaat gcg 33 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 tgtccatatg cttatctcgt accgaatacc 30 <210> 18 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 aggaaaataa aaatgctaga acaagtgaat gcg 33 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 tgtccatatg cttatctcgt accgaatacc 30 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 tgtgtctaga atgagtcaaa catcaacctt 30 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 tatactgcag acattattcg tcgtgttctt 30 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 tccgaattca tgccgaatac ttatggcagc 30 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 tattggtacc tttctcagcc cttgtgatca 30 <210> 24 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 tataggtacc ctggggagaa tatcatgacc aagatctgcg gtga 44 <210> 25 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 tattgcatgc ggacgggcta tagattaccg 30 <210> 26 <211> 1960 <212> DNA <213> origin fragment isolated from pMVSCS1 <400> 26 ttgccaaatg ttcttcttcg gtcacagtac attcaatgcg attacttgcg tgagccgttt 60 taattgcctg aatacgtttt tctatgattt tgtccatatt cattgaattt tttccaactc 120 acaatctttg attttataac cacgcttttt cagttcatct gaaaagattt tctttgaacc 180 aaattttgat gtgttacttg cgttacccgc aagaaaaatc caataaaaca gcaaatcttc 240 attgggtata tcttcaattt tttgataaaa actttccaag atttttaaac aatcacgggc 300 atataatccg tactcgtgag agctgttttt aggattttgg cgatcaagtt ttacaaattg 360 accatacttg tttttatgtg ggaacggtgg gcgtttttga attggttttt catagctgat 420 attaaactca acaccaacaa ttttacgacc acgcttgata ggctcatatt tcacataaag 480 atcagatttt tcgttgattt ctgcgagtgc aggcgttaat actctttgat taagattgtt 540 gtatcggtca tatttttctt caagctgtaa ccattttttt aactcttcaa cagtaatata 600 tctttcgcca agacgtttat attgcgtaaa caactcatac aaacggattg cgtgaacgct 660 tgaaaagcct gagatgtgat ttagctgata ttgggtaaat tgccctttca actgcgtaag 720 atacggcatt atctcgttag ttaatgcgat tttaaaacga ccttcatttt tgaaataggt 780 ttgagaagat acccaacgaa attttgtaac gtgtttttca tcttctgttt tcacccaacg 840 ctctgcaatt cgctcaatcg ctgattttat ttgagagtaa gcacgatctt cattgacatc 900 aggaaattgt cttacaaatt cagatacaga aaactcaaat acttgttgat tgcttttagg 960 gttcatagtt ccaatagtca aggcaagcaa tctcatttca tctaaagtta ggcggtaact 1020 agcttcaatt aaactatttg cctttacaac tgttaaatca tttaccatat atataaccta 1080 cacaaaaaat aaaatgtagt ttaattatac attgaactac aaaataatca atagtagttc 1140 aaaacaacaa atttgtagtc gtcaaacgac aaatttgtag tcgtcaaacg acaaatttgt 1200 agtcgtaaac gacaaatttg tagtcgttaa aatctctcaa gcattgcaaa tcaaggctct 1260 gggatagccg aaaacaagta taaaatataa aatataaaaa tagacctatc ggctcttttt 1320 gggctttcag ccctattttt atttttattc agaataaacg taaatccgca ttatcgttaa 1380 aacttgcttt taacgtttaa tgcggattaa acaaccgtag ggcgttagaa aagacaaaat 1440 acatattaaa gcaagggtta taaagaaaaa cgctctaaat gcgttttaga gtggctatgc 1500 ttgattgaat acaaaccttg aaaaatcagg ggatagggca tacaagggaa aaaggtcggg 1560 gatagctacc aactaccccc ttcccgattg tcttaggaca atctattcaa gatgtaagta 1620 attaggtcga gaatggtaag aactcgaaaa cctaataccg caactactac ggtgagcagt 1680 agtatcatta cgaagtattg taatgcgttc acatagatca cccccttagt gctataagcc 1740 taaggcaatc gggcaacgtg ctaaggacac gttacaccgt ttgccgatag cacaaggaag 1800 attttatcac ataaccgcct aacagggcgg ttttgttttt ttataatttc cgcttatagc 1860 tatgtgttaa agccttatcc acttcatctg ataacgcctg aatgtgtttt tgaatatcca 1920 ataacaacgt atcattgata ggtgtttttt gatcgaccgc 1960 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 tatagagctc acatcggcat cagttatatc 30 <210> 28 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gaaaagaggc aatgtatcac ctcattgtaa ta 32 <210> 29 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 tgaggtgata cattgcctct tttcttttat tt 32 <210> 30 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gtagaagctt gttatatatt tgtgatttta 30 <210> 31 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 taacggatcc acatcggcat cagttatatc 30 <210> 32 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 aatatgtgtt caatgtatca cctcattgta ata 33 <210> 33 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 tgaggtgata cattgaacac atattttata aa 32 <210> 34 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 tacgctgcag ttattccacg tcttctttcg 30 <110> Korea Advanced Institute of Science and Technology <120> Recombinant Microorganism Having Enhanced Glycerol Metabolism and          Succinic Acid-Productivity and Method for Preparing Succinic Acid          Using the same <130> P08-B166 <160> 34 <170> KopatentIn 1.71 <210> 1 <211> 4317 <212> DNA <213> glpABC gene isolated from Mannheimia succiniciproducens MBEL55E <400> 1 atgttgggtt gcgtatttta tttaacaacc aatcaattta ctttcactcg tgggggcatt 60 atgggaatgt catctcaact ttataaaaat gttggtgatt tttcacctat taatactgat 120 gtgattatta tcgggggcgg tgccaccggt gccggtgtgg ctcgagattg ttcattacgc 180 ggtttgaaat gcgtattgtt agagcgtcat gatattgcga ccggtgcgac gggccgtaat 240 cacggcttgc tccacagcgg cggtcgttat gcagtcaatg atcgtgaatc cgccgaagaa 300 tgtatcaaag aaaatcttat tttaaaacgt attgcccgtc attgtgtgga tgacacgaaa 360 ggcttattta tcactctgcc ggaagatgat cttgactatc agaaaaaatt tatcgaggct 420 tgtcaggcat ccggcattga agcggaagcc attgatccgg ctttagcaaa atttatggaa 480 ccttccgtga atccggattt agtcggcgcg gtagtagttc ccgacggttc tatcgacccg 540 tttcgtttaa ccgcagccaa tatgattgat gcggttgaaa acggcgctca ggttttcact 600 tactgcgaag taaaaggctt aatccgtgag ggcggacgcg ttatcggggt caatgtttac 660 gatcataaaa ataaaatcaa ccgtcagttc tttgcgccga tggtggtcaa tgccggcggg 720 atctggggtc agggtatcgc agaatacgcg gatttaaaaa ttcgtatgtt cccggcaaaa 780 ggggcgttat tagtcatggg gcaccgtatc aacggcatgg ttattaaccg ctgtcgtaaa 840 cctgcggatg cggatattct ggtacccggc gatacgattt gtgtaatagg taccacatcc 900 gaccgcattc cttacgatca gatcgataac atggaagtaa cgccggaaga agtggatatt 960 cttatccgcg agggggaaaa attagcaccg agcctgcgtc atacccgcgt acttcgcgcc 1020 tatgcggggg taagaccgtt agtggcgacg gatgatgacc cgtccggtcg taatgtaagc 1080 cgaggtatca tattgctgga tcacgcacaa cgtgacggtt tggatggttt tattaccatt 1140 accggcggta aattaatgac ttatcgttta atggctgaat gggcgacgga tttagtctgt 1200 caaaaactca ataacagcaa aaaatgcgaa acgtccgacc gtactttacc gggttctaac 1260 gaaagccgtg aagaaaccag ccaaaaagtg gtttctctac cgactacgat tcgtaactcc 1320 gccgtttatc gccatggttc gcgcgctacc cgtttattgg aaaacgaacg tttagatcgt 1380 tctttagtct gtgaatgcga agcggttacc gcaggcgaag tgcgttatgc ggttgatgaa 1440 cttaacgtca acaatcttat tgacttacgc cgtcgcaccc gtgtgggaat gggaacctgc 1500 caggcggaac tttgcgcctg tcgtgccgcc ggtttaatgg cgcgttttga cgtggcgaca 1560 cctcgtcagt caacggaaca attagcctca tttatggaag aacgctggaa aggcattcgc 1620 cctattgcct ggggcgatgc ggtgcgtgaa gccgaattca caagctggat ttattacagc 1680 ctgcttggtt taaatgatgt attaccagaa gatgcgcaag gagtgaataa caatgaattt 1740 tgaatgaatt ttgatgtcgt gattatcggt gcgggaatcg ccggtttaac ctgcggtctc 1800 accctacaag aaaaaggcgt tcgttgtgca atcattaata acggtcaggc ggcactggat 1860 ttttcttccg gttctatgga tttattaagc cgcttaccaa acggaagtac ggtggattct 1920 tttgcacaat cttatgccgc acttgcgcaa caatcaccaa accaccctta tgttatttta 1980 ggcaaagatg tggtattaga caaaatacaa caattcgaaa cccttgccaa atcactcaat 2040 ttatctttgg tcggttcaag cgacaaaaat cataaaagag taaccgcact tggcggtctg 2100 cgcggtacat ggctttcacc gaacagtgtg ccgacagtca gccttgaggg caaattcccg 2160 cacgataaca tcgtattgct gggtattgaa ggctatcatg attttcaacc gcaattatta 2220 gcggataacc tcaaacaaaa tccgcaattt gctcattgtg aaattacgac gaatttcttg 2280 catattccgg aattagatca tttgcgccaa aacagtcgcg aattccgaag tgtaaatatc 2340 gctcaagtgc ttgaatataa attgtcgttc aataatcttg tggatgaaat caaacaagcg 2400 gtcggtaatg ccaaagcggc atttttaccc gcctgtttcg ggcttgacga ccaatcgttc 2460 tttgaatcgc tcaaacaagc gaccggcatc gaactttatg agctaccgac acttccgcct 2520 tcattattgg gtattcgcca acaccgccaa ttacgtcatc gttttgaaaa gctaggcggt 2580 gtaatgttta acggtgaccg cgcattacgt tccgaattcg aaggtaataa agtcgcccgt 2640 attttcacac aattacatct tgaaaacgcc gttacggcaa aatattttgt gttagcttcc 2700 ggcggattct ttagtaacgg tttagtatcc gaatttgaag aaatttatga accgttattc 2760 agatccgaca tcgtaaaaac cgagcggttt aatgcaacgg atcgtttctc ctggatcagt 2820 aaacgctttg ccgatccgca accttaccaa tccgccggcg tagtcattaa tgccgaatgt 2880 caggtacaaa aagacggaaa caacgtggaa aatctgtttg ccattggtgc tgtcatcggc 2940 ggctataacg gtattgaact gggttgcggc tcaggagttg ccgttacaac ggcattgaaa 3000 gttgcagaca atattatcgc taaagaaagc agcaattaga tgaatattca agaattgatt 3060 aagcaagcaa aacaagatat gcaatctcct atcgcggcgg aaatctttca tgataaaagt 3120 tttgaaagtt gtataaaatg taccgcttgt accgccgttt gtccggtttc ccgcaacaat 3180 ccgttgtatc cggggcctaa acaggcgggt cccgacggcg aacgtttacg cttaaaaagc 3240 ccttcattct atgatgaagc attaaaatac tgcttaaact gtaaacgttg tgaagttgct 3300 tgtccgtcag atgtaaaaat cggcgacatc atcgttcgtg cgagaaataa acacttagcg 3360 cagcaaaaca aacctttcgt acaaaaatta cgcgatgcga ttttaagtaa tacggatatt 3420 atgggcacgc ttgcaacacc gttcgccccg attgtgaaca ccgtaacggg tttaaaagct 3480 acaaaattcg tgctggaaaa aaccattcag gtaagcaaac accgcacttt gcctaaatac 3540 tcctttggta cgtttcgcag ctggtacatg aaaaacgcgg caaaagaaca ggcaaaattc 3600 gaccaaaaag tggcgtatta tcacggttgc tacgttaact ataataatcc gcaattaggt 3660 aaagaattta ttcaggtctt taatgccatg gatatcggcg tggtattgct cgaaaaagaa 3720 aaatgctgtg ggttgccatt gagtgtgaac gctttccctg aacgagcgaa aaaacttgcg 3780 caattcaaca cggattacat tgaaaaaatg ttggatgaaa acggattgga tgttatcagt 3840 gaagcttcaa gctgcacctt aaaccttcgt gacgaatatc atcatatttt aggtatcgac 3900 aacgccaaag tgcgcccgca cattcacatg gtaacgccgt tcctatataa attattccaa 3960 caaggcaaaa cattaccgtt aaaaccgctt aaactccgtg tcgcctatca tacggcctgc 4020 catgtagaaa aagccggctg ggcgccatac acccttgaaa ttttaaaaca aattccggga 4080 ctggaagtgg ttgtgttgcc gtcgcaatgc tgcggtatcg ccggaactta cggtttcaaa 4140 gcggaaaact atgaaacctc ccaagccatc ggtaaaacgc tgtttgataa catcaacgaa 4200 ggcggttttg actacgtaat ctcggaatgt caaacctgta aatggcaaat tgatatgtca 4260 agtaatgtaa cctgtatcca cccgattaca ttattggcta tgtcaataaa ccaataa 4317 <210> 2 <211> 684 <212> DNA <213> crp gene isolated from Mannheimia succiniciproducens MBEL55E <400> 2 atgctagaac aagtgaatgc gcatcaaaca aatgtgttac cacagaccca accggttcaa 60 cccgcgtcgc cgatggatcc gacgcttgat tggtttcttt ctcattgcca tattcataaa 120 tatccggcta aaacgacttt aattcatgcg ggtgaacgcg ccgatacgct ttattatatt 180 gtaaagggtt ccgctgcggt aatggttaaa gatgaagagg gaaaagaaat gatcctttct 240 tatttaagcc agggtgagtt tttcggcgaa gtcggtttat ttgaagaagg tcaggttcgt 300 tctgcctggg tgaaagccaa aaacgcctgt gaaattgccg aggtgtctta caaaaaattc 360 cgtcaattat tacaggttaa tcccgagatt ctgatgtatt tgtcggcaca actttccaga 420 cgcttgcaaa atacctcaaa acaagtgagt aatctggcat tcttggatgt aaccgggcgt 480 attgcgcaaa ccctgttgaa tctggcaaaa atgccggatg ccatgactca cccggacggg 540 atgcaaatca agattacccg tcaggaaatc gggcaaatgg tgggttgttc ccgtgaaacc 600 gtaggccgca ttttaaaaat gctggaagat caaaatctga ttgccgctca tggtaaaact 660 atcgtggtat tcggtacgag ataa 684 <210> 3 <211> 1428 <212> DNA <213> glpA gene isolated from C.acetobutylicum ATCC824 <400> 3 atgtatgatg ttgcaataat tggagcaggt gttattggat gctcaatatt tagagagtta 60 accaaatatg atctaagggt agttgtttta gaaaaagaaa aggatgtttc tatgggaaca 120 agcaaggcaa attctgcaat agttcatgct ggatatgatc ctgaagaagg tactttaatg 180 gcaaagtata atgtaaaagg aaatgagatg tttgaagagt tatgcaaaga attaagtgta 240 ccgtttaaaa gaaatggatc attggtatta gcctttgata aagaagatat gtttaaagta 300 aaacatcttt atgaaaatgg aagtaagtta ggtgtaaaag gattaaagat tttaaatagg 360 gatgaagtat taaaaatgga accaaacctt aatgacaaaa tagagggagc attatatgca 420 ccaactggtg gtatagttgg tccgtttgaa tatacaattg cattagcaga aaatggagtt 480 acaaatggtg gaaaaataaa actaaagaag gaagttgttt caataaaaaa gagagatgtg 540 tttaagattg gaactgaaga tggggaaaca attgaggcaa agtttgtaat aaatgctgct 600 ggggtttatg cagataaaat tcataattta gtttgcaaag agagttttaa gatatctcca 660 agaagtggag agtattttgt aatggataaa agccaaggaa atgttgtaaa acatacaata 720 tttcaatgcc catcaaaatt gggtaaagga gttttaataa caccaacagt acatggtaat 780 ttacttgtag gacctgatgc tagggatgtg gaggataaag aagacgttgg aactgttttt 840 gagggacttg actatgtaaa agaggcctct atgcgttcta caaaagaagt gaatttcaga 900 gagtctataa gaaactttgc aggacttaga gctaatccag atacaggaga ttttatagtt 960 gaagaaaacg atgaagttaa agggtttatt gatgttgcag ggatgaaatc accaggatta 1020 tcatcagcgc cagctattgc cgtagatgtg gttaatatac tgagttcagc gggatgtagt 1080 ttgaaaaaga aagatgattt tataaaagaa agagaacaaa tacattttat ggagttatcg 1140 cctgaaaaaa aagcagaatt aataaagaaa aatgatatgt atggaaaaat aatatgcaga 1200 tgcgaaagta taacagaagg tgaaattgta gctgcaatta aaaggagttt tggagtactt 1260 tccttagatg gaattaagag aagatgtaga ccaggaatgg gaaggtgcca gggaggtttc 1320 tgtggaccaa gagtccaaga aataattgca agggaatata atatcccact agaaaatgtt 1380 gttttggaaa aggataattc ttatatttta gtaggaaaaa ctaaatag 1428 <210> 4 <211> 846 <212> DNA <213> glpF gene isolated from E. coli K-12 MG1655 <400> 4 atgagtcaaa catcaacctt gaaaggccag tgcattgctg aattcctcgg taccgggttg 60 ttgattttct tcggtgtggg ttgcgttgca gcactaaaag tcgctggtgc gtcttttggt 120 cagtgggaaa tcagtgtcat ttggggactg ggggtggcaa tggccatcta cctgaccgca 180 ggggtttccg gcgcgcatct taatcccgct gttaccattg cattgtggct gtttgcctgt 240 ttcgacaagc gcaaagttat tccttttatc gtttcacaag ttgccggcgc tttctgtgct 300 gcggctttag tttacgggct ttactacaat ttatttttcg acttcgagca gactcatcac 360 attgttcgcg gcagcgttga aagtgttgat ctggctggca ctttctctac ttaccctaat 420 cctcatatca attttgtgca ggctttcgca gttgagatgg tgattaccgc tattctgatg 480 gggctgatcc tggcgttaac ggacgatggc aacggtgtac cacgcggccc tttggctccc 540 ttgctgattg gtctactgat tgcggtcatt ggcgcatcta tgggcccatt gacaggtttt 600 gccatgaacc cagcgcgtga cttcggtccg aaagtctttg cctggctggc gggctggggc 660 aatgtcgcct ttaccggcgg cagagacatt ccttacttcc tggtgccgct tttcggccct 720 atcgttggcg cgattgtagg tgcatttgcc taccgcaaac tgattggtcg ccatttgcct 780 tgcgatatct gtgttgtgga agaaaaggaa accacaactc cttcagaaca aaaagcttcg 840 ctgtaa 846 <210> 5 <211> 1509 <212> DNA <213> glpK gene isolated from E. coli K-12 MG1655 <400> 5 atgactgaaa aaaaatatat cgttgcgctc gaccagggca ccaccagctc ccgcgcggtc 60 gtaatggatc acgatgccaa tatcattagc gtgtcgcagc gcgaatttga gcaaatctac 120 ccaaaaccag gttgggtaga acacgaccca atggaaatct gggccaccca aagctccacg 180 ctggtagaag tgctggcgaa agccgatatc agttccgatc aaattgcagc tatcggtatt 240 acgaaccagc gtgaaaccac tattgtctgg gaaaaagaaa ccggcaagcc tatctataac 300 gccattgtct ggcagtgccg tcgtaccgca gaaatctgcg agcatttaaa acgtgacggt 360 ttagaagatt atatccgcag caataccggt ctggtgattg acccgtactt ttctggcacc 420 aaagtgaagt ggatcctcga ccatgtggaa ggctctcgcg agcgtgcacg tcgtggtgaa 480 ttgctgtttg gtacggttga tacgtggctt atctggaaaa tgactcaggg ccgtgtccat 540 gtgaccgatt acaccaacgc ctctcgtacc atgttgttca acatccatac cctggactgg 600 gacgacaaaa tgctggaagt gctggatatt ccgcgcgaga tgctgccaga agtgcgtcgt 660 tcttccgaag tatacggtca gactaacatt ggcggcaaag gcggcacgcg tattccaatc 720 tccgggatcg ccggtgacca gcaggccgcg ctgtttggtc agttgtgcgt gaaagaaggg 780 atggcgaaga acacctatgg cactggctgc tttatgctga tgaacactgg cgagaaagcg 840 gtgaaatcag aaaacggcct gctgaccacc atcgcctgcg gcccgactgg cgaagtgaac 900 tatgcgttgg aaggtgcggt gtttatggca ggcgcatcca ttcagtggct gcgcgatgaa 960 atgaagttga ttaacgacgc ctacgattcc gaatatttcg ccaccaaagt gcaaaacacc 1020 aatggtgtgt atgtggttcc ggcatttacc gggctgggtg cgccgtactg ggacccgtat 1080 gcgcgcgggg cgattttcgg tctgactcgt ggggtgaacg ctaaccacat tatacgcgcg 1140 acgctggagt ctattgctta tcagacgcgt gacgtgctgg aagcgatgca ggccgactct 1200 ggtatccgtc tgcacgccct gcgcgtggat ggtggcgcag tagcaaacaa tttcctgatg 1260 cagttccagt ccgatattct cggcacccgc gttgagcgcc cggaagtgcg cgaagtcacc 1320 gcattgggtg cggcctatct cgcaggcctg gcggttggct tctggcagaa cctcgacgag 1380 ctgcaagaga aagcggtgat tgagcgcgag ttccgtccag gcatcgaaac cactgagcgt 1440 aattaccgtt acgcaggctg gaaaaaagcg gttaaacgcg cgatggcgtg ggaagaacac 1500 gacgaataa 1509 <210> 6 <211> 2232 <212> DNA <213> sldAB gene isolated from Gluconobacter oxydans <400> 6 atgcgcagat cccatcttct cgccaccgtt gcctgtgcca cgctggcctg cgcaccgctg 60 gctgccaatg cccagttcgc ccccgcaggc agcggtggct cgccgacctc ctccgtgccg 120 ggccccggca atggcagcgg caattccttc gagccgaccg agaacacgcc ggccgcgaag 180 agccgctttt ccggcccgtc cccctatgcg ccccaggctc cgggtgtgaa cgcggccaac 240 ctgccggata tcgggtccat ggatccgaac gacgttccgc agatggcccc gcagcagagt 300 gccagccccg cctccggaga ctgggccgcc tacggccatg acgacagtca gatgcgctat 360 tcgccgctgt ccgagatcac gccgcagaac gccgatcagc tcaaggtcgc tttcgtctat 420 cacaccggta gctatccgcg tccgggccag acgaacaaat gggctgccga aaccaccccg 480 atcaaggtgg gtgacggcct ctacatgtgc tcggcacaga acgacatcat gaagatcgac 540 ccggcgacgg gtaaggagat ctggcgtcac aacatcaacg agaaatacga agccatcccc 600 tacaccgcag cgtgcaaggg cgtgacgtat ttcacgtcgt ctcaggtgcc cgaaggccag 660 ccctgccata accgtatcct tgaaggcacg ctcgacatgc gcctgatcgc ggttgatgcc 720 gcgaccggca atctgtgcga aggcttcggc aatggcggcc aggtcaacct gatgcagggt 780 cttggcgaat ccgtccccgg cttcgtctcc atgacgacgc cgccgccggt cgtgaacggt 840 gtggttgtgg tcaaccacga agttctcgac ggtcagcgcc gctgggctcc gtcgggtgtg 900 atccgtggct atgatgccga gagcggcaag ttcctgtggg cctgggacgt gaaccgcccc 960 aacgatcaca gccagccgac cggcaacaac cattacagcc gtggtacgcc gaactcctgg 1020 gctgcgatga ccggcgacaa tgcgctgggc ctcgtctacg tcccgaccgg caactcggct 1080 tccgattact acagtgccct gcgtagccct gaagaaaaca aggtctcgtc cgcagttgtc 1140 gcgcttgacg taaagacggg ttcgccgcgc tgggtcttcc agaccgttca caaggacgtc 1200 tgggactatg acatcggctc gcaggccacc ctcatggaca tgcccggcca ggatggtcag 1260 cctgttcccg cactcatcat gccgaccaag cgtggccaga ccttcgtgct cgaccgtcgt 1320 gacggcaagc cgatcctgcc ggtcgaagag cgtcccgctc cgtcgccggg cgtgatcccg 1380 ggcgatccgc gttcgccgac gcagccctgg tccacgggaa tgccggctct gcgcgtgccg 1440 gatctgaaag agacggatat gtggggcatg tcccccatcg accagctctt ctgccgtatc 1500 aagttccgcc gtgcgaacta tacgggtgag ttcacgccac cgagcgtcga caagccctgg 1560 atcgagtatc cgggctataa cggcggcagc gactggggtt ccgtgtccta tgacccgcag 1620 agcggcatcc tgattgcgaa ctggaacatc accccgatgt acgaccagct cgtaacccgc 1680 aagaaggccg acgaacttgg cctgatgccg atcgatgacc cgaactacaa gccgggtggc 1740 ggtggcgccg aaggtaacgg cgccatggac ggcacgcctt acggtatcgt cgtgaccccg 1800 ttctgggatc agtacacggg tatgatgtgc aaccgcccgc cctacggcat gatcacggcc 1860 atcgacatga agcacggcca gaaggtgctg tggcagcacc cgctgggaac ggcccgcgcc 1920 aatggtccgt ggggcctgcc gaccggtctt ccctgggaaa tcggtacgcc gaataatggt 1980 ggctcggtcg tgacggccgg tggcgtggtg ttcatcgcgg cagctacgga taaccagatc 2040 cgtgccatcg acgagcacac cggcaaggtg gtctggagcg cggtcctgcc gggcggcggt 2100 caggctaacc cgatgaccta cgaagccaat ggtcatcagt acgtcgccat catggcgggt 2160 ggtcatcact tcatgatgac gccggtcagc gatcagctgg tggtttacgc actgcctgat 2220 cacaagggct ga 2232 <210> 7 <211> 1776 <212> DNA <213> dhaK gene isolated from Gluconobacter oxydans <400> 7 atgaccaaga tctgcggtga cgcatcgact ttcgcggcgt ccgcccttcg ggggttcagc 60 cttcttcatc ccgatctcgt gcgatatgtg cgcggcggtg tgcttcgggc aaccccgggc 120 cgtcgcggca aggtggctgt tgtgctgggc ggtggctcgg gacattatcc ggcctttgcg 180 ggctatgtcg gtccgggctt cggcgatgcg gcagtggcgg gggatatctt cgcctcgccc 240 tccacgcagg ccatcaagag cattgctcgc caggccgatc tggacggcgg gatcattctc 300 ggttacggca actatgccgg ggacgtgctc aatttcggga tcgcagcgga ccgcctgcgc 360 gaagagggct atgacgtccg tgttctggcg acggcagatg atgtggccag ctcggatgcc 420 tctacacggg agaagcggcg cggaattgcc ggggatctgg tgattttccg gatcgtgggc 480 gctgcagccg aggcggggct gacgctcgac gaagtcgagg aagtcgcgca gcgggtgaac 540 cgtcagacct gcacgttcgg cgtggcgttc gatggctgca cgctgccggg cgagaaggaa 600 aagttgttcg aagttccgaa gaaccgcatg gcgctcgggt taggggtgca tggcgagccc 660 ggcattgacg agcaggatgt tccggacccg gagcatctgg cgcagatcct gttcgaccgt 720 ctgctggcag agcttccgga aggggcgtcg cgccgggtag ccgtcctgct gaacggtctg 780 ggcagcacca agcaggaaga gctgttcgtc ctgtgggacc ggctggtgcc aatgttcgaa 840 aaggcaggtc tgacgctcgt ggcgccgctg gtgggtgagt acgttacgag ccttgatatg 900 gcgggctgct cgctaacgct gacctggctc gatgaggatc tggagcggta ctggcgatcc 960 cctgtggaat ctgcagcgct gagccatggg cagctgagcg gggacggaat cacgcggctt 1020 gaagtccctg aggaaaccga gatcctgtac atgcgctccg gaacggcgca ggggcgtcgt 1080 ggcggaacct gtgtggccgc tgtcatggat catctggccc ggacactggc ggaagcggag 1140 tctgacctgg ggcatatcga tgctgtggtt ggggacgggg accatggaca gggcatggct 1200 cgcggctcgg cggcagcagc gaaggtagcg cgggctgcgg cggatgccgg cgctgggcca 1260 gcgacggttc tggcctcggc ggcggacgcc tgggcggaca gggccggggg aacatccggg 1320 gcgctctggg gcgaggggct gcgggccttc agtctggcgt tcgatgacaa cagcctgccc 1380 gatgcacagc agctttcagg cggtgcacgg aacagcatgg aacgcatcat ggagcttggc 1440 cgggcaaaac ccggcgacaa gacactggta gatgcgctgg tgccgtttgt tgaaacgctg 1500 gagaaggctc tggccgcggg gcatgggctt gtggaagcct ggcagatggg ggcgcaggcg 1560 tctcatgaag cagcgcaggc cacgcgtgat cttctacccc ggatgggacg tgcgaaaatg 1620 catggtgagc gtagcaaggg ccacccggat gcaggtgcgc tctcgctggc actgtgtgcg 1680 cggatcgtgg gggaagatct gggcaggggc ctggcctctc cgggcggaga aggcgatcag 1740 acagaggcgg ttcgtctggt gaaagccggc cggtaa 1776 <210> 8 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 tatactgcag acatcggcat cagttatatc g 31 <210> 9 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 cgcaacccaa cattgtatca cctcattgta ata 33 <210> 10 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tgaggtgata caatgttggg ttgcgtattt ta 32 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tatgggatcc ttattggttt attgacatag 30 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 tagtgagctc tactctgtta ccgcaaattg 30 <210> 13 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 ttgttctagc atttttattt tcctcttagt ta 32 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 aggaaaataa aaatgctaga acaagtgaat gcg 33 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 tgtccatatg cttatctcgt accgaatacc 30 <210> 16 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 aggaaaataa aaatgctaga acaagtgaat gcg 33 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 tgtccatatg cttatctcgt accgaatacc 30 <210> 18 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 aggaaaataa aaatgctaga acaagtgaat gcg 33 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 tgtccatatg cttatctcgt accgaatacc 30 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 tgtgtctaga atgagtcaaa catcaacctt 30 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 tatactgcag acattattcg tcgtgttctt 30 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 tccgaattca tgccgaatac ttatggcagc 30 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 tattggtacc tttctcagcc cttgtgatca 30 <210> 24 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 tataggtacc ctggggagaa tatcatgacc aagatctgcg gtga 44 <210> 25 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 tattgcatgc ggacgggcta tagattaccg 30 <210> 26 <211> 1960 <212> DNA <213> origin fragment isolated from pMVSCS1 <400> 26 ttgccaaatg ttcttcttcg gtcacagtac attcaatgcg attacttgcg tgagccgttt 60 taattgcctg aatacgtttt tctatgattt tgtccatatt cattgaattt tttccaactc 120 acaatctttg attttataac cacgcttttt cagttcatct gaaaagattt tctttgaacc 180 aaattttgat gtgttacttg cgttacccgc aagaaaaatc caataaaaca gcaaatcttc 240 attgggtata tcttcaattt tttgataaaa actttccaag atttttaaac aatcacgggc 300 atataatccg tactcgtgag agctgttttt aggattttgg cgatcaagtt ttacaaattg 360 accatacttg tttttatgtg ggaacggtgg gcgtttttga attggttttt catagctgat 420 attaaactca acaccaacaa ttttacgacc acgcttgata ggctcatatt tcacataaag 480 atcagatttt tcgttgattt ctgcgagtgc aggcgttaat actctttgat taagattgtt 540 gtatcggtca tatttttctt caagctgtaa ccattttttt aactcttcaa cagtaatata 600 tctttcgcca agacgtttat attgcgtaaa caactcatac aaacggattg cgtgaacgct 660 tgaaaagcct gagatgtgat ttagctgata ttgggtaaat tgccctttca actgcgtaag 720 atacggcatt atctcgttag ttaatgcgat tttaaaacga ccttcatttt tgaaataggt 780 ttgagaagat acccaacgaa attttgtaac gtgtttttca tcttctgttt tcacccaacg 840 ctctgcaatt cgctcaatcg ctgattttat ttgagagtaa gcacgatctt cattgacatc 900 aggaaattgt cttacaaatt cagatacaga aaactcaaat acttgttgat tgcttttagg 960 gttcatagtt ccaatagtca aggcaagcaa tctcatttca tctaaagtta ggcggtaact 1020 agcttcaatt aaactatttg cctttacaac tgttaaatca tttaccatat atataaccta 1080 cacaaaaaat aaaatgtagt ttaattatac attgaactac aaaataatca atagtagttc 1140 aaaacaacaa atttgtagtc gtcaaacgac aaatttgtag tcgtcaaacg acaaatttgt 1200 agtcgtaaac gacaaatttg tagtcgttaa aatctctcaa gcattgcaaa tcaaggctct 1260 gggatagccg aaaacaagta taaaatataa aatataaaaa tagacctatc ggctcttttt 1320 gggctttcag ccctattttt atttttattc agaataaacg taaatccgca ttatcgttaa 1380 aacttgcttt taacgtttaa tgcggattaa acaaccgtag ggcgttagaa aagacaaaat 1440 acatattaaa gcaagggtta taaagaaaaa cgctctaaat gcgttttaga gtggctatgc 1500 ttgattgaat acaaaccttg aaaaatcagg ggatagggca tacaagggaa aaaggtcggg 1560 gatagctacc aactaccccc ttcccgattg tcttaggaca atctattcaa gatgtaagta 1620 attaggtcga gaatggtaag aactcgaaaa cctaataccg caactactac ggtgagcagt 1680 agtatcatta cgaagtattg taatgcgttc acatagatca cccccttagt gctataagcc 1740 taaggcaatc gggcaacgtg ctaaggacac gttacaccgt ttgccgatag cacaaggaag 1800 attttatcac ataaccgcct aacagggcgg ttttgttttt ttataatttc cgcttatagc 1860 tatgtgttaa agccttatcc acttcatctg ataacgcctg aatgtgtttt tgaatatcca 1920 ataacaacgt atcattgata ggtgtttttt gatcgaccgc 1960 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 tatagagctc acatcggcat cagttatatc 30 <210> 28 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gaaaagaggc aatgtatcac ctcattgtaa ta 32 <210> 29 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 tgaggtgata cattgcctct tttcttttat tt 32 <210> 30 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gtagaagctt gttatatatt tgtgatttta 30 <210> 31 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 taacggatcc acatcggcat cagttatatc 30 <210> 32 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 aatatgtgtt caatgtatca cctcattgta ata 33 <210> 33 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 tgaggtgata cattgaacac atattttata aa 32 <210> 34 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 tacgctgcag ttattccacg tcttctttcg 30  

Claims (20)

숙신산 생성능을 가지는 미생물에, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자를 함유하는 재조합 벡터가 도입되어 있는, 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물. Recombinant vectors containing a gene encoding glycerol-3-phosphate dehydrogenase or a gene encoding glycerol dehydrogenase are introduced into a microorganism having succinic acid production ability. Recombinant microorganisms with improved glycerol metabolism and succinic acid production. 숙신산 생성능을 가지는 미생물의 염색체에, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자가 삽입되어 있는, 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물. Glycerol, in which a gene encoding glycerol-3-phosphate dehydrogenase or a gene encoding glycerol dehydrogenase is inserted into a chromosome of a microorganism having succinic acid producing ability Recombinant microorganism with improved metabolism and succinic acid production capacity. 제1항 또는 제2항에 있어서, 상기 재조합 미생물은 글리세롤 업테이크 촉진자(glycerol uptake facilitator)를 코딩하는 유전자, 글리세롤 카이네이즈(glycerol kinase)를 코딩하는 유전자, cAMP 수용체 (cAMP receptor)를 코딩하는 유전자 및 디하이드록시 아세톤 카이네이즈(dehydroxyaceton kinase)를 코딩하는 유전자 중 어느 하나 이상의 유전자가 추가로 도입되어 있는 것을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물. The method of claim 1 or 2, wherein the recombinant microorganism is a gene encoding a glycerol uptake facilitator, a gene encoding a glycerol kinase, a gene encoding a cAMP receptor (cAMP receptor) and A recombinant microorganism having improved glycerol metabolism and succinic acid production capacity, wherein any one or more genes of a gene encoding a dihydroxyaceton kinase is further introduced. 제1항 또는 제2항에 있어서, 상기 숙신산 생성능을 가지는 미생물은 맨하이미아 속(genus Mannheimia), 액티노바실러스 속(genus Actinobacillus) 및 언애로우바이오스필리움 속(genus Anaerobiospillium)으로 구성되는 군에서 선택된 미생물임을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물. The microorganism of claim 1 or 2, wherein the microorganism having a succinic acid producing ability is selected from the group consisting of genus Mannheimia , genus Actinobacillus , and genus Anaerobiospillium . Recombinant microorganisms with improved glycerol metabolism and succinic acid production capacity characterized in that the selected microorganism. 제4항에 있어서, 상기 맨하이미아 속은 Mannheimia succiniciproducens MBEL55E (KCTC 0769BP), Mannheimia succiniciproducens LPK (KCTC 10558BP), Mannheimia succiniciproducens LPK7 (KCTC 10626BP), Mannheimia succiniciproducens PALK(KCTC 10973BP), Mannheimia succiniciproducens ALK 및 Mannheimia succiniciproducens ALKt로 구성된 군에서 선택되는 것을 특징으로 하는 글리세롤 대사능력이 향상된 재조합 미생물.The genus Mannheimia of claim 4, wherein the genus Mannheimia succiniciproducens MBEL55E (KCTC 0769BP), Mannheimia succiniciproducens LPK (KCTC 10558BP), Mannheimia succiniciproducens LPK7 (KCTC 10626BP), Mannheimia succiniciproducens PALK (KCTC 10973BP), Mannheimia Glycerol metabolism enhanced recombinant microorganisms, characterized in that selected from the group consisting of succiniciproducens ALK and Mannheimia succiniciproducens ALKt. 제1항 또는 제2항에 있어서, 상기 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자는 클로스트리디움 속(genus Clostridium) 또는 맨하이미아 속(genus Mannheimia)에서 유래된 것임을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물. The gene of claim 1 or 2, wherein the gene encoding glycerol-3-phosphate dehydrogenase is genus Clostridium or genus Mannheimia . Recombinant microorganisms with improved glycerol metabolism and succinic acid production capacity, characterized in that derived from. 제1항 또는 제2항에 있어서, 상기 글리세롤 디하이드로지네이즈 (glycerol dehydrogenase)를 코딩하는 유전자는 글루코노박터 속(genus Gluconobacter)에서 유래된 것임을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물. The method of claim 1 or 2, wherein the gene encoding the glycerol dehydrogenase (glycerol dehydrogenase) is derived from the genus Gluconobacter (genus Gluconobacter ) characterized in that the recombinant glycerol metabolism and succinic acid production capacity improved microbe. 제3항에 있어서, 상기 글리세롤 업테이크 촉진자(glycerol uptake facilitator)를 코딩하는 유전자, 글리세롤 카이네이즈(glycerol kinase)를 코딩하는 유전자 및 cAMP 수용체 단백질을 코딩하는 유전자는 클로스트리디움 속(genus Clostridium), 에스케리키아 속(genus Escherichia), 맨하이미아 속(genus Mannheimia) 및 글루코노박터 속(genus Gluconobacter)으로 구성되는 군에서 선택된 미생물에서 유래된 것임을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물. The gene encoding the glycerol uptake facilitator, the gene encoding the glycerol kinase and the gene encoding the cAMP receptor protein are genus Clostridium , S Recombinant microorganism with improved glycerol metabolism and succinic acid production capacity, which is derived from a microorganism selected from the group consisting of genus Escherichia , genus Mannheimia , and genus Gluconobacter . 제1항 또는 제2항에 있어서, 상기 글리세롤-3-포스페이트 디하이드로지네이 즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자는 glpABC 또는 glpA임을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물. According to claim 1 or 2, wherein the gene encoding the glycerol-3-phosphate dehydrogenase (glycerol-3-phosphate dehydrogenase) is characterized in that the recombinant glycerol metabolism and succinic acid production capacity improved glpABC or glpA microbe. 제1항 또는 제2항에 있어서, 상기 글리세롤 디하이드로지네이즈 (glycerol dehydrogenase)를 코딩하는 유전자는 sldAB임을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물. The recombinant microorganism having improved glycerol metabolism and succinic acid production capacity according to claim 1 or 2, wherein the gene encoding glycerol dehydrogenase is sldAB . 제1항에 있어서, 상기 재조합 미생물은 Mannheimia succiniciproducens MBEL55E/pFglpABC(JYJM01), Mannheimia succiniciproducens PALK/pEglpA(JYJM02), Mannheimia succiniciproducens PALK/ACRP(JYJM03) (KCTC11458BP), Mannheimia succiniciproducens PALK/AFK(JYJM04) (KCTC11459BP), 및 Mannheimia succiniciproducens PALK/SDGOX(JYJM05) (KCTC11460BP) 중 어느 하나인 것을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물.The method of claim 1, wherein the recombinant microorganism is Mannheimia succiniciproducens MBEL55E / pFglpABC (JYJM01), Mannheimia succiniciproducens PALK / pEglpA (JYJM02), Mannheimia succiniciproducens PALK / ACRP (JYJM03) (KCTC11458BP), Mannheimia succiniciproducens PALK / AFK (JYJM04) (KCTC11459BP), and Mannheimia succiniciproducens PALK / SDGOX (JYJM05) (KCTC11460BP). 숙신산 생성능을 가지는 미생물에, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하 이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자를 함유하는 재조합 벡터를 도입하는 것을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물의 제조방법. To introduce a recombinant vector containing a gene encoding glycerol-3-phosphate dehydrogenase or a gene encoding glycerol dehydrogenase into a microorganism having succinic acid production ability Method for producing a recombinant microorganism with improved glycerol metabolism and succinic acid production capacity, characterized in that. 숙신산 생성능을 가지는 미생물의 염색체에, 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자가 삽입합는 것을 특징으로 하는 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물의 제조방법. A gene encoding glycerol-3-phosphate dehydrogenase or a gene encoding glycerol dehydrogenase is inserted into a chromosome of a microorganism having succinic acid production ability. Method for producing a recombinant microorganism having improved glycerol metabolism ability and succinic acid production ability. 제1항 또는 제2항의 재조합 미생물을 글리세롤을 탄소원으로 함유하는 배양배지에서 배양하는 단계; 및 상기 배양액으로부터 숙신산을 회수하는 단계를 포함하는 숙신산의 제조방법.Culturing the recombinant microorganism of claim 1 or 2 in a culture medium containing glycerol as a carbon source; And recovering succinic acid from the culture solution. 제14항에 있어서, 상기 배양은 혐기조건에서 수행되는 것임을 특징으로 하는 방법.The method of claim 14, wherein the culturing is performed under anaerobic conditions. 제14항에 있어서, 상기 글리세롤은 배양배지에서 단일 탄소원으로 함유되어 있는 것을 특징으로 하는 방법. 15. The method of claim 14, wherein the glycerol is contained as a single carbon source in the culture medium. 제14항에 있어서, 상기 글리세롤은 배양배지에서 글리세롤 이외의 다른 탄소원과 함께 함유되어 있는 것을 특징으로 하는 방법. 15. The method of claim 14, wherein the glycerol is contained in a culture medium together with a carbon source other than glycerol. 제17항에 있어서, 상기 글리세롤 이외의 다른 탄소원은 수크로오스(sucrose)인 것을 특징으로 하는 방법. 18. The method of claim 17, wherein the carbon source other than glycerol is sucrose. 글리세롤-3-포스페이트 디하이드로지네이즈 (glycerol-3-phosphate dehydrogenase)를 코딩하는 유전자 또는 글리세롤 디하이드로지네이즈(glycerol dehydrogenase)를 코딩하는 유전자를 함유하는 재조합 벡터. A recombinant vector containing a gene encoding glycerol-3-phosphate dehydrogenase or a gene encoding glycerol dehydrogenase. 제19항에 있어서, 글리세롤 업테이크 촉진자(glycerol uptake facilitator)를 코딩하는 유전자, 글리세롤 카이네이즈(glycerol kinase)를 코딩하는 유전자, cAMP 수용체 (cAMP receptor)를 코딩하는 유전자 및 디하이드록시 아세톤 카이네이즈(dehydroxy aceton kinase)를 코딩하는 유전자 중 어느 하나 이상의 유전자를 추가로 함유하는 것을 특징으로 하는 재조합 벡터. The gene of claim 19, wherein the gene encodes a glycerol uptake facilitator, the gene encodes glycerol kinase, the gene encodes a cAMP receptor, and the dehydroxy acetone kinase. Recombinant vector, characterized in that it further contains any one or more genes of the gene encoding kinase).
KR1020090011453A 2009-02-12 2009-02-12 Recombinant Microorganism Having Enhanced Glycerol Metabolism and Succinic Acid-Productivity and Method for Preparing Succinic Acid Using the Same KR101093199B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090011453A KR101093199B1 (en) 2009-02-12 2009-02-12 Recombinant Microorganism Having Enhanced Glycerol Metabolism and Succinic Acid-Productivity and Method for Preparing Succinic Acid Using the Same
PCT/KR2010/000755 WO2010093150A2 (en) 2009-02-12 2010-02-08 Recombinant microorganism with enhanced ability for glycerol metabolism and succinic acid production, and method for producing succinic acid using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090011453A KR101093199B1 (en) 2009-02-12 2009-02-12 Recombinant Microorganism Having Enhanced Glycerol Metabolism and Succinic Acid-Productivity and Method for Preparing Succinic Acid Using the Same

Publications (2)

Publication Number Publication Date
KR20100092190A true KR20100092190A (en) 2010-08-20
KR101093199B1 KR101093199B1 (en) 2011-12-12

Family

ID=42562166

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090011453A KR101093199B1 (en) 2009-02-12 2009-02-12 Recombinant Microorganism Having Enhanced Glycerol Metabolism and Succinic Acid-Productivity and Method for Preparing Succinic Acid Using the Same

Country Status (2)

Country Link
KR (1) KR101093199B1 (en)
WO (1) WO2010093150A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015770A1 (en) 2011-07-22 2013-01-31 Myriant Corporation Fermentation of glycerol to organic acids

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221557B1 (en) * 2010-08-30 2013-01-14 한국과학기술원 Novel Engineered Microorganism Producing Succinic Acid with High Yield by Utilizing Both Sucrose and Glycerol at the Same Time and Method for Preparing Succinic Acid Using the Same
KR102129379B1 (en) * 2018-10-10 2020-07-02 한국과학기술원 A recombinant microorganism into which a high activity malate dehydrogenase for producing succinic acid and a method for producing succinic acid using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0416437A (en) 2003-11-27 2007-02-21 Korea Advanced Inst Sci & Tech rumen bacteria mutants and process for preparing succinic acid using the same
BRPI0709679B1 (en) * 2006-03-31 2017-03-28 Rice Univ method for anaerobically fermenting glycerol to produce a product; and 1,2-pdo production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015770A1 (en) 2011-07-22 2013-01-31 Myriant Corporation Fermentation of glycerol to organic acids
EP2734615A1 (en) * 2011-07-22 2014-05-28 Myriant Corporation Fermentation of glycerol to organic acids
CN103842495A (en) * 2011-07-22 2014-06-04 麦兰特公司 Fermentation of glycerol to organic acids
EP2734615A4 (en) * 2011-07-22 2014-12-10 Myriant Corp Fermentation of glycerol to organic acids
CN103842495B (en) * 2011-07-22 2018-04-13 麦兰特公司 Glycerol fermentation is organic acid
US10041094B2 (en) 2011-07-22 2018-08-07 Myriant Corporation Fermentation of glycerol to organic acids

Also Published As

Publication number Publication date
WO2010093150A3 (en) 2010-12-09
WO2010093150A2 (en) 2010-08-19
KR101093199B1 (en) 2011-12-12

Similar Documents

Publication Publication Date Title
BRPI0618937A2 (en) yeast cells producing lactic acid having non-functional l-or d-lactate: ferricitochrome c oxidoreductase gene
CN110241061B (en) Method for improving synthesis capacity of lactobacillus brevis gamma-aminobutyric acid and application thereof
WO2007022623A1 (en) Regulation of heterologous recombinant protein expression in methylotrophic and methanotrophic bacteria
ES2654512T3 (en) New mutant microorganism producing succinic acid that uses sucrose and glycerol simultaneously, and method to produce succinic acid using the same
EP3020802B1 (en) Recombinant escherichia coli generated d-lactic acid, and use thereof
US20070172937A1 (en) Recombinant cells that highly express chromosomally-integrated heterologous genes
KR101093199B1 (en) Recombinant Microorganism Having Enhanced Glycerol Metabolism and Succinic Acid-Productivity and Method for Preparing Succinic Acid Using the Same
EP0560885B1 (en) Recombinant cells that highly express chromosomally-integrated heterologous genes
DK2430152T3 (en) A microorganism with increased L-lysine productivity and method for producing L-lysine using the same
CN112877269B (en) Microorganism producing lysine and method for producing lysine
US9605280B2 (en) Escherichia coli containing mutated lpdA gene and application thereof
KR101994772B1 (en) New klebsiella pneumoniae strain for production of 1,3-propanediol from glucose and method for proding 1,3-propanediol using the same
KR20110004574A (en) Microorganism enhanced resistance of succinic acid and method for preparing succinic acid using the same
KR20200023450A (en) Microorganisms and Related Methods Having Stabilized Copy Numbers of Functional DNA Sequences
KR101707627B1 (en) Novel Recombinant Microorganism Producing Organic Acid, And Method for Producing Organic Acid Using the Same
KR102611978B1 (en) A microorganism having enhanced productivity of succinate and a method for producing succinate using the same
KR102253701B1 (en) Hybrid type glycolysis pathway
WO2023246071A1 (en) Mrec mutant and use thereof in l-valine fermentative production
CN115125180B (en) Recombinant zymomonas mobilis for producing acetoin by double ways and construction method and application thereof
US11965200B2 (en) Recombinant microorganism transformed with a glutaric acid transporter gene and method of preparing glutaric acid using same
KR101921678B1 (en) An engineered cell having improved serine biosynthesis ability
US20210087571A1 (en) Acetyl-coa-derived biosynthesis
CN116262780A (en) Threonine efflux protein mutant and application thereof
CN117701513A (en) ATP synthase mutant and application thereof
Liu et al. Construction and characterization of a promoter library with varying strengths to enhance acetoin production from xylose in Serratia marcescens

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141127

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191126

Year of fee payment: 9