KR20100073833A - Method for manufacturing sealant for solid electrolyte fuel cell - Google Patents

Method for manufacturing sealant for solid electrolyte fuel cell Download PDF

Info

Publication number
KR20100073833A
KR20100073833A KR1020080132610A KR20080132610A KR20100073833A KR 20100073833 A KR20100073833 A KR 20100073833A KR 1020080132610 A KR1020080132610 A KR 1020080132610A KR 20080132610 A KR20080132610 A KR 20080132610A KR 20100073833 A KR20100073833 A KR 20100073833A
Authority
KR
South Korea
Prior art keywords
glass
crystallized glass
fuel cell
resin
sealing material
Prior art date
Application number
KR1020080132610A
Other languages
Korean (ko)
Inventor
김영우
장재하
이성연
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020080132610A priority Critical patent/KR20100073833A/en
Publication of KR20100073833A publication Critical patent/KR20100073833A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A sealant for a solid electrolyte fuel cell is provided to prevent viscosity degradation of a glass ceramic at a high temperature, to control the reaction with a separator, to prevent gas from being leaked, to obtain excellent insulation, and to be economically applied to a unit cell and a stack. CONSTITUTION: A method for a sealant for a solid electrolyte fuel cell comprises the following steps: manufacturing a frit by melting barium oxide(BaO)-silicon oxide(SiO2)-boric acid(B2O3)-aluminium oxide(Al2O3)-oxide zirconia(ZrO2) mixture and forming glass-ceramic particles by pulverizing the frit; manufacturing a glass-ceramic resin by adding alumina particles to the glass-ceramic particles and adding xylene and an acryl resin as a dispersing medium; and drying the glass resin by pouring the glass resin in a mold having a desired standard.

Description

고체산화물 연료전지용 결정화 유리 복합체 밀봉재의 제조 방법{Method For Manufacturing Sealant For Solid Electrolyte Fuel Cell}Manufacturing method of crystallized glass composite sealing material for solid oxide fuel cell {Method For Manufacturing Sealant For Solid Electrolyte Fuel Cell}

본 발명은 고체산화물 연료전지용 결정화 유리 복합체 밀봉재(seal)를 제조하는 방법에 관한 것으로서, 보다 구체적으로는 음극, 전해질 및 양극으로 이루어진 단위전지로 구성되고 이 단위전지와 분리판(interconnect)의 여러 개가 스택을 형성하며, 이 연료전지 스택에서 연료인 수소 가스와 공기의 혼합 방지, 가스의 누출 방지 및 전지 사이의 절연을 하기 위하여 밀봉재를 사용하게 되는 평판형 고체산화물 연료전지에 있어서, 결정화 유리(glass-ceramic) 입자에 알루미나 입자를 첨가한 밀봉재를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a crystallized glass composite seal for a solid oxide fuel cell, and more particularly, comprising a unit cell consisting of a negative electrode, an electrolyte, and a positive electrode. In a flat solid oxide fuel cell which forms a stack and uses a sealing material to prevent mixing of hydrogen gas and air as fuel in the fuel cell stack, leakage of gas, and insulation between cells, crystallized glass -ceramic) relates to a method for producing a sealing material in which alumina particles are added.

고체산화물 연료전지는 단위전지의 구성방법에 따라서 평판형(planar design), 원통형(tubular design) 및 적층형(monolithic design) 등으로 구분할 수 있으며, 특히 평판형 연료전지에서는 구성요소와 분리판의 밀봉이 매우 중요하다. Solid oxide fuel cells can be classified into planar design, cylindrical design and monolithic design according to the unit cell construction method. Especially in flat fuel cells, sealing of components and separators is difficult. very important.

도 1에 나타낸 바와 같이, 평판형 연료전지는 음극, 전해질 및 양극으로 이루어진 단위전지로 구성되고, 이 단위전지 여러 개를 적층하여 스택을 형성하게 되며, 그리고 이 연료전지 스택에서 연료 가스인 수소와 연소 가스인 공기의 혼합 방 지, 스택 외부로 가스 누출방지 및 단위전지간의 절연을 하기 위하여 분리판과 단위전지 구성요소 사이를 밀봉해야 한다. As shown in FIG. 1, a planar fuel cell includes a unit cell including a cathode, an electrolyte, and an anode, and a plurality of unit cells are stacked to form a stack. Sealing between separator and unit cell components is required to prevent mixing of combustion gases as air, to prevent gas leakage outside the stack, and to insulate between unit cells.

이와 같이 분리판과 구성요소 사이를 고온에서 기밀하기 위하여 사용하는 밀봉재는 열 충격(thermal cycling) 가동 중에도 연료가스와 산화제(즉 공기)의 장기적으로 안정한 분리가 가능하고, 구성요소와 열화학(thermochemical) 및 열기계적(thermomechanical) 보완성이 있어야 하며, 분리판과 접합할 때 단락(short circuit)이 일어나지 않으며, 그리고 스택 요소와 기계적 및 열적 불일치를 보완할 수 있는 특성이 요구된다. The sealant used to seal the separator and the components at high temperatures at high temperatures allows for long-term stable separation of fuel gas and oxidant (ie air) even during thermal cycling operations. And thermomechanical complementarity, no short circuit when joining separators, and properties that can compensate for mechanical and thermal mismatches with stack elements.

일반적으로 고체산화물 연료전지용 밀봉재는, 대별하면 경화형 밀봉재(rigid seal), 압축 밀봉재(compressive seal) 및 복합체 밀봉재(composite seal)으로 구분된다. 경화형 밀봉재는 유리(glass), 결정화 유리(glass-ceramics) 및 Ag-CuO 복합체 등이 있으며, 압축 밀봉재는 판상의 운모(mica) 및 금속 복합체 등이 있다. 이중, 현재까지는 주로 유리 및 결정화 유리의 경화형 밀봉재가 주로 사용되고 있다. In general, the sealant for a solid oxide fuel cell is roughly divided into a rigid seal, a compressive seal, and a composite seal. Curable sealants include glass, crystal-glass and Ag-CuO composites, and compression seals include plate-like mica and metal composites. Of these, the curable sealing material of glass and crystallized glass is mainly used until now.

상기 결정화 유리로는 BaO-Al2O3-SiO2-B2O3계, SrO-La2O3-Al2O3-SiO2-B2O3계, MgO-Al2O3-P2O5계, BaO-Al2O3-SiO2-ZnO계 및 CaO-TiO2-SiO2계 등이 보고되어 있다. 그러나 유리 및 결정화 유리는 장기간이 아닌 몇천 시간의 사용에 적합하며, 결정화 유리와 분리판의 화학적 반응에 의한 열화 및 부식저항성 감소, 고온에서 장기간 유지에 따른 유리의 누출(squeeze-out), 결정화 유리의 취성, 그리고 열 충격 등의 문제는 스택의 가열 및 냉각속도를 조절하여야 해결 가능하여, 그 사용이 제한된다는 특성이 있다. Examples of the crystallized glass include BaO-Al 2 O 3 -SiO 2 -B 2 O 3 , SrO-La 2 O 3 -Al 2 O 3 -SiO 2 -B 2 O 3 , MgO-Al 2 O 3 -P the 2 O 5 series, BaO-Al 2 O 3 -SiO 2 -ZnO -based, and the like based CaO-TiO 2 -SiO 2 has been reported. However, glass and crystallized glass are suitable for use for several thousand hours, not for long periods of time, and deterioration and corrosion resistance due to chemical reaction of crystallized glass and separator, squeeze-out of glass due to long-term maintenance at high temperature, crystallized glass Problems such as brittleness and thermal shock can be solved by adjusting the heating and cooling speeds of the stack, and the use thereof is limited.

그러나, 이들 결정화 유리만으로 밀봉재를 제조하면서, 이 결정화 유리를 고온에서 장시간 유지함에 따른 유리의 점도 저하, 유리와 분리판의 반응 억제 및 고온에서의 안정성 향상 등에 관한 구체적인 방안에 대하여는 잘 보고되어 있지 않다. However, while producing a sealing material using only these crystallized glass, specific measures regarding the reduction of the viscosity of the glass, the suppression of the reaction between the glass and the separator and the improvement of the stability at high temperature, etc., by keeping the crystallized glass at a high temperature for a long time are not well reported. .

본 발명은 평판형 고체산화물 연료전지용 밀봉재를 결정화 유리와 알루미나 입자를 혼합하여 제조하여, 고온에서 결정화 유리의 점도 저하 방지, 분리판과의 반응 억제 및 고온에서 안정성 향상을 도모하며, 나아가, 단위전지 및 스택에 적용시, 가스 누출이 없고, 전기절연성이 우수하며, 경제적인 밀봉재를 제조할 수 있는 고체산화물 연료전지용 결정화 유리 복합체 밀봉재의 제조 방법을 제공한다.The present invention is prepared by mixing the crystallized glass and alumina particles in a sealing material for a flat-type solid oxide fuel cell, thereby preventing the viscosity of the crystallized glass from decreasing at high temperatures, suppressing reaction with a separator and improving stability at high temperatures, and further, a unit cell. And when applied to the stack, there is provided a method for producing a crystallized glass composite sealing material for a solid oxide fuel cell that can be produced in a gas-free, excellent electrical insulation, an economical sealing material.

본 발명은, 제1 구현예로서, 산화바륨(BaO)-산화규소(SiO2)-붕산(B2O3)-산화알루미늄(Al2O3)-산화지르코니아(ZrO2) 혼합물을 용융시켜 프리트(frit)를 제조하고, 분쇄하여 결정화 유리 입자를 형성하는 단계, 상기 결정화 유리 입자에 알루미나 입자를 첨가하고, 분산매로 자일렌 및 아크릴 레진을 첨가하여 결정화 유리 레진을 제조하는 단계, 상기 유리 레진을 원하는 규격의 몰드(mould)에 부어 건조하는 단계를 포함하는 고체산화물 연료전지용 밀봉재 제조방법,According to a first embodiment, a barium oxide (BaO) -silicon oxide (SiO 2 ) -boric acid (B 2 O 3 ) -aluminum oxide (Al 2 O 3 ) -zirconia (ZrO 2 ) mixture is melted. Preparing frit, pulverizing to form crystallized glass particles, adding alumina particles to the crystallized glass particles, and adding xylene and acrylic resin as a dispersion medium to produce crystallized glass resin, the glass resin Method for manufacturing a sealing material for a solid oxide fuel cell, comprising the step of pouring into a mold of the desired standard (dry),

제2 구현예로서, 상기 분쇄된 결정화 유리 입자의 평균입경은 5.4~20.0㎛인 고체산화물 연료전지용 밀봉재 제조방법, 및As a second embodiment, the average particle diameter of the pulverized crystallized glass particles is 5.4 ~ 20.0㎛ manufacturing method of the sealing material for a solid oxide fuel cell, and

제3 구현예로서, 상기 유리 레진은 결정화 유리입자에 알루미나 입자 10~20중량%, 자이렌 2.2~14.9중량% 및 아크릴 레진 16.3~32.6중량%를 첨가한 것인 고체산화물 연료전지용 밀봉재 제조방법을 제공한다.As a third embodiment, the glass resin is 10 to 20% by weight of the alumina particles, 2.2 to 14.9% by weight of the crystalline glass particles and 16.3 to 32.6% by weight of the acrylic resin to the manufacturing method of the sealing material for a solid oxide fuel cell. to provide.

본 발명에 따라, 평판형 고체산화물 연료전지용 밀봉재를 결정화 유리와 알루미나 입자를 혼합하여 제조함으로써, 결정화 유리의 고온에서의 점도 저하를 방지하고, 분리판과의 반응을 억제하며, 고온에서 안정성을 향상시킬 수 있을 뿐만 아니라, 가스 누출이 없고, 우수한 전기절연성 및 저렴하게 단위전지 및 스택에 적용할 밀봉재를 제조할 수 있다.According to the present invention, a sealing material for a plate-shaped solid oxide fuel cell is prepared by mixing crystallized glass and alumina particles, thereby preventing a decrease in viscosity at a high temperature of the crystallized glass, suppressing a reaction with a separating plate, and improving stability at a high temperature. Not only can it be made, but there is also no gas leakage, and excellent electrical insulation and inexpensive sealant can be manufactured for unit cells and stacks.

본 발명은 산화바륨(BaO)-산화규소(SiO2)-붕산(B2O3)-산화알루미늄(Al2O3)-산화지르코니아(ZrO2) 혼합물을 용융시켜 프리트(frit)를 제조하는 단계, 상기 프리트를 결정화 유리 입자로 분쇄하는 단계, 상기 결정화 유리에 알루미나(Al2O3) 입자를 첨가하여 분산매로 자이렌(Xylene) 및 아크릴 레진을 첨가하여 결정화 유리 레진을 제조하는 단계 및 상기 유리 레진을 원하는 규격의 몰드(mould)에 부어 건조하는 단계를 포함하는 평판형 고체산화물 연료전지용 결정화 유리 복합체 밀봉재를 제조하는 방법에 관한 것이다.The present invention is to prepare a frit by melting a mixture of barium oxide (BaO)-silicon oxide (SiO 2 )-boric acid (B 2 O 3 )-aluminum oxide (Al 2 O 3 )-zirconia (ZrO 2 ) Step, pulverizing the frit into crystallized glass particles, adding alumina (Al 2 O 3 ) particles to the crystallized glass to add a styrene (Xylene) and acrylic resin as a dispersion medium to produce a crystallized glass resin and the The present invention relates to a method of manufacturing a crystallized glass composite sealing material for a plate-type solid oxide fuel cell, comprising pouring a glass resin into a mold of a desired specification and drying the same.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 결정화 유리에 산화바륨(BaO)-산화규소(SiO2)-붕산(B2O3)-산화알루미늄(Al2O3)-산화지르코니아(ZrO2) 혼합물을 용융시켜 프리트(frit)를 제조하는 단계를 포함한다.The present invention melts a mixture of barium oxide (BaO)-silicon oxide (SiO 2 )-boric acid (B 2 O 3 )-aluminum oxide (Al 2 O 3 )-zirconia (ZrO 2 ) mixture in a crystallized glass frit It comprises the step of preparing.

상기 얻어진 프리트를 분쇄하여 결정화 유리 입자를 형성한다. 상기 결정화 유리 입자는 평균 입자 사이즈가 5.4-20.0㎛를 갖도록 분쇄하는 것이 바람직하다. 상기 결정화 유리의 평균입도가 5.4㎛보다 작으면 결정화 유리와 레진이 함유된 혼합물을 몰드에 부어 건조시킬 때, 건조 중에 제조된 판에서 크랙이 발생하게 되어 바람직하지 않다. 그리고, 평균 입경이 20.0㎛보다 크면 제조된 밀봉재 판의 강도가 낮아 가공에 적합하지 않으며, 또한 실제 스택에 적용할 때 입자의 크기가 너무 커 융착이 잘 되지 않는 문제점이 있다.The obtained frit is pulverized to form crystallized glass particles. It is preferable to grind | pulverize the said crystallized glass particle so that it may have an average particle size 5.4-20.0micrometer. If the average particle size of the crystallized glass is less than 5.4 μm, when the mixture containing the crystallized glass and the resin is poured into a mold and dried, cracks are generated in the plate produced during drying, which is not preferable. In addition, when the average particle diameter is larger than 20.0 μm, the strength of the manufactured sealing material plate is low, which is not suitable for processing, and when applied to an actual stack, there is a problem in that the size of the particles is too large and fusion is not good.

상기 분쇄된 결정화 유리에 알루미나 입자를 첨가한 후, 분산매 및 레진으로 결정화 유리 레진을 제조한다.After adding alumina particles to the pulverized crystallized glass, a crystallized glass resin is prepared from a dispersion medium and a resin.

상기 첨가되는 알루미나 입자는 10-20중량%의 범위로 첨가되는 것이 바람직하다. 알루미나 입자의 첨가량이 10중량%보다 작으면 원래 결정화 유리와 동일하게 고온에서 점도 저하가 일어나고, 안정성이 저하되어 밀봉재로 적합하지 않다. 그리고 알루미나 입자의 함량이 20중량%를 초과하면 결정화 유리의 유동성과 퍼짐성 등의 본래 성질을 상실하여 변형이 일어나지 않는다. 또한, 분리판과 단위전지의 기밀을 유지하지 못하여 스택의 운전온도인 800℃ 부근에서 밀봉재에 하중 2kgf/㎠을 가해도 충분한 기밀도를 유지하지 못하여 밀봉재로 부적합하게 된다.The added alumina particles are preferably added in the range of 10-20% by weight. If the addition amount of the alumina particles is less than 10% by weight, the viscosity decreases at a high temperature as in the original crystallized glass, the stability is lowered and is not suitable as a sealing material. And when the content of the alumina particles exceeds 20% by weight, the original properties such as fluidity and spreadability of the crystallized glass are lost and deformation does not occur. In addition, the airtightness of the separating plate and the unit cell is not maintained, and even if a load of 2 kg f / cm 2 is applied to the sealing material near the operating temperature of the stack at 800 ° C., the airtightness of the separator and the unit cell may not be maintained.

상기 결정화 유리에 첨가되는 아크릴 레진은 16.3-32.6중량%의 함량으로 첨가되는 것이 바람직하다. 16.3중량%보다 작으면 밀봉재 판을 제조하기에 적합한 점성을 가지지 아니하여 판상으로 펼칠 수 없는 문제가 있다. 나아가, 32.6중량%를 초과하여 첨가되면 밀봉재 판을 단위전지 또는 스택에 적용하여 실링(sealing)할 때 너무 많은 결합제로 인해 실링재에 다량의 기공이 존재하게 되고, 상기 기공으로 인해 연료가스와 공기가 누출 될 우려가 있어 바람직하지 않다.The acrylic resin added to the crystallized glass is preferably added in an amount of 16.3-32.6 wt%. If less than 16.3% by weight does not have a suitable viscosity for producing a sealing plate there is a problem that can not be spread in plate form. In addition, when more than 32.6% by weight is added, when the sealing plate is applied to a unit cell or a stack, sealing causes a large amount of pores in the sealing material due to too many binders. There is a risk of leakage, which is undesirable.

또한, 상기 결정화 유리에 첨가되는 아크릴 레진의 혼합성과 용해성을 증가시키기 위하여 자이렌을 첨가하며, 상기 자이렌은 2.2-14.9중량%의 함량으로 첨가되는 것이 바람직하다. 상기 자이렌의 함량이 2.2중량% 미만이면 결정화 유리에 첨가되는 레진의 혼합이 어려울 뿐 아니라, 레진이 잘 용해되지 않으며, 나아가 14.9중량%를 초과하면 자이렌이 밀봉재 판의 건조 중에 기공을 형성하게 되는바, 이러한 밀봉재 판을 사용할 경우에 상기 형성된 기공으로 인하여 충분한 실링을 할 수 없는 문제가 있는바, 바람직하지 않다.In addition, xylene is added to increase the mixing and solubility of the acrylic resin added to the crystallized glass, the xylene is preferably added in an amount of 2.2-14.9% by weight. If the content of the xylene is less than 2.2% by weight, not only is it difficult to mix the resin added to the crystallized glass, but the resin is not dissolved well, and if it is more than 14.9% by weight, the xylene forms pores during drying of the sealing plate. When the sealing plate is used, there is a problem that sufficient sealing cannot be performed due to the pores formed above, which is not preferable.

이하, 하기 실시예를 통하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

[실시예]EXAMPLE

실시예 1, 2 및 비교예 1Examples 1 and 2 and Comparative Example 1

고체산화물 연료전지용 결정화 유리 복합체 밀봉재 판을 다음과 같이 제조하였다. A crystallized glass composite sealing plate for a solid oxide fuel cell was prepared as follows.

산화바륨(BaO)-산화규소(SiO2)-붕산(B2O3)-산화알루미늄(Al2O3)-산화지르코니아(ZrO2) 혼합물을 용융시켜 프리트를 제조하고, 얻어진 프리트(frit)에 평균 입경이 2~3㎛의 알루미나 입자를 각각 10중량%(실시예 1), 20중량%(실시예 2) 및 30중량%(비교예 1) 첨가하였다. 상기 혼합 분말 각각에 자이렌 10.4중량%를 습윤시키 고, 이 혼합물에 아크릴 레진 16.3중량%를 첨가하여 교반기로 충분히 혼합하여 밀봉재 원료를 제조하였다. A frit was prepared by melting a mixture of barium oxide (BaO)-silicon oxide (SiO 2 )-boric acid (B 2 O 3 )-aluminum oxide (Al 2 O 3 )-zirconia (ZrO 2 ) and obtained frit 10 wt% (Example 1), 20 wt% (Example 2) and 30 wt% (Comparative Example 1) were added to the alumina particles having an average particle diameter of 2 to 3 µm, respectively. 10.4% by weight of xylene was wetted to each of the mixed powders, and 16.3% by weight of acrylic resin was added to the mixture, and the mixture was sufficiently mixed with a stirrer to prepare a sealing material.

상기 제조된 원료를 아크릴 몰드에 붓고 상온에서 건조시켜 밀봉재 판을 제조한 후, 60℃ 정도에서 충분히 건조시켜 밀봉재 판을 제조하였다. The prepared raw material was poured into an acrylic mold and dried at room temperature to prepare a sealing plate, and then dried sufficiently at about 60 ° C. to prepare a sealing plate.

이와 같이 하여 제조된 밀봉재 판을 도 2에 나타낸 바와 같이, 내경 25㎜의 구멍(hole)을 갖는 가로 35×세로 35×두께 1㎜ 시편 및 내경 35㎜의 구멍을 갖는 50×50×1㎜의 2종류 시편으로 가공하였다. 제조된 시편을 PNNL(Y.S. Chou, et al., J. Power Sources, 112(2002) 130-136)에서 제안한 측정 방법과 유사하게 도 3에 나타낸 바와 같은 개념을 갖는 장치로 밀봉재의 기밀도(leak rate)를 측정하였다. As shown in Fig. 2, the sealing plate manufactured as described above has a width of 35 × length 35 × thickness 1mm specimen having a hole of 25mm inner diameter and 50 × 50 × 1mm having a hole of 35mm inner diameter. Two kinds of specimens were processed. The prepared specimens were leaked by a device having a concept as shown in FIG. 3, similar to the measurement method proposed by PNNL (YS Chou, et al., J. Power Sources, 112 (2002) 130-136). rate) was measured.

기밀도 측정은 다음과 같이 하였다. 시편 홀더(holder)에 밀봉재 시편을 놓고, 초기에 소정의 면압을 유지하면서 로의 온도를 800℃까지 승온한 후, 1시간 유지하였다. 밀봉재에 로드 셀(load cell)로 0.3kgf/㎠의 면압을 가하고, 이 밀봉재에 약 1.1bar가 되도록 헬륨(He) 가스를 채운 후, 시간의 경과에 따른 헬륨 가스의 압력 저하를 자동으로 관찰하여 기밀도를 측정하였다. 상기와 같은 방법으로 0.3kgf/㎠의 측정이 끝난 후, 면압을 다시 0.4, 0.5, 0.76, 1 및 2kgf/㎠의 조건으로 시간에 따른 헬륨 가스의 압력 저하를 연속적으로 측정하였다. The airtightness measurement was performed as follows. The sealant specimen was placed in the specimen holder, the furnace temperature was initially raised to 800 ° C. while maintaining a predetermined surface pressure, and then maintained for 1 hour. A surface cell of 0.3 kg f / cm 2 was applied to the sealing material with a load cell, and the sealing material was filled with helium (He) to be about 1.1 bar, and then the pressure drop of the helium gas was automatically observed over time. Air tightness was measured. After the measurement of 0.3kg f / ㎠ in the same manner as described above, the pressure drop of helium gas with time was measured continuously under the conditions of 0.4, 0.5, 0.76, 1 and 2kg f / ㎠ again the surface pressure.

이렇게 측정된 압력 저하를 이상기체법칙을 가정하여 다음과 같은 식으로 기밀도(sccm)를 계산하였다.The air pressure (sccm) was calculated in the following manner assuming the ideal gas law based on the measured pressure drop.

L=Δn/Δt=nf-ni/tf-ti=(pf -pi)V/RT(vf -vi)L = Δn / Δt = n f -n i / t f -t i = (p f - p i ) V / RT (v f - v i )

여기서, n은 가스의 몰(moles), T는 온도, V는 보관된 부피, R은 기체상수(gas constant), t는 시간, 그리고 p는 압력이다. 첨자 f와 i는 최종과 초기 상태를 나타낸다. Where n is the moles of gas, T is the temperature, V is the stored volume, R is the gas constant, t is the time, and p is the pressure. Subscripts f and i represent the final and initial states.

최종 계산된 기밀도(sccm/㎝)는 PNNL과 달리 측정시의 압력기울기(pressure gradient)를 고려하지 않고 시편의 직경만을 고려하여 계산하였다.The final calculated airtightness (sccm / cm) was calculated by considering only the diameter of the specimen, not considering the pressure gradient during the measurement, unlike the PNNL.

L'=L/4.4π(또는 2.4㎝)L '= L / 4.4π (or 2.4 cm)

여기서 4.4π 및 2.4㎝는 기밀도를 측정한 시편의 직경이다.Where 4.4π and 2.4cm are the diameters of the specimens whose airtightness was measured.

측정된 기밀도를 도 4 및 도 5에 나타내었다. The measured airtightness is shown in FIGS. 4 and 5.

도 4로부터 알 수 있는 바와 같이, 결정화 유리에 알루미나 분말이 10중량% 첨가된 밀봉재의 경우, 면압이 0.4kgf/㎠ 이상이 가해지면 기밀도(sccm)가 현저히 감소되어 우수한 특성을 나타내었으며, 알루미나가 20중량% 첨가된 밀봉재는 면압에 관계없이 거의 일정한 기밀도를 나타내어 스택에 사용할 수 있는 밀봉재로 적합하였다. 그러나 결정화 유리에 알루미나가 30중량% 첨가된 밀봉재의 기밀도는 면압 2kgf/㎠에서도 1.3sccm 정도로 높아 밀봉재로 적합하지 못하였다. As can be seen from Figure 4, in the case of the sealing material in which 10% by weight of alumina powder is added to the crystallized glass, when the surface pressure of 0.4kg f / ㎠ or more is applied, the airtightness (sccm) is significantly reduced, showing excellent characteristics, The sealant added with 20% by weight of alumina showed almost constant airtightness regardless of the surface pressure, and was suitable as a sealant that can be used in the stack. However, the airtightness of the sealing material in which 30% by weight of alumina was added to the crystallized glass was about 1.3 sccm even at a surface pressure of 2 kg f / cm 2, which was not suitable as a sealing material.

또, 도 5는 시편의 직경을 고려하여 계산된 기밀도(sccm/㎝)를 계산한 값을 나타내는 그래프로서, 도 5에 따르면, 알루미나가 10중량%(실시예 1) 및 20중량%(실시예 2) 첨가된 밀봉재는 그 값이 0.02sccm/㎝ 이하로서, 실제 스택에서 사용할 수 있는 정도의 기밀도를 나타내었으나, 알루미나가 30중량%(비교예 1) 첨가 된 밀봉재는 기밀도가 0.1sccm/㎝보다 높아 스택에 사용할 수 없는 값을 나타내어, 밀봉재로는 부적합한 것으로 판명되었다.In addition, Figure 5 is a graph showing the value calculated by calculating the airtightness (sccm / cm) calculated in consideration of the diameter of the specimen, according to Figure 5, 10% by weight (Example 1) and 20% by weight (execution) Example 2) The added sealant has a value of 0.02 sccm / cm or less, which shows the degree of airtightness that can be used in an actual stack, but the sealant added with 30% by weight of alumina (Comparative Example 1) has an airtightness of 0.1 sccm. It showed a value higher than / cm which cannot be used for the stack, and proved to be unsuitable as a sealing material.

도 6 및 도 7은 결정화 유리에 알루미나가 10중량% 첨가된 실시예 1의 밀봉재 및 알루미나가 30중량% 첨가된 비교예 1의 밀봉재에 대하여 800℃에서 기밀도를 측정한 후의 형상을 나타내는 사진이다. 도 6의 경우에는 기밀도를 측정하기 위한 상부 홀더 자국이 선명하게 시편에 존재하여 스택용 밀봉재로 적합함을 알 수 있었으나, 도 7의 경우에는 시편의 변형이 거의 없어 밀봉재로는 부적합함을 알 수 있었다.6 and 7 are photographs showing the shape after measuring the airtightness at 800 ° C. for the sealing material of Example 1 in which 10% by weight of alumina was added to the crystallized glass and the sealing material of Comparative Example 1 in which 30% by weight of alumina was added. . In the case of Figure 6 it can be seen that the upper holder traces for measuring the airtightness is clearly present in the specimen is suitable as a sealing material for the stack, in the case of Figure 7, there is almost no deformation of the specimen is not suitable as a sealing material. Could.

도 1은 일반적인 평판형 고체산화물 연료전지의 단면 구조를 나타내는 개략적 사시도이다.1 is a schematic perspective view showing a cross-sectional structure of a general planar solid oxide fuel cell.

도 2는 실시예에서 제조된 밀봉재판으로부터 가공된 기밀도 측정용 밀봉재 시편으로서, 가로 50×세로 50×두께 1㎜ 시편의 형상에 대한 사진이다.Figure 2 is a sealing material specimen for measuring the airtightness processed from the sealing plate produced in the embodiment, a photograph of the shape of the specimen 50 × 50 vertical × 1 mm thick.

도 3은 실시예에서 각 밀봉재 시편의 기밀도를 측정하는 장치를 개략적으로 나타내는 개념도이다.3 is a conceptual diagram schematically showing an apparatus for measuring the airtightness of each sealant specimen in an embodiment.

도 4는 실시예의 각 밀봉재 시편에 대하여 적용된 면압에 따라 측정된 밀봉재의 기밀도를 나타내는 그래프이다.4 is a graph showing the airtightness of the sealing material measured according to the surface pressure applied for each sealing material specimen of the embodiment.

도 5는 실시예의 각 밀봉재 시편에 대하여 적용된 면압에 따른 밀봉재의 기밀도를 계산하여 나타낸 그래프이다.5 is a graph showing the airtightness of the sealing material according to the surface pressure applied to each sealing material specimen of the embodiment.

도 6은 실시예 1에서 얻은 시편을 사용하여 기밀도 측정한 후의 시편의 형상을 나타내는 사진이다.6 is a photograph showing the shape of the specimen after airtightness measurement using the specimen obtained in Example 1. FIG.

도 7은 비교예 1에서 얻은 시편을 사용하여 기밀도 측정한 후의 시편의 형상을 나타내는 사진이다.7 is a photograph showing the shape of the specimen after the airtightness measurement using the specimen obtained in Comparative Example 1.

Claims (3)

산화바륨(BaO)-산화규소(SiO2)-붕산(B2O3)-산화알루미늄(Al2O3)-산화지르코니아(ZrO2) 혼합물을 용융시켜 프리트(frit)를 제조하고, 분쇄하여 결정화 유리 입자를 형성하는 단계; A mixture of barium oxide (BaO)-silicon oxide (SiO 2 )-boric acid (B 2 O 3 )-aluminum oxide (Al 2 O 3 )-zirconia (ZrO 2 ) was melted to prepare frit, and then ground Forming crystallized glass particles; 상기 결정화 유리 입자에 알루미나 입자를 첨가하고, 분산매로 자일렌 및 아크릴 레진을 첨가하여 결정화 유리 레진을 제조하는 단계; 및Preparing a crystallized glass resin by adding alumina particles to the crystallized glass particles and adding xylene and acrylic resin as a dispersion medium; And 상기 유리 레진을 원하는 규격의 몰드(mould)에 부어 건조하는 단계Pouring the glass resin into a mold of a desired size and drying 를 포함하는 고체산화물 연료전지용 밀봉재 제조방법.Solid oxide fuel cell sealing material manufacturing method comprising a. 제 1항에 있어서, 상기 분쇄된 결정화 유리 입자의 평균입경은 5.4~20.0㎛인 것을 특징으로 하는 고체산화물 연료전지용 밀봉재 제조방법.The method of claim 1, wherein the average particle diameter of the crushed crystallized glass particles is 5.4 ~ 20.0㎛ characterized in that the manufacturing method of the sealing material for a solid oxide fuel cell. 제 1항에 있어서, 상기 유리 레진은 결정화 유리입자에 알루미나 입자 10~20중량%, 분산매로 자일렌 2.2~14.9중량% 및 아크릴 레진 16.3~32.6중량% 첨가한 것임을 특징으로 하는 고체산화물 연료전지용 밀봉재 제조방법.The method of claim 1, wherein the glass resin is a solid oxide fuel cell sealing material, characterized in that 10 to 20% by weight of alumina particles, 2.2 to 14.1% by weight of xylene and 16.3 to 32.6% by weight of acrylic resin is added to the crystallized glass particles. Manufacturing method.
KR1020080132610A 2008-12-23 2008-12-23 Method for manufacturing sealant for solid electrolyte fuel cell KR20100073833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080132610A KR20100073833A (en) 2008-12-23 2008-12-23 Method for manufacturing sealant for solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080132610A KR20100073833A (en) 2008-12-23 2008-12-23 Method for manufacturing sealant for solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
KR20100073833A true KR20100073833A (en) 2010-07-01

Family

ID=42636717

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080132610A KR20100073833A (en) 2008-12-23 2008-12-23 Method for manufacturing sealant for solid electrolyte fuel cell

Country Status (1)

Country Link
KR (1) KR20100073833A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439687B1 (en) * 2012-12-26 2014-09-12 주식회사 포스코 Sealing material for solid oxide fuel cell having sandwich structure and manufacturing method thereof
WO2015009618A1 (en) * 2013-07-15 2015-01-22 Fcet, Llc Low temperature solid oxide cells
KR20170012749A (en) * 2015-07-23 2017-02-03 한국세라믹기술원 Solid oxide electrochemistry multi-functional tube unit battery having functionally distributed type triple pipe shape
US9670586B1 (en) 2008-04-09 2017-06-06 Fcet, Inc. Solid oxide fuel cells, electrolyzers, and sensors, and methods of making and using the same
WO2017104960A1 (en) * 2015-12-17 2017-06-22 재단법인 포항산업과학연구원 Glass sealing material for solid oxide fuel cell and sealing method using same
US10344389B2 (en) 2010-02-10 2019-07-09 Fcet, Inc. Low temperature electrolytes for solid oxide cells having high ionic conductivity
CN112054148A (en) * 2020-09-29 2020-12-08 荣晓晓 Modified bacterial cellulose lithium-sulfur battery diaphragm

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670586B1 (en) 2008-04-09 2017-06-06 Fcet, Inc. Solid oxide fuel cells, electrolyzers, and sensors, and methods of making and using the same
US10344389B2 (en) 2010-02-10 2019-07-09 Fcet, Inc. Low temperature electrolytes for solid oxide cells having high ionic conductivity
US11560636B2 (en) 2010-02-10 2023-01-24 Fcet, Inc. Low temperature electrolytes for solid oxide cells having high ionic conductivity
KR101439687B1 (en) * 2012-12-26 2014-09-12 주식회사 포스코 Sealing material for solid oxide fuel cell having sandwich structure and manufacturing method thereof
WO2015009618A1 (en) * 2013-07-15 2015-01-22 Fcet, Llc Low temperature solid oxide cells
US9905871B2 (en) 2013-07-15 2018-02-27 Fcet, Inc. Low temperature solid oxide cells
US10707511B2 (en) 2013-07-15 2020-07-07 Fcet, Inc. Low temperature solid oxide cells
KR20170012749A (en) * 2015-07-23 2017-02-03 한국세라믹기술원 Solid oxide electrochemistry multi-functional tube unit battery having functionally distributed type triple pipe shape
WO2017104960A1 (en) * 2015-12-17 2017-06-22 재단법인 포항산업과학연구원 Glass sealing material for solid oxide fuel cell and sealing method using same
CN112054148A (en) * 2020-09-29 2020-12-08 荣晓晓 Modified bacterial cellulose lithium-sulfur battery diaphragm
CN112054148B (en) * 2020-09-29 2023-10-24 深圳欣视界科技有限公司 Modified bacterial cellulose lithium sulfur battery diaphragm

Similar Documents

Publication Publication Date Title
JP4893880B2 (en) Sealing material for solid oxide fuel cell and method for producing the same
KR20100073833A (en) Method for manufacturing sealant for solid electrolyte fuel cell
US10658684B2 (en) Sanbornite-based glass-ceramic seal for high-temperature applications
JP6263576B2 (en) Glass composition for gaskets of devices operating at high temperatures and assembly method using them
EP2941405B1 (en) High temperature substrate attachment glass
US20060063659A1 (en) Alkali-Free Composite Sealant Materials for Solid Oxide Fuel Cells
US20110200909A1 (en) Thin, fine grained and fully dense glass-ceramic seal for sofc stack
KR20130019408A (en) Glass-ceramic compositions for joints of appliances operating at high temperatures, and assembly method using said compositions
KR101457614B1 (en) Glass composition for solid oxide fuel cell sealant, sealant and the manufacturing method using the same
KR100759831B1 (en) Reinforced matrix for molten carbonate fuel cell and method for preparing the same
KR101161992B1 (en) Method for manufacturing multi-layered sealant for solid oxide fuel cell
JP4305898B2 (en) Electrochemical equipment
US10615434B2 (en) Composition for solid oxide fuel cell sealant, sealant using same and method for preparing same
KR100838731B1 (en) Method for manufacturing sealant for solid electrolyte fuel cell
Heydari et al. The effect of zirconia nanoparticles addition on thermal and electrical properties of BaO-CaO-Al2O3-B2O3-SiO2 glass for solid oxide fuel cell sealant
KR101570513B1 (en) Sealing composite for flat solid oxide fuel cell stack and fuel cell stack using the same
KR101180217B1 (en) Sealant for solid oxide fuel cell and method for manufacturing the same
Liu et al. Characterization and performance of a high‐temperature glass sealant for solid oxide fuel cell
KR101554567B1 (en) Sealing material for solid oxide cell and solid oxide cell comprising the same
AU2021218224B2 (en) Glass composition for fuel cell stack sealing
KR20090068631A (en) Fabricating method of sealant for solid oxide fuel cell
KR20230146033A (en) Glass composition for sealing fuel cell stacks
Liu et al. Electrical and Mechanical Properties of Phlogopite MICA/BaO‐Al2CO3‐B2O3‐SiO2‐Based Glass Sealants for Solid Oxide Fuel Cell
KR101482998B1 (en) Sealing composite for flat solid oxide fuel cell stack
KR20220069213A (en) Glass ceramic composite sealant for solid oxide fuel cell with low shrinkage

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application