KR20090092070A - A method for preparing molybdenum sulfide electrode with carbon nanotube - Google Patents

A method for preparing molybdenum sulfide electrode with carbon nanotube

Info

Publication number
KR20090092070A
KR20090092070A KR1020080017351A KR20080017351A KR20090092070A KR 20090092070 A KR20090092070 A KR 20090092070A KR 1020080017351 A KR1020080017351 A KR 1020080017351A KR 20080017351 A KR20080017351 A KR 20080017351A KR 20090092070 A KR20090092070 A KR 20090092070A
Authority
KR
South Korea
Prior art keywords
mos
electrode
secondary battery
conductive material
glycol dimethyl
Prior art date
Application number
KR1020080017351A
Other languages
Korean (ko)
Inventor
권정희
안효준
김기원
남태현
안주현
조권구
조규봉
김종선
김동주
김동연
김익표
박진우
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020080017351A priority Critical patent/KR20090092070A/en
Publication of KR20090092070A publication Critical patent/KR20090092070A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

A method for preparing an MoS2 electrode for a secondary battery is provided to prepare an MoS2 electrode which is environment-friendly and has great discharge capacity by using MoS2 as an active material and adding carbon nanotube as a conductive material. A method for preparing an MoS2 electrode for a secondary battery comprises the steps of ball milling and pulverizing MoS2 powder as an electrode active material; mixing a binder and a conductive material with the MoS2 powder to prepare an electrode composition; adding the electrode composition in a dispersion solvent, ball milling them to prepare slurry; and casting the slurry on a glass plate and drying the slurry.

Description

탄소나노튜브가 첨가된 몰리브덴 설파이드 전극의 제조방법{A Method for Preparing Molybdenum Sulfide Electrode with Carbon Nanotube}A method for preparing molybdenum sulfide electrode with carbon nanotube

본 발명은 탄소나노튜브가 첨가된 이차전지용 몰리브덴 설파이드(MoS2) 전극의 제조방법에 관한 것으로, 보다 구체적으로는 전극 활물질로서 MoS2분말을 도전재로서 탄소나노튜브 및 바인더와 혼합하고, 이를 분산 용매에 첨가한 후, 볼 밀링하여 슬러리로 제조하고, 이를 유리판에 캐스팅하여 건조시켜 제조된 이차전지용 MoS2 전극의 제조방법 및 이로부터 제조된 MoS2 전극, 및 이 MoS2 전극으로 제조된 MoS2 이차전지에 관한 것이다.The present invention relates to a method for manufacturing molybdenum sulfide (MoS 2 ) electrode for secondary battery to which carbon nanotubes are added. More specifically, MoS 2 powder as an electrode active material is mixed with carbon nanotubes and a binder as a conductive material and dispersed therein. After addition to the solvent, ball milling to make a slurry, which was cast on a glass plate and dried by MoS 2 for secondary batteries Method for producing electrode and MoS 2 electrode prepared therefrom, and MoS 2 It relates to a MoS 2 secondary battery prepared as an electrode.

최근 들어 전자, 통신, 컴퓨터산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보 통신기기들을 구동할 동력원으로서 리튬이온이차전지에 대한 수요가 나날이 증가하고 있다. 특히 내연기관과 리튬이차전지를 혼성화(hybrid)하여 전기자동차용 동력원에 관한 연구가 미국, 일본 및 유럽 등에서 활발히 진행 중에 있다. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged and have been developing remarkably, and the demand for lithium ion secondary battery as a power source to drive these portable electronic information communication devices is increasing day by day. It is increasing. In particular, research on power sources for electric vehicles by hybridizing internal combustion engines and lithium secondary batteries has been actively conducted in the US, Japan, and Europe.

현재 시판되는 소형 리튬이온이차전지는 양극에 LiCoO2를, 음극에 탄소를 사용한다. LiCoO2는 안정된 충·방전특성, 우수한 전자전도성, 높은 안정성 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이나, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다.Commercially available small lithium ion secondary batteries use LiCoO 2 for the positive electrode and carbon for the negative electrode. LiCoO 2 is an excellent material having stable charging and discharging characteristics, excellent electronic conductivity, high stability, and flat discharge voltage characteristics. However, since Co is low in reserve and expensive and toxic to humans, it is desirable to develop other cathode materials.

LiCoO2와 같은 층상 구조를 갖는 LiNiO2는 큰 방전용량을 나타내지만 사이클 수명 및 열적으로 가장 불안정하고 고온에서의 안전성에 문제가 있어 아직 상품화되지 못하고 있다. 이것을 개선하기 위해, 니켈의 일부를 전이금속 원소의 치환이 이루어지고 있다. 이중 Ni 사이트의 일부를 Mn으로 치환한 Li-Ni-Mn계 복합 산화물이나, Mn 및 Co로 치환한 Li-Ni-Mn-Co계 복합 산화물 제조에 관련되는 기술은 많이 알려져 있다.LiNiO 2 having a layered structure such as LiCoO 2 has a large discharge capacity, but has not been commercialized due to problems in cycle life, thermal instability, and safety at high temperatures. In order to improve this, a part of nickel is substituted for the transition metal element. Many techniques are known for producing a Li-Ni-Mn composite oxide in which a part of Ni sites are substituted with Mn, or a Li-Ni-Mn-Co composite oxide in which Mn and Co are substituted.

최근 LiCoO2 대체 재료로 가장 각광받는 층상 결정구조를 갖는 재료로 니켈-망간과 니켈-코발트-망간이 각각 1:1로 혼합된 Li[Ni1 /2Mn1 /2]O2와 Li[Ni1 /3Co1 /3Mn1 /3]O2 등을 들 수 있다. 이 재료들은 LiCoO2에 비해 저가격, 고용량, 우수한 열적 안정성 등의 특성을 나타내나, LiCoO2에 비해 낮은 전자전도도로 인해 고율특성과 저온특성이 열악하며, 낮은 탭 밀도로 인해 용량이 높음에도 불구하고 전지의 에너지 밀도가 향상되지 않는다. 특히 이 재료들을 전자전도도가 낮아 전기자동차용 하이브리드(hybrid) 전원으로 사용하기에는 고출력 특성이 LiCoO2나 LiMn2O4에 비해 떨어진다.A material having a last layered crystal structure, the most attention as LiCoO 2 replacement material nickel-manganese and nickel-cobalt-manganese each 1 mixed with 1 Li [Ni 1/2 Mn 1/2] O 2 and Li [Ni 1/3, and the like Co 1/3 Mn 1/3 ] O 2. The materials and exhibit characteristics such as low cost, high capacity and excellent thermal stability as compared to LiCoO 2, and due to the low electronic conductivity than LiCoO 2 poor high rate characteristics and low-temperature properties, despite the capacity high due to low tap density The energy density of the battery does not improve. In particular, these materials have low electronic conductivity, which makes them less powerful than LiCoO 2 or LiMn 2 O 4 for use as a hybrid power source for electric vehicles.

몰리브덴 설파이드(MoS2)는 최초로 실용적인 리튬 재충전 배터리의 양극 활물질로 연구화 되었다. 몰리브덴 설파이드(MoS2)는 이론 용량이 670mAh/g으로 높은 방전용량을 가지며, 상온에서 안정적이고, 중금속을 사용하지 않아 환경 친화적인 장점을 가지고 있다.Molybdenum sulfide (MoS 2 ) was first studied as a positive electrode active material of a practical lithium rechargeable battery. Molybdenum sulfide (MoS 2 ) has a high discharge capacity with a theoretical capacity of 670mAh / g, is stable at room temperature, and has an environmentally friendly advantage because no heavy metals are used.

종래의 Li/MoS2 전지는 고온에서 (NH4)2MoS4의 열적 분해로부터 합성되어진 여러 가지의 MoS2 화합물을 이용하여 전도도를 높이기 위한 방법으로 도전재로 아세틸렌 블랙을 사용하여 1몰의 LiClO4 + PC 또는 1몰의 LiAsF6+PC+EC 등의 액체 전해질을 사용해왔으나, 초기방전용량이 190~290mAh/g-MoS2로 낮고, 사이클 특성이 좋지 않아 전극 수명이 짧은 단점이 있다[Y. MiKi, D. Nakazato, H. Ikuta, T. Uchida, M. Wakihara, J. Power Sources 54 (1995) 508-510].Conventional Li / MoS 2 cells use a variety of MoS 2 compounds synthesized from the thermal decomposition of (NH 4 ) 2 MoS 4 at high temperature to enhance conductivity. Although liquid electrolytes such as 4 + PC or 1 mol of LiAsF 6 + PC + EC have been used, the initial discharge capacity is low at 190 to 290 mAh / g-MoS 2 , and the cycle life is not good. . MiKi, D. Nakazato, H. Ikuta, T. Uchida, M. Wakihara, J. Power Sources 54 (1995) 508-510].

이러한 문제점을 해결할 수 있는 방법으로 전극 내에 첨가되어 전극의 구조적 붕괴를 막고 활물질인 MoS2에 도전성을 제공하기 위해 기대되는 재료로 탄소나노튜브 및 탄소나노섬유가 있다. 나노크기 탄소 소재는 21세기 핵심물질로 가장 주목받고 있으며, 나노기술(NT)에 포함되는 탄소나노튜브는 1991년 새로운 물질을 연구하고 있던 일본전기회사(NEC)의 Iijima박사가 전기방전법을 사용하여 흑연 음극 상에 형성시킨 탄소덩어리를 투과전자현미경(TEM)으로 분석하다가 처음 발견하였다.In order to solve this problem, carbon nanotubes and carbon nanofibers are added to the electrode to prevent structural collapse of the electrode and to provide conductivity to the active material MoS 2 . Nano-size carbon materials are attracting the most attention as core materials of the 21st century, and carbon nanotubes included in nanotechnology (NT) use electric discharge method by Dr. Iijima of Japan Electric Company (NEC), who was studying new materials in 1991. The mass of carbon formed on the graphite anode was analyzed by transmission electron microscope (TEM) for the first time.

탄소나노튜브의 종류에는 다중벽 탄소나노튜브(Multi-walled carbon nanotube, MWNT), 단일벽 탄소나노튜브(Single-walled nanotube, SWNT), 이중벽 탄소나노튜브(Double-walled nanotube, DWNT), 다발형 나노튜브(Rope nanotube, RWNT), 탄소나노섬유(Graphitic nanofibes, GNF), 기상성장탄소섬유(Vapor grown carbon fibers, VGCFs)등이 있는데, 이것들은 뛰어난 물성과 구조 때문에, 전자정보통신, 환경, 에너지 및 의약분야에의 응용이 기대되고 있으며, 특히, 차세대 전자정보 산업분야 등에서 폭넓게 응용될 것으로 기대됨에 따라 선진 각국에서는 첨단 전자정보 산업 분야와 고기능성 나노소재의 경쟁력 확보차원에서 국가적인 지원 아래 탄소나노튜브의 합성 응용에 대한 연구를 광범위하게 수행하고 있다. Types of carbon nanotubes include multi-walled carbon nanotubes (MWNT), single-walled nanotubes (SWNT), double-walled nanotubes (DWNT), and bundle type. Rope nanotubes (RWNTs), graphitic nanofibes (GNF), and vapor grown carbon fibers (VGCFs) are available because of their superior physical properties and structure. As it is expected to be widely applied in the field of medicine and medicine, and especially in the next generation electronic information industry, carbon nanotechnology under the national support to secure competitiveness of advanced electronic information industry and high-functional nano materials in advanced countries. There is extensive research on the synthesis applications of tubes.

본 발명은 위에서 상술한 바와 같은 사정을 감안하여 안출된 것으로, 종래의 Li/MoS2 전지보다 더 나은 방전용량과 사이클 특성을 위하여 탄소나노튜브를 포함한 MoS2전극의 제조방법 및 이를 이용한 Li/MoS2 전지를 제공하고자 한다.The present invention has been devised in view of the above-described circumstances, and a method of manufacturing a MoS 2 electrode including carbon nanotubes and Li / MoS using the same for better discharge capacity and cycle characteristics than a conventional Li / MoS 2 battery. It is intended to provide two batteries.

본 발명의 목적은 이차전지용 MoS2 전극을 제조함에 있어서, 활물질로서 MoS2를 사용하고, 도전재로서 탄소나노튜브를 첨가하여 저렴하고, 환경 친화적이며 방전용량이 큰 이차전지용 MoS2 전극 제공하는 것이다.According as the object of the invention to prepare a secondary battery MoS 2 electrode, is to use a MoS 2 as the active material and, as the conductive material cost by the addition of carbon nanotubes, and the environment-friendly and provides the MoS 2 electrode large secondary battery, the discharge capacity .

상기와 같은 본 발명의 목적은 리튬이차전지의 전극재료의 활물질로 가격이 LiCoO2에 비해 저렴한 몰리브덴 설파이드(MoS2)를 이용하여 실험한 결과, 그 이론용량이 670mAh/g으로 충·방전이 가능하고, LiCoO2 양극에 비해 높은 방전용량을 가지고 있음을 확인함으로써 달성되었다.As described above, the object of the present invention was to use molybdenum sulfide (MoS 2 ), which is cheaper than LiCoO 2 as an active material of an electrode material of a lithium secondary battery. As a result, the theoretical capacity is 670 mAh / g. It was achieved by confirming that it has a higher discharge capacity than the LiCoO 2 anode.

본 발명은 전극 활물질로서 MoS2분말을 볼 밀링하여 분쇄하는 단계; 상기 MoS2분말에 도전재와 바인더를 혼합하여 전극 조성물을 제조하는 단계; 상기 조성물을 분산 용매에 첨가한 후, 이를 볼 밀링하여 슬러리로 제조하는 단계; 및 상기 슬러리를 유리판에 캐스팅하여 건조시키는 단계로 이루어진 이차전지용 MoS2 전극의 제조방법을 제공한다.The present invention comprises the steps of milling by milling the MoS 2 powder as an electrode active material; Preparing an electrode composition by mixing a conductive material and a binder with the MoS 2 powder; Adding the composition to a dispersion solvent and then ball milling it to prepare a slurry; And casting the slurry on a glass plate to dry the MoS 2. It provides a method for producing an electrode.

본 발명에 따르면, 상기 전극 조성물이 MoS2 10 내지 90 중량%, 도전재 5 내지 50 중량% 및 바인더 5 내지 40 중량%로 구성되는 것이 바람직하다.According to the present invention, the electrode composition is preferably composed of 10 to 90% by weight of MoS 2 , 5 to 50% by weight of the conductive material and 5 to 40% by weight of the binder.

본 발명에 따르면, 상기 도전재는 다중벽 탄소나노튜브(Multi-walled carbon nanotube, MWNT), 단일벽 탄소나노튜브(Single-walled nanotube, SWNT), 이중벽 탄소나노튜브(Double-walled nanotube, DWNT), 다발형 나노튜브(Rope nanotube, RWNT), 탄소나노섬유(Graphitic nanofibes, GNF) 및 기상성장탄소섬유(Vapor grown carbon fibers, VGCFs)로 이루어진 군으로부터 선택되는 것들 중 하나 또는 이들 혼합물인 것이 바람직하다.According to the present invention, the conductive material is a multi-walled carbon nanotube (MWNT), a single-walled carbon nanotube (SWNT), a double-walled carbon nanotube (Double-walled nanotube, DWNT), It is preferably one or a mixture of these selected from the group consisting of bundle nanotubes (RWNT), carbon nanofibes (GNF), and vapor grown carbon fibers (VGCFs).

또한 본 발명은 상기와 같은 방법으로 제조되어 MoS2 활물질, 도전재 및 바인더로 이루어진 이차전지용 MoS2 전극을 제공한다.In addition, the present invention is prepared by the same method as described above MoS 2 MoS 2 for secondary batteries composed of an active material, a conductive material and a binder Provide an electrode.

또한 본 발명은 상기의 MoS2 전극, 음극물질 및 액체 전해질을 사용하여 제조된 Li/MoS2 전지를 제공한다.The present invention also provides a Li / MoS 2 battery prepared using the MoS 2 electrode, the negative electrode material and the liquid electrolyte.

본 발명에 따르면, 상기 음극 물질은 Li, Na의 금속, 또는 이들의 혼합물로 이루어진 군으로부터 선택되는 것이 바람직하다.According to the invention, the negative electrode material is preferably selected from the group consisting of metals of Li, Na, or mixtures thereof.

본 발명에 따르면, 상기 액체전해질은 테트라하이드로푸란(THF), 1,2-디메톡시에탄 또는 에틸렌 글리콜 디메틸 이서, 디에틸렌 글리콜 디메틸 이서, 트리에틸렌 글리콜 디메틸 이서, 테트라에틸렌 글리콜 디메틸 이서, 아세토니트릴(ACN), γ-부티롤락톤(BUTY), 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 트리(에틸렌글리콜 디메틸)이서TRGDME), 1,3-디옥살론(DOX), 에틸 메틸 카보네이트(EMC), 메틸 아세테이트(MA), 테트라(에틸렌글리콜 디메틸)이서(TEGDME)로 구성된 군으로부터 선택되는 용매에, 리튬 (트리플루오로메탄술폰)이미드(LiCF3SO3), 리튬(트리플루오로메탄-슬포닐)이미드(LiTFSI), 폴리(에틸렌 글리콜)디메틸이서(PEGDME), 테트라-부틸암모늄(TBA), 테트라부틸암모늄 헥사플루오로포스페이트(TBAPF6), 리튬 헥사플루오로포스페이트(LIPF6), 리튬 퍼클로레이트(LiClO4)로 구성된 군으로부터 선택되는 염을 첨가하여 제조된 것이 바람직하다.According to the present invention, the liquid electrolyte may be tetrahydrofuran (THF), 1,2-dimethoxyethane or ethylene glycol dimethyl, diethylene glycol dimethyl, triethylene glycol dimethyl, tetraethylene glycol dimethyl, acetonitrile ( ACN), γ-butyrolactone (BUTY), propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), tri (ethylene glycol dimethyl) TRGDME), 1,3 Lithium (trifluoromethanesulfon) imide (DOX), ethyl methyl carbonate (EMC), methyl acetate (MA), tetra (ethylene glycol dimethyl) ether (TEGDME) in a solvent selected from the group consisting of LiCF 3 SO 3 ), lithium (trifluoromethane-sulfonyl) imide (LiTFSI), poly (ethylene glycol) dimethyl iscer (PEGDME), tetra-butylammonium (TBA), tetrabutylammonium hexafluorophosphate (TBAPF 6), lithium hexyl It is prepared by adding a salt selected from the group consisting of phosphate (LIPF 6), lithium perchlorate (LiClO 4) fluoroalkyl is preferred.

본 발명에 따른 Li/MoS2 전지는 기존 Li/MoS2 전지의 초기방전용량이 190~290mAh/g-MoS2인 값에 비해 439mAh/g-MoS2으로 기존보다 훨씬 많은 양의 초기방전용량을 나타낸다.In the Li / MoS 2 battery according to the present invention, the initial discharge capacity of the existing Li / MoS 2 battery is 439 mAh / g-MoS 2 , compared to the value of 190 to 290 mAh / g-MoS 2 . Indicates.

본 발명 몰리브덴 설파이드(MoS2) 양전극에 첨가되는 몰리브덴 설파이드(MoS2)의 함량은 전극의 전체 조성물의 중량에 대하여 10~90%의 범위가 적당하다. 몰리브덴 설파이드(MoS2)의 함량이 10% 미만으로 될 경우에는 활물질이 양이 너무 적어서 전체 양극을 제조하였을 때 양극방전용량이 줄어들게 되고, 그 양이 90%를 초과하면 전기전도체의 양이 감소하는 결과를 초래하게 되어 바람직하지 않다.The content of molybdenum sulfide (MoS 2 ) added to the molybdenum sulfide (MoS 2 ) positive electrode of the present invention is preferably in the range of 10 to 90% by weight of the total composition of the electrode. When the content of molybdenum sulfide (MoS 2 ) is less than 10%, the amount of the active material is too small to reduce the positive electrode discharge capacity when the entire positive electrode is prepared, and when the amount exceeds 90%, the amount of the electrical conductor decreases. It is undesirable to cause results.

100% 몰리브덴 설파이드(MoS2)는 전기적으로 반도체이며 리튬이온의 전도도가 없기 때문에 전극으로서의 기능을 수행할 수 없기 때문에 일반적으로 도전재와 바인더등과 함께 슬러리를 형성한다.Since 100% molybdenum sulfide (MoS 2 ) is electrically semiconductor and has no conductivity of lithium ions, the 100% molybdenum sulfide (MoS 2 ) does not function as an electrode, and thus generally forms a slurry together with a conductive material and a binder.

본 발명에서 전기전도체로 첨가하는 물질은 전극 전체 조성물의 중량에 대하여 5~50%가 적당하다.In the present invention, 5 to 50% of the material added to the electrical conductor is appropriate for the weight of the total electrode composition.

본 발명에서 사용하는 활물질로는 몰리브덴 설파이드(MoS2) 또는 3시간 볼밀링한 몰리브덴 설파이드(MoS2)를 사용하는 것이 바람직하다.As the active material used in the present invention it is preferred to use a molybdenum sulfide (MoS 2), or milling a molybdenum sulfide (MoS 2) 3 time to.

본 발명에 따른 양극 활물질로서 MoS2를 사용하고 도전재로서 탄소나노뷰트가 첨가된 MoS2 전극은 방전용량이 크고, 기존 리튬코발트산화물 양극에 비해 저렴한 장점을 가지며, 또한, MoS2 전극을 이용하여 제조된 Li/MoS2 전지는 모양의 변형이 자유롭고, 전해질의 누액의 염려가 없으며, 전지의 내압이 발생하지 않기 때문에 알루미늄 용기를 사용할 필요가 없게되어, 환경 친화적이며, 폭발의 위험성이 없는 매우 안전한 차세대 리튬이차전지로 사용될 수 있어 전지산업상 매우 유용한 발명인 것이다.The use of MoS 2 as the positive electrode active material according to the present invention and the carbon nanotube is added as a conductive material -but MoS 2 The electrode has a large discharge capacity, has an advantage of being inexpensive compared to the conventional lithium cobalt oxide anode, and the Li / MoS 2 battery manufactured using the MoS 2 electrode is free of deformation of shape and there is no fear of leakage of electrolyte. Since the internal pressure does not occur, it is not necessary to use an aluminum container, which is an environmentally friendly and can be used as a very safe next-generation lithium secondary battery without the risk of explosion, which is a very useful invention in the battery industry.

도 1은 Li/MoS2 전지의 초기 방전 곡선을 나타낸 그래프이다.1 is a graph showing an initial discharge curve of a Li / MoS 2 battery.

도 2는 Li/MoS2 전지의 사이클 그래프를 나타낸 그래프이다.2 is a graph showing a cycle graph of a Li / MoS 2 battery.

도 3은 도전재로 사용된 아세틸렌 블랙(Acetylene Black, AB)과 다중벽 탄소나 노튜브(Multi-walled carbon nanotube, MWNT)와 MoS2 분말과 볼밀링한 MoS2 분말의 전계방출형주사전자현미경(Field emission scanning electron microscope , FE-SEM)사진이다.3 is a field emission scanning electron microscope of acetylene black (AB) used as a conductive material, multi-walled carbon nanotube (MWNT) and MoS 2 powder and MoS2 powder ball-milled (Field emission scanning electron microscope (FE-SEM).

도 4는 본 발명에 따라 실시예들에 의해 제조된 MoS2전극의 FE-SEM사진이다.Figure 4 is a FE-SEM picture of the MoS 2 electrode prepared by the embodiment according to the present invention.

이하, 본 발명의 구체적인 방법을 실시예를 들어 상세히 설명하고자 하지만 본 발명의 권리범위는 이들 실시예에만 한정되는 것은 아니다.Hereinafter, the specific method of the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited only to these Examples.

실시예 1: Example 1: MoSMoS 22 분말을 이용한  Powdered MoSMoS 22 전극의 제조. Preparation of the electrode.

본 발명 양극 활물질로서 몰리브덴설파이드(MoS2)분말을 이용한 MoS2전극을 제조하기 위한 MoS2분말을 다음과 같이 제조하였다.MoS 2 powder for preparing MoS 2 electrode using molybdenum sulfide (MoS 2 ) powder as the cathode active material of the present invention was prepared as follows.

MoS2분말을 지르코니아 볼(zirconia ball)과 함께 3시간 동안 볼 밀링하여 분말 입자크기를 줄여서 사용하였다. 볼과 분말의 무게 비는 20:1로 하였다. 상기 활물질인 MoS2 분말과 도전재인 아세틸렌블랙(acetylene carbon black), 바인더 PVdF-co-HFP를 60:20:20 중량 비율로 혼합한 혼합물에 분산 용매인 N-메틸피롤리돈(NMP)을 첨가한 후, 지르코니아 볼(zirconia ball)과 함께 3시간 볼밀링하여 균일한 슬러리를 제조하였다. 제조된 일정량의 슬러리를 유리판 위에 캐스팅하여 상온에서 용매를 제거한 후 60 ℃에서 24시간 동안 건조하여 MoS2 전극을 제조한 후 아르곤 분위기의 글로브 박스(Glove box)에 보관하였다.MoS 2 powder was ball milled with a zirconia ball for 3 hours to reduce powder particle size. The weight ratio of the ball and the powder was set to 20: 1. N-methylpyrrolidone (NMP), which is a dispersion solvent, is added to a mixture of MoS 2 powder, which is the active material, acetylene carbon black, and binder PVdF-co-HFP, in a 60:20:20 weight ratio. Then, ball milling with a zirconia ball (zirconia ball) for 3 hours to prepare a uniform slurry. A predetermined amount of the prepared slurry was cast on a glass plate to remove the solvent at room temperature, dried at 60 ° C. for 24 hours to prepare a MoS 2 electrode, and then stored in an argon atmosphere glove box.

실시예 2: Example 2: 도전재로As a conductive material MWNTMWNT 을 이용한 Using MoSMoS 22 전극의 제조. Preparation of the electrode.

도전재를 MWNT로 사용하는 것 외에는 실시예 1과 동일하게 하여 MoS2 전극을 제조하였다.A MoS 2 electrode was prepared in the same manner as in Example 1 except that the conductive material was used as the MWNT.

실시예 3: Example 3: 볼밀하지Ball mill 않은  Not MoSMoS 22 분말을 이용한  Powdered MoSMoS 22 전극의 제조. Preparation of the electrode.

볼밀하지 않은 MoS2 분말을 사용하는 것 외에는 실시예 1과 동일하게 하여 MoS2 전극을 제조하였다.A MoS 2 electrode was prepared in the same manner as in Example 1 except for using a non-ballistic MoS 2 powder.

실시예 4: Example 4: 볼밀하지Ball mill 않은 Not MoSMoS 22 분말 및  Powder and 도전재로As a conductive material MWNTMWNT 을 이용한 Using MoSMoS 22 전극의 제조. Preparation of the electrode.

볼밀하지 않은 MoS2 분말을 사용하고 도전재로 MWNT를 사용하는 것 외에는 실시예 1과 동일하게 하여 MoS2 전극을 제조하였다.A MoS 2 electrode was prepared in the same manner as in Example 1 except that a non-milled MoS 2 powder was used and MWNT was used as the conductive material.

실험예Experimental Example

상기에서 실시예 1 내지 4에서 제조된 각각의 MoS2양극과 1M의 LiCF3SO3리튬 염을 TEGDME전해액에 녹인 액체전해질, 분극판으로 셀가드사(celgard)의 모델넘버 2400, 음극으로 리튬 호일을 사용하여 글러브 박스(Glove box)에서 적층하여 리튬몰리브덴설파이드(Li/MoS2) 전지를 제조하였다.Each of the MoS 2 positive electrode and 1M LiCF 3 SO 3 lithium salt prepared in Examples 1 to 4 above was dissolved in TEGDME electrolyte solution, a polarizing plate of the model number 2400 of celgard, and a lithium foil as the negative electrode. By using a lamination in a glove box (Glove box) to prepare a lithium molybdenum sulfide (Li / MoS 2 ) battery.

제조된 Li/MoS2 전지는 상온에서 2시간 휴지 후 상온에서 충/방전실험을 하였다. 충/방전시 전류밀도는 50mA/g-MoS2로 하였으며, 충전 종지전압은 3V로 방전 종지 전압은 0.7V로 하였다. 충전과 방전 사이의 휴지 시간은 10분을 주었다.The prepared Li / MoS 2 batteries were charged / discharged at room temperature after 2 hours of rest at room temperature. The current density during charging / discharging was 50 mA / g-MoS 2 , the charging end voltage was 3V, and the discharge end voltage was 0.7V. The pause between charge and discharge gave 10 minutes.

도 1은 본 발명에 따른 Li/MoS2 전지들의 초기 방전곡선을 나타낸 그래프이며, 도 2는 본 발명에 따른 Li/MoS2 전지들의 사이클 특성을 나타낸 그래프이다. 초기 방전 후 방전용량이 감소하지만 2회부터는 크게 변하지 않았다. 도전재로 아세틸렌 블랙을 사용한 경우보다 MWNT를 사용한 경우가 더 높은 방전용량과 사이클 특성을 나타내었고, 표면적 비를 넓히기 위해 활물질을 볼밀링한 경우가 그렇지 않은 경우보다 더 높은 방전용량과 사이클 특성을 나타내었다.1 is a graph showing the initial discharge curve of Li / MoS 2 cells according to the invention, Figure 2 is a graph showing the cycle characteristics of Li / MoS 2 cells according to the invention. The discharge capacity decreased after the initial discharge, but did not change significantly from the second time. MWNT showed higher discharge capacity and cycle characteristics than acetylene black as the conductive material, and ball milling the active material to increase the surface area ratio showed higher discharge capacity and cycle characteristics than otherwise. It was.

Li/MoS2 전지의 제1차 충방전 특성Primary Charge / Discharge Characteristics of Li / MoS 2 Battery 실시예Example 제1차 방전 비용량(mAh/g)Primary discharge specific capacity (mAh / g) 제1차 충전 비용량(mAh/g)Primary charge specific capacity (mAh / g) 전류효율(%)Current efficiency (%) 제1차 비가역비용량(mAh/g)Primary irreversible specific capacity (mAh / g) 1One 284284 100100 35.235.2 184184 22 439439 312312 71.171.1 127127 33 223223 8080 35.935.9 143143 44 410410 9393 22.722.7 317317

Claims (7)

전극 활물질로서 MoS2분말을 볼 밀링하여 분쇄하는 단계;Ball milling and grinding the MoS 2 powder as an electrode active material; 상기 MoS2분말에 도전재와 바인더를 혼합하여 전극 조성물을 제조하는 단계;Preparing an electrode composition by mixing a conductive material and a binder with the MoS 2 powder; 상기 조성물을 분산 용매에 첨가한 후, 이를 볼 밀링하여 슬러리로 제조하는 단계; 및Adding the composition to a dispersion solvent and then ball milling it to prepare a slurry; And 상기 슬러리를 유리판에 캐스팅하여 건조시키는 단계Casting the slurry on a glass plate to dry 로 이루어진 이차전지용 MoS2 전극의 제조방법.MoS 2 for secondary batteries Method for producing an electrode. 제 1항에 있어서, 상기 전극 조성물이 MoS2 10 내지 90 중량%이고, 도전재 5 내지 50 중량% 및 바인더 5 내지 40 중량%로 구성되는 것을 특징으로 하는 Li/MoS2 이차전지용 MoS2 전극의 제조 방법.The method of claim 1, wherein the electrode composition is MoS 2 10 to 90% by weight, 5 to 50% by weight of the conductive material and 5 to 40% by weight of the binder, characterized in that the MoS 2 electrode for Li / MoS 2 secondary battery Manufacturing method. 제 1항에 있어서, 상기 도전재가 다중벽 탄소나노튜브(Multi-walled carbon nanotube, MWNT), 단일벽 탄소나노튜브(Single-walled nanotube, SWNT), 이중벽 탄소나노튜브(Double-walled nanotube, DWNT), 다발형 나노튜브(Rope nanotube, RWNT), 탄소나노섬유(Graphitic nanofibes, GNF) 및 기상성장탄소섬유(Vapor grown carbon fibers, VGCFs)로 이루어진 군으로부터 선택되는 것들 중 하나 또는 이들 혼합물인 것을 특징으로 하는 이차전지용 MoS2 전극의 제조방법.The method of claim 1, wherein the conductive material is a multi-walled carbon nanotube (MWNT), a single-walled carbon nanotube (SWNT), double-walled carbon nanotube (Double-walled nanotube, DWNT) Rope nanotubes (RWNT), carbon nanofibers (GNF) and vapor grown carbon fibers (Vapor grown carbon fibers (VGCFs), characterized in that one or a mixture thereof selected from the group consisting of MoS 2 for secondary battery Method for producing an electrode. 제1항 내지 제3항 중 어느 한 항의 방법으로 제조되어 MoS2 활물질, 도전재 및 바인더로 이루어진 이차전지용 MoS2 전극.MoS 2 prepared by the method of any one of claims 1 to 3 MoS 2 for secondary batteries composed of an active material, a conductive material and a binder electrode. 제 4항에 따른 MoS2 전극, 음극물질 및 액체 전해질을 사용하여 제조된 MoS2 이차전지.MoS 2 secondary battery prepared using a MoS 2 electrode, a negative electrode material and a liquid electrolyte according to claim 4. 제 5항에 있어서, 상기 음극 물질이 Li, Na의 금속, 또는 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 MoS2 이차전지.The method of claim 5, wherein the negative electrode material MoS 2 secondary battery, characterized in that selected from the group consisting of a metal of Li, Na, or a mixture thereof. 제 5항에 있어서, 상기 액체전해질이 테트라하이드로푸란(THF), 1,2-디메톡시에탄 또는 에틸렌 글리콜 디메틸 이서, 디에틸렌 글리콜 디메틸 이서, 트리에틸렌 글리콜 디메틸 이서, 테트라에틸렌 글리콜 디메틸 이서, 아세토니트릴(ACN), γ-부티롤락톤(BUTY), 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 트리(에틸렌글리콜 디메틸)이서TRGDME), 1,3-디옥살론(DOX), 에틸 메틸 카보네이트(EMC), 메틸 아세테이트(MA), 테트라(에틸렌글리콜 디메틸)이서(TEGDME)로 구성된 군으로부터 선택되는 용매에, 리튬 (트리플루오로메탄술폰)이미드(LiCF3SO3), 리튬(트리플루오로메탄-슬포닐)이미드(LiTFSI), 폴리(에틸렌 글리콜)디메틸이서(PEGDME), 테트라-부틸암모늄(TBA), 테트라부틸암모늄 헥사플루오로포스페이트(TBAPF6), 리튬 헥사플루오로포스페이트(LIPF6), 리튬 퍼클로레이트(LiClO4)로 구성된 군으로부터 선택되는 염을 첨가하여 제조된 것임을 특징으로 하는 MoS2 이차전지.The liquid electrolyte of claim 5, wherein the liquid electrolyte is tetrahydrofuran (THF), 1,2-dimethoxyethane or ethylene glycol dimethyl, diethylene glycol dimethyl, triethylene glycol dimethyl, tetraethylene glycol dimethyl, acetonitrile (ACN), γ-butyrolactone (BUTY), propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), tri (ethylene glycol dimethyl) TRGDME), 1, Lithium (trifluoromethanesulfon) imide in a solvent selected from the group consisting of 3-dioxone (DOX), ethyl methyl carbonate (EMC), methyl acetate (MA), tetra (ethylene glycol dimethyl) isser (TEGDME) (LiCF 3 SO 3 ), lithium (trifluoromethane-sulfonyl) imide (LiTFSI), poly (ethylene glycol) dimethyl isser (PEGDME), tetra-butylammonium (TBA), tetrabutylammonium hexafluorophosphate ( TBAPF 6 ), lithium hexa MoS 2 secondary battery, characterized in that prepared by adding a salt selected from the group consisting of fluorophosphate (LIPF 6 ), lithium perchlorate (LiClO 4 ).
KR1020080017351A 2008-02-26 2008-02-26 A method for preparing molybdenum sulfide electrode with carbon nanotube KR20090092070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080017351A KR20090092070A (en) 2008-02-26 2008-02-26 A method for preparing molybdenum sulfide electrode with carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080017351A KR20090092070A (en) 2008-02-26 2008-02-26 A method for preparing molybdenum sulfide electrode with carbon nanotube

Publications (1)

Publication Number Publication Date
KR20090092070A true KR20090092070A (en) 2009-08-31

Family

ID=41209249

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080017351A KR20090092070A (en) 2008-02-26 2008-02-26 A method for preparing molybdenum sulfide electrode with carbon nanotube

Country Status (1)

Country Link
KR (1) KR20090092070A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218216A (en) * 2014-06-20 2014-12-17 安泰科技股份有限公司 Molybdenum disulfide nanocomposite negative electrode material, and preparation method and use thereof
CN108067257A (en) * 2016-11-16 2018-05-25 中国科学院大连化学物理研究所 A kind of preparation method of the nano molybdenum disulfide hydrogenation catalyst of high activity position exposure
KR20180097166A (en) 2017-02-22 2018-08-30 가천대학교 산학협력단 Transtion metaldichalcogenide-carbon nanocomposites and method for manufacturing the same
CN109273726A (en) * 2018-02-08 2019-01-25 成都理工大学 A kind of carbon coated air electrode material and its preparation method and application
CN109273679A (en) * 2018-08-29 2019-01-25 东莞理工学院 A kind of carbon coating molybdenum sulfide/water hyacinth biomass carbon composite material and preparation method and purposes
KR102055067B1 (en) * 2018-07-04 2019-12-12 동국대학교 산학협력단 MoS2 secondary battery system having enhanced electrochemical properties through co-intercalation of Li-electrolyte solvent
CN111224058A (en) * 2018-11-24 2020-06-02 深圳市三奇科技有限公司 Method for preparing anode slurry of ultralow-temperature lithium ion battery
CN111902975A (en) * 2017-12-06 2020-11-06 汉阳大学校产学协力团 Anode active material for lithium-sulfur secondary battery and method for preparing same
WO2022102682A1 (en) * 2020-11-10 2022-05-19 国立研究開発法人産業技術総合研究所 Electrolyte solution for nonaqueous secondary batteries, nonaqueous secondary battery using same, and method for discharging nonaqueous secondary battery
WO2023087148A1 (en) * 2021-11-16 2023-05-25 中国科学院深圳先进技术研究院 Sulfide composite material for metal-ion battery, preparation method therefor, and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218216A (en) * 2014-06-20 2014-12-17 安泰科技股份有限公司 Molybdenum disulfide nanocomposite negative electrode material, and preparation method and use thereof
CN108067257A (en) * 2016-11-16 2018-05-25 中国科学院大连化学物理研究所 A kind of preparation method of the nano molybdenum disulfide hydrogenation catalyst of high activity position exposure
KR20180097166A (en) 2017-02-22 2018-08-30 가천대학교 산학협력단 Transtion metaldichalcogenide-carbon nanocomposites and method for manufacturing the same
CN111902975A (en) * 2017-12-06 2020-11-06 汉阳大学校产学协力团 Anode active material for lithium-sulfur secondary battery and method for preparing same
CN109273726A (en) * 2018-02-08 2019-01-25 成都理工大学 A kind of carbon coated air electrode material and its preparation method and application
KR102055067B1 (en) * 2018-07-04 2019-12-12 동국대학교 산학협력단 MoS2 secondary battery system having enhanced electrochemical properties through co-intercalation of Li-electrolyte solvent
WO2020009313A1 (en) * 2018-07-04 2020-01-09 동국대학교 산학협력단 Secondary battery system comprising molybdenum sulfide electrode with electrochemical property enhanced through co-insertion of lithium-electrolyte solvent
CN109273679A (en) * 2018-08-29 2019-01-25 东莞理工学院 A kind of carbon coating molybdenum sulfide/water hyacinth biomass carbon composite material and preparation method and purposes
CN111224058A (en) * 2018-11-24 2020-06-02 深圳市三奇科技有限公司 Method for preparing anode slurry of ultralow-temperature lithium ion battery
WO2022102682A1 (en) * 2020-11-10 2022-05-19 国立研究開発法人産業技術総合研究所 Electrolyte solution for nonaqueous secondary batteries, nonaqueous secondary battery using same, and method for discharging nonaqueous secondary battery
WO2023087148A1 (en) * 2021-11-16 2023-05-25 中国科学院深圳先进技术研究院 Sulfide composite material for metal-ion battery, preparation method therefor, and application thereof

Similar Documents

Publication Publication Date Title
Wang et al. High entropy oxides as anode material for Li-ion battery applications: A practical approach
Kamali-Heidari et al. Electrode materials for lithium ion batteries: a review
KR102217302B1 (en) Positive electrode additive material for rechargeable lithium battery, method of preparing the same, positive electrode including the same and rechargeable lithium battery including the same
JP7116314B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
US9577286B2 (en) Method of producing solid state lithium battery module
KR20090092070A (en) A method for preparing molybdenum sulfide electrode with carbon nanotube
CN104919629B (en) Lithium rechargeable battery
EP2642577A1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including positive electrode active material
KR101723186B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
EP2797142A1 (en) Anode for lithium secondary battery and lithium secondary battery including same
EP2383820B1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
KR102380023B1 (en) Secondary Battery
US20100203389A1 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
KR20150094095A (en) Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the same
KR20100062297A (en) Negative active material, negative electrode comrprising same, method of preparing negative electrodee, and lithium battery
US11158847B2 (en) Negative electrode active material and negative electrode including the same
KR20170053123A (en) Negative electrode active material and negative electrode for secondary battery comprising the same
CN102447134A (en) Method for producing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US20220013777A1 (en) Composition for lithium ion secondary battery positive electrode, lithium ion secondary battery positive electrode, and lithium ion secondary battery
KR20140147699A (en) Anode active material for lithium secondary battery, lithium secondary battery comprising the material, and method of preparing the material
WO2011118302A1 (en) Active material for battery, and battery
CN111725500B (en) Positive plate and preparation method and application thereof
WO2022133926A1 (en) Lithium-ion secondary battery and preparation method therefor, battery module, battery pack, and device
KR101454380B1 (en) Silicon Compound Based Negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same
CN114744183A (en) Negative electrode active material and method for producing same, mixed negative electrode active material, negative electrode, lithium ion secondary battery, and method for producing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application