KR20100042766A - Conductive paste composition, preparation of electrode using same and solar cell comprising same - Google Patents

Conductive paste composition, preparation of electrode using same and solar cell comprising same Download PDF

Info

Publication number
KR20100042766A
KR20100042766A KR1020080101907A KR20080101907A KR20100042766A KR 20100042766 A KR20100042766 A KR 20100042766A KR 1020080101907 A KR1020080101907 A KR 1020080101907A KR 20080101907 A KR20080101907 A KR 20080101907A KR 20100042766 A KR20100042766 A KR 20100042766A
Authority
KR
South Korea
Prior art keywords
paste composition
electrode
conductive paste
metal powder
powder
Prior art date
Application number
KR1020080101907A
Other languages
Korean (ko)
Inventor
박종현
이진권
Original Assignee
대주전자재료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대주전자재료 주식회사 filed Critical 대주전자재료 주식회사
Priority to KR1020080101907A priority Critical patent/KR20100042766A/en
Priority to CN200910148932A priority patent/CN101728438A/en
Publication of KR20100042766A publication Critical patent/KR20100042766A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE: A conductive paste composition is provided to ensure high sintered density and low sintering shrinkage after plasticization and to secure low line resistance and contact resistance. CONSTITUTION: A conductive paste composition comprises 55-90 weight% compound powder consisting of micro conductive metal powder with average particle size of less than 0.5 micron and conductive metal powder with average particle size of 0.5-10 micron; 0.5-8 weight% inorganic binder resin; and 5-40 weight% organic vehicle. The mixing ratio of micro conductive metal powder to conductive metal powder is 10-70 weight% : 90-30 weight%.

Description

도전성 페이스트 조성물, 이를 이용한 전극의 제조방법 및 이를 포함하는 태양전지{CONDUCTIVE PASTE COMPOSITION, PREPARATION OF ELECTRODE USING SAME AND SOLAR CELL COMPRISING SAME}A conductive paste composition, a method of manufacturing an electrode using the same, and a solar cell including the same {CONDUCTIVE PASTE COMPOSITION, PREPARATION OF ELECTRODE USING SAME AND SOLAR CELL COMPRISING SAME}

본 발명은 도전성 페이스트 조성물, 이를 이용한 전극의 제조방법 및 이를 포함하는 태양전지에 관한 것이다.The present invention relates to a conductive paste composition, a method for producing an electrode using the same, and a solar cell including the same.

태양전지(solar cell)는 태양에너지를 전기에너지로 변환시켜주는 반도체 소자로서, 이의 전극 재료는 도전성 페이스트 조성물을 일반적인 스크린 프린팅 방법 등에 의해 기판에 도포하여 특정 형상의 전극 회로를 형성하고, 건조 및 열처리함으로써 도전성이 부여된다.A solar cell is a semiconductor device that converts solar energy into electrical energy, and its electrode material is coated with a conductive paste composition on a substrate by a general screen printing method to form an electrode circuit having a specific shape, drying and heat treatment. Electroconductivity is provided by this.

상용화된 인쇄타입의 태양전지용 전극재료는 미시적인 관점에서 열처리 공정시 유기물의 제거(burn out)로 인해 전극 내부에 결함이 발생하거나, 짧은 시간의 열처리 공정으로 인해 소결 밀도가 낮아져서, 선저항이 증가하고 실리콘 기판과의 접촉저항(contact resistance)이 높아지는 문제가 있다. 일반적으로 전극 내부의 결함은 대기중의 산소 또는 황성분과 결합하여 은산화물 또는 은황화물을 형성하기 때문에 전도성이 낮아져 시간 경과에 따른 실리콘 기판 태양전지의 효율이 점진적으로 낮아지는 문제가 야기될 수 있다.The commercially available printed electrode materials for solar cells have a microscopic point of view that defects inside the electrode due to burnout of organic matter during the heat treatment process or low sintering density due to a short time heat treatment process, resulting in increased line resistance. There is a problem that the contact resistance (contact resistance) with the silicon substrate is increased. In general, since defects inside the electrode combine with oxygen or sulfur in the air to form silver oxide or silver sulfide, the conductivity may be low, which may cause a problem that the efficiency of the silicon substrate solar cell gradually decreases over time.

이를 해결하기 위한 방법으로, 예를 들어 대한민국 특허공개 제2006-0108545호에는 유리(glass) 또는 옥사이드(oxide) 형태의 첨가제를 혼합하여 사용함으로써 은 분말 사이의 결함을 메꾸어 주어 소결 밀도와 실리콘 기판과의 접착력을 증가시키는 방법을 개시한다. 그러나, 상기 방법은 유리와 옥사이드 첨가제를 과다 사용하는 경우, 도체와 실리콘 기판과의 접촉저항을 증가시킬 수 있고, 특히 유리는 실리콘 기판의 N 층에 도핑(dopping)되어 있는 도펀트의 전극재료로의 확산을 유발시켜 태양전지의 효율에 악영향을 미칠 수 있다.As a method to solve this problem, for example, Korean Patent Publication No. 2006-0108545 uses a mixture of glass or oxide additives to fill the defects between the silver powder to provide sintered density and silicon substrate. A method of increasing the adhesion of However, the method can increase the contact resistance between the conductor and the silicon substrate when the glass and oxide additives are used excessively, in particular, the glass is used as an electrode material of the dopant doped in the N layer of the silicon substrate. It can cause diffusion and adversely affect the efficiency of solar cells.

또한, 대한민국 특허공개 제2005-0087249 호에서는, 100nm 이하의 은 분말로 구성된 페이스트를 사용하여 유리 및 옥사이드 첨가제의 사용을 제한하였으나, 이는 전극의 소결수축으로 인해 선저항을 증가시킬 수 있으며, 소성 후에 크랙과 같은 물리적인 결함이 발생하여 소결 밀도가 낮아져 장기 신뢰성에 취약한 문제를 유발시킬 수 있다.In addition, in Korean Patent Laid-Open Publication No. 2005-0087249, the use of glass and oxide additives is limited by using a paste composed of silver powder of 100 nm or less, which may increase the line resistance due to sintering shrinkage of the electrode, and after firing Physical defects, such as cracks, can result in low sintered densities, which leads to problems that are vulnerable to long-term reliability.

따라서 본 발명의 목적은 전극 제조시 높은 소결 밀도와 소성 후 낮은 소결 수축율을 나타내어 전극의 낮은 선저항 및 접촉저항을 제공함으로써 태양전지의 효 율을 증대시킬 수 있는 도전성 페이스트 조성물을 제공하는 것이다.Accordingly, an object of the present invention is to provide a conductive paste composition that can increase the efficiency of a solar cell by providing a high sintered density and low sintered shrinkage rate after firing to provide an electrode with low wire resistance and contact resistance.

본 발명의 또 다른 목적은, 본 발명에 따른 도전성 페이스트 조성물을 이용한 전극의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing an electrode using the conductive paste composition according to the present invention.

본 발명의 또 다른 목적은, 본 발명에 따른 전극 제조방법으로 제조된 전극을 포함하는 태양전지를 제공하는 것이다.Still another object of the present invention is to provide a solar cell including an electrode manufactured by the electrode manufacturing method according to the present invention.

상기 목적에 따라, 본 발명에서는 평균 입자 크기가 0.5㎛ 미만인 미세 도전성 금속 분말과 0.5 내지 10㎛인 도전성 금속 분말의 혼합분말, 무기바인더 수지 및 유기 비히클을 포함하는 도전성 페이스트 조성물을 제공한다. In accordance with the above object, the present invention provides a conductive paste composition comprising a mixed powder, an inorganic binder resin, and an organic vehicle of a fine conductive metal powder having an average particle size of less than 0.5 μm and a conductive metal powder of 0.5 to 10 μm.

본 발명에 따른 도전성 페이스트 조성물은 전극 제조시 높은 소결 밀도와 소성 후 낮은 소결 수축율을 나타내어 전극의 낮은 선저항 및 접촉저항을 제공함으로써 태양전지의 효율을 증대시킬 수 있다.The conductive paste composition according to the present invention exhibits high sintered density and low sintered shrinkage after sintering during electrode production, thereby providing low wire resistance and contact resistance of the electrode, thereby increasing efficiency of the solar cell.

이하에서는 본 발명을 보다 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명에 따른 도전성 페이스트 조성물은 도전성 분말로서 평균 입자 크기 가 0.5㎛ 미만인 미세 도전성 금속 분말과 0.5 내지 10㎛인 도전성 금속 분말의 혼합분말을 사용하는 것을 특징으로 한다. 본 발명의 바람직한 실시예에 의하면 본 발명에 따른 조성물은 조성물 전체 중량에 대해 55 내지 90 중량%의 도전성 금속 분말의 혼합분말, 0.5 내지 8 중량%의 무기바인더 수지 및 5 내지 40 중량%의 유기 비히클을 포함할 수 있다. The conductive paste composition according to the present invention is characterized by using a mixed powder of a fine conductive metal powder having an average particle size of less than 0.5 μm and a conductive metal powder of 0.5 to 10 μm as the conductive powder. According to a preferred embodiment of the present invention, the composition according to the present invention comprises 55 to 90% by weight of a mixed powder of conductive metal powder, 0.5 to 8% by weight of an inorganic binder resin and 5 to 40% by weight of an organic vehicle. It may include.

이하에서는 각 성분에 대하여 설명한다. Hereinafter, each component is demonstrated.

(1) 도전성 금속 분말의 혼합분말(1) Mixed powder of conductive metal powder

본 발명에 따른 도전성 페이스트 조성물에 사용되는 도전성 금속 분말의 혼합분말은 평균 입자 크기가 0.5㎛ 미만, 바람직하게는 0.01 내지 0.5㎛ 미만인 미세 도전성 금속 분말과 0.5 내지 10㎛, 바람직하게는 1㎛ 내지 5㎛인 도전성 금속 분말의 혼합분말을 사용한다. 상기 평균 입자 크기가 0.5㎛ 미만인 미세 도전성 금속 분말과 0.5 내지 10㎛인 도전성 금속 분말의 혼합비는 10 중량% 내지 70 중량%:90 중량% 내지 30 중량%, 바람직하게는 10 중량% 내지 50 중량%:90 중량% 내지 50 중량%의 범위이다. The mixed powder of the conductive metal powder used in the conductive paste composition according to the present invention has a fine conductive metal powder having an average particle size of less than 0.5 µm, preferably 0.01 to 0.5 µm, and 0.5 to 10 µm, preferably 1 µm to 5 A mixed powder of conductive metal powder, which is 탆, is used. The mixing ratio of the fine conductive metal powder having an average particle size of less than 0.5 μm and the conductive metal powder of 0.5 to 10 μm is 10 wt% to 70 wt%: 90 wt% to 30 wt%, preferably 10 wt% to 50 wt% : 90 wt% to 50 wt%.

본 발명에 따른 페이스트 조성물에 사용되는 도전성 금속 분말은 은(Ag), 금(Au), 백금(Pt), 로듐(Rh), 팔라듐(Pd), 니켈(Ni), 알루미늄(Al) 및 구리(Cu)로 이루어진 군에서 선택된 하나 이상의 금속 분말을 사용 할 수 있는데, 그 중에서 은 분말이 가장 바람직하다. 예를 들어 은 분말을 사용할 경우, 그 형상이 무정형, 구형, 각형 및 플레이크형 중 하나 또는 둘 이상의 형태로 혼합된 것을 사용할 수 있다.The conductive metal powder used in the paste composition according to the present invention is silver (Ag), gold (Au), platinum (Pt), rhodium (Rh), palladium (Pd), nickel (Ni), aluminum (Al) and copper ( One or more metal powders selected from the group consisting of Cu) may be used, among which silver powder is most preferred. For example, when silver powder is used, the shape may be mixed with one or two or more of amorphous, spherical, angular and flake types.

평균 입자 크기가 0.5㎛ 미만인 미세 도전성 금속 분말은 입자간의 결합제 역할을 하여 낮은 온도와 짧은 열처리 조건에서도 쉽게 메탈라이징(metalizing)을 가능하게 하고, 표면 에너지가 커서 페이스트의 칙소성(thixotrophic index)을 증가시킴으로써 인쇄 후 페이스트의 형상의 변형이 적으므로, 실리콘 기판에서 차지하는 전극재료의 도포면적 비율을 최소로 할 수 있어 태양전지의 효율을 증가시킬 수 있다. 또한, 평균 입자 크기가 0.5 내지 10㎛인 도전성 금속 분말은 소성 후 수축을 억제시킬 수 있어 고밀도의 저수축 전극을 형성 할 수 있게 해준다.Fine conductive metal powder with an average particle size of less than 0.5 μm acts as a binder between particles, making it easy to metallize even at low temperatures and short heat treatment conditions, and the surface energy is large to increase the thixotrophic index of the paste. In this way, since the shape of the paste after printing is small, the ratio of the application area of the electrode material to the silicon substrate can be minimized, and the efficiency of the solar cell can be increased. In addition, the conductive metal powder having an average particle size of 0.5 to 10 μm can suppress shrinkage after firing, thereby making it possible to form a high density low shrink electrode.

상기 도전성 금속 분말의 혼합분말의 함량은 조성물 전체 중량에 대해 55 내지 90 중량%를 사용할 수 있으며, 55 중량% 미만인 경우 적은 도전성분으로 전극의 두께가 얇아져 소결 수축율이 커져 선저항값이 높아질 수 있고, 인쇄성이 부족하여 저항값 편차의 문제가 발생할 수 있으며, 90 중량%를 초과하는 경우 페이스트화 하기에 어려움이 있다.The content of the mixed powder of the conductive metal powder may be used from 55 to 90% by weight based on the total weight of the composition, if less than 55% by weight of the electrode with a small conductive powder is thinner the thickness of the electrode can be increased sintering shrinkage can be increased to increase the wire resistance value There is a problem of resistance value variation due to lack of printability, and if it exceeds 90% by weight, it is difficult to paste.

(2) 무기바인더 수지(2) inorganic binder resin

본 발명에서 사용되는 무기바인더 수지는 통상적으로 사용되는 유리프릿을 사용할 수 있으며, 연화 온도가 300 내지 800도, 바람직하게는 400 내지 700도이고, 평균 입경이 0.5 내지 10㎛인 레드-보로-실리케이트계 유리분말 또는 비스무스-보로 실리케이트계 유리분말을 사용하는 것이 바람직하다. The inorganic binder resin used in the present invention may be a glass frit that is commonly used, and has a softening temperature of 300 to 800 degrees, preferably 400 to 700 degrees, and an average particle diameter of 0.5 to 10 μm. Preference is given to using glass powders or bismuth-borosilicate glass powders.

상기 무기바인더 수지의 함량은 조성물 전체 중량에 대해 0.5 내지 8 중량%를 사용할 수 있으며, 0.5 중량% 미만인 경우 실리콘 기판과의 접착력이 약한 문제 가 발생할 수 있으며, 8 중량%를 초과하는 경우 전극의 선저항 및 접촉저항이 높아질 수 있다.The content of the inorganic binder resin may be 0.5 to 8% by weight based on the total weight of the composition, when less than 0.5% by weight may cause a problem of weak adhesion to the silicon substrate, if the content of the inorganic binder exceeds 8% by weight Resistance and contact resistance can be high.

(3) 유기 비히클(3) organic vehicle

본 발명의 페이스트 조성물에 포함되는 유기 비히클은 특별히 한정되지 않지만, 테르피네올, 부틸카비톨, 부틸카비톨아세테이트, 텍사놀, 에틸렌글리콜, 아세톤, 파인오일, 이소프로필알콜 및 에탄올 중에서 선택된 하나 이상의 용매를 사용하거나, 상기 용매 중에 에틸셀룰로스, 메틸셀룰로스, 니트로셀룰로스 등의 셀룰로스계 수지, 아크릴산 에스테르 등의 아크릴계 수지 및 폴리비닐 알코올, 폴리비닐 부티랄 등의 폴리비닐계 수지 중에서 선택된 하나 이상의 수지를 첨가하여 사용할 수 있다. 유기 비히클의 함량은 조성물 전체 중량에 대해 5 내지 40 중량%의 양을 사용할 수 있으며, 40 중량%를 초과하는 경우, 페이스트의 점도가 증대될 뿐만 아니라, 과잉의 유기 비히클의 존재로 소성 중 유기물이 완전히 제거(burn out)되지 않고 잔탄이 전극에 남아 있는 문제가 발생할 수 있다. The organic vehicle included in the paste composition of the present invention is not particularly limited, but at least one solvent selected from terpineol, butyl carbitol, butyl carbitol acetate, texanol, ethylene glycol, acetone, pine oil, isopropyl alcohol, and ethanol Or at least one resin selected from cellulose resins such as ethyl cellulose, methyl cellulose and nitrocellulose, acrylic resins such as acrylic esters and polyvinyl resins such as polyvinyl alcohol and polyvinyl butyral; Can be used. The content of the organic vehicle may be used in an amount of 5 to 40% by weight based on the total weight of the composition. When the content of the organic vehicle exceeds 40% by weight, the viscosity of the paste is increased, as well as the presence of excess organic vehicle causes the Problems may arise where xanthan remains in the electrode without being burned out completely.

(5) 기타 첨가제(5) other additives

본 발명에 따른 조성물은 필요에 따라 통상적으로 알려져 있는 첨가제, 예를 들면, 칙소제, 탈포제, 레벨링제 및 요변제로 이루어진 군으로부터 선택된 하나 이상의 첨가제를 더 포함할 수 있다. 이 중, 칙소제는 미세 인쇄 패턴의 레졸루션을 향상시키고, 인쇄 후 페이스트의 형상 유지를 증대시킬 수 있다. 본 발명에서 사용되는 칙소제의 예로는 비표면적 1.5㎠/g 이상, 바람직하게는 1.5 내지 10㎠/g의 옥사이드계 칙소제 또는 왁스계 칙소제를 사용할 수 있으며, 그 구체적인 예로는 에어로실, 아마이드 왁스(amide wax)를 들 수 있다. The composition according to the invention may further comprise one or more additives selected from the group consisting of additives commonly known as necessary, for example, thixotropic agents, defoamers, leveling agents and thixotropic agents. Among these, the thixotropic agent can improve the resolution of a fine printing pattern, and can increase the shape retention of a paste after printing. As an example of the thixotropic agent used in the present invention, an oxide-based or wax-based thixotropic agent having a specific surface area of 1.5 cm 2 / g or more, preferably 1.5 to 10 cm 2 / g may be used, and specific examples thereof include aerosil and amide. Amide wax.

상기 첨가제의 함량은 도전성 금속 혼합분말의 함량과 종류에 따라 달라질 수 있어 특별히 제한되지 않지만, 3 중량% 이하로 사용하는 것이 바람직하다. The amount of the additive may vary depending on the content and type of the conductive metal mixed powder, but is not particularly limited, but is preferably used in an amount of 3 wt% or less.

본 발명에 따른 도전성 페이스트 조성물은 점도가 50,000 내지 500,000cps의 점도(브룩필드 DVII 점도계, 스핀들 #14)로서, 태양전지의 표면 전극을 제조하는데 이용될 수 있으며, 본 발명에 따른 도전성 페이스트 조성물을 사용하여 전극을 제조하는 방법은 페이스트 조성물을 기판상에 도포하는 단계, 도포된 페이스트를 건조시키는 단계, 및 건조된 페이스트를 소성시켜 전극을 형성하는 단계를 포함한다. The conductive paste composition according to the present invention has a viscosity of 50,000 to 500,000 cps (Brookfield DVII viscometer, spindle # 14), which can be used to prepare a surface electrode of a solar cell, using the conductive paste composition according to the present invention. The method of manufacturing an electrode includes applying a paste composition onto a substrate, drying the applied paste, and firing the dried paste to form an electrode.

본 발명에 따른 도전성 페이스트 조성물은 스크린 프린팅 또는 특정한 직경의 노즐, 예를 들면 직경 50 내지 500㎛의 노즐을 이용한 분출 방식 등 다양한 코팅법을 사용하여 기판 상에 5 내지 50㎛의 두께로 도포될 수 있다.The conductive paste composition according to the present invention may be applied to the substrate with a thickness of 5 to 50 µm using various coating methods such as screen printing or a spraying method using a nozzle having a specific diameter, for example, a nozzle having a diameter of 50 to 500 µm. have.

본 발명에 따른 도전성 페이스트 조성물로 도포된 전극 페이스트는 60 내지 300℃에서 수분간 건조되고, 600 내지 850℃의 온도에서 수초간 소성될 수 있다. 이러한 방법으로 제조된 전극은 페이스트의 건조두께 대비 소성두께를 나타내는 소결 수축율이 -6.5 내지 +2%이고, 소성 후 소결 밀도가 8g/cm3 이상이고, 면적저항이 알루미나 기판에서 7mΩ/sq. 미만인 것이 바람직하다. The electrode paste coated with the conductive paste composition according to the present invention may be dried at 60 to 300 ° C. for several minutes and calcined at a temperature of 600 to 850 ° C. for several seconds. The electrode manufactured by this method has a sintering shrinkage ratio of -6.5 to + 2%, which represents a plastic thickness to a dry thickness of the paste, a sintered density of 8 g / cm 3 or more after firing, and an area resistance of 7 mPa / sq. It is preferable that it is less than.

상기와 같이 본 발명에 따른 도전성 페이스트 조성물을 이용하여 제조된 전 극은 통상적인 방법으로 태양전지의 표면 전극으로 유용하게 이용할 수 있다.As described above, the electrode prepared by using the conductive paste composition according to the present invention may be usefully used as a surface electrode of a solar cell in a conventional manner.

실시예Example

이하, 하기 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are intended to illustrate the present invention, but the scope of the present invention is not limited thereto.

<도전성 페이스트 조성물의 제조><Production of Conductive Paste Composition>

실시예 1Example 1

평균 입자 크기 0.05㎛인 구형의 은 분말 16 중량%, 평균 입자 크기 3.5㎛인 판형의 은 분말 65 중량%, 연화온도가 500℃이고, 평균 입자 크기 1.5㎛인 레드-보로-실리케이트계 유리프릿 4 중량%, 에틸셀룰로스 수지를 부틸카비톨아세테이트 용제에 용해하여 제조한 유기 비히클 14 중량%, 아마이드 왁스 칙소제 및 유기산 레벨링제 1 중량%를 혼합하여, 이를 3축롤로 분산 및 분쇄하여 점도 150,000 내지 250,000cps의 점도(브룩필드 DVII 점도계, 스핀들 #14)를 갖는 페이스트 조성물을 제조하였다.16% by weight spherical silver powder with an average particle size of 0.05 μm, 65% by weight plate silver with an average particle size of 3.5 μm, red-boro-silicate glass frit with a softening temperature of 500 ° C. and an average particle size of 1.5 μm 4 % By weight, 14% by weight of an organic vehicle prepared by dissolving an ethyl cellulose resin in a butylcarbitol acetate solvent, 1% by weight of an amide wax thixotropic agent and an organic acid leveling agent, and dispersed and triturated with a triaxial roll to obtain a viscosity of 150,000 to 250,000. A paste composition was prepared having a viscosity of cps (Brookfield DVII viscometer, spindle # 14).

실시예 2Example 2

평균 입자 크기 0.05㎛인 구형의 은 분말 20 중량% 및 평균 입자 크기 3.5㎛인 판형의 은 분말 61 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하 여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.The same procedure as in Example 1 was carried out except that 20 wt% of the spherical silver powder having an average particle size of 0.05 μm and 61 wt% of the plate shaped silver powder having an average particle size of 3.5 μm had a viscosity of 150,000 to 250,000 cps. A paste composition was prepared.

실시예 3Example 3

평균 입자 크기 0.05㎛인 구형의 은 분말 5 중량%, 평균 입자 크기 0.2㎛인 구형의 은 분말 20 중량% 및 평균 입자 크기 3.5㎛인 판형의 은 분말 56 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.Example 1 and 5 except that 5% by weight of the spherical silver powder having an average particle size of 0.05 μm, 20% by weight of the spherical silver powder having an average particle size of 0.2 μm and 56% by weight of the plate-shaped silver powder having an average particle size of 3.5 μm were used. In the same manner, a paste composition having a viscosity of 150,000 to 250,000 cps was prepared.

실시예 4Example 4

평균 입자 크기 0.05㎛인 구형의 은 분말 5 중량%, 평균 입자 크기 0.2㎛인 구형의 은 분말 30 중량% 및 평균 입자 크기 3.5㎛인 판형의 은 분말 46 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.Example 1 and 5 except that 5% by weight of the spherical silver powder having an average particle size of 0.05 μm, 30% by weight of the spherical silver powder having an average particle size of 0.2 μm and 46% by weight of the plated silver powder having an average particle size of 3.5 μm were used. In the same manner, a paste composition having a viscosity of 150,000 to 250,000 cps was prepared.

실시예 5Example 5

평균 입자 크기 0.05㎛인 구형의 은 분말 10 중량%, 평균 입자 크기 0.2㎛인 구형의 은 분말 20 중량% 및 평균 입자 크기 3.5㎛인 판형의 은 분말 51 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.Example 1 and 10 except that 10% by weight of the spherical silver powder having an average particle size of 0.05 μm, 20% by weight of the spherical silver powder having an average particle size of 0.2 μm and 51% by weight of the plated silver powder having an average particle size of 3.5 μm were used. In the same manner, a paste composition having a viscosity of 150,000 to 250,000 cps was prepared.

실시예 6Example 6

평균 입자 크기 0.2㎛인 구형의 은 분말 22 중량% 및 평균 입자 크기 3.5㎛인 판형의 은 분말 59 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.A paste having a viscosity of 150,000 to 250,000 cps was carried out in the same manner as in Example 1 except that 22 wt% of spherical silver powder having an average particle size of 0.2 μm and 59 wt% of plate-shaped silver powder having an average particle size of 3.5 μm were used. The composition was prepared.

실시예 7Example 7

평균 입자 크기 0.2㎛인 구형의 은 분말 28 중량% 및 평균 입자 크기 3.5㎛인 판형의 은 분말 53 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.A paste having a viscosity of 150,000 to 250,000 cps by the same procedure as in Example 1 except that 28 wt% of spherical silver powder having an average particle size of 0.2 μm and 53 wt% of plate silver powder having an average particle size of 3.5 μm were used. The composition was prepared.

실시예 8Example 8

평균 입자 크기 0.2㎛인 구형의 은 분말 34 중량% 및 평균 입자 크기 3.5㎛인 판형의 은 분말 47 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.A paste having a viscosity of 150,000 to 250,000 cps was carried out in the same manner as in Example 1 except that 34 wt% of the spherical silver powder having an average particle size of 0.2 μm and 47 wt% of the plate-shaped silver powder having an average particle size of 3.5 μm were used. The composition was prepared.

실시예 9Example 9

평균 입자 크기 0.2㎛인 구형의 은 분말 13 중량%, 평균 입자 크기 0.8㎛인 구형의 은 분말 19 중량% 및 평균 입자 크기 1.5㎛인 구형의 은 분말 49 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.Examples 1 and 13 were used except that 13 wt% of the spherical silver powder having an average particle size of 0.2 μm, 19 wt% of the spherical silver powder having an average particle size of 0.8 μm, and 49 wt% of the spherical silver powder having an average particle size of 1.5 μm were used. In the same manner, a paste composition having a viscosity of 150,000 to 250,000 cps was prepared.

비교예 1Comparative Example 1

평균 입자 크기 0.05㎛인 구형의 은 분말 81 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.A paste composition having a viscosity of 150,000 to 250,000 cps was prepared in the same manner as in Example 1 except that 81 wt% of a spherical silver powder having an average particle size of 0.05 μm was used.

비교예 2Comparative Example 2

평균 입자 크기 0.2㎛인 구형의 은 분말 81 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.A paste composition having a viscosity of 150,000 to 250,000 cps was prepared in the same manner as in Example 1 except that 81 wt% of spherical silver powder having an average particle size of 0.2 μm was used.

비교예 3Comparative Example 3

평균 입자 크기 0.8㎛인 구형의 은 분말 81 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.A paste composition having a viscosity of 150,000 to 250,000 cps was prepared in the same manner as in Example 1 except that 81 wt% of a spherical silver powder having an average particle size of 0.8 μm was used.

비교예 4Comparative Example 4

평균 입자 크기 1.5㎛인 구형의 은 분말 81 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.A paste composition having a viscosity of 150,000 to 250,000 cps was prepared in the same manner as in Example 1 except that 81 wt% of spherical silver powder having an average particle size of 1.5 μm was used.

비교예 5Comparative Example 5

평균 입자 크기 3.5㎛인 판형의 은 분말 81 중량%를 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 점도 150,000 내지 250,000cps의 점도를 갖는 페이스트 조성물을 제조하였다.A paste composition having a viscosity of 150,000 to 250,000 cps was prepared in the same manner as in Example 1 except that 81 wt% of a plate-shaped silver powder having an average particle size of 3.5 μm was used.

비교예 6Comparative Example 6

페로사의 CN 33-462 페이스트 조성물을 구입하여 물성을 평가하였다. Ferro's CN 33-462 paste composition was purchased and evaluated for physical properties.

페이스트 물성의 절대값은 실리콘 기판의 상태, 인쇄조건, 건조조건, 소성조건에 따라 다를 수 있다.The absolute value of the paste properties may vary depending on the condition of the silicon substrate, printing conditions, drying conditions, and firing conditions.

물성 평가Property evaluation

실시예 1 내지 9 및 비교예 1 내지 6에서 얻은 페이스트 조성물을 아래와 같은 방법으로 수행하여 평가하였으며, 그 결과를 하기 표 1에 나타내었다: The paste compositions obtained in Examples 1-9 and Comparative Examples 1-6 were evaluated in the following manner, and the results are shown in Table 1 below:

1) 변환 효율1) Conversion efficiency

페이스트 조성물을 스크린 프린팅 방법으로 두께가 200㎛, 크기가 127mm × 127mm인 n형 실리콘 반도체 기판상에 325 메쉬의 스크린 인쇄판을 이용하여 소성두께가 10 내지 20㎛가 되도록 도포하고 건조시켰다. The paste composition was coated and dried on an n-type silicon semiconductor substrate having a thickness of 200 μm and a size of 127 mm × 127 mm by screen printing using a screen printing plate of 325 mesh so as to have a firing thickness of 10 to 20 μm.

상기 페이스트가 도포된 n형 실리콘 반도체 기판을 200 ℃에서 건조한 후 최 고온도 740 내지 790℃인 소성로에서 약 10초 동안 소성하여 전극을 형성시켜 태양전지 셀을 제작했다.The paste-coated n-type silicon semiconductor substrate was dried at 200 ° C., and then fired in a firing furnace having a maximum temperature of 740 to 790 ° C. for about 10 seconds to form an electrode, thereby manufacturing a solar cell.

제작된 태양전지 셀을 효율측정기(PASAN사)를 이용하여 변환효율을 측정하였다:The fabricated solar cell was measured for conversion efficiency using an efficiency meter (PASAN):

2) 소결 수축율은 건조두께 대비 소성두께의 증감비로 계산하였다.2) Sintering shrinkage was calculated as the increase and decrease ratio of the plastic thickness to the dry thickness.

3) 소결 밀도는 페이스트를 막으로 형성하여 상기 조건으로 건조 및 소결하여 페이스트 소결막을 형성한 후 아르키메데스법을 이용하여 부피와 질량을 측정하여 계산하였다. 3) The sintered density was calculated by forming a paste into a film, drying and sintering under the above conditions to form a paste sintered film, and then measuring the volume and mass using the Archimedes method .

4) 면적저항(Rs)은 폭/길이의 비가 1/500인 패턴으로 알루미나 기판에 325 메시 스크린 인쇄판으로 인쇄하고 상기 조건으로 건조 및 소성한 후 저항 측정기(키슬리 2470)로 선저항값을 측정하고 아래와 같은 공식으로 계산하였다.4) The area resistance (Rs) is printed with a 325 mesh screen printing plate on an alumina substrate in a pattern having a width / length ratio of 1/500, dried and fired under the above conditions, and then measured with a resistance measuring instrument (Kisley 2470). Calculated by the formula below.

Figure 112008072237283-PAT00001
Figure 112008072237283-PAT00001

상기 표 1의 결과에서 알 수 있는 바와 같이, 본 발명에 따른 실시예 1 내지 9에서 얻은 본 발명의 페이스트 조성물은 전극 제조시 소결 수축율이 +2 내지 -6%로서 비교예 1 내지 6에서 얻은 페이스트 조성물에 비해 상대적으로 낮고, 소결 밀도가 8g/cm3 이상이며, 면적저항이 낮아 태양전지 셀의 중요 특성인 변환효율이 우수하였다. As can be seen from the results of Table 1, the paste composition of the present invention obtained in Examples 1 to 9 according to the present invention is a paste obtained in Comparative Examples 1 to 6 with a sintering shrinkage of +2 to -6% during electrode production Compared with the composition, the sintered density was 8 g / cm 3 or more, and the area resistance was low.

Claims (18)

평균 입자 크기가 0.5㎛ 미만인 미세 도전성 금속 분말과 0.5 내지 10㎛인 도전성 금속 분말의 혼합분말, 무기바인더 수지 및 유기 비히클을 포함하는 도전성 페이스트 조성물.A conductive paste composition comprising a mixed powder, an inorganic binder resin, and an organic vehicle of a fine conductive metal powder having an average particle size of less than 0.5 μm and a conductive metal powder of 0.5 to 10 μm. 제 1 항에 있어서, The method of claim 1, 조성물 전체 중량에 대해 55 내지 90 중량%의 도전성 금속 분말의 혼합분말, 0.5 내지 8 중량%의 무기바인더 수지 및 5 내지 40 중량%의 유기 비히클을 포함하는 것을 특징으로 하는 도전성 페이스트 조성물.A conductive paste composition comprising from 55 to 90% by weight of a mixed powder of conductive metal powder, from 0.5 to 8% by weight of an inorganic binder resin and from 5 to 40% by weight of an organic vehicle, based on the total weight of the composition. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 평균 입자 크기가 0.5㎛ 미만인 미세 도전성 금속 분말과 0.5 내지 10㎛인 도전성 금속 분말의 혼합비가 10 중량% 내지 70 중량%:90 중량% 내지 30 중량%의 범위인 것을 특징으로 하는 도전성 페이스트 조성물. A conductive paste composition, characterized in that the mixing ratio of the fine conductive metal powder having an average particle size of less than 0.5 μm and the conductive metal powder of 0.5 to 10 μm is in the range of 10 wt% to 70 wt%: 90 wt% to 30 wt%. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 도전성 금속 분말이 은(Ag), 금(Au), 백금(Pt), 로듐(Rh), 팔라듐(Pd), 니켈(Ni), 알루미늄(Al) 및 구리(Cu)로 이루어진 군에서 선택된 하나 이상의 금속 분말인 것을 특징으로 하는 도전성 페이스트 조성물.The conductive metal powder is one selected from the group consisting of silver (Ag), gold (Au), platinum (Pt), rhodium (Rh), palladium (Pd), nickel (Ni), aluminum (Al) and copper (Cu) It is an above metal powder, The electrically conductive paste composition characterized by the above-mentioned. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 도전성 금속 분말이 은(Ag) 분말인 것을 특징으로 하는 도전성 페이스트 조성물.The conductive metal powder is silver (Ag) powder, characterized in that the conductive paste composition. 제 5 항에 있어서, The method of claim 5, 상기 은 분말이 무정형, 구형, 각형 및 플레이크형 중 하나 또는 둘 이상의 형태로 혼합된 것을 특징으로 하는 도전성 페이스트 조성물.The conductive paste composition, characterized in that the silver powder is mixed in one or more forms of amorphous, spherical, angular and flake type. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 무기바인더 수지가 유리프릿인 것을 특징으로 하는 도전성 페이스트 조성물.And the inorganic binder resin is glass frit. 제 7 항에 있어서, The method of claim 7, wherein 상기 유리프릿이 0.5 내지 10㎛의 평균 입경을 갖고 300 내지 800도의 연화온도를 갖는 레드-보로-실리케이트계 유리분말 또는 비스무스-보로 실리케이트계 유리분말인 것을 특징으로 하는 도전성 페이스트 조성물.The glass paste is a red-boro-silicate glass powder or bismuth-boro silicate-based glass powder having an average particle diameter of 0.5 to 10㎛ and a softening temperature of 300 to 800 degrees. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 유기 비히클이 테르피네올, 부틸카비톨, 부틸카비톨아세테이트, 텍사놀, 에틸렌글리콜, 아세톤, 파인오일, 이소프로필알콜 및 에탄올 중에서 선택된 하나 이상 의 용매이거나, 상기 용매 중에 셀룰로스계 수지, 아크릴계 수지 및 폴리비닐계 수지 중에서 선택된 하나 이상의 수지를 첨가한 것임을 특징으로 하는 도전성 페이스트 조성물.The organic vehicle is at least one solvent selected from terpineol, butyl carbitol, butyl carbitol acetate, texanol, ethylene glycol, acetone, pine oil, isopropyl alcohol and ethanol, or a cellulose-based resin or an acrylic resin in the solvent. And at least one resin selected from polyvinyl resins. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 칙소제, 탈포제, 레벨링제 및 요변제로 이루어진 군으로부터 선택된 하나 이상의 첨가제를 추가로 포함하는 것을 특징으로 하는 도전성 페이스트 조성물.A conductive paste composition further comprising at least one additive selected from the group consisting of thixotropic agents, defoamers, leveling agents and thixotropic agents. 제 10 항에 있어서, The method of claim 10, 상기 칙소제가 비표면적 1.5㎠/g 이상의 옥사이드계 칙소제 또는 왁스계 칙소제인 것을 특징으로 하는 도전성 페이스트 조성물.The conductive paste composition, wherein the thixotropic agent is an oxide-based thixotropic agent or a wax-based thixotropic agent having a specific surface area of 1.5 cm 2 / g or more. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 50,000 내지 500,000cps의 점도(브룩필드 DVII 점도계)를 갖는 것을 특징으로 하는 도전성 페이스트 조성물.A conductive paste composition, having a viscosity (Brookfield DVII viscometer) of 50,000 to 500,000 cps. 제 1 항에 따른 도전성 페이스트 조성물을 기판상에 도포하는 단계, 도포된 페이스트를 건조시키는 단계, 및 건조된 페이스트를 소성시켜 전극을 형성하는 단계를 포함하는 전극의 제조방법. A method of manufacturing an electrode comprising applying the conductive paste composition according to claim 1 on a substrate, drying the applied paste, and baking the dried paste to form an electrode. 제 13 항에 있어서,The method of claim 13, 상기 도전성 페이스트 조성물이 스크린 프린팅 또는 노즐을 이용하여 분출 방식으로 기판 상에 도포 되는 것을 특징으로 하는 제조방법. And wherein the conductive paste composition is applied onto the substrate in a spraying manner using screen printing or a nozzle. 제 13 항에 있어서,The method of claim 13, 상기 건조된 페이스트가 600 내지 850℃의 온도에서 소성되는 것을 특징으로 하는 제조방법.The dried paste is characterized in that the firing at a temperature of 600 to 850 ℃. 제 13 항에 있어서,The method of claim 13, 상기 전극이 5 내지 50㎛의 두께를 갖는 것을 특징으로 하는 제조방법.The electrode has a thickness of 5 to 50㎛ manufacturing method. 제 13 항에 있어서,The method of claim 13, 상기 전극이 태양전지의 표면 전극인 것을 특징으로 하는 제조방법.The electrode is a manufacturing method, characterized in that the surface electrode of the solar cell. 제 13 항에 따른 전극의 제조방법으로 제조된 전극을 표면 전극으로 포함하는 태양전지.A solar cell comprising the electrode manufactured by the method of manufacturing an electrode according to claim 13 as a surface electrode.
KR1020080101907A 2008-10-17 2008-10-17 Conductive paste composition, preparation of electrode using same and solar cell comprising same KR20100042766A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080101907A KR20100042766A (en) 2008-10-17 2008-10-17 Conductive paste composition, preparation of electrode using same and solar cell comprising same
CN200910148932A CN101728438A (en) 2008-10-17 2009-06-02 Conductive paste composition, preparation of electrode using same and solar cell comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080101907A KR20100042766A (en) 2008-10-17 2008-10-17 Conductive paste composition, preparation of electrode using same and solar cell comprising same

Publications (1)

Publication Number Publication Date
KR20100042766A true KR20100042766A (en) 2010-04-27

Family

ID=42218027

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080101907A KR20100042766A (en) 2008-10-17 2008-10-17 Conductive paste composition, preparation of electrode using same and solar cell comprising same

Country Status (2)

Country Link
KR (1) KR20100042766A (en)
CN (1) CN101728438A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067463A2 (en) * 2010-11-18 2012-05-24 주식회사 엘지화학 Silver paste composition for forming an electrode, and silicon solar cell using same
WO2012074314A2 (en) * 2010-12-01 2012-06-07 에스에스씨피 주식회사 Paste composition for an electrode of a solar cell, method for preparing same, and solar cell
KR101231344B1 (en) * 2010-11-12 2013-02-07 엘지이노텍 주식회사 Paste compisition for rear electrode of solar cell including the same, and solar sell
KR101276671B1 (en) * 2011-09-06 2013-06-19 주식회사 케이씨씨 Paste composition for solar cell front contact comprising water-dispersion type vehicle
KR101332406B1 (en) * 2011-04-15 2013-11-25 주식회사 케이앤피 Electroconductive paste composition for low temperature plasticity and method of producing the same
KR20160025252A (en) * 2014-08-27 2016-03-08 주식회사 미뉴타텍 Metal paste, transparent conductive substrate having the metal paste and manufacturing method the transparent conduvtive substrate
KR20170020630A (en) 2015-08-13 2017-02-23 주식회사 네패스 Eco-friendly water-based conductive ink composition and conductive pen having the same
WO2017099470A1 (en) * 2015-12-10 2017-06-15 주식회사 동진쎄미켐 Paste composition for forming solar cell electrode
CN114334214A (en) * 2021-12-31 2022-04-12 深圳先进电子材料国际创新研究院 Conductive silver paste and preparation method and application thereof
CN115975323A (en) * 2022-12-02 2023-04-18 广州市儒兴科技股份有限公司 Organic carrier for conductive paste and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280159A (en) * 2011-07-19 2011-12-14 彩虹集团公司 Electrode material applied to chip resistor
TWI432551B (en) * 2011-11-11 2014-04-01 Eternal Chemical Co Ltd Conductive adhesive composition for use in solar cells and uses thereof
CN102544218B (en) * 2012-01-16 2013-11-20 浙江搏路尚新能源有限公司 Method for manufacturing positive electrode of solar cell in printing manner
CN104269448B (en) * 2012-06-11 2017-02-01 苏州晶银新材料股份有限公司 Front electrode grid line for photovoltaic cell
CN102709394B (en) * 2012-06-11 2014-12-31 苏州晶银新材料股份有限公司 Process for preparing cathode grid line of solar cell
CN104393105B (en) * 2012-06-11 2017-03-15 苏州晶银新材料股份有限公司 Grid line manufacturing process for photovoltaic cell
KR101853420B1 (en) * 2016-10-13 2018-04-30 엘에스니꼬동제련 주식회사 Silver powder sintered at high temperature and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100351230B1 (en) * 2000-06-09 2002-09-05 대주정밀화학 주식회사 Conductive paste composition for electrodes
JP2007194580A (en) * 2005-12-21 2007-08-02 E I Du Pont De Nemours & Co Paste for solar cell electrode

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231344B1 (en) * 2010-11-12 2013-02-07 엘지이노텍 주식회사 Paste compisition for rear electrode of solar cell including the same, and solar sell
US9640298B2 (en) 2010-11-18 2017-05-02 Lg Chem, Ltd. Silver paste composition for forming an electrode, and silicon solar cell using same
KR20120053978A (en) * 2010-11-18 2012-05-29 주식회사 엘지화학 Ag paste composition for forming electrode and silicon solar cell using the same
WO2012067463A3 (en) * 2010-11-18 2012-08-23 주식회사 엘지화학 Silver paste composition for forming an electrode, and silicon solar cell using same
WO2012067463A2 (en) * 2010-11-18 2012-05-24 주식회사 엘지화학 Silver paste composition for forming an electrode, and silicon solar cell using same
WO2012074314A2 (en) * 2010-12-01 2012-06-07 에스에스씨피 주식회사 Paste composition for an electrode of a solar cell, method for preparing same, and solar cell
WO2012074314A3 (en) * 2010-12-01 2012-10-11 에스에스씨피 주식회사 Paste composition for an electrode of a solar cell, method for preparing same, and solar cell
KR101332406B1 (en) * 2011-04-15 2013-11-25 주식회사 케이앤피 Electroconductive paste composition for low temperature plasticity and method of producing the same
KR101276671B1 (en) * 2011-09-06 2013-06-19 주식회사 케이씨씨 Paste composition for solar cell front contact comprising water-dispersion type vehicle
KR20160025252A (en) * 2014-08-27 2016-03-08 주식회사 미뉴타텍 Metal paste, transparent conductive substrate having the metal paste and manufacturing method the transparent conduvtive substrate
KR20170020630A (en) 2015-08-13 2017-02-23 주식회사 네패스 Eco-friendly water-based conductive ink composition and conductive pen having the same
WO2017099470A1 (en) * 2015-12-10 2017-06-15 주식회사 동진쎄미켐 Paste composition for forming solar cell electrode
CN114334214A (en) * 2021-12-31 2022-04-12 深圳先进电子材料国际创新研究院 Conductive silver paste and preparation method and application thereof
CN115975323A (en) * 2022-12-02 2023-04-18 广州市儒兴科技股份有限公司 Organic carrier for conductive paste and preparation method thereof
CN115975323B (en) * 2022-12-02 2023-12-12 广州市儒兴科技股份有限公司 Organic carrier for conductive paste and preparation method thereof

Also Published As

Publication number Publication date
CN101728438A (en) 2010-06-09

Similar Documents

Publication Publication Date Title
KR20100042766A (en) Conductive paste composition, preparation of electrode using same and solar cell comprising same
KR100868621B1 (en) Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
KR100890866B1 (en) Electroconductive thick film compositions, electrodes, and semiconductor devices formed therefrom
KR100849584B1 (en) Paste for solar cell electrodes, method for the manufacture of solar cell electrodes, and the solar cell
US7485245B1 (en) Electrode paste for solar cell and solar cell electrode using the paste
JP5957546B2 (en) Conductive composition
JP2018049831A (en) Thick film conductive composition and use thereof
CN109961871B (en) Slurry for forming transparent conductor by silk-screen sintering and application
US20130004659A1 (en) Thick film paste and use thereof
KR20110014675A (en) Compositions containing submicron particles used in conductors for photovoltaic cells
TW200417531A (en) Terminal electrode compositions for multilayer ceramic capacitors
JP2018152218A (en) Conductive paste, chip electronic component and method for producing the same
KR100666752B1 (en) Conductive paste composition
TW201230065A (en) Conductive paste composite
RU2496166C1 (en) Current-conducting silver paste for rear electrode of solar cell
WO2021145269A1 (en) Electroconductive paste, electrode and chip resistor
JP2020017423A (en) Conductive paste
JP2015170548A (en) Electrode formation paste composition, and method for manufacturing electrode and solar battery using the same
KR20110014674A (en) Methods using compositions containing submicron particles used in conductors for photovoltaic cells
JPWO2017122570A1 (en) Conductive composition
JP2010129896A (en) Resistor paste, resistor film and resistor
TW202200514A (en) Thick film resistor paste, thick film resistor, and electronic component
CN115516578A (en) Thick film resistor paste, thick film resistor, and electronic component
TW201423767A (en) Electroplating-free silver paste

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application