KR20100074474A - Red phospor based on nitride - Google Patents

Red phospor based on nitride Download PDF

Info

Publication number
KR20100074474A
KR20100074474A KR1020080132927A KR20080132927A KR20100074474A KR 20100074474 A KR20100074474 A KR 20100074474A KR 1020080132927 A KR1020080132927 A KR 1020080132927A KR 20080132927 A KR20080132927 A KR 20080132927A KR 20100074474 A KR20100074474 A KR 20100074474A
Authority
KR
South Korea
Prior art keywords
mgsin
red
phosphor
nitride
chemical formula
Prior art date
Application number
KR1020080132927A
Other languages
Korean (ko)
Other versions
KR101067362B1 (en
Inventor
손기선
Original Assignee
순천대학교 산학협력단
알티반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단, 알티반도체 주식회사 filed Critical 순천대학교 산학협력단
Priority to KR1020080132927A priority Critical patent/KR101067362B1/en
Publication of KR20100074474A publication Critical patent/KR20100074474A/en
Application granted granted Critical
Publication of KR101067362B1 publication Critical patent/KR101067362B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE: A nitride-based red phosphor is provided to manufacture a white light emitting diode having excellent color reproducibility due to reliability and superior color rendering and to increase luminous efficiency by improving the absorption efficiency of ultraviolet ray. CONSTITUTION: A nitride-based red phosphor has composition which is expressed as a chemical formula 1. The chemical formula 1 is Mg_(1-x)SiN_2 : xMn^(2+). In the chemical formula 1, x is 0.001 - 0.05. The red phosphor also has composition which is marked as a chemical formula 2. The chemical formula 2 is Mg_(1-x-y)SiN_2 : xMn^(2+),yCe^(3+). In the chemical formula 2, x is 0.001 - 0.05 and y is 0.005 - 0.05. A white light emitting diode uses the red phosphor.

Description

질화물계 적색 형광물질 {RED PHOSPOR BASED ON NITRIDE}Nitride-based red phosphors {RED PHOSPOR BASED ON NITRIDE}

본 발명은 LED용에 적용될 수 있는 형광물질에 관한 것으로, 보다 구체적으로는 질화물인 MgSiN2 호스트(host)에 활성 성분으로 Mn2+의 도핑(doping) 또는 Mn2+ 및 Ce3+의 코도핑(co-doping)을 통해, 460nm의 여기원에서 적색 발광을 할 수 있어 특히 LED용으로 적합한 질화물계 적색 형광물질에 관한 것이다.The present invention, more specifically, co-doping of dopant (doping) or Mn 2+, and Ce 3+ Mn 2+ as the active component in the nitride of MgSiN 2 hosts (host) on the fluorescent substance which can be applied to the LED for Through co-doping, red light can be emitted from an excitation source of 460 nm, and particularly relates to a nitride-based red fluorescent material suitable for LEDs.

발광다이오드(LED)는 p형 반도체와 n형 반도체를 접합하여 형성한 반도체 고체 발광소자로서, 긴 수명, 우수한 내충격성, 낮은 소비전력, 높은 신뢰성 등의 우수한 특성과 함께, 경박단소화가 가능하기 때문에 각종 기기의 광원으로서 각광받고 있다.A light emitting diode (LED) is a semiconductor solid light emitting device formed by joining a p-type semiconductor and an n-type semiconductor. The light emitting diode (LED) is light and short in size with excellent characteristics such as long life, excellent impact resistance, low power consumption, and high reliability. It has been spotlighted as a light source of various devices.

특히, 백색 발광을 하는 백색 LED는 현재 적용되고 있는 LCD 백라이트나, 할로겐 대체용 조명 등과 같은 분야 뿐 아니라, 에너지 절감 차원에서 일반 가정의 실내 조명으로의 응용도 기대되고 있다.In particular, white LEDs emitting white light are expected to be applied to indoor lighting in general homes in order to save energy, as well as fields such as LCD backlights and halogen replacement lights that are currently applied.

이러한 백색 LED를 구현하는 방법은 크게 세 가지로 나뉘어 진다.There are three ways to implement this white LED.

첫째로 빛의 삼원색인 적색, 녹색, 청색을 내는 3개의 LED를 조합하여 백색 을 구현하는 방법이다. 그런데 이 방법은 하나의 백색광원을 만드는데 3개의 LED를 사용해야 하기 때문에 각각의 LED를 제어하는 특별한 회로가 필요하므로 LED의 제조비용을 높이는 문제점이 있다.First, the white LED is realized by combining three LEDs that emit three primary colors of light, red, green, and blue. However, since this method requires three LEDs to make one white light source, a special circuit for controlling each LED is required, thus increasing the manufacturing cost of the LEDs.

둘째는 청색 LED를 광원으로 사용하여 황색 형광체를 여기 시킴으로써 백색을 구현하는 방법을 들 수 있는데, 이 방법은 발광 효율이 우수한 반면, 연색성이 좋지 않고, 전류 밀도에 따라 색도가 변하는 특징이 있어, 태양광에 가까운 백색광을 얻기 어려울 뿐 아니라 색재현성이 떨어져, 색도와 색재현성이 중요시 되는 LCD 백라이트와 같은 분야에 적용하는데 한계가 있다. 따라서 적색 형광체를 보강함으로써 연색성을 향상시키는 시도가 이루어지고 있으며 이를 위한 적색형광체의 개발이 매우 중요한 이슈가 되고 있다.Second, a method of realizing white color by exciting a yellow phosphor by using a blue LED as a light source is excellent in luminous efficiency, but is not good in color rendering and has a characteristic of changing chromaticity according to current density. Not only is it difficult to obtain white light close to the light, but also has poor color reproducibility, and thus there is a limit to application in fields such as an LCD backlight where chromaticity and color reproducibility are important. Therefore, attempts have been made to improve color rendering by reinforcing red phosphors, and development of red phosphors for this purpose has become a very important issue.

마지막으로 자외선 발광 LED를 광원으로 이용하여 삼원색 형광체를 여기 시켜 백색을 만드는 방법이다. 이 방법은 고전류 하에서의 사용이 가능하며, 색감이 우수하고 특별한 회로가 필요하지 않아 활발하게 연구가 진행 중인 방법으로, 이 방법의 경우 우수한 광특성을 나타내는 형광체를 확보하는 것이 기술적으로 중요하다. Finally, the ultraviolet light emitting LED is used as a light source to excite the three primary phosphors to make white. This method can be used under high current and is actively studied because it has excellent color and no special circuit. In this case, it is technically important to secure a phosphor having excellent optical characteristics.

한편, 상기 삼원색의 형광체 중에서 특히 적색 형광체의 경우, 개발 초기 단계에 있으며, 적색 발광이 가능한 물질로 황화물계 형광체와 질화물계 형광체가 알려져 있다. 그런데 상기 황화물계 형광체의 경우 색도와 휘도 특성이 우수하기는 하나 LED 환경에서는 내구성이 크게 떨어져 실용이 불가능하기 때문에, LED용 적색 형광체로서 질화물계 형광체에 대한 관심이 높아지고 있다. 이러한 질화물계 적색 형광체로는 현재까지 CaSiN2:Eu2+,Sr(Ba)Si5N8:Eu2+ 등 극히 일부의 형광체만이 적용되고 있을 뿐이므로, 우수한 광특성을 구비한 적색 발광용 형광물질의 개발이 요구되고 있다.On the other hand, among the three primary phosphors, particularly red phosphors, in the early stage of development, sulfide phosphors and nitride phosphors are known as a material capable of emitting red light. However, since the sulfide-based phosphor has excellent chromaticity and luminance characteristics, but it is not practical due to its low durability in the LED environment, interest in nitride-based phosphors is increasing as a red phosphor for LEDs. As such nitride-based red phosphors, only a small portion of phosphors such as CaSiN 2 : Eu 2+ and Sr (Ba) Si 5 N 8 : Eu 2+ have been applied until now, and thus red light having excellent optical characteristics The development of fluorescent materials is required.

본 발명은 백색 LED를 구현하는데 사용될 수 있는 신규한 적색 형광물질을 제공하는 것을 해결하고자 하는 과제로 한다.An object of the present invention is to provide a novel red phosphor that can be used to implement a white LED.

상기 본 발명의 과제를 달성하기 위한 본 발명에 따른 적색 형광물질은 하기 식 1로 표현되는 조성을 갖는 것을 특징으로 한다.Red phosphor according to the present invention for achieving the above object of the present invention is characterized by having a composition represented by the following formula (1).

[식 1][Equation 1]

Mg1-xSiN2 : xMn2+ Mg 1-x SiN 2 : xMn 2+

(x = 0.001 ~ 0.05)(x = 0.001 to 0.05)

본 발명은 상기 식 1에서 표시되어 있는 바와 같이, 종래 질화물계 적색 형광체에서 주로 사용하던 유로퓸을 사용하지 않고 망간을 활성물질로 사용하여 색도가 우수한 적색 발광을 구현한 것에 기술적 특징이 있다.As shown in Equation 1, the present invention has a technical feature in that red light emission with excellent chromaticity is realized by using manganese as an active material without using europium, which is mainly used in a nitride-based red phosphor.

상기 MgSiN2를 호스트로 하여 Mn2+를 도핑시킨 형광물질의 발광스펙트럼은 도 1a에 녹색으로 표시된 바와 같이, 장파장 성분과 단파장 성분의 2개의 가우시안 피크(Gaussian Peak)로 분리될 수 있다. 그리고 첨가되는 Mn2+ 농도의 변화에 따라, 발광스펙트럼을 구성하는 두 피크의 상대 분포는 변화하며, Mn2+ 농도가 증가함에 따라 장파장 성분이 더 우월적으로 되어 전체 발광스펙트럼을 적색 쪽으로 이 동(shift)시키기 때문에, 적색 발광을 구현할 수 있게 된다.The emission spectrum of the phosphor doped with Mn 2+ using MgSiN 2 as a host may be separated into two Gaussian peaks, a long wavelength component and a short wavelength component, as shown in green in FIG. 1A. As the Mn 2+ concentration is added, the relative distribution of the two peaks constituting the emission spectrum changes, and as the Mn 2+ concentration increases, the longer wavelength component becomes more superior, thereby shifting the entire emission spectrum toward red ( shift), red light emission can be realized.

한편, 상기 활성제인 Mn2+의 농도는 상기 식 1과 같이, 0.001 내지 0.05가 바람직한데, 0.001 미만일 경우에는 활성 효과가 충분하지 않아 적색 발광이 어렵고, 0.05를 초과할 경우에는 발광효율이 크게 떨어지기 때문이다.On the other hand, the concentration of the activator Mn 2+ is preferably 0.001 to 0.05, as shown in Equation 1, when less than 0.001 is not effective enough red light emission, when it exceeds 0.05, luminous efficiency is greatly reduced. For losing.

또한, 본 발명은 하기 식 2로 표현되는 조성을 갖는 형광물질을 제공한다.In addition, the present invention provides a fluorescent material having a composition represented by the following formula (2).

Mg1-x-ySiN2 : xMn2+,yCe3+ Mg 1-xy SiN 2 : xMn 2+ , yCe 3+

(x = 0.001 ~ 0.05, y = 0.005 ~ 0.05)(x = 0.001 to 0.05, y = 0.005 to 0.05)

활성제인 Ce3+는 도 1c에서 확인되는 바와 같이, MgSiN2 호스트에 단독으로 도핑될 경우 500nm 부근에서 매우 넓은 발광피크를 나타내는데 이는 백색 발광에 적합하다.As shown in FIG. 1C, the activator Ce 3+ shows a very wide light emission peak around 500 nm when doped with MgSiN 2 host alone, which is suitable for white light emission.

그런데, 도 1b에서 확인되는 바와 같이, MgSiN2 호스트에서 Mn2+와의 코도핑(co-doping) 시에는 Ce3+은 그 자체에 의한 발광은 소멸하며 그 대신 Mn2+ 발광을 증진시키는 작용을 하게 된다. 이를 통해 MgSiN2:Ce3+,Mn2+의 460nm 여기원에서의 발광강도는 MgSiN2:Mn2+에 비해 발광강도가 최대 270%까지 향상된다.However, as shown in FIG. 1B, when co-doping with Mn 2+ in MgSiN 2 host, Ce 3+ eliminates light emission by itself and instead enhances Mn 2+ light emission. Done. Through this, the emission intensity of 460nm excitation source of MgSiN 2 : Ce 3+ and Mn 2+ is improved up to 270% compared to MgSiN 2 : Mn 2+ .

즉, Mn2+에 Ce3+을 코도핑하게 되면, Mn2+ 단독 도핑 시에 비해 자외선 및 청색의 흡수효율이 크게 향상되어 결과적으로 적색 발광 효율을 높아지게 되며, 이는 본 발명에 따른 적색 형광물질의 실용성을 증대시킨다.That is, when the Ce 3+ to the co-doped Mn 2+, Mn 2+ is the absorption efficiency of ultraviolet and blue greatly improved when compared to the sole doping and consequently higher red light emission efficiency, which is a red fluorescent material according to the invention Increase the practicality of.

한편, Ce3+의 농도는 0.005 내지 0.05의 범위로 유지되는 것이 바람직한데, 상기 범위를 벗어날 경우 자외선 흡수효율의 개선 효과가 충분하지 않기 때문이다.On the other hand, the concentration of Ce 3+ is preferably maintained in the range of 0.005 to 0.05, because the effect of improving the ultraviolet absorption efficiency is not sufficient if it is out of the above range.

또한, Mn2+, Ce3+의 코도핑시 색도와 발광효율을 고려할 때 Mn2+의 농도는 0.004 ~ 0.06인 것이 보다 바람직하다.In addition, the concentration of Mn 2+ is more preferably 0.004 to 0.06 in consideration of chromaticity and luminous efficiency when co-doping Mn 2+ and Ce 3+ .

본 발명에 따른 적색 형광물질은 다음과 같은 효과를 가진다.The red fluorescent substance according to the present invention has the following effects.

첫째, 질화물을 기초로 종래에 고려되지 않았던 활성제로 Mn2+를 사용함으로써, 백색 LED에 적용할 수 있는 신규한 적색 형광물질을 제공할 수 있게 되어, 색도와 색재현성이 우수한 백색 LED를 제조할 수 있게 된다.First, by using Mn 2+ as an activator not previously considered based on nitride, it is possible to provide a novel red fluorescent material applicable to white LEDs, thereby producing a white LED having excellent color and color reproducibility. It becomes possible.

둘째, 본 발명에 따른 적색 형광물질은 MgSiN2 호스트에 Mn2+와 Ce3+의 코도핑을 통해 자외선의 흡수효율을 향상시킴으로써, 발광효율을 높일 수 있다.Second, the red phosphor according to the present invention can improve the luminous efficiency by improving the absorption efficiency of the ultraviolet light through the co-doping of Mn 2+ and Ce 3+ to the MgSiN 2 host.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 적색 형광물질에 대해 바람직한 실시예를 통해 상세하게 설명하지만 본 발명이 하기 실시예에 의해 제한되는 것은 아니다. 따라서 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양하게 변경할 수 있음은 자명하다.Hereinafter, a red fluorescent substance according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited by the following examples. Therefore, it will be apparent to those skilled in the art that the present invention may be variously modified without departing from the technical spirit of the present invention.

[실시예 1]Example 1

알드리치(aldrich)사의 α-Si3N4 분말과 Mg3N2분말 및 고준도(kojundo)사의 MnO 분말을 합성될 MgSiN2:xMn2+에서 Mn2+의 농도가 각각 0.001, 0.005, 0.01, 0.03, 0.05가 되도록 칭량하였다.The concentrations of Mn 2+ in MgSiN 2 : xMn 2+ to be synthesized from Aldrich α-Si 3 N 4 powder and Mg 3 N 2 powder and high-junction MnO powder were respectively 0.001, 0.005, 0.01, Weighed to 0.03, 0.05.

그 후, 상기 분말들은 완전히 분쇄하여 질소가스가 충전된 글로브 박스 내에서 에탄올을 사용하여 균일하게 혼합하였다. The powders were then ground completely and mixed uniformly with ethanol in a glove box filled with nitrogen gas.

혼합된 분말은 1500℃에서 6시간 동안 5Mpa의 질소 가스 압력 하에서 통상적인 고상반응법을 통해 MgSiN2:Mn2+ 형광물질을 합성하였다.The mixed powder synthesized MgSiN 2 : Mn 2+ phosphor through a conventional solid phase reaction under a nitrogen gas pressure of 5 Mpa for 6 hours at 1500 ° C.

이상과 같이 제조한 형광물질을 D2램프와 460nm-LED램프를 구비한 PL인스트루먼트 스펙트로미터를 사용하여 발광 및 여기 스펙트럼을 분석하고 발광특성을 조사하였다.The fluorescent material prepared as described above was analyzed by using a PL instrument spectrometer equipped with a D2 lamp and a 460nm-LED lamp to analyze emission and excitation spectra and investigate emission characteristics.

도 1a 내지 도 1c는 각각 MgSiN2:0.005Mn2+, MgSiN2:0.02Ce3+,0.005Mn2+ 및 MgSiN2:0.02Ce3+ 형광물질의 발광 스펙트럼(emission spectrum)이다. 이중 본 발명의 실시예에 따른 형광물질의 발광 스펙트럼은 460nm LED 여기원을 사용하여 측정 하였으며, MgSiN2:Ce3+ 형광물질은 254nm 연속광 여기원으로 측정하였다.1A to 1C are emission spectra of MgSiN 2 : 0.005Mn 2+ , MgSiN 2 : 0.02Ce 3+ , 0.005Mn 2+ and MgSiN 2 : 0.02Ce 3+ phosphors, respectively. The emission spectrum of the fluorescent material according to the embodiment of the present invention was measured using a 460nm LED excitation source, MgSiN 2 : Ce 3+ phosphor was measured by a 254nm continuous light excitation source.

도 1a에서 확인되는 바와 같이, MgSiN2:Mn2+ 형광물질은 전형적인 4T1(4G) → 6A1(6S) 전이(transfer)에 따른 특징적인 피크(peak)를 보여준다. 또한, MgSiN2 호스트의 Mn2+로부터의 발광 스펙트럼은 640nm 부근에서 브로드(broad)한 피크 분포를 나타내는데, 이는 우수한 색도로 적색발광을 할 수 있음을 의미한다.As seen in FIG. 1A, the MgSiN 2 : Mn 2+ phosphor shows a characteristic peak following a typical 4 T 1 ( 4 G) → 6 A 1 ( 6 S) transfer. In addition, the emission spectrum from Mn 2+ of the MgSiN 2 host shows a broad distribution of peaks around 640 nm, which means that red light can be emitted with excellent chromaticity.

또한, 도 1a에 녹색으로 표시된 바와 같이, MgSiN2:Mn2+의 발광스펙트럼은 2개의 장파장 성분과 단파장 성분의 가우시안 피크(Gaussian Peak)로 분리되는데, 상기 두 피크의 상대 분포는 도 3에 도시된 바와 같이, Mn2+ 농도가 증가함에 따라 장파장 성분이 더 우월적이 되어, 전체 스펙트럼이 적색 쪽으로 옮겨지는 결과를 나타낸다.In addition, as shown in green in FIG. 1A, the emission spectra of MgSiN 2 : Mn 2+ are separated into Gaussian peaks of two long-wavelength components and short-wavelength components, and the relative distribution of the two peaks is shown in FIG. 3. As can be seen, as the Mn 2+ concentration increases, the longer wavelength component becomes more superior, resulting in shifting the entire spectrum towards the red.

또한, 상기 본 발명의 실시예 1에 따른 형광물질의 색순도를 측정한 결과는 하기 표 1과 같았다.In addition, the results of measuring the color purity of the fluorescent material according to Example 1 of the present invention were as Table 1 below.

조성
(Mg1-xSiN2:xMn2+)
Furtherance
(Mg 1-x SiN 2 : xMn 2+ )
색좌표Color coordinates
xx XX YY 0.0010.001 0.5956140.595614 0.3989060.398906 0.0050.005 0.6360540.636054 0.3626840.362684 0.010.01 0.5895830.589583 0.4048820.404882 0.030.03 0.6236250.623625 0.3742080.374208 0.050.05 0.6383470.638347 0.3601960.360196

상기 표 1에서 확인되는 바와 같이, 본 발명의 실시예 1에 따른 형광물질은 백색 LED에 적용할 수 있을 정도의 충분한 색도를 갖는 적색 발광을 할 수 있음을 알 수 있다.As confirmed in Table 1, it can be seen that the fluorescent material according to Example 1 of the present invention can emit red light having a sufficient chromaticity enough to be applied to a white LED.

한편, 상기 Mn2+의 도핑량에 따른 발광효율을 살펴보면, 도 3에서 알 수 있는 바와 같이, 0.005를 정점으로 하여 급격하게 발광효율이 떨어지므로, Mn2+의 도핑량은 0.004 ~ 0.006의 범위로 유지하는 것이 보다 바람직하다.On the other hand, looking at the luminous efficiency according to the doping amount of Mn 2+ , as can be seen in Figure 3, since the luminous efficiency drops sharply to the peak of 0.005, the doping amount of Mn 2+ ranges from 0.004 to 0.006 It is more preferable to keep as.

[실시예 2][Example 2]

실시예 1과 동일하며, 다만 상기 혼합물에 고준도(kojundo)사의 CeO 분말을 첨가하여 Mg1-x-ySiN2:xMn2+yCe3+ 형광물질을 합성하였다. 이때 합성된 형광물질에서 Ce3+의 농도는 이때 합성된 형광물질에서 Mn2+의 농도는 0.005로 고정시키고 Ce3+의 농도는 0.005, 0.02, 0.05 가 되도록 조절하였다.Same as Example 1, but Mg 1-xy SiN 2 : x Mn 2 + yCe 3 + phosphor was synthesized by adding CeO powder of Kojundo Co., Ltd. to the mixture. At this time, the concentration of Ce 3+ in the synthesized fluorescent material was adjusted so that the concentration of Mn 2+ in the synthesized phosphor was fixed at 0.005 and the concentration of Ce 3+ was 0.005, 0.02, 0.05.

이와 같이 제조한 형광물질을 실시예 1과 동일하게 D2램프와 460nm-LED램프를 구비한 PL인스트루먼트 스펙트로미터를 사용하여 발광 및 여기 스펙트럼을 분석하였으며, 발광특성을 평가하였다.The luminescent material and the excitation spectrum were analyzed by using a PL instrument spectrometer equipped with a D2 lamp and a 460nm-LED lamp in the same manner as in Example 1, and the luminescence properties were evaluated.

먼저, Mn2+과 Ce3+의 코도핑 효과를 확인하기 위해 MgSiN2:Ce3+을 합성하여 그 발광 및 여기 스펙트럼을 분석한 결과, 도 1c에서 확인되는 바와 같이, 4f-5d 전이에 따른 피크를 보여주며, MgSiN2:Mn2+와 대조적으로, MgSiN2:Ce3+의 발광피크는 500nm 부근에 매우 브로드한 상태로 위치하며 이는 백색발광에는 의미가 있으나 적색발광시의 연색성 향상의 관점에서는 의미가 없는 것을 알 수 있다.First, in order to confirm the co-doping effect of Mn 2+ and Ce 3+ , MgSiN 2 : Ce 3+ was synthesized, and its emission and excitation spectra were analyzed. As shown in FIG. 1C, according to the 4f-5d transition, In contrast to MgSiN 2 : Mn 2+ , the emission peak of MgSiN 2 : C e3 + is located very broadly around 500 nm, which is meaningful for white light emission but in terms of color rendering improvement in red light emission. It is not meaningful.

그런데 본 발명의 실시예 2와 같이, Ce3+ 와 Mn2+ 를 코도핑한 MgSiN2의 경우, 도 1b에서 확인되는 바와 같이, Ce3+에 의한 발광은 소멸함에 반해, Mn2+에 의한 발광이 증진되는데, 이를 통해 MgSiN2:0.02Ce3+,0.005Mn2+형광물질의 460nm 여기원에서의 발광강도는 MgSiN2:0.005Mn2+형광물질에 비해 약 270% 향상됨을 확인하였다.However, as in Example 2 of the present invention, in the case of MgSiN 2 co-doped with Ce 3+ and Mn 2+ , as shown in FIG. 1B, light emission due to Ce 3+ disappears, but due to Mn 2+ Luminescence was enhanced, and it was confirmed that luminescence intensity at 460 nm excitation source of MgSiN 2 : 0.02Ce 3+ and 0.005Mn 2+ phosphors was improved by about 270% compared to MgSiN 2 : 0.005Mn 2+ phosphor.

도 2는 본 발명의 실시예 1 및 2 에 따라 합성된 MgSiN2:0.005Mn2+, MgSiN2: 0.02Ce3+,0.005Mn2+ 및 MgSiN2:0.02Ce3+ 형광물질의 여기 스펙트럼을 나타낸다.2 shows excitation spectra of MgSiN 2 : 0.005Mn 2+ , MgSiN 2 : 0.02Ce 3+ , 0.005Mn 2+ and MgSiN 2 : 0.02Ce 3+ phosphors synthesized according to Examples 1 and 2 of the present invention. .

여기서 MgSiN2:Mn2+ 및 MgSiN2:Ce3+,Mn2+의 여기 스펙트럼은 270nm 부근에서 상대적으로 강한 격자 흡수를 나타내며, Ce3+의 코도핑에 의한 큰 영향이 없음을 보여준다.Here, the excitation spectra of MgSiN 2 : Mn 2+ and MgSiN 2 : Ce 3+ , Mn 2+ show relatively strong lattice absorption around 270 nm and show no significant effect by co-doping of Ce 3+ .

그런데 390 ~ 550nm 범위에서 Mn2+이온의 몇가지 직접 흡수 피크의 피크 강도는 현저한 향상을 보이며, 이는 4D와 4G 레벨의 결정장 분리(crystalline field splitting)에 기인한다.However, the peak intensities of several direct absorption peaks of Mn 2+ ions in the 390-550 nm range show a significant improvement, due to the crystalline field splitting at 4D and 4G levels.

또한, 도 2의 화살표로 표시된 바와 같이, Ce3+ 코도핑은 호스트 흡수와 Mn2+ 직접 흡수 사이의 범위에서의 흡수 강도의 현저한 향상을 초래하며, 이는 MgSiN2:Ce3+의 여기 스펙트럼과 일치한다. 이러한 Ce3+에 기인한 Mn2+ 직접 흡수의 향상은 전술한 MgSiN2:Mn2+ 형광물질과 MgSiN2:Ce3+,Mn2+형광물질의 460nm 여기원에서의 발광강도의 차이를 나타내는 원인이 되는 것으로 파악된다.In addition, as indicated by the arrows in FIG. 2, Ce 3+ co-doping results in a significant improvement in absorption strength in the range between host absorption and Mn 2+ direct absorption, which is dependent on the excitation spectrum of MgSiN 2 : Ce 3+ . Matches. Such a Mn 2+ Ce directly improve the absorption due to the above-described 3+ MgSiN 2: 460nm indicating the difference in light emission intensity at an excitation source of Ce 3+, Mn 2+ phosphor: Mn 2+ phosphor and a MgSiN 2 It seems to be the cause.

도 5는 MgSiN2를 호스트로 하여 0.005Mn2+를 도핑한 형광물질에 Ce3+의 코도핑항 양에 따른 발광스펙트럼의 변화를 나타내는 그래프이다. 도 5에서 확인되는 바와 같이, Ce3+의 도핑량에 따른 발광스펙트럼의 변화는 거의 없다. 즉, Ce3+의 코도핑은 MgSiN2:Mn2+,Ce3+ 형광물질의 발광파장에는 영향을 주지 않고 다만 발광효율에만 영향을 줌을 알 수 있다.FIG. 5 is a graph showing changes in emission spectra according to the amount of Ce 3+ co-doped phosphor in a phosphor doped with 0.005Mn 2+ using MgSiN 2 as a host. As shown in FIG. 5, there is almost no change in the emission spectrum according to the doping amount of Ce 3+ . That is, co-doping of Ce 3+ is MgSiN 2: emission wavelength of Mn 2+, Ce 3+ phosphor without affecting the can just know which affects only the light-emitting efficiency.

한편, 본 발명의 실시예 2에 따른 형광물질의 색순도를 평가한 결과 하기 표 2와 같았다.On the other hand, as a result of evaluating the color purity of the fluorescent material according to Example 2 of the present invention was as Table 2 below.

조성
(Mg1-0.005-ySiN2:0.005Mn2+yCe3+)
Furtherance
(Mg 1-0.005-y SiN 2 : 0.005Mn 2+ yCe 3+ )
색좌표Color coordinates
yy XX YY 0.0050.005 0.6155430.615543 0.3602270.360227 0.020.02 0.6260870.626087 0.3624910.362491 0.050.05 0.6223320.622332 0.3604390.360439

상기 표 2에서 확인되는 바와 같이, 본 발명의 실시예 2에 따른 형광물질은 Ce3+의 코도핑량에 관계 없이, 일정한 색좌표를 나타내며, 상기와 색순도는 백색 LED를 구현하는데 충분히 적용할 수 있는 정도이다.As confirmed in Table 2, the fluorescent material according to Example 2 of the present invention exhibits a constant color coordinate, regardless of the amount of Ce 3+ co-doping, and the color purity can be sufficiently applied to implement a white LED It is enough.

한편, 도 6에서 확인되는 바와 같이, Ce3+의 코도핑량은 0.005 ~ 0.05의 범위를 벗어나는 경우, 발광효율에 미치는 영향이 크게 줄어들기 때문에, 상기 범위 내로 도핑되는 것이 바람직하다.On the other hand, as shown in Figure 6, when the co-doping amount of Ce 3+ is out of the range of 0.005 ~ 0.05, since the effect on the luminous efficiency is greatly reduced, it is preferable to be doped within the above range.

도 1a 내지 도 1c는 각각 MgSiN2:0.005Mn2+, MgSiN2:0.02Ce3+,0.005Mn2+ 및 MgSiN2:0.02Ce3+ 형광물질의 발광 스펙트럼이다.1A to 1C are emission spectra of MgSiN 2 : 0.005Mn 2+ , MgSiN 2 : 0.02Ce 3+ , 0.005Mn 2+ and MgSiN 2 : 0.02Ce 3+ phosphors, respectively.

도 2는 MgSiN2:0.005Mn2+, MgSiN2:0.02Ce3+,0.005Mn2+ 및 MgSiN2:0.02Ce3+ 형광물질의 여기 스펙트럼이다.2 is an excitation spectrum of MgSiN 2 : 0.005Mn 2+ , MgSiN 2 : 0.02Ce 3+ , 0.005Mn 2+ and MgSiN 2 : 0.02Ce 3+ phosphors.

도 3은 MgSiN2를 호스트로 하여 Mn2+를 도핑하였을 때, Mn2+의 도핑량에 따른 발광스펙트럼의 변화를 나타내는 그래프이다.3 is a graph showing the change in the emission spectrum according to the doping amount of Mn 2+ when Mn 2+ is doped with MgSiN 2 as a host.

도 4는 MgSiN2를 호스트로 하여 Mn2+를 도핑하였을 때, Mn2+의 도핑량에 따른 발광강도의 변화를 측정한 그래프이다.4 is a graph measuring the change in emission intensity according to the doping amount of Mn 2+ when Mn 2+ is doped with MgSiN 2 as a host.

도 5는 MgSiN2를 호스트로 하여 0.005Mn2+를 도핑한 형광물질에 Ce3+의 코도핑항 양에 따른 발광스펙트럼의 변화를 나타내는 그래프이다.FIG. 5 is a graph showing changes in emission spectra according to the amount of Ce 3+ co-doped phosphor in a phosphor doped with 0.005Mn 2+ using MgSiN 2 as a host.

도 6은 MgSiN2를 호스트로 하여 0.005Mn2+를 도핑한 형광물질에 Ce3+의 코도핑항 양에 따른 발광강도의 변화를 측정한 그래프이다.FIG. 6 is a graph measuring the change in luminescence intensity according to the amount of Ce 3+ co-doped phosphor in a phosphor doped with 0.005Mn 2+ using MgSiN 2 as a host.

Claims (4)

하기 식 1로 표현되는 것을 특징으로 하는 적색 형광물질.Red fluorescent substance characterized by the following formula 1. [식 1][Equation 1] Mg1-xSiN2 : xMn2+ Mg 1-x SiN 2 : xMn 2+ (x = 0.001 ~ 0.05)(x = 0.001 to 0.05) 하기 식 2로 표현되는 것을 특징으로 하는 적색 형광물질.Red fluorescent substance characterized by the following formula 2. [식 2][Equation 2] Mg1-x-ySiN2 : xMn2+,yCe3+ Mg 1-xy SiN 2 : xMn 2+ , yCe 3+ (x = 0.001 ~ 0.05, y = 0.005 ~ 0.05)(x = 0.001 to 0.05, y = 0.005 to 0.05) 제 2 항에 있어서, 상기 [식 2]에 있어서, x는 0.004 ~ 0.006인 것을 특징으로 하는 적색 형광물질.3. The red phosphor of claim 2, wherein x is in the range of 0.004 to 0.006. 제 1 항 내지 제 3 항 중 어느 한 항에 기재된 적색 형광물질을 사용한 백색 LED.The white LED using the red fluorescent substance in any one of Claims 1-3.
KR1020080132927A 2008-12-24 2008-12-24 Red phospor based on nitride KR101067362B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080132927A KR101067362B1 (en) 2008-12-24 2008-12-24 Red phospor based on nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080132927A KR101067362B1 (en) 2008-12-24 2008-12-24 Red phospor based on nitride

Publications (2)

Publication Number Publication Date
KR20100074474A true KR20100074474A (en) 2010-07-02
KR101067362B1 KR101067362B1 (en) 2011-09-23

Family

ID=42636986

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080132927A KR101067362B1 (en) 2008-12-24 2008-12-24 Red phospor based on nitride

Country Status (1)

Country Link
KR (1) KR101067362B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642882B1 (en) * 2015-01-23 2016-07-27 국민대학교산학협력단 composition for red phosphor, red phosphor comprising the same and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236580A3 (en) * 2005-09-30 2010-11-03 The Regents of the University of California Nitride and oxy-nitride cerium based phosphor materials for solid-state lighting applications
JP2008081631A (en) 2006-09-28 2008-04-10 Sharp Corp Light-emitting device
JP2008208238A (en) * 2007-02-27 2008-09-11 Showa Denko Kk Fluorescent substance and method for producing the same and lighting apparatus and image display device equipped with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642882B1 (en) * 2015-01-23 2016-07-27 국민대학교산학협력단 composition for red phosphor, red phosphor comprising the same and manufacturing method thereof

Also Published As

Publication number Publication date
KR101067362B1 (en) 2011-09-23

Similar Documents

Publication Publication Date Title
KR100950497B1 (en) Novel phosphor system for a white light emitting diode
US7575697B2 (en) Silicate-based green phosphors
KR101641377B1 (en) - multiple-chip excitation systems for white light emitting diodes
KR101728005B1 (en) Conversion led with high color rendition index
JP4228012B2 (en) Red light emitting nitride phosphor and white light emitting device using the same
JP4932248B2 (en) Yellow light emitting phosphor, white light emitting element using the same, and illumination device using the same
CN100571478C (en) The illuminator that comprises yellow green-emitting luminescent material
US6783700B2 (en) Red photoluminescent phosphors
KR100911001B1 (en) A novel phosphor for white light-emitting diodes and fabrication of the same
CN103311413B (en) White light emitting device
KR101072576B1 (en) Red phosphor and its forming method for use in solid state lighting
Panlai et al. A potential single-phased white-emitting LiBaBO3: Ce3+, Eu2+ phosphor for white LEDs
Liu et al. Thermally stable luminescence of blue LiSrPO 4: Eu 2+ phosphor for near-UV light-emitting diodes
Wang et al. Europium (II)-activated oxonitridosilicate yellow phosphor with excellent quantum efficiency and thermal stability–a robust spectral conversion material for highly efficient and reliable white LEDs
CN107163943B (en) Spectrum-adjustable fluorescent powder suitable for near ultraviolet excitation and preparation method thereof
JP2006219636A (en) Phosphor, method for producing the same and light-emitting device
KR101067362B1 (en) Red phospor based on nitride
KR20130074649A (en) Oxy-fluoride phosphor and white light emitting diodes including oxy-fluoride phosphor for solid-state lighting applications
KR101409489B1 (en) Silicon oxynitride phosphor and light device having the same
KR100818601B1 (en) Red phospher, method of preparation thereof, and white ligth emitting device comprising the same
KR100877535B1 (en) Green fluorescent, a method of its preparation and white led including it
CN115417444A (en) Red oxide fluorescent powder excited by blue light and preparation method and application thereof
CN112812775A (en) Fluorescent material
Yang et al. A novel blue-emitting phosphor NaBaPO4: Eu2+ for white LEDs

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150901

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee