KR20090100330A - Packing materials with tungsten for integrated circuit and single type package by using them - Google Patents

Packing materials with tungsten for integrated circuit and single type package by using them Download PDF

Info

Publication number
KR20090100330A
KR20090100330A KR1020090082956A KR20090082956A KR20090100330A KR 20090100330 A KR20090100330 A KR 20090100330A KR 1020090082956 A KR1020090082956 A KR 1020090082956A KR 20090082956 A KR20090082956 A KR 20090082956A KR 20090100330 A KR20090100330 A KR 20090100330A
Authority
KR
South Korea
Prior art keywords
tungsten
integrated circuit
encapsulant
molding compound
thermal expansion
Prior art date
Application number
KR1020090082956A
Other languages
Korean (ko)
Other versions
KR101171733B1 (en
Inventor
박영웅
Original Assignee
박영웅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박영웅 filed Critical 박영웅
Priority to KR1020090082956A priority Critical patent/KR101171733B1/en
Publication of KR20090100330A publication Critical patent/KR20090100330A/en
Priority to PCT/KR2010/005973 priority patent/WO2011028042A2/en
Priority to IN2813DEN2012 priority patent/IN2012DN02813A/en
Application granted granted Critical
Publication of KR101171733B1 publication Critical patent/KR101171733B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE: Packing materials with tungsten for integrated circuit and single type package by using them are provided to protect the electronic apparatus including a computer and telecommunication device from the attack of the nucleus electro magnetic wave. CONSTITUTION: The encapsulating material of the integrated semiconductor IC includes the ceramics containing the tungsten metal plate, and the tungsten, and the organic polymer molding compound containing the tungsten. The encapsulating material of the integrated semiconductor IC includes 1% ~ 90% wt tungsten of WO3,FeWO4,MnWO4,CaWO4,CuWO4,WC,W2C,WB,WB2,WS2,WS3,WSi2,8Ta2O5-18WO3,Ta2O5-WO3,11Ta2O5-4WO3,etc.

Description

텅스텐을 함유하는 반도체 집적회로의 봉지재 및 이를 사용한 일체형 패키지 {Packing Materials with Tungsten for Integrated Circuit and Single Type Package by Using Them}Packing material with Tungsten for Integrated Circuit and Single Type Package by Using Them

본 발명은 핵전자기파에 해당할 수 있는 수백킬로 전자볼트(eV, electron volt) 이하의 전자기파 방사선으로부터 전자장비의 핵심부품에 해당하는 반도체 집적회로(Integrated Circuit)를 보호하기 위한 일체형 패키지의 봉지재(Packing Material)에 대한 기술에 해당한다.The present invention provides an encapsulant of an integrated package for protecting a semiconductor integrated circuit corresponding to a core part of an electronic device from electromagnetic radiation of several hundred kilo electron volts (eV), which may correspond to nuclear electromagnetic waves. Corresponds to the description of Packing Material.

반도체 집적기술은 하루가 다르게 발전하고 있으며, 소규모집적회로(SSI), 중규모집적회로(MSI), 대규모집적회로(LSI), 초대규모집적회로(VLSI), 극초집적회로(ULSI) 수준으로 발전하고 있다. 반도체 집적회로는 집적도에 비례하여 열충격이나 진동 등 주변환경에 의한 영향으로 인하여 고장이 발생할 확률이 커진다고 할 수 있으며 특히, 수십 킬로미터 이상의 상공에서 원자폭탄이 폭발하는 경우 지상에 위치한 전자장비가 고장을 일으키는 주된 이유가 전자기파에 의한 반도체 집적회로 의 손상 때문이라는 것이 보고된 바 있다.Semiconductor integrated technology is developing differently every day, and it is being developed to small integrated circuit (SSI), medium integrated circuit (MSI), large integrated circuit (LSI), ultra large integrated circuit (VLSI), ultra integrated circuit (ULSI). have. Semiconductor integrated circuits can be said to be more prone to failure due to thermal shocks or vibrations in proportion to the degree of integration.In particular, when an atomic bomb explodes over several tens of kilometers, ground-based electronic equipment can cause failures. It has been reported that the main reason is the damage of semiconductor integrated circuits by electromagnetic waves.

핵 폭발시 방출하는 총 에너지의 약 5%는 7MeV의 즉발감마선(Prompt Gamma Rays)의 형태로 방출하며 약 10%는 6MeV의 지발감마선(Delayed Gamma Rays)으로 방출하는데, 핵 폭발 후 초기에 생성하는 이런 고에너지의 감마선은 지상으로 도달하는 과정에서 공기분자와 전자쌍생성, 컴프턴산란 및 광전효과를 포함한 기타 상호작용을 통하여 그 에너지가 점차 낮아지게 되므로, 지표면에서 관찰할 수 있는 전자기파는 수백킬로 전자볼트 이하의 에너지 분포를 갖게 될 것이라고 예측할 수 있다(공개특허 10-2009-0089836). 본 발명에서는 핵 폭발 초기에 방출되는 6MeV 이상의 감마선 및 1GHz 이하에 해당되는 일반적으로 알려진 전자기파와 구분하기 위하여, 수백킬로 전자볼트 이하의 전자기파 방사선을 핵전자기파라(NEMP, Nuclear Electromagnetic Pulse)고 정의하였다.About 5% of the total energy released during a nuclear explosion is in the form of 7 MeV of prompt Gamma Rays, and about 10% is emitted in 6MeV of Delayed Gamma Rays, which are generated early after the nuclear explosion. As these high energy gamma rays reach the ground, their energy is gradually lowered through other interactions including air molecules and electron pairing, compton scattering, and photoelectric effects. It can be expected to have an energy distribution of less than volts (Patent 10-2009-0089836). In the present invention, in order to distinguish from gamma rays of 6MeV or more and general electromagnetic waves corresponding to 1 GHz or less, which are emitted at the beginning of a nuclear explosion, electromagnetic radiation of several hundred kilo electron volts or less is defined as Nuclear Electromagnetic Pulse (NEMP).

핵전자기파로부터 전자장비를 보호하기 위한 기존의 방법이라 하면, 알루미늄 호일 등 전도성 물질로 감싸거나 전자장비가 위치한 주변의 벽을 고밀도 차폐벽돌로 보강하는 방법이 제시되어 있으나, 전자의 경우에는 그 효과가 입증되었다고 할 수 없으며 후자의 경우는 비용이 많이 드는 방법에 해당된다고 할 수 있다. 일반적으로 반도체 집적회로는 '도4'와 같이 일체형 패키지의 형태로 보호하고 있으므로 패키지를 구성하는 봉지재의 성분에 원자번호가 높은 중금속 성분을 넣을 수 있다면 핵전자기파로부터 발생하는 문제는 쉽게 해결될 수 있을 것이다.Conventional methods for protecting electronic equipment from nuclear electromagnetic waves have been proposed, such as wrapping with a conductive material such as aluminum foil or reinforcing the wall around the electronic equipment with a high-density shielding brick. It can't be proven, and the latter is an expensive method. In general, semiconductor integrated circuits are protected in the form of an integrated package as shown in FIG. will be.

본 발명에서 해결해야 할 과제는, 낮은 유전상수, 높은 열전도도, 반도체 웨이퍼(Wafer)와 비슷한 열팽창계수 등 일체형 패키지의 봉지재로서 필요로 하는 성능은 유지하면서 전자기파 방사선을 차폐하는 기능을 추가하는 것이다.The problem to be solved in the present invention is to add a function of shielding electromagnetic radiation while maintaining the performance required as an encapsulant of an integrated package such as low dielectric constant, high thermal conductivity, and thermal expansion coefficient similar to that of a semiconductor wafer. .

일체형 패키지의 봉지재에 있어서 가장 중요한 특성 중의 하나는 열팽창계수인데, 혼합물에 있어서의 열팽창계수가 구성성분별의 열팽창계수에 각각의 혼합비를 곱한 값의 합과 같다고 가정한다면, 에폭시수지(Epoxy Resin)의 열팽창계수를 5.40E-5, 용융실리카(Fused Silica)의 열팽창계수를 5.40E-7, 실리콘웨이퍼(Si-Wafer)의 열팽창계수를 4.00E-6이라고 하면 에폭시수지 6.47% 중량비에 용융실리카 93.53% 중량비를 혼합하게 되면 실리콘웨이퍼와 같은 열팽창계수를 갖는 에폭시 몰딩 컴파운드(EMC, Epoxy Molding Compound)를 만들 수 있다는 것을 단순계산을 통하여 알 수 있다. 본 발명을 구현하기 위한 과제 해결의 수단은, 중금속을 용융실리카 대신 사용하되 반도체 웨이퍼와 비슷한 열팽창계수를 유지하는 일체형 패키지의 봉지재를 구현하는 것이라 할 수 있다.One of the most important characteristics of the encapsulant of the integrated package is the coefficient of thermal expansion.Epoxy resins assuming that the coefficient of thermal expansion in the mixture is equal to the sum of the product of the mixing ratio multiplied by the mixing ratio of the components. The thermal expansion coefficient of 5.40E-5, Fused Silica is 5.40E-7, and the thermal expansion coefficient of Si-Wafer is 4.00E-6. The epoxy resin is 6.47% by weight. It can be seen from the simple calculation that mixing the% weight ratio can produce an epoxy molding compound (EMC) having a thermal expansion coefficient such as a silicon wafer. Means for solving the problem to implement the present invention, by using a heavy metal in place of molten silica can be said to implement an encapsulant of an integrated package that maintains a coefficient of thermal expansion similar to a semiconductor wafer.

에폭시 몰딩 컴파운드 봉지재의 원료 및 실리콘웨이퍼의 열팽창계수Epoxy Molding Compound Encapsulant and Silicon Wafer Thermal Expansion Coefficient MaterialsMaterials Epoxy ResinEpoxy Resin Fused SilicaFused silica Si-WaferSi-Wafer Thermal Expansion Coefficient (cm/cm-℃)Thermal Expansion Coefficient (cm / cm- ℃) 5.40E-55.40E-5 5.40E-75.40E-7 4.00E-64.00E-6

본 발명의 사용으로, 컴퓨터 및 통신장비를 포함하는 전자장비를 핵전자기파의 공격으로부터 보호할 수 있게 되었을 뿐만 아니라, 로봇이나 방사선 측정기 등 원자력시설의 고방사선구역에서 사용하는 전자장비 및 인공위성에 사용되는 반도체 집적회로를 이용하는 주요 전자부품의 수명연장도 가능하게 될 것이다.The use of the present invention not only protects electronic equipment, including computers and communication equipment, from the attack of nuclear electromagnetic waves, but also is used in electronic equipment and satellites used in high-radiation areas of nuclear facilities such as robots and radiation measuring instruments. It will also be possible to extend the life of major electronic components using semiconductor integrated circuits.

텅스텐(W)은 열팽창계수가 가장 낮은 금속이면서 이와 동시에 다양한 형태의 화합물(WO3, FeWO4, MnWO4, CaWO4, CuWO4, WC, W2C, WB, WB2, WS2, WS3, WSi2, 8Ta2O5-18WO3, Ta2O5-WO3, 11Ta2O5-4WO3, etc.) 합성이 가능하며 특히, 탄탈륨(Ta)을 포함하는 텅스텐 산화물은 열팽창계수가 매우 낮은 것으로 알려져 있다. 탄탈륨과 텅스텐의 복합산화물 중에서 11Ta2O5-4WO3는 열팽창계수가 용융실리카와 거의 같은 6.00E-7이므로, 혼합물의 열팽창계수가 구성성분별의 열팽창계수에 각각의 혼합비를 곱한 값의 합과 같다고 가정한다면, 에폭시수지 6.37% 중량비에 11Ta2O5-4WO3 93.63% 중량비를 혼합하면 실리콘웨이퍼와 같은 열팽창계수를 갖는 에폭시 몰딩 컴파운드를 만들 수 있음을 단순계산을 통하여 알 수 있다. 또한, 열팽창계수가 음의 값을 갖는 Ta2O5-WO3 및 8Ta2O5-18WO3와 같은 화합물을 사용한다면 주어진 열팽창 계수의 범위 안에서 원하는 물성을 얻기 위한 여러 성분을 추가할 여력도 있 을 것이므로 맞춤식 에폭시 몰딩 컴파운드 봉지재의 제조가 가능할 것이며, 탄탈륨 역시 텅스텐과 같은 중금속에 해당하는 물질이므로 탄탈륨의 증가에 따라 텅스텐 성분이 줄어든다는 것은 전자기파 방사선을 차폐하기 위한 목적 달성에 있어서 그다지 큰 문제가 되지 않으리라는 것을 '표2'를 통하여 알 수 있다. 본 발명을 설명하는데 있어서 에폭시 몰딩 컴파운드와 봉지재를 구분하여 표현하였는데, 봉지재는 에폭시 몰딩 컴파운드 뿐만 아니라 페놀수지를 포함하는 다양한 유기고분자 수지를 결합제로 하고 성능개량제까지 첨가한 유기고분자 몰딩 컴파운드, 금속 및 세라믹 형태를 모두 포함하는 넓은 의미로 사용하였다.Tungsten (W) is the metal with the lowest coefficient of thermal expansion and at the same time various types of compounds (WO3, FeWO4, MnWO4, CaWO4, CuWO4, WC, W2C, WB, WB2, WS2, WS3, WSi2, 8Ta2O5-18WO3, Ta2O5-WO3) , 11Ta2O5-4WO3, etc.) can be synthesized. In particular, tungsten oxide containing tantalum (Ta) is known to have a very low coefficient of thermal expansion. Among the complex oxides of tantalum and tungsten, 11Ta2O5-4WO3 has a coefficient of thermal expansion of 6.00E-7 which is almost the same as that of molten silica, so assuming that the coefficient of thermal expansion of the mixture is equal to the sum of the product of the respective mixing ratios. It can be seen from the simple calculation that the epoxy resin compound having the thermal expansion coefficient, such as silicon wafer, can be made by mixing the ratio of 11Ta2O5-4WO3 93.63% by weight with 6.37% by weight of epoxy resin. In addition, using compounds such as Ta2O5-WO3 and 8Ta2O5-18WO3, which have negative coefficients of thermal expansion, may have the potential to add multiple components to achieve the desired properties within the range of given coefficients of thermal expansion. Since tantalum is also a heavy metal such as tungsten, the reduction of tungsten content with increasing tantalum will not be a big problem in achieving the purpose of shielding electromagnetic radiation. This can be seen through. In describing the present invention, the epoxy molding compound and the encapsulant are expressed separately, and the encapsulant is an organic polymer molding compound, a metal, and an organic polymer molding compound, in which not only an epoxy molding compound but also various organic polymer resins including phenol resins are added as binders and performance modifiers are added. It was used in a broad sense including all ceramic forms.

주요 원소의 밀도 및 입사 에너지별 질량에너지 감쇄계수Mass energy attenuation coefficient of density and incident energy of main elements 구 분 division 밀 도 (g/cm3)Wheat degree (g / cm3) 질량에너지감쇄계수(cm2/g)Mass Energy Reduction Factor (cm2 / g) 0.01MeV0.01MeV 0.05MeV0.05MeV 0.10MeV0.10MeV 0.50MeV0.50 MeV Si(Silicon)Si (Silicon) 2.332.33 33.8933.89 0.440.44 0.180.18 0.090.09 Cu(Copper)Cu (Copper) 8.928.92 215.90215.90 2.612.61 0.460.46 0.080.08 Ba(Barium)Ba (Barium) 3.513.51 186.00186.00 13.7913.79 2.202.20 0.100.10 Ta(Tantalum)Ta (Tantalum) 16.6916.69 237.90237.90 5.725.72 4.304.30 0.140.14 W(Tungsten)W (Tungsten) 19.2519.25 96.9196.91 5.955.95 4.444.44 0.140.14 Epoxy ResinEpoxy Resin 1.201.20 2.092.09 0.210.21 0.170.17 0.100.10

탄탈륨과 텅스텐의 혼합산화물에 대한 전기 및 열적 특성 (출처: Refractory Ceramic Compositions and Methods for Preparing Same, US patent 3,969,123, July 13, 1976)Electrical and thermal properties of mixed oxides of tantalum and tungsten (Source: Refractory Ceramic Compositions and Methods for Preparing Same, US patent 3,969,123, July 13, 1976) CompositionsCompositions W,%W,% Electrical Resistivity (Ω-cm)Electrical Resistivity (Ω-cm) Thermal Expansion Coefficient (cm/cm-℃)Thermal Expansion Coefficient (cm / cm- ℃) 11Ta2O5-4WO311Ta2O5-4WO3 12.912.9 200E+6200E + 6 +0.6E-6+ 0.6E-6 Ta2O5-WO3Ta2O5-WO3 27.527.5 11E+611E + 6 -2.0E-6-2.0E-6 8Ta2O5-18WO38Ta2O5-18WO3 42.942.9 5E+65E + 6 -5.0E-6-5.0E-6

다만, 텅스텐 화합물은 유전율이 높다는 것이 단점이 될 수도 있으므로, 텅스텐 화합물을 일체형 패키지의 봉지재로 사용하고자 하는 경우에는 그 배합 조성에 따라 유전율을 낮추어야 하는 문제에 봉착할 수도 있을 것이다. 밀도가 가장 높은 금속에 해당하는 텅스텐은 유전율을 낮출 수 있는 배합에 있어서 밀도가 낮은 다른 금속에 비해 상대적으로 유리하다고 할 수 있으며, 반도체 집적회로와 봉지재 사이에 얇은 필름형태의 전기절연물질을 도입할 수도 있으므로 텅스텐 화합물을 주원료로 하는 일체형 패키지의 봉지재는 기술적으로 가능하다고 할 수 있을 것이다. 또한, 최근에는 반도체 집적회로의 고장 원인이 되는 전하의 분극현상이 에폭시 몰딩 컴파운드의 낮은 유전율 때문이라는 것이 밝혀진바 있으므로(등록특허 10-0575086) 다양한 성분배합이 가능한 본 발명은 어느 정도의 범위 내에서 유전율 조절도 가능하다고 할 수 있을 것이므로 전하의 분극현상을 예방하기 위한 반도체 집적회로를 설계한다는 관점에 있어서는 텅스텐 화합물의 유전율은 경우에 따라서 유리하게 작용할 수도 있을 것이다.However, since the tungsten compound may have a disadvantage in that the dielectric constant is high, when the tungsten compound is to be used as an encapsulant of an integrated package, the tungsten compound may encounter a problem in that the dielectric constant should be lowered according to its compounding composition. Tungsten, which is the most dense metal, is more advantageous than other low-density metals in formulations that can lower the dielectric constant. A thin film-type electrical insulating material is introduced between the semiconductor integrated circuit and the encapsulant. Since it may be possible, the encapsulant of the integrated package containing tungsten compound as a main raw material may be technically possible. In addition, recently, it has been found that the polarization of charge, which is a cause of failure of semiconductor integrated circuits, is due to the low dielectric constant of epoxy molding compound (Patent 10-0575086). Since the dielectric constant may be controlled, in view of designing a semiconductor integrated circuit for preventing charge polarization, the dielectric constant of the tungsten compound may be advantageous in some cases.

본 발명의 이해를 돕기 위하여 다음과 같은 가상의 실시예를 들어 설명하고자 하며 본 발명은 이에 국한되지 않는다. ① 에폭시수지와 경화제 혼합물 15.4% 중량비와 8Ta2O5-18WO3 분말 84.60% 중량비를 균일하게 혼합하여 에폭시 몰딩 컴파운드를 만드는 단계, ② 에폭시 몰딩 컴파운드를 약 2mm 두께로 성형·경화하여 주어진 규격의 성형체를 만드는 단계, ③ 반도체 집적회로를 전기절연물질 용액에 넣었다가 꺼내 건조·경화시켜 집적회로의 표면에 약 0.1mm 정도로 전기절연물질을 코팅하는 단계, ④ 반도체 집적회로와 '②'의 단계에서 미리 만들어진 성형체를 경화되지 않은 에폭시 몰딩 컴파운드를 사용하여 견고하게 접착시켜는 단계를 거치면 텅스텐을 함유하는 에폭시 몰딩 컴파운드를 봉지재로 하는 일체형 패키지를 완성할 수 있을 것이며, 텅스텐을 함유한 에폭시 몰딩 컴파운드가 유전율에 있어서 문제될 것이 없다고 판단되면 '③'의 단계는 생략할 수 있을 것이다.In order to help the understanding of the present invention, the following hypothetical embodiments will be described and described, but the present invention is not limited thereto. ① to make epoxy molding compound by uniformly mixing 15.4% weight ratio of epoxy resin and hardener mixture and 84.60% weight ratio of 8Ta2O5-18WO3 powder, ② molding and curing epoxy molding compound to about 2mm thickness to make molded body of given specification, ③ Put the semiconductor integrated circuit into the electric insulating material solution, remove it, dry it, and harden to coat the electric insulating material on the surface of the integrated circuit by about 0.1mm. ④ Harden the molded body prepared in the step of semiconductor integrated circuit and '②'. The step of firmly bonding using an unmolded epoxy molding compound will result in a one-piece package consisting of an epoxy molding compound containing tungsten as an encapsulant, and an epoxy molding compound containing tungsten will be a problem in dielectric constant. If it is determined that there is nothing, the step of '③' can be omitted.

일체형 패키지의 봉지재 재질에 있어서는, 현재 가장 많이 사용되고 있는 에폭시 몰딩 컴파운드 뿐만 아니라 페놀수지를 포함하는 다양한 유기고분자 수지를 결합제로 하고 또한 각종 성능개량제까지 첨가된 유기고분자 몰딩 컴파운드의 형태도 가능할 것이며, 텅스텐이 산화에 특히 안정한 금속이라는 것을 고려한다면 약 1mm 두께의 텅스텐 금속판으로 봉지재를 구성하는 것도 가능하다고 할 수 있을 것이며, 삼산화텅스텐(WO3)이 세라믹의 황색안료로 사용되고 있다는 것을 고려한다면 텅스텐을 함유하는 세라믹 형태의 봉지재도 충분히 가능할 것이다. 또한, '도2'에서와 같이 텅스텐 금속의 열팽창계수는 실리콘웨이퍼의 열팽창계수와 비슷하므로 에폭시 몰딩 컴파운드에 텅스텐 금속판을 붙인 형태의 봉지재도 가능할 것이다. 텅스텐을 함유하는 에폭시 몰딩 컴파운드에 있어서 텅스텐이 차지하는 비율은 전자기파 방사선의 차폐성능을 결정하는 중요한 요소에 해당될 수 있는데, 에폭시수지 4% 중량비에 탄화텅스텐(WC) 96% 중량비 함유하는 것을 텅스텐을 최대로 함유할 수 있는 컴파운드 조성이라고 가정한다면, 화합물의 형태로 봉지재에 함유될 수 있는 텅스텐의 최대량은 약 90% 까지라고 할 수 있을 것이다.In the case of the encapsulant material of the integrated package, it is possible to form not only epoxy molding compound, which is currently used most, but also organic polymer molding compound including various organic polymer resins including phenolic resin as a binder and various performance modifiers. Considering that it is a particularly stable metal for oxidation, it may be possible to construct an encapsulant with a tungsten metal plate having a thickness of about 1 mm, and considering that tungsten trioxide (WO 3) is used as a yellow pigment for ceramics, Encapsulants in ceramic form will also be possible. In addition, since the thermal expansion coefficient of the tungsten metal is similar to that of the silicon wafer as shown in FIG. 2, an encapsulant having a tungsten metal plate attached to the epoxy molding compound may be possible. The proportion of tungsten in an epoxy molding compound containing tungsten may be an important factor in determining the shielding performance of electromagnetic radiation. The content of tungsten carbide (96% by weight) of tungsten carbide (WC) in 4% by weight of epoxy resin is the maximum. Assuming that the compound composition can be contained as, the maximum amount of tungsten that can be contained in the encapsulant in the form of a compound may be up to about 90%.

도 1. 비중이 1.2인 에폭시수지에 실리콘, 구리, 바륨 및 텅스텐을 중량비로 각각 1%, 5% 및 50% 첨가한 에폭시 몰딩 컴파운드를 가정하였을 때, 핵전자기파 중에서 에너지가 0.01MeV 내지 0.50MeV에 해당하는 전자기파 방사선의 차폐율을 컴파운드의 두께별로 구분하여 나타낸 것으로서, 텅스텐을 50% 함유한 컴파운드는 2mm의 두께만으로 0.1MeV 이하의 전자기파 방사선을 약 100% 차단한다는 것을 알 수 있다.Assuming that the epoxy molding compound in which 1%, 5% and 50% of silicon, copper, barium and tungsten are added to the epoxy resin having a specific gravity of 1.2 by weight, respectively, the energy in the nuclear electromagnetic waves is 0.01MeV to 0.50MeV. As the shielding rate of the electromagnetic radiation is divided by the thickness of the compound, it can be seen that the compound containing 50% of tungsten blocks about 100% of the electromagnetic radiation of 0.1 MeV or less with only a thickness of 2mm.

도 2. 주요 원소 및 화합물에 대한 열팽창계수를 나타낸 것으로서, 용융실리카 약 94% 중량비와 에폭시수지 약 6% 중량비를 혼합한 에폭시 몰딩 컴파운드의 열팽창계수가 실리콘웨이퍼의 열팽창계수와 계산적으로 같게 된다는 것을 알 수 있으며, 텅스텐 화합물을 사용하는 경우 실리콘웨이퍼와 비슷한 열팽창계수를 나타내는 에폭시 몰딩 컴파운드의 조합이 충분히 가능하다는 것을 알 수 있다.Figure 2 shows the thermal expansion coefficients for the major elements and compounds, and it is found that the thermal expansion coefficient of the epoxy molding compound mixed with about 94% by weight of molten silica and about 6% by weight of epoxy resin is calculated to be equal to the thermal expansion coefficient of the silicon wafer. In the case of using a tungsten compound, it can be seen that a combination of epoxy molding compounds exhibiting a coefficient of thermal expansion similar to that of a silicon wafer is sufficiently possible.

도 3. 주요 원소 및 화합물에 대한 열전도도를 나타낸 것으로서, 용융실리카와 에폭시로 구성된 기존의 에폭시 몰딩 컴파운드는 열전도의 관점에서는 일체형 패키지의 봉지재로서 불리하다는 것을 알 수 있다.Figure 3 shows the thermal conductivity of the main elements and compounds, it can be seen that the conventional epoxy molding compound composed of molten silica and epoxy is disadvantageous as the encapsulant of the integrated package in terms of thermal conductivity.

도 4. 일체형 패키지의 내부구조를 설명하기 위한 그림이며, 반도체 집적회로를 구성하는 웨이퍼(Wafer)를 에폭시 몰딩 컴파운드(EMC) 봉지재가 견고하게 감싸고 있는 것을 알 수 있다.4. It is a figure for demonstrating the internal structure of an integrated package, and it turns out that the epoxy molding compound (EMC) sealing material is firmly surrounding the wafer which comprises a semiconductor integrated circuit.

본 발명을 설명하는데 있어서 반도체 웨이퍼와 실리콘웨이퍼를 구분하여 표현하였는데, 반도체 웨이퍼는 실리카웨이퍼 뿐만 아니라 게르마늄웨이퍼 및 집적회 로 구현이 가능한 모든 반도체 재질의 웨이퍼를 포함하는 의미로 사용하였다.In describing the present invention, semiconductor wafers and silicon wafers are divided and expressed. The semiconductor wafer is used to include not only silica wafers but also germanium wafers and wafers of all semiconductor materials that can be integrated circuits.

Claims (3)

일체형 패키지를 위한 반도체 집적회로의 봉지재에 있어서, In an encapsulant of a semiconductor integrated circuit for an integrated package, 텅스텐 금속판, 텅스텐을 함유하는 세라믹, 텅스텐을 함유하는 유기고분자 몰딩 컴파운드를 하나 이상 사용하는 것을 특징으로 하는 반도체 집적회로의 봉지재An encapsulant of a semiconductor integrated circuit comprising at least one tungsten metal plate, a ceramic containing tungsten, or an organic polymer molding compound containing tungsten. 일체형 패키지를 위한 반도체 집적회로의 봉지재에 있어서,In an encapsulant of a semiconductor integrated circuit for an integrated package, 화합물의 형태 (WO3, FeWO4, MnWO4, CaWO4, CuWO4, WC, W2C, WB, WB2, WS2, WS3, WSi2, 8Ta2O5-18WO3, Ta2O5-WO3, 11Ta2O5-4WO3,etc.)로 텅스텐을 1% 중량비 내지 90% 중량비 함유하는 것을 특징으로 하는 반도체 집적회로의 봉지재Tungsten in the form of compounds (WO3, FeWO4, MnWO4, CaWO4, CuWO4, WC, W2C, WB, WB2, WS2, WS3, WSi2, 8Ta2O5-18WO3, Ta2O5-WO3, 11Ta2O5-4WO3, etc.) Encapsulant of a semiconductor integrated circuit, characterized in that containing 90% by weight 청구항1 또는 청구항2의 봉지재를 사용한 것을 특징으로 하는 반도체 집적회로의 일체형 패키지An integrated package of a semiconductor integrated circuit characterized by using the encapsulant of claim 1 or 2.
KR1020090082956A 2009-09-03 2009-09-03 Packing Materials of Semiconductor Integrated Circuit for Single Type Package which Contains Tungsten Compounds KR101171733B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020090082956A KR101171733B1 (en) 2009-09-03 2009-09-03 Packing Materials of Semiconductor Integrated Circuit for Single Type Package which Contains Tungsten Compounds
PCT/KR2010/005973 WO2011028042A2 (en) 2009-09-03 2010-09-03 Packing material containing tungsten and integrated package
IN2813DEN2012 IN2012DN02813A (en) 2009-09-03 2012-04-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090082956A KR101171733B1 (en) 2009-09-03 2009-09-03 Packing Materials of Semiconductor Integrated Circuit for Single Type Package which Contains Tungsten Compounds

Publications (2)

Publication Number Publication Date
KR20090100330A true KR20090100330A (en) 2009-09-23
KR101171733B1 KR101171733B1 (en) 2012-08-10

Family

ID=41358625

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090082956A KR101171733B1 (en) 2009-09-03 2009-09-03 Packing Materials of Semiconductor Integrated Circuit for Single Type Package which Contains Tungsten Compounds

Country Status (3)

Country Link
KR (1) KR101171733B1 (en)
IN (1) IN2012DN02813A (en)
WO (1) WO2011028042A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0956749B1 (en) * 1997-01-30 2015-05-27 Maxwell Technologies, Inc. Methods and compositions for ionizing radiation shielding
JPH10286845A (en) * 1997-04-15 1998-10-27 Seiko Epson Corp Manufacture of resin sealing mold and resin sealing type semiconductor device
KR100575086B1 (en) * 2004-11-11 2006-05-03 삼성전자주식회사 Semiconductor package with conductive molding compound and manufacturing method thereof
KR20080023996A (en) * 2006-09-12 2008-03-17 주식회사 하이닉스반도체 Semiconductor package

Also Published As

Publication number Publication date
WO2011028042A3 (en) 2011-07-14
KR101171733B1 (en) 2012-08-10
WO2011028042A2 (en) 2011-03-10
IN2012DN02813A (en) 2015-07-24

Similar Documents

Publication Publication Date Title
Barani et al. Multifunctional graphene composites for electromagnetic shielding and thermal management at elevated temperatures
EP2607420A1 (en) Composition for a composite sheet comprising core-shell type filler particles, a composite sheet comprising the same and a production method for the composite sheet
JPS62255893A (en) Protective box for electronic circuit reinforced against x-ray
Zhu et al. Thermal conductivity and dielectric properties of immiscible LDPE/epoxy blend filled with hybrid filler consisting of HGM and nitride particle
CN107207950B (en) Thermally conductive electromagnetic interference (EMI) absorbers with silicon carbide
KR20150052591A (en) Composition for complex sheet, complex sheet comprising the same, and preparation method of the complex sheet
JP2019149551A (en) Composite magnetic sealing material
CA2278838A1 (en) Methods and compositions for ionizing radiation shielding
KR102000446B1 (en) Cement composition capable of shielding electro magnetic interference, cement mortar and cement concrete using the compositioon
Awais et al. Tuning epoxy for medium frequency transformer application: Resin optimization and characterization of nanocomposites at high temperature
JP2003218249A (en) Semiconductor hollow package
KR102648481B1 (en) Electrical device with covering material
KR101171733B1 (en) Packing Materials of Semiconductor Integrated Circuit for Single Type Package which Contains Tungsten Compounds
KR20180081318A (en) Granule type epoxy resin composition for semiconductor encapsulation and semiconductor device encapsulated by using the same
US20030108744A1 (en) Electromagnetic absorber materia, method for the production thereof and method for the production of shielding devices thereof
KR102544119B1 (en) Resin composition for encapsulating electronic device and electronic device fabricated using the same
Nguyen et al. Design of an experimental study of high through-plane thermal conductivity hybrid epoxy composite insulation with superior dielectric strength
KR102146995B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
WO2019161282A1 (en) Thermal interface materials having high dielectric losses and low dielectric constants
KR101933273B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
Moon et al. Ferrite polymer composite for improving the electromagnetic compatibility of semiconductor packaging
KR102079434B1 (en) Heat disspating filler with mixing metal and non-metal
JP2003128880A (en) Epoxy resin composition and electronic device
CN112706311A (en) Dispensing system and method including inline remixing of thermal management and/or EMI mitigation materials
JP2005510070A (en) Electromagnetic wave reducing material and reduction method

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150803

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170801

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180731

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190729

Year of fee payment: 8