KR20100072395A - Method of preparing silver nanoparticle-embedded polymethylmetharcylate nanofibers via electrospinning - Google Patents

Method of preparing silver nanoparticle-embedded polymethylmetharcylate nanofibers via electrospinning Download PDF

Info

Publication number
KR20100072395A
KR20100072395A KR1020080130793A KR20080130793A KR20100072395A KR 20100072395 A KR20100072395 A KR 20100072395A KR 1020080130793 A KR1020080130793 A KR 1020080130793A KR 20080130793 A KR20080130793 A KR 20080130793A KR 20100072395 A KR20100072395 A KR 20100072395A
Authority
KR
South Korea
Prior art keywords
polymethylmethacrylate
silver
nanofibers
electrospinning
solution
Prior art date
Application number
KR1020080130793A
Other languages
Korean (ko)
Inventor
장정식
박은유
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020080130793A priority Critical patent/KR20100072395A/en
Publication of KR20100072395A publication Critical patent/KR20100072395A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/13Physical properties anti-allergenic or anti-bacterial

Abstract

PURPOSE: A method for preparing silver nanoparticle-embedded polymethylmethacrylate via electrospinning is provided to enhance the effectiveness and stability as an antibacterial material of the silver nanoparticles and the polymethylmethacrylate using the electrospinning and to reduce a cost by reducing complex processes. CONSTITUTION: A method for preparing silver nanoparticle-embedded polymethylmethacrylate comprises: melting the polymethylmethacrylate in a solvent; putting silver nitrate into the solution and mixing silver ions and a polymer; and manufacturing the silver nanoparticle-embedded polymethylmethacrylate via electrospinning. The molecular weight of the polymethylmethacrylate is 120,000-996,000. The solvent is acetone, acetonitrile, dimethylformamide, or tetrahydrofuran.

Description

전기 방사를 이용한 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 제조 방법 {Method of preparing silver nanoparticle-embedded polymethylmetharcylate nanofibers via electrospinning}Method for preparing silver nanoparticle-containing polymethylmethacrylate nanofibers by electrospinning {Method of preparing silver nanoparticle-embedded polymethylmetharcylate nanofibers via electrospinning}

본 발명은 전기 방사를 이용하여 은 나노 입자를 포함하고 있는 폴리메틸메타아크릴레이트 나노 섬유를 만드는 방법을 제시한다.The present invention provides a method of making polymethylmethacrylate nanofibers containing silver nanoparticles using electrospinning.

일반적으로 1~100 나노미터 정도의 크기를 갖는 입자를 나노입자라 부르며, 크기 면에서는 분자와 커다란 덩어리 고체의 중간 상태에 해당하는 물질이라 할 수 있다. 특히 나노 크기의 은 입자는 표면 반응성의 증가로 인해 촉매로 사용될 수 있으며, 높은 전기 전도도를 이용하여 전기 재료의 제조에도 응용될 수 있다. 또한 최근에는 박테리아에 대한 관심의 증가와 함께 은 나노 입자가 탁월한 항균 능력 (antimicrobial activity)을 지니고 있음이 밝혀졌다. 따라서 상업적으로 은 나노 입자를 항균 물질(antimicrobial agent)로써 이용하려는 많은 노력들이 진행되고 있다. Generally, a particle having a size of about 1 to 100 nanometers is called a nanoparticle, and in terms of size, it is a material that is halfway between a molecule and a large lump of solid. In particular, nano-sized silver particles can be used as catalysts due to increased surface reactivity, and can also be applied to the manufacture of electrical materials using high electrical conductivity. In recent years, with increasing interest in bacteria, it has been found that silver nanoparticles have excellent antimicrobial activity. Therefore, many efforts have been made to commercially use silver nanoparticles as antimicrobial agents.

은 이온의 항균 능력을 이용하여 은 이온은 화상(burn wound) 치료와 같은 다양한 살균 과정에 적극 활용되어 왔다. 그러나 은 이온을 치료제로 활용하면서, 은 이온이 매개 물질에서 할로겐과 같은 다른 음이온(anion)과 반응하여 검은색의 침전물을 만들어 은 이온의 항균 능력을 감소시키는 점이 중요한 문제점으로 제기되었다. 이러한 문제를 해결하기 위해 은 이온을 고분자와 같은 안정제를 사용하여 컴플렉스(complex)를 만들어 안정성을 높이기 위한 다양한 방법들이 제시되었으며, 그와 동시에 은 나노 입자를 제조하여 은 이온의 안정성은 높이면서 항균 효과를 지니도록 하는 연구들도 진행되었다.Utilizing the antibacterial ability of silver ions, silver ions have been actively utilized in various sterilization processes such as burn wound treatment. However, while utilizing silver ions as a therapeutic agent, the important problem is that silver ions react with other anions, such as halogens, in the media to produce black precipitates, thereby reducing the antibacterial ability of silver ions. In order to solve this problem, various methods for improving the stability of silver ions by using a stabilizer such as a polymer have been proposed.At the same time, silver nanoparticles are prepared to increase the stability of silver ions while increasing the antibacterial effect. Research has been conducted to ensure that the

따라서, 은 나노 입자를 폴리메틸메타아크릴레이트 나노 섬유 내에 함유하면서 폴리메틸메타아크릴레이트 나노 섬유 형태를 제조할 수 있는 간단하고 저렴한 공정에 의한 새로운 제조 방법이 강력히 요구되고 있다.Therefore, there is a strong demand for a new production method by a simple and inexpensive process capable of producing polymethylmethacrylate nanofiber forms while containing silver nanoparticles in polymethylmethacrylate nanofibers.

본 발명의 목적은 이러한 종래 기술의 문제점들을 일거에 해결하고자 전기 방사를 이용하여 은 나노 입자를 폴리메틸메타아크릴레이트 나노 섬유 내 함유하여 은 나노 입자 포함 폴리메틸메타아크릴레이트 나노 섬유를 제조하는 방법을 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for preparing polymethylmethacrylate nanofibers including silver nanoparticles by containing silver nanoparticles in polymethylmethacrylate nanofibers using electrospinning to solve these problems of the prior art. To provide.

본 발명의 목적은 상기와 같은 방법을 이용하여 은 나노 입자와 폴리메틸메타아크릴레이트의 항균 물질로서의 효율성 및 안정성을 높이고, 복잡한 공정 과정을 줄임으로써 원가절감의 효과를 도모하는 데 있다. An object of the present invention is to increase the efficiency and stability of the silver nanoparticles and polymethyl methacrylate as an antimicrobial material using the above method, and to reduce the cost of the complex process by reducing the process.

본 발명자들은 수많은 실험과 심도있는 연구를 거듭한 끝에, 폴리메틸메타아크릴레이트 고분자가 녹아있는 용액 상에 질산은(AgNO3)을 주입하여 전기 방사를 통해 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유를 합성하고, 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유를 항균 테스트에 응용하면서 제조된 나노 섬유의 항균 능력이 다른 항균 물질에 비해 현저히 향상된 것을 발견하고 본 발명에 이르게 되었다.After numerous experiments and in-depth studies, the present inventors injected silver nitrate (AgNO 3 ) onto a solution in which a polymethylmethacrylate polymer was dissolved to form a polymethylmethacrylate nanofiber containing silver nanoparticles through electrospinning. Synthesis and application of the produced silver nanoparticle-containing polymethylmethacrylate nanofibers to antimicrobial testing led to the discovery that the antimicrobial ability of the produced nanofibers was significantly improved compared to other antimicrobial materials.

본 발명은 은 이온과 폴리메틸메타아크릴레이트 용액의 전기 방사를 통해 폴리메틸메타아크릴레이트 나노 섬유의 매트릭스 내 은 나노 입자를 함유하는 것을 내용으로 한다.The present invention is intended to contain silver nanoparticles in a matrix of polymethylmethacrylate nanofibers through electrospinning of silver ions and polymethylmethacrylate solution.

본 발명에 따른 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 제조 방법은,The manufacturing method of the silver nanoparticle containing polymethylmethacrylate nanofiber which concerns on this invention is

(A) 용매에 폴리메틸메타아크릴레이트를 넣고 녹이는 단계;(A) dissolving polymethyl methacrylate in a solvent;

(B) 상기 용액에 질산은(AgNO3)을 넣고 은 이온과 고분자를 섞는 단계; 및,(B) adding silver nitrate (AgNO 3 ) to the solution and mixing the silver ions with the polymer; And,

(C) 상기 용액을 전기 방사를 통해 은 나노입자를 포함한 폴리메틸메타아크릴레이트 고분자 나노 섬유를 제조하는 단계로 구성되어 있다.(C) the solution consists of preparing polymethylmethacrylate polymer nanofibers including silver nanoparticles through electrospinning.

본 발명에 따른 전기 방사를 이용하여 은 나노 입자가 함유된 폴리메틸메타아크릴레이트 나노 섬유를 제조하는 방법은 이제껏 보고된 바가 없는 전혀 새로운 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유를 제조하는 방법으로, 은 나노 입자의 선처리 공정이나 추가적인 다단계의 공정 없이 한 번의 과정으로 은 나노 입자를 만들면서 동시에 폴리메틸메타아크릴레이트 나노 섬유를 제조하여 은 나노 입자가 폴리메틸메타아크릴레이트 나노 섬유 내에 함유되도록 제조하는 것이 가능하다. 또한 종래의 방법에서 야기되던 복잡성과 고비용의 공정상의 문제점을 현저히 줄이며, 은 나노 입자가 함유되면서 폴리메틸메타아크릴레이트의 나노 섬유 형태를 유도하여 뛰어난 항균 효과를 지니면서도, 나노 입자들이 폴리메틸메타아크릴레이트 고분자 내에 안정화 되어 보다 향상된 항균 효과를 나타낼 수 있다. 또한 용이하고 간편한 제조방법을 통하여 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유를 제조할 수 있으며, 뛰어난 항균 효과를 나타낼 수 있는 장점을 지녀 항균 물질로써 다양한 응용이 가능하다. The method for preparing polymethylmethacrylate nanofibers containing silver nanoparticles using the electrospinning according to the present invention is a method for producing polymethylmethacrylate nanofibers containing completely new silver nanoparticles, which has not been reported so far. In the process of producing silver nanoparticles in a single process without the pretreatment process or additional multi-step process of silver nanoparticles, polymethylmethacrylate nanofibers are produced at the same time so that the silver nanoparticles are contained in the polymethylmethacrylate nanofibers. It is possible. In addition, it significantly reduces the complexity and costly process problems caused by the conventional methods, and the nanoparticles contain polymethylmethacryl while incorporating silver nanoparticles to induce nanofiber morphology of polymethylmethacrylate. Stabilized in the rate polymer can exhibit a more improved antibacterial effect. In addition, the polymethylmethacrylate nanofibers containing the silver nanoparticles can be manufactured through an easy and simple manufacturing method, and have various advantages as antimicrobial materials with the advantage of exhibiting excellent antimicrobial effect.

본 명세서에서 특별히 명시되지 않는 한, 온도, 함량, 크기 등의 수치 범위는 본 발명의 제조방법을 최적화 할 수 있는 범위를 의미한다Unless specifically stated herein, the numerical range of temperature, content, size, etc. means a range capable of optimizing the manufacturing method of the present invention.

단계 (A)에서 사용되는 폴리메틸메타아크릴레이트의 분자량은 특별히 제한되는 것이 아니며, 디메틸포름아마이드(N,N-dimethylformamide)에 녹을 수 있는 폴리메틸메타아크릴레이트들이 사용될 수 있다. 그 중에서도 분자량(Mw)이 120,000- 996,000 이 바람직하다.The molecular weight of the polymethylmethacrylate used in step (A) is not particularly limited, and polymethylmethacrylates that can be dissolved in dimethylformamide may be used. Especially, 120,000-996,000 are preferable in molecular weight (Mw).

상기 과정에 필요한 반응 온도 및 시간은 1에서 100 ℃ 그리고 1에서 24 시간이 바람직하나, 이에 국한되는 것은 아니며, 분자량의 차이나 반응 요구조건에 따라 상기 범위보다 높거나 낮을 수 있다.The reaction temperature and time required for the process are preferably 1 to 100 ° C. and 1 to 24 hours, but are not limited thereto, and may be higher or lower than the above range depending on molecular weight differences or reaction requirements.

단계 (B)에서 사용되는 은 이온은 특별히 한정된 것은 아니며, 질산은(silver nitrate)과 같이 용매 상에서 은 이온을 만들 수 있는 염이면 모두 사용가능하다. The silver ion used in step (B) is not particularly limited, and any silver salt capable of producing silver ions in a solvent such as silver nitrate may be used.

단계 (A)에서 사용되는 용매는 특별히 한정되는 것은 아니며, 은 이온과 폴리메틸메타아크릴레이트를 녹일 수 있는 용매면 가능하다. 특히, 아세톤(Acetone), 아세토나이트릴(acetonitrile), 디메틸포름아마이드(N,N-dimethylformamide), 테트라하이드로퓨란(tetrahydropuran) 등이 적당하다. The solvent used in step (A) is not particularly limited and may be any solvent capable of dissolving silver ions and polymethyl methacrylate. In particular, acetone, acetonitrile, dimethylformamide (N, N-dimethylformamide), tetrahydropuran and the like are suitable.

상기 과정에 필요한 질산은(AgNO3) 용액의 농도는 폴리메틸메타아크릴레이트 대비 1에서 50 중량부가 바람직하나, 이에 국한되는 것은 아니며 용매의 종류, 반응 온도와 같은 반응 요구조건에 따라 상기 범위보다 높거나 낮을 수 있다.The concentration of the silver nitrate (AgNO 3 ) solution required for the process is preferably 1 to 50 parts by weight relative to polymethylmethacrylate, but is not limited thereto, and may be higher than the above range depending on reaction requirements such as solvent type and reaction temperature. Can be low.

단계 (C)에서, 폴리메틸메타아크릴레이트의 농도는 용매 대비 1에서 100 중량부이며, 1 이하의 경우 나노 섬유가 얻어지지 않으며, 100 이상의 경우 전기 방사가 되지 않는다. 전기 방사시 대전되는 전압은 1에서 30 kV이다. 제조된 은이 함유된 폴리메틸메타아크릴레이트 섬유는 20에서 1000 nm 이상의 길이를 갖는 나노섬유이다. In step (C), the concentration of polymethylmethacrylate is 1 to 100 parts by weight relative to the solvent, in the case of 1 or less, nanofibers are not obtained, and in the case of 100 or more, electrospinning is not performed. The voltage charged during electrospinning is from 1 to 30 kV. Silver-containing polymethylmethacrylate fibers produced are nanofibers having a length of 20 to 1000 nm or more.

단계 (D)에서 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 항균 테스트는 항균 물질로 널리 사용되고 있고 실버를 포함하는 실버설파다이아진(silver sulfadiazine)을 비교 물질로 사용하여, 그램음성균인 대장균(E. coli)과 그램양성균인 포도상구균 (S. aureus), 효모인 칸디다균(C. albicans)을 대상으로 하여 항균 테스트를 진행하였다. The antimicrobial test of the silver nanoparticle-containing polymethylmethacrylate nanofibers prepared in step (D) is widely used as an antimicrobial material and using silver sulfadiazine containing silver as a comparative material, Antimicrobial tests were performed on E. coli , Gram-positive bacteria S. aureus , and yeast Candida C. albicans .

은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 제조 결과는 나노 섬유 형태의 관찰을 위해 투과 전자 현미경과 주사 전자 현미경을 가지고 관찰하였다.The results of the preparation of the silver nanoparticle-containing polymethylmethacrylate nanofibers were observed using a transmission electron microscope and a scanning electron microscope for the observation of the nanofiber form.

이하, 실시예를 참조하여 본 발명의 구체적인 예를 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, specific examples of the present invention will be described with reference to Examples, but the scope of the present invention is not limited thereto.

[실시예 1]Example 1

디메틸포름아마이드(N,N-dimethylformamide) 10 ml 에 분자량이 120,000인 0.4 g의 폴리메틸메타아크릴레이트를 강한 전단력을 적용하면서 80 ℃에서 천천히 녹인 용액에 폴리메틸메타아크릴레이트 대비 10 중량부의 질산은(AgNO3)을 첨가하고 빠른 교반을 가하여 강한 전단력을 적용하면서 24 시간 동안 녹였다. 상기 용액에 15 kV의 전압의 전기 방사를 통해 직경 5 nm의 은 나노입자를 함유한 직경 30 nm 의 폴리메틸메타아크릴레이트 나노섬유를 제조하였다. (도 1)10 parts by weight of silver nitrate (AgNO) compared to polymethylmethacrylate in a solution of 0.4 g polymethylmethacrylate having a molecular weight of 120,000 in 10 ml of dimethylformamide (N, N-dimethylformamide) was slowly dissolved at 80 ° C. while applying strong shearing force. 3 ) was added and rapid stirring was applied to dissolve for 24 hours applying a strong shear force. The polymethylmethacrylate nanofibers having a diameter of 30 nm containing silver nanoparticles having a diameter of 5 nm were prepared through electrospinning at a voltage of 15 kV in the solution. (Figure 1)

은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 형태를 확인하기 위해 투사 전자 현미경(도 1)을 통해 관찰한 결과, 나노 섬유 형태가 만들어진 것과 나노 섬유에 은 나노 입자가 함유되어 있는 것을 확인하였다.Observation through a scanning electron microscope (FIG. 1) to confirm the morphology of the silver nanoparticle-containing polymethylmethacrylate nanofibers revealed that the nanofiber form was made and that the nanofibers contained silver nanoparticles.

분석이 끝난 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 항균 능력 측정을 위해 커비바우어(Kirby-Bauer) 테스트를 진행하였다. 테스트를 위해 일정량의 나노 섬유를 압축기를 통해 펠렛(pellet)으로 만들었다. 비교를 위해 실버설파다이아진 역시 펠렛으로 만들어 대조군으로 사용하였다. 만들어진 펠렛들을 각기 그램음성균인 대장균(E. coli)과 그램양성균인 포도상구균(S. aureus), 효모인 칸디다균 (C. albicans)이 자라고 있는 고체배지 접시에 각각 접촉시킨 후, 37 ℃ 온도에서 24 시간 동안 배양하였다. 배양이 끝난 후 각기 접시에서, 접촉된 펠렛으로부터의 균의 성장이 억제되어 깨끗해진 범위, 즉 균 억제 범위(inhibition zone)를 측정 하였다. 그 결과, 모든 균에 대해 대조군인 실버설파다이아진에 비해 제조된 은 나노 함유 폴리메틸메타아크릴레이트 나노 섬유가 더 큰 균 억제 범위를 가지고 있음을 알 수 있었다(도 2). 이로써 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유는 매우 뛰어난 항균 효과를 지니고 있음을 결론 맺을 수 있다.The Kirby-Bauer test was conducted to determine the antimicrobial activity of the silver nanoparticle-containing polymethylmethacrylate nanofibers. For testing, a certain amount of nanofibers were pelleted through a compressor. Silver sulfadiazine was also pelletized for comparison and used as a control. The pellets were contacted with a solid medium dish in which Gram-negative bacteria ( E. coli ), Gram-positive bacteria ( S. aureus ) and yeast Candida ( C. albicans ) were respectively grown. Incubate for 24 hours. After incubation, each plate was measured to determine the extent to which the growth of bacteria from contacted pellets was inhibited, ie, the inhibition zone (inhibition zone). As a result, it was found that the silver nano-containing polymethylmethacrylate nanofibers prepared had a greater bacterial suppression range than the silver sulfadiazine control group for all bacteria (FIG. 2). It can be concluded that the silver nanoparticle-containing polymethylmethacrylate nanofibers thus prepared have a very good antibacterial effect.

[실시예 2][Example 2]

디메틸포름아마이드(N,N-dimethylformamide) 10 ml 에 분자량이 350,000인 0.4 g의 폴리메틸메타아크릴레이트를 강한 전단력을 적용하면서 80 ℃에서 천천히 녹인 용액에 폴리메틸메타아크릴레이트 대비 10 중량부의 질산은(AgNO3)을 첨가하고 빠른 교반을 가하여 강한 전단력을 적용하면서 24 시간동안 녹였다. 상기 용액에 15 kV의 전압의 전기 방사를 통해 직경 5 nm의 은 나노입자를 함유한 직경 30 nm 의 폴리메틸메타아크릴레이트 나노섬유를 제조하였다. (도 1)10 parts by weight of silver nitrate (AgNO) compared to polymethylmethacrylate in a solution of 0.4 g of polymethylmethacrylate having a molecular weight of 350,000 in 10 ml of dimethylformamide (N, N-dimethylformamide) was slowly dissolved at 80 ° C. while applying strong shearing force. 3 ) was added and rapid stirring was applied for 24 hours while applying strong shear force. The polymethylmethacrylate nanofibers having a diameter of 30 nm containing silver nanoparticles having a diameter of 5 nm were prepared through electrospinning at a voltage of 15 kV in the solution. (Figure 1)

분석이 끝난 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 항균 능력 측정을 실시예 1과 동일한 방법으로 진행하였고, 이로써 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유는 매우 뛰어난 항균 효과를 지니고 있음을 결론 맺을 수 있었다.The analysis of the antimicrobial ability of the analyzed silver nanoparticle-containing polymethylmethacrylate nanofibers was carried out in the same manner as in Example 1, and the silver nanoparticle-containing polymethylmethacrylate nanofibers thus prepared had a very excellent antibacterial effect. Could conclude.

[실시예 3]Example 3

디메틸포름아마이드(N,N-dimethylformamide) 10 ml 에 분자량이 996,000인 0.4 g의 폴리메틸메타아크릴레이트를 강한 전단력을 적용하면서 80 ℃에서 천천히 녹인 용액에 폴리메틸메타아크릴레이트 대비 10 중량부의 질산은(AgNO3)을 첨가하고 빠른 교반을 가하여 강한 전단력을 적용하면서 24 시간동안 녹였다. 상기 용액에 15 kV의 전압의 전기 방사를 통해 직경 5 nm의 은 나노입자를 함유한 직경 30 nm 의 폴리메틸메타아크릴레이트 나노섬유를 제조하였다. (도 1)10 parts by weight of silver nitrate (AgNO) compared to polymethylmethacrylate in a solution in which 0.4 g of polymethylmethacrylate having a molecular weight of 996,000 in 10 ml of dimethylformamide (N, N-dimethylformamide) was slowly dissolved at 80 ° C while applying strong shearing force. 3 ) was added and rapid stirring was applied for 24 hours while applying strong shear force. The polymethylmethacrylate nanofibers having a diameter of 30 nm containing silver nanoparticles having a diameter of 5 nm were prepared through electrospinning at a voltage of 15 kV in the solution. (Figure 1)

분석이 끝난 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 항균 능력 측정을 실시예 1과 동일한 방법으로 진행하였고, 이로써 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유는 매우 뛰어난 항균 효과를 지니고 있음을 결론 맺을 수 있었다.The analysis of the antimicrobial ability of the analyzed silver nanoparticle-containing polymethylmethacrylate nanofibers was carried out in the same manner as in Example 1, and the silver nanoparticle-containing polymethylmethacrylate nanofibers thus prepared had a very excellent antibacterial effect. Could conclude.

[실시예 4]Example 4

디메틸포름아마이드(N,N-dimethylformamide) 10 ml 에 분자량이 350,000인 0.4 g의 폴리메틸메타아크릴레이트를 강한 전단력을 적용하면서 80 ℃에서 천천히 녹인 용액에 폴리메틸메타아크릴레이트 대비 15 중량부의 질산은(AgNO3)을 첨가하고 빠른 교반을 가하여 강한 전단력을 적용하면서 24 시간동안 녹였다. 상기 용액에 15 kV의 전압의 전기 방사를 통해 직경 5 nm의 은 나노입자를 함유한 직경 30 nm 의 폴리메틸메타아크릴레이트 나노섬유를 제조하였다. (도 1)15 parts by weight of silver nitrate (AgNO) compared to polymethylmethacrylate in a solution of 0.4 g of polymethylmethacrylate having a molecular weight of 350,000 in 10 ml of dimethylformamide (N, N-dimethylformamide) was slowly dissolved at 80 DEG C while applying strong shear force. 3 ) was added and rapid stirring was applied for 24 hours while applying strong shear force. The polymethylmethacrylate nanofibers having a diameter of 30 nm containing silver nanoparticles having a diameter of 5 nm were prepared through electrospinning at a voltage of 15 kV in the solution. (Figure 1)

분석이 끝난 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 항균 능력 측정을 실시예 1과 동일한 방법으로 진행하였고, 이로써 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유는 매우 뛰어난 항균 효과를 지니고 있음을 결론 맺을 수 있었다.The analysis of the antimicrobial ability of the analyzed silver nanoparticle-containing polymethylmethacrylate nanofibers was carried out in the same manner as in Example 1, and the silver nanoparticle-containing polymethylmethacrylate nanofibers thus prepared had a very excellent antibacterial effect. Could conclude.

[실시예 5]Example 5

디메틸포름아마이드(N,N-dimethylformamide) 10 ml 에 분자량이 350,000인 0.4 g의 폴리메틸메타아크릴레이트를 강한 전단력을 적용하면서 80 ℃에서 천천히 녹인 용액에 폴리메틸메타아크릴레이트 대비 20 중량부의 질산은(AgNO3)을 첨가하고 빠른 교반을 가하여 강한 전단력을 적용하면서 24 시간동안 녹였다. 상기 용액에 15 kV의 전압의 전기 방사를 통해 직경 5 nm의 은 나노입자를 함유한 직경 30 nm 의 폴리메틸메타아크릴레이트 나노섬유를 제조하였다. (도 1)20 parts by weight of silver nitrate (AgNO) compared to polymethylmethacrylate in a solution of 0.4 g of polymethylmethacrylate having a molecular weight of 350,000 in 10 ml of dimethylformamide (N, N-dimethylformamide) was slowly dissolved at 80 ° C. while applying strong shearing force. 3 ) was added and rapid stirring was applied for 24 hours while applying strong shear force. The polymethylmethacrylate nanofibers having a diameter of 30 nm containing silver nanoparticles having a diameter of 5 nm were prepared through electrospinning at a voltage of 15 kV in the solution. (Figure 1)

분석이 끝난 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 항균 능력 측정을 실시예 1과 동일한 방법으로 진행하였고, 이로써 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유는 매우 뛰어난 항균 효과를 지니고 있음을 결론 맺을 수 있었다.The analysis of the antimicrobial ability of the analyzed silver nanoparticle-containing polymethylmethacrylate nanofibers was carried out in the same manner as in Example 1, and the silver nanoparticle-containing polymethylmethacrylate nanofibers thus prepared had a very excellent antibacterial effect. Could conclude.

[실시예 6]Example 6

디메틸포름아마이드(N,N-dimethylformamide) 10 ml 에 분자량이 350,000인 0.4 g의 폴리메틸메타아크릴레이트를 강한 전단력을 적용하면서 80 ℃에서 천천히 녹인 용액에 폴리메틸메타아크릴레이트 대비 15 중량부의 질산은(AgNO3)을 첨가하고 빠른 교반을 가하여 강한 전단력을 적용하면서 24 시간동안 녹였다. 상기 용액에 10 kV의 전압의 전기 방사를 통해 직경 5 nm의 은 나노입자를 함유한 직경 30 nm 의 폴리메틸메타아크릴레이트 나노섬유를 제조하였다. (도 1)15 parts by weight of silver nitrate (AgNO) compared to polymethylmethacrylate in a solution of 0.4 g of polymethylmethacrylate having a molecular weight of 350,000 in 10 ml of dimethylformamide (N, N-dimethylformamide) was slowly dissolved at 80 DEG C while applying strong shear force. 3 ) was added and rapid stirring was applied for 24 hours while applying strong shear force. The polymethylmethacrylate nanofibers having a diameter of 30 nm containing silver nanoparticles having a diameter of 5 nm were prepared through electrospinning at a voltage of 10 kV in the solution. (Figure 1)

분석이 끝난 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 항균 능력 측정을 실시예 1과 동일한 방법으로 진행하였고, 이로써 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유는 매우 뛰어난 항균 효과를 지니고 있음을 결론 맺을 수 있었다.The analysis of the antimicrobial ability of the analyzed silver nanoparticle-containing polymethylmethacrylate nanofibers was carried out in the same manner as in Example 1, and the silver nanoparticle-containing polymethylmethacrylate nanofibers thus prepared had a very excellent antibacterial effect. Could conclude.

[실시예 7]Example 7

디메틸포름아마이드(N,N-dimethylformamide) 10 ml 에 분자량이 350,000인 0.4 g의 폴리메틸메타아크릴레이트를 강한 전단력을 적용하면서 80 ℃에서 천천히 녹인 용액에 폴리메틸메타아크릴레이트 대비 15 중량부의 질산은(AgNO3)을 첨가하고 빠른 교반을 가하여 강한 전단력을 적용하면서 24 시간동안 녹였다. 상기 용액에 20 kV의 전압의 전기 방사를 통해 직경 5 nm의 은 나노입자를 함유한 직경 30 nm 의 폴리메틸메타아크릴레이트 나노섬유를 제조하였다. (도 1)15 parts by weight of silver nitrate (AgNO) compared to polymethylmethacrylate in a solution of 0.4 g of polymethylmethacrylate having a molecular weight of 350,000 in 10 ml of dimethylformamide (N, N-dimethylformamide) was slowly dissolved at 80 DEG C while applying strong shear force. 3 ) was added and rapid stirring was applied for 24 hours while applying strong shear force. The polymethylmethacrylate nanofibers having a diameter of 30 nm containing silver nanoparticles having a diameter of 5 nm were prepared through electrospinning at a voltage of 20 kV in the solution. (Figure 1)

분석이 끝난 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 항균 능력 측정을 실시예 1과 동일한 방법으로 진행하였고, 이로써 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유는 매우 뛰어난 항균 효과를 지니고 있음을 결론 맺을 수 있었다.The analysis of the antimicrobial ability of the analyzed silver nanoparticle-containing polymethylmethacrylate nanofibers was carried out in the same manner as in Example 1, and the silver nanoparticle-containing polymethylmethacrylate nanofibers thus prepared had a very excellent antibacterial effect. Could conclude.

[실시예 8]Example 8

디메틸포름아마이드(N,N-dimethylformamide) 10 ml 에 분자량이 350,000인 0.5 g의 폴리메틸메타아크릴레이트를 강한 전단력을 적용하면서 80 ℃에서 천천히 녹인 용액에 폴리메틸메타아크릴레이트 대비 15 중량부의 질산은(AgNO3)을 첨가하고 빠른 교반을 가하여 강한 전단력을 적용하면서 24 시간동안 녹였다. 상기 용액에 15 kV의 전압의 전기 방사를 통해 직경 5 nm의 은 나노입자를 함유한 직경 30 nm 의 폴리메틸메타아크릴레이트 나노섬유를 제조하였다. (도 1)15 parts by weight of silver nitrate (AgNO) compared to polymethylmethacrylate in a solution of 0.5 g of polymethylmethacrylate having a molecular weight of 350,000 in 10 ml of dimethylformamide (N, N-dimethylformamide) was slowly dissolved at 80 ° C. while applying strong shearing force. 3 ) was added and rapid stirring was applied for 24 hours while applying strong shear force. The polymethylmethacrylate nanofibers having a diameter of 30 nm containing silver nanoparticles having a diameter of 5 nm were prepared through electrospinning at a voltage of 15 kV in the solution. (Figure 1)

분석이 끝난 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 항균 능력 측정을 실시예 1과 동일한 방법으로 진행하였고, 이로써 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유는 매우 뛰어난 항균 효과를 지니고 있음을 결론 맺을 수 있었다.The analysis of the antimicrobial ability of the analyzed silver nanoparticle-containing polymethylmethacrylate nanofibers was carried out in the same manner as in Example 1, and the silver nanoparticle-containing polymethylmethacrylate nanofibers thus prepared had a very excellent antibacterial effect. Could conclude.

[실시예 9]Example 9

디메틸포름아마이드(N,N-dimethylformamide) 10 ml 에 분자량이 350,000인 0.6 g의 폴리메틸메타아크릴레이트를 강한 전단력을 적용하면서 80 ℃에서 천천히 녹인 용액에 폴리메틸메타아크릴레이트 대비 10 중량부의 질산은(AgNO3)을 첨가하고 빠른 교반을 가하여 강한 전단력을 적용하면서 24 시간동안 녹였다. 상기 용액에 15 kV의 전압의 전기 방사를 통해 직경 5 nm의 은 나노입자를 함유한 직경 30 nm 의 폴리메틸메타아크릴레이트 나노섬유를 제조하였다. (도 1)10 parts by weight of silver nitrate (AgNO) compared to polymethylmethacrylate in a solution in which 0.6 g of polymethylmethacrylate having a molecular weight of 350,000 was dissolved in 10 ml of dimethylformamide (N, N-dimethylformamide) slowly at 80 ° C while applying strong shearing force. 3 ) was added and rapid stirring was applied for 24 hours while applying strong shear force. The polymethylmethacrylate nanofibers having a diameter of 30 nm containing silver nanoparticles having a diameter of 5 nm were prepared through electrospinning at a voltage of 15 kV in the solution. (Figure 1)

분석이 끝난 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 항균 능력 측정을 실시예 1과 동일한 방법으로 진행하였고, 이로써 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유는 매우 뛰어난 항균 효과를 지니고 있음을 결론 맺을 수 있었다.The analysis of the antimicrobial ability of the analyzed silver nanoparticle-containing polymethylmethacrylate nanofibers was carried out in the same manner as in Example 1, and the silver nanoparticle-containing polymethylmethacrylate nanofibers thus prepared had a very excellent antibacterial effect. Could conclude.

[실시예 10]Example 10

디메틸포름아마이드(N,N-dimethylformamide) 10 ml 에 분자량이 350,000인 0.4 g의 폴리메틸메타아크릴레이트를 강한 전단력을 적용하면서 80 ℃에서 천천히 녹인 용액에 폴리메틸메타아크릴레이트 대비 10 중량부의 질산은(AgNO3)을 첨가하고 빠른 교반을 가하여 강한 전단력을 적용하면서 24 시간동안 녹였다. 상기 용액에 15 kV의 전압의 전기 방사를 통해 직경 5 nm의 은 나노입자를 함유한 직경 30 nm 의 폴리메틸메타아크릴레이트 나노섬유를 제조하였다. (도 1)10 parts by weight of silver nitrate (AgNO) compared to polymethylmethacrylate in a solution of 0.4 g of polymethylmethacrylate having a molecular weight of 350,000 in 10 ml of dimethylformamide (N, N-dimethylformamide) was slowly dissolved at 80 ° C. while applying strong shearing force. 3 ) was added and rapid stirring was applied for 24 hours while applying strong shear force. The polymethylmethacrylate nanofibers having a diameter of 30 nm containing silver nanoparticles having a diameter of 5 nm were prepared through electrospinning at a voltage of 15 kV in the solution. (Figure 1)

분석이 끝난 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 항균 능력 측정을 실시예 1과 동일한 방법으로 진행하였고, 이로써 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유는 매우 뛰어난 항균 효과를 지니고 있음을 결론 맺을 수 있었다.The analysis of the antimicrobial ability of the analyzed silver nanoparticle-containing polymethylmethacrylate nanofibers was carried out in the same manner as in Example 1, and the silver nanoparticle-containing polymethylmethacrylate nanofibers thus prepared had a very excellent antibacterial effect. Could conclude.

본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 가하는 가능할 것이다.Those skilled in the art to which the present invention pertains will be able to add various applications and modifications within the scope of the present invention based on the above contents.

도 1은 본 발명의 실시예에 따라 제조된 은 나노 입자 함유 폴리메틸메타아크릴레이트 나노 섬유의 투과 전자 현미경 사진이고;1 is a transmission electron micrograph of silver nanoparticle-containing polymethylmethacrylate nanofibers prepared according to an embodiment of the present invention;

도 2는 본 발명의 실시예에 따라 제조된 은 나노 입자 함유 고분자 나노 섬유의 항균 효과를 위한 커비바우어(Kirby-Bauer) 테스트 사진이다.2 is a Kirby-Bauer test photograph for the antimicrobial effect of silver nanoparticle-containing polymer nanofibers prepared according to an embodiment of the present invention.

Claims (8)

용매에 폴리메틸메타아크릴레이트를 넣고 녹이는 단계;Adding polymethyl methacrylate to a solvent to dissolve it; 상기 용액에 질산은(AgNO3)을 넣고 은 이온과 고분자를 섞는 단계; 및,Adding silver nitrate (AgNO 3 ) to the solution and mixing the silver ions with the polymer; And, 상기 용액을 전기 방사를 통해 은 나노입자를 포함한 폴리메틸메타아크릴레이트 고분자 나노 섬유를 제조하는 단계를 포함하는 것을 특징으로 하는 제조 방법.Preparing a polymethylmethacrylate polymer nanofiber including silver nanoparticles by electrospinning the solution. 제1항에 있어서, 사용되는 폴리메틸메타아크릴레이트의 분자량이 120,000 에서 996,000 인 것을 특징으로 하는 제조 방법.The process according to claim 1, wherein the molecular weight of the polymethylmethacrylate used is from 120,000 to 996,000. 제1항에 있어서, 사용되는 용매의 종류가 아세톤, 아세토나이트릴, 디메틸포름아마이드, 테트라하이드로퓨란인 것을 특징으로 하는 제조 방법.The production method according to claim 1, wherein the solvent used is acetone, acetonitrile, dimethylformamide, or tetrahydrofuran. 제1항에 있어서, 사용되는 질산은(AgNO3)의 농도가 폴리메틸메타아크릴레이트 대비 1에서 50 중량부인 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the concentration of silver nitrate (AgNO 3 ) used is 1 to 50 parts by weight relative to polymethylmethacrylate. 제1항에 있어서, 상기 온도가 섭씨 1도에서 100도인 것을 특징으로 하는 제조 방법.The method of claim 1 wherein the temperature is from 1 degree Celsius to 100 degrees Celsius. 제1항에서, 폴리메틸메타아크릴레이트의 농도는 용매 대비 1에서 100 중량부인 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the concentration of polymethylmethacrylate is 1 to 100 parts by weight relative to the solvent. 제1항에서, 전기 방사시 대전되는 전압은 1에서 30 kV인 것을 특징으로 하는 제조 방법.The method of claim 1, wherein the voltage charged during electrospinning is 1 to 30 kV. 제1항에서, 제조된 은이 함유된 폴리메틸메타아크릴레이트 나노 섬유의 직경이 20 에서 1000 nm 인 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the prepared silver-containing polymethylmethacrylate nanofibers have a diameter of 20 to 1000 nm.
KR1020080130793A 2008-12-22 2008-12-22 Method of preparing silver nanoparticle-embedded polymethylmetharcylate nanofibers via electrospinning KR20100072395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080130793A KR20100072395A (en) 2008-12-22 2008-12-22 Method of preparing silver nanoparticle-embedded polymethylmetharcylate nanofibers via electrospinning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080130793A KR20100072395A (en) 2008-12-22 2008-12-22 Method of preparing silver nanoparticle-embedded polymethylmetharcylate nanofibers via electrospinning

Publications (1)

Publication Number Publication Date
KR20100072395A true KR20100072395A (en) 2010-07-01

Family

ID=42635586

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080130793A KR20100072395A (en) 2008-12-22 2008-12-22 Method of preparing silver nanoparticle-embedded polymethylmetharcylate nanofibers via electrospinning

Country Status (1)

Country Link
KR (1) KR20100072395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101254893B1 (en) * 2010-12-10 2013-04-15 서울대학교산학협력단 Fabrication of an aligned polypyrrole nanotube by electrospun and vapor deposition polymerization for high performance ammonia chemical sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101254893B1 (en) * 2010-12-10 2013-04-15 서울대학교산학협력단 Fabrication of an aligned polypyrrole nanotube by electrospun and vapor deposition polymerization for high performance ammonia chemical sensor

Similar Documents

Publication Publication Date Title
Yadollahi et al. One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems
Upadhyay et al. Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process
Han et al. Dual functional biocomposites based on polydopamine modified cellulose nanocrystal for Fe3+-pollutant detecting and autoblocking
Yu et al. One-pot green fabrication and antibacterial activity of thermally stable corn-like CNC/Ag nanocomposites
Feng et al. Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose
Sun et al. Self-enriched mesoporous silica nanoparticle composite membrane with remarkable photodynamic antimicrobial performances
Thomas et al. In situ formation of silver nanoparticles within chitosan-attached cotton fabric for antibacterial property
Yan et al. Immobilization of highly dispersed Ag nanoparticles on carbon nanotubes using electron-assisted reduction for antibacterial performance
Yu et al. Green synthesis of cellulose nanofibrils decorated with Ag nanoparticles and their application in colorimetric detection of L-cysteine
WO2009063508A2 (en) Nanoparticle composition and process thereof
CN105234388B (en) A kind of Nano Silver of stability enhancing and preparation method and application
CN1729787A (en) Liquid nanometer simple substance silver antibacterial agent and preparation method thereof
Wu et al. One-step in situ assembly of size-controlled silver nanoparticles on polyphenol-grafted collagen fiber with enhanced antibacterial properties
Wei et al. In situ synthesis of high swell ratio polyacrylic acid/silver nanocomposite hydrogels and their antimicrobial properties
Vijayakumar et al. Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents
KR20140014700A (en) Synthesis method of urchin-like copper oxide nanostructures decorated graphene nanosheet
TWI640565B (en) Polymer latex particle composition containing nano silver particles
CN101983568A (en) Halloysite Ag-carrying antibacterial agent and preparation method thereof
Hassan et al. Controlled synthesis of Mn 2 O 3 nanowires by hydrothermal method and their bactericidal and cytotoxic impact: a promising future material
CN112795098A (en) Antibacterial plastic and preparation method thereof
Wang et al. Bioinspired catecholic activation of marine chitin for immobilization of Ag nanoparticles as recyclable pollutant nanocatalysts
Magesh et al. Effect of biopolymer blend matrix on structural, optical and biological properties of chitosan–agar blend ZnO nanocomposites
Amini et al. In situ synthesis of silver nanoparticles on fiber matrix for preparing antibacterial paper
CN111228302A (en) Antibacterial hydrogel and preparation method and application thereof
KR20090021954A (en) Preparing method of colloid having ag nano-particle and colloid having ag nano-particle using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application