KR20090073839A - Method for preparing phenyl (meth)acrylates - Google Patents

Method for preparing phenyl (meth)acrylates Download PDF

Info

Publication number
KR20090073839A
KR20090073839A KR1020070141901A KR20070141901A KR20090073839A KR 20090073839 A KR20090073839 A KR 20090073839A KR 1020070141901 A KR1020070141901 A KR 1020070141901A KR 20070141901 A KR20070141901 A KR 20070141901A KR 20090073839 A KR20090073839 A KR 20090073839A
Authority
KR
South Korea
Prior art keywords
meth
reaction
acrylic acid
phenyl
phenolic compound
Prior art date
Application number
KR1020070141901A
Other languages
Korean (ko)
Inventor
신홍현
곽천근
한쌍수
공춘호
Original Assignee
주식회사 대림화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대림화학 filed Critical 주식회사 대림화학
Priority to KR1020070141901A priority Critical patent/KR20090073839A/en
Publication of KR20090073839A publication Critical patent/KR20090073839A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/62Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for preparing highly pure phenyl (meth)acrylates is provided to be economical by using inexpensive phenolic compound and (meth)acrylic acid, to prevent generation of polymer due to reaction temperature of a high temperature. A method for preparing highly pure phenyl (meth)acrylates comprises a step of reacting a (meth)acrylic acid and a phenolic compound in the presence of thionyl chloride. The thionylchloride is continuously or intermittently injected during reaction of a (meth)acrylic acid and a phenolic compound. The reaction temperature is 40-100 °C. The method reacts (meth)acrylic acid and phenolic compound in the presence of additional catalyst, solvent for reaction medium or/and polymer stopper.

Description

페닐(메타)아크릴레이트 제조방법 {Method for preparing phenyl (meth)acrylates}Method for preparing phenyl (meth) acrylate {Method for preparing phenyl (meth) acrylates}

본 발명은 페닐(메타)아크릴레이트 화합물의 제조방법에 관한 것이며, 더욱 상세하게는, (메타)아크릴산 할라이드 및 페놀계 화합물을 사용한 고순도 페닐(메타)아크릴레이트 화합물 제조방법에 관한 것이다.The present invention relates to a method for producing a phenyl (meth) acrylate compound, and more particularly, to a method for producing a high purity phenyl (meth) acrylate compound using a (meth) acrylic acid halide and a phenol compound.

페닐(메타)아크릴레이트는 내스크랫치성, 저흡습성, 고내열성 및 고굴절성을 발휘하는 수지를 제조하기 위한 단량체, 플라스틱 첨가제, 도료, 접착제, 건축자재, 등과 같은 다양한 용도로 사용되는 유용한 화합물이며, 또한, 그 적용분야가 점점 확장되고 있다. Phenyl (meth) acrylate is a useful compound used in various applications, such as monomers, plastic additives, paints, adhesives, building materials, etc., to produce resins that exhibit scratch resistance, low hygroscopicity, high heat resistance and high refractive index. In addition, its applications are expanding.

종래의 페닐(메타)아크릴레이트 제조방법의 예로서는, EP 0165529 호에 개시된 바와 같이, 황산과 같은 강한 무기산을 촉매로 사용하고, 반응온도가 고온인, 페놀계 화합물과 (메타)아크릴산의 직접 에스테르화 반응이 있다. 그러나, 이러한 직접 에스테르화 반응은, 전환율이 매우 낮아서, 상업적으로 이용되기에는 적합하지 않으며, 또한, 고온의 반응온도로 인하여 폴리머 부산물이 생성되므로, 높은 수율을 얻기가 용이하지 않은 것으로 알려져 있다.As an example of a conventional method for producing phenyl (meth) acrylate, as disclosed in EP 0165529, direct esterification of a phenolic compound and (meth) acrylic acid, using a strong inorganic acid such as sulfuric acid as a catalyst and having a high reaction temperature, is used. There is a reaction. However, these direct esterification reactions are known to have a very low conversion rate, which makes them unsuitable for commercial use, and that polymer by-products are produced due to the high temperature of the reaction temperature, so that high yields are not easily obtained.

종래의 페닐(메타)아크릴레이트 제조방법의 다른 예로서는, 일본 공개특허공보 2000-191590 호에 개시된 바와 같이, 무수초산을 이용하여 (메타)아크릴산의 무수물을 제조한 후, (메타)아크릴산 무수물과 페놀계 화합물을 반응시키는 방법이 있다. 그러나, 이러한 제조방법 또한, 반응중 초산과 (메타)아크릴산이 부산물로서 생성되기 때문에, 반응 종료후, 이를 다시 분리해야 하는 어려움이 있어서, 경제적이지 않은 것으로 알려져 있다.As another example of the conventional method for producing phenyl (meth) acrylate, as disclosed in Japanese Patent Laid-Open No. 2000-191590, an anhydride of (meth) acrylic acid is prepared using acetic anhydride, and then (meth) acrylic anhydride and phenol There is a method of reacting a system compound. However, such a production method is also known to be not economical because acetic acid and (meth) acrylic acid are produced as by-products during the reaction, and thus there is a difficulty in separating them again after completion of the reaction.

종래의 페닐(메타)아크릴레이트 제조방법의 또 다른 예로서는, 페놀계 화합물과 (메타)아크릴로일 화합물의 반응이 있다. (메타)아크릴로일 화합물은 주로 (메타)아크릴산과 염소의 반응을 통하여 제조되고 있다. 그러나, 이러한 (메타)아크릴로일 화합물 제조과정에서는 다량의 부산물이 발생하게 된다. 특히, 부산물 중의 하나인 염산은 원하지 않는 폴리머의 생성을 촉진시킨다. 이러한 이유로 그 수율이 매우 낮기 때문에, (메타)아크릴로일 화합물의 가격은 매우 높다. 게다가, (메타)아크릴로일 화합물 제조과정에서 발생하는 대부분의 부산물의 비등점이 (메타)아크릴로일의 비등점과 비슷하기 때문에, 일반적인 증류에 의해서는 고순도의 (메타)아크릴로일을 얻기가 어렵다. 결국, 이러한 (메타)아크릴로일을 사용하여 페닐(메타)아크릴레이트를 제조하는 것은 비경제적일 뿐만아니라, 제조된 페닐(메타)아크릴레이트의 품질을 보장하기도 어렵다.As another example of the conventional phenyl (meth) acrylate production method, there is a reaction between a phenolic compound and a (meth) acryloyl compound. A (meth) acryloyl compound is mainly manufactured through reaction of (meth) acrylic acid and chlorine. However, a large amount of by-products are generated during the preparation of the (meth) acryloyl compound. In particular, hydrochloric acid, one of the by-products, promotes the production of unwanted polymers. For this reason, since the yield is very low, the price of the (meth) acryloyl compound is very high. In addition, since the boiling point of most of the by-products generated in the process of preparing (meth) acryloyl compounds is similar to that of (meth) acryloyl, it is difficult to obtain high-purity (meth) acryloyl by general distillation. . As a result, the production of phenyl (meth) acrylates using such (meth) acryloyl is not only economical, but also difficult to ensure the quality of the produced phenyl (meth) acrylate.

본 발명의 목적은 종래의 페닐(메타)아크릴레이트 제조방법의 결점을 극복할 수 있는 개선된 페닐(메타)아크릴레이트 제조방법을 제공하는 것이다. 즉, 본 발명에서는, 저가의 페놀류와 (메타)아크릴산을 사용하므로써 경제성을 제고시킬 수 있고, 낮은 반응온도에서도 효과적으로 반응이 진행되어 고온의 반응온도에 의한 폴리머의 발생을 원천적으로 방지할 수 있을 뿐만아니라, 높은 반응전환율을 발휘하므로써 높은 수율을 달성하도록 할 수 있는, 고순도 페닐(메타)아크릴레이트 화합물의 제조방법을 제공하고자 한다.It is an object of the present invention to provide an improved method for producing phenyl (meth) acrylate that can overcome the drawbacks of conventional methods for producing phenyl (meth) acrylate. That is, in the present invention, it is possible to improve economics by using low-cost phenols and (meth) acrylic acid, and the reaction proceeds effectively even at a low reaction temperature, thereby preventing the occurrence of polymers due to the high temperature reaction temperature. Rather, it is to provide a method for producing a high purity phenyl (meth) acrylate compound that can achieve a high yield by exhibiting a high reaction conversion rate.

본 발명의 페닐(메타)아크릴레이트 화합물 제조방법은, 티오닐클로라이드(thionyl chloride)의 존재하에서, (메타)아크릴산과 페놀계 화합물을 반응시키는 단계를 포함한다.The method for producing a phenyl (meth) acrylate compound of the present invention includes the step of reacting a (meth) acrylic acid with a phenolic compound in the presence of thionyl chloride.

본 발명에서 밝혀진 바에 의하면, 티오닐클로라이드는 매우 높은 반응성을 발휘하여, (메타)아크릴산과 페놀계 화합물의 에스테르화 반응을 매우 효과적으로 촉진시킬 수 있다. 더우기, 티오닐클로라이드는, 약 40 내지 약 100 ℃ 정도의 낮은 반응온도에서도, (메타)아크릴산과 페놀계 화합물의 에스테르화 반응을 매우 효과적으로 촉진시킬 수 있다. 그에 따라, 본 발명의 제조방법에 있어서는, 고가의 원료인 (메타)아크릴로일 화합물을 사용하지 않고도, 고순도의 페닐(메타)아크릴레이트 화합물을 고수율로 제조할 수 있게 된다. 더욱이, 본 발명의 제조방법을 사용 하므로써, 단순한 증류법으로도, 생성된 페닐(메타)아크릴레이트 화합물을 용이하게 수득할 수 있게 된다. 또한, 낮은 온도에서도 (메타)아크릴산과 페놀계 화합물의 에스테르화 반응이 원활하게 진행되기 때문에, 고온의 반응온도에 의한 중합체의 형성이 원천적으로 방지될 수 있다.According to the present invention, thionyl chloride exhibits a very high reactivity, and can effectively promote the esterification reaction of (meth) acrylic acid with a phenolic compound. Moreover, thionyl chloride can promote the esterification reaction of (meth) acrylic acid and a phenolic compound very effectively even at a low reaction temperature of about 40 to about 100 ° C. Therefore, in the manufacturing method of this invention, a high-purity phenyl (meth) acrylate compound can be manufactured in high yield, without using the (meth) acryloyl compound which is an expensive raw material. Moreover, by using the production method of the present invention, the produced phenyl (meth) acrylate compound can be easily obtained even by a simple distillation method. In addition, since the esterification reaction of the (meth) acrylic acid and the phenolic compound proceeds smoothly even at a low temperature, formation of a polymer due to a high temperature reaction temperature can be prevented at the source.

본 발명의 제조방법에 있어서, 티오닐클로라이드는 원액 그대로 투입될 수 있으며, 또는, 희석용제에 희석된 상태로 투입될 수도 있다. 희석용제로서는, 예를 들면, n-헥산, 시클로헥산, n-헵탄, n-옥탄, 벤젠, 톨루엔, 메틸렌클로라이드, 에틸렌클로라이드, 등이 사용될 수 있다.In the production method of the present invention, thionyl chloride may be added as it is, or may be added in a diluted state in a diluting solvent. As the dilution solvent, for example, n-hexane, cyclohexane, n-heptane, n-octane, benzene, toluene, methylene chloride, ethylene chloride, or the like can be used.

티오닐클로라이드의 투입량이 너무 작으면, 미반응 (메타)아크릴산이 잔존하게 되어 원료의 손실이 발생할 수 있다. 티오닐클로라이드의 투입량이 너무 많으면, 티오닐클로라이드의 지나친 반응성으로 인하여 부반응이 발생할 수 있다. 따라서, 티오닐클로라이드의 투입량은, (메타)아크릴산 1몰을 기준으로 하여, 약 1 내지 약 2 몰인 것이 바람직하며, 약 1 내지 약 1.5 몰인 것이 더욱 바람직하다.If the dose of thionyl chloride is too small, unreacted (meth) acrylic acid may remain, resulting in loss of raw materials. If the dose of thionyl chloride is too high, side reactions may occur due to excessive reactivity of the thionyl chloride. Therefore, the amount of thionyl chloride added is preferably about 1 to about 2 moles, more preferably about 1 to about 1.5 moles, based on 1 mole of (meth) acrylic acid.

티오닐클로라이드는 반응의 초기에 전량 투입될 수도 있으며, 또는, 반응이 진행되는 동안 지속적으로 또는 간헐적으로 투입될 수도 있다. 너무 많은 양의 티오닐클로라이드가 일시에 투입되면, 과도한 양의 염산 가스와 아황산 가스가 발생할 수 있다. 따라서, 티오닐클로라이드는 반응이 진행되는 동안 지속적으로 또는 간헐적으로 투입되는 것이 더욱 바람직하다. 이러한, 적하투입의 경우, 티오닐클로라이드의 투입 속도가 너무 빠르면 급격한 반응온도의 변화가 발생할 수 있고, 너무 느리면 경제적으로 불리할 수 있다. 통상적으로, 티오닐클로라이드 총사용량을 적하투입하는데 걸리는 시간은 약 0.5 내지 약 10 시간 정도일 수 있다. The thionyl chloride may be added in its entirety at the beginning of the reaction, or may be added continuously or intermittently while the reaction is in progress. If too much thionyl chloride is added at a time, excessive amounts of hydrochloric acid gas and sulfurous acid gas may be generated. Accordingly, thionyl chloride is more preferably added continuously or intermittently during the reaction. In the case of such dropwise addition, when the addition rate of thionyl chloride is too fast, a sudden change in reaction temperature may occur, and when too slow, it may be economically disadvantageous. Typically, the time it takes to inject the total thionyl chloride total dose may be about 0.5 to about 10 hours.

본 발명의 제조방법에 있어서, 페놀계 화합물로서는, 예를 들면, 페놀, p-클로로페놀, 2,3,5-트리클로로페놀, p-브로모페놀, p-메톡시페놀, o-메톡시페놀, p-페녹시페놀, o-페닐페놀, p-에톡시페놀, o-부톡시페놀, t-부틸페놀, 레졸시놀, 비스페놀-A, 비스페놀-F, 비페놀(bi-phenol), α-나프톨, β-나프톨, 등이 사용될 수 있다.In the production method of the present invention, examples of the phenolic compound include phenol, p-chlorophenol, 2,3,5-trichlorophenol, p-bromophenol, p-methoxyphenol and o-methoxy. Phenol, p-phenoxyphenol, o-phenylphenol, p-ethoxyphenol, o-butoxyphenol, t-butylphenol, resorcinol, bisphenol-A, bisphenol-F, bi-phenol, α-naphthol, β-naphthol, and the like can be used.

페놀계 화합물의 사용량이 너무 작으면, 페닐(메타)아크릴레이트 화합물의 생성량이 감소하여 비경제적일 수 있다. 페놀계 화합물의 사용량이 너무 많으면, 반응종료 후, 미반응 페놀계 화합물의 회수에 소요되는 비용이 증가하여 비경제적일 수 있다. 따라서, 페놀계 화합물의 사용량은, 사용되는 (메타)아크릴산 1몰을 기준으로 하여, 약 0.5 내지 약 1 몰인 것이 바람직하며, 약 0.7 내지 약 1 몰인 것이 더욱 바람직하다. If the amount of the phenolic compound is too small, the amount of the phenyl (meth) acrylate compound produced may be uneconomical. If the amount of the phenolic compound is used too much, the cost of recovery of the unreacted phenolic compound after the completion of the reaction may increase and may be uneconomical. Therefore, the amount of the phenol compound to be used is preferably about 0.5 to about 1 mole, more preferably about 0.7 to about 1 mole, based on 1 mole of (meth) acrylic acid used.

본 발명의 제조방법에 있어서, 반응온도가 너무 낮으면, 티오닐클로라이드에 의한 반응촉진효과가 미약할 수 있다. 반응온도가 너무 높으면, 설사 중합금지제를 사용하더라도, 높은 반응온도에 의한 중합체 형성이 발생할 수 있다. 따라서, 반응온도는 약 40 내지 약 100 ℃ 인 것이 바람직하다. 티오닐클로라이드의 높은 반응성으로 인하여, 이러한 정도의 반응온도 범위에서도, (메타)아크릴산과 페놀계 화합물의 에스테르화 반응이 매우 효과적으로 진행될 수 있다. In the production method of the present invention, if the reaction temperature is too low, the reaction promoting effect by thionyl chloride may be weak. If the reaction temperature is too high, even if a polymerization inhibitor is used, polymer formation may occur due to a high reaction temperature. Therefore, the reaction temperature is preferably about 40 to about 100 ° C. Due to the high reactivity of thionyl chloride, even in this temperature range, the esterification reaction of (meth) acrylic acid with a phenolic compound can proceed very effectively.

본 발명의 제조방법에 있어서는, 티오닐클로라이드의 높은 반응촉진 효과로 인하여, 별도의 촉매를 반드시 사용할 필요는 없다. 그러나, 본 발명의 제조방법의 다른 구현예에 있어서는, 촉매의 추가적 존재하에서, (메타)아크릴산과 페놀계 화합물을 반응시킬 수도 있다. 촉매로서는, 예를 들면, 산화아연, 산화마그네슘, 산화칼슘, 등과 같은 전이금속 산화물이 사용될 수 있다. In the production method of the present invention, due to the high reaction promoting effect of thionyl chloride, it is not necessary to use a separate catalyst. However, in another embodiment of the production process of the present invention, it is also possible to react the (meth) acrylic acid with the phenolic compound in the presence of a catalyst. As the catalyst, for example, transition metal oxides such as zinc oxide, magnesium oxide, calcium oxide, and the like can be used.

본 발명의 제조방법의 또 다른 구현예에서는, 반응매질용 용제의 추가적 존재하에서, (메타)아크릴산과 페놀계 화합물을 반응시킬 수도 있다. 반응매질용 용제를 추가적으로 투입하여 반응을 진행시키는 경우에는, 반응종료 후, 미반응 (메타)아크릴산을 가성소다 수용액으로 중화시켜 제거하는 과정이 더욱 용이해질 수 있다. 또한, 반응매질용 용제를 추가적으로 투입하여 반응을 진행시키는 경우에는, 반응 중, 부반응 생성물의 발생을 억제시킬 수 있음이 확인되었다. In another embodiment of the production process of the invention, the (meth) acrylic acid and the phenolic compound may be reacted in the presence of a solvent for the reaction medium. In the case where the reaction proceeds by additionally adding a solvent for the reaction medium, the process of neutralizing and removing the unreacted (meth) acrylic acid with an aqueous solution of caustic soda may be more easily completed after the reaction is finished. In addition, it was confirmed that in the case of advancing the reaction by further adding a solvent for the reaction medium, generation of a side reaction product during the reaction can be suppressed.

반응매질용 용제는 비등점이 낮고, 물과 잘 섞이지 않으며, 반응원료와 반응하지 않는 것이 바람직하다. 구체적인 예를 들면, 반응매질용 용제로서는, n-헥산, 시클로헥산, n-헵탄, n-옥탄 등과 같은 포화 탄화수소 화합물; 벤젠, 톨루엔 등과 같은 방향족 화합물; 메틸렌클로라이드, 에틸렌클로라이드 등과 같은 할로겐 화합물; 등이 사용될 수 있다. 이들 중에서도, 생성된 페닐(메타)아크릴레이트 화합물을 용해시키는 능력이 매우 우수하고 물과 잘 섞이지 않는 성질을 갖고 있는 시클로헥산 또는 톨루엔이 더욱 바람직하다. It is preferable that the solvent for the reaction medium has a low boiling point, does not mix well with water, and does not react with the reaction raw materials. Specific examples of the solvent for the reaction medium include saturated hydrocarbon compounds such as n-hexane, cyclohexane, n-heptane, n-octane and the like; Aromatic compounds such as benzene, toluene and the like; Halogen compounds such as methylene chloride, ethylene chloride and the like; And the like can be used. Among these, cyclohexane or toluene, which has very excellent ability to dissolve the produced phenyl (meth) acrylate compound and does not mix well with water, is more preferable.

반응매질용 용제의 사용량은 특별히 제한되지 않는다. 경제성 측면에서는, 반응매질용 용제의 사용량은, 사용되는 페놀계 화합물 100 중량부를 기준으로 하여, 약 50 내지 약 300 중량부인 것이 바람직하며, 약 50 내지 약 250 중량부인 것이 더욱 바람직하다. The amount of the solvent for the reaction medium is not particularly limited. In terms of economics, the amount of the solvent for the reaction medium is preferably about 50 to about 300 parts by weight, more preferably about 50 to about 250 parts by weight based on 100 parts by weight of the phenolic compound used.

본 발명의 제조방법의 또 다른 구현예에 있어서는, 중합금지제의 추가적 존재하에서, (메타)아크릴산과 페놀계 화합물을 반응시킬 수도 있다. 중합금지제는, (메타)아크릴산 및 페닐(메타)아크릴레이트의 중합반응을 더욱 더 확실하게 방지하기 위하여 추가적으로 사용될 수 있다. 중합금지제로서는, 예를 들면, 하이드로퀴논, 메틸에틸하이드로퀴논, 페노시아진, 등이 사용될 수 있다. 또한, 이러한 중합금지제의 효과를 상승시키기 위하여 공기를 추가적으로 투입할 수도 있다. 중합금지제의 사용량은, 예를 들면, 원료인 (메타)아크릴산 100 중량부를 기준으로 하여, 약 0.01 내지 약 5 중량부일 수 있다.In another embodiment of the production process of the present invention, (meth) acrylic acid and the phenolic compound may be reacted in the presence of an additional polymerization inhibitor. The polymerization inhibitor can be further used to more reliably prevent the polymerization reaction of (meth) acrylic acid and phenyl (meth) acrylate. As the polymerization inhibitor, for example, hydroquinone, methylethylhydroquinone, phenocyazine, and the like can be used. In addition, in order to increase the effect of such a polymerization inhibitor, air may be further added. The amount of the polymerization inhibitor may be, for example, about 0.01 to about 5 parts by weight based on 100 parts by weight of (meth) acrylic acid as a raw material.

본 발명의 제조방법을 통하여 생성된 페닐(메타)아크릴레이트 화합물 제품은, 예를 들면, 알카리 중화, 수세, 증류, 여과 등과 같은 공지의 정제방법을 통하여 용이하게 회수될 수 있다.The phenyl (meth) acrylate compound product produced through the production method of the present invention can be easily recovered through a known purification method such as, for example, alkaline neutralization, water washing, distillation, filtration and the like.

티오닐클로라이드는 매우 높은 반응성을 발휘하여, (메타)아크릴산과 페놀계 화합물의 에스테르화 반응을 매우 효과적으로 촉진시킬 수 있다. 더우기, 티오닐클로라이드는, 약 40 내지 약 100 ℃ 정도의 낮은 반응온도에서도, (메타)아크릴산과 페놀계 화합물의 에스테르화 반응을 매우 효과적으로 촉진시킬 수 있다. 그에 따라, 본 발명의 제조방법에 있어서는, 고가의 원료인 (메타)아크릴로일 화합물을 사용하지 않고도, 고순도의 페닐(메타)아크릴레이트 화합물을 고수율로 제조할 수 있다. 더욱이, 본 발명의 제조방법을 사용하면, 단순한 증류법으로도, 생성된 페닐(메타)아크릴레이트 화합물을 용이하게 수득할 수 있다. 또한, 낮은 온도에서도 (메타)아크릴산과 페놀계 화합물의 에스테르화 반응이 원활하게 진행되기 때문에, 고온의 반응온도에 의한 중합체의 형성이 원천적으로 방지될 수 있다.Thionyl chloride exhibits a very high reactivity, and can promote the esterification reaction of (meth) acrylic acid and a phenolic compound very effectively. Moreover, thionyl chloride can promote the esterification reaction of (meth) acrylic acid and a phenolic compound very effectively even at a low reaction temperature of about 40 to about 100 ° C. Therefore, in the manufacturing method of this invention, a high-purity phenyl (meth) acrylate compound can be manufactured in high yield, without using the (meth) acryloyl compound which is an expensive raw material. Moreover, using the production method of the present invention, the produced phenyl (meth) acrylate compound can be easily obtained even by simple distillation. In addition, since the esterification reaction of the (meth) acrylic acid and the phenolic compound proceeds smoothly even at a low temperature, formation of a polymer due to a high temperature reaction temperature can be prevented at the source.

<실시예><Example>

실시예Example 1 One

냉각관, 교반기 및 온도계가 장착된 500 ml 용량의 4구 플라스크 반응기에, 메타크릴산 100 g (1.2 몰), 페놀 98.4 g (1 몰), 희석용제로서 시클로헥산 200 ml, 중합금지제로서 메틸에틸하이드로퀴논과 페노시아진을 투입하였다. 메틸에틸하이드로퀴논과 페노시아진의 투입량은 각각, 사용된 메타크릴산 중량의 1000 ppm 이었다. In a 500 ml four-necked flask reactor equipped with a cooling tube, a stirrer and a thermometer, 100 g (1.2 mol) of methacrylic acid, 98.4 g (1 mol) of phenol, 200 ml of cyclohexane as a diluent, methyl as a polymerization inhibitor Ethylhydroquinone and phenocyazine were added. The doses of methylethylhydroquinone and phenocyazine were 1000 ppm of the methacrylic acid weight used, respectively.

그 다음, 반응혼합물의 온도를 60 ℃ 까지 승온시킨 후, 티오닐클로라이드 178.4 g (1.5 몰)을 5 시간 동안 천천히 적하 투입하였다. 반응이 진행되는 동안, 반응혼합물의 온도를 70 내지 75 ℃로 유지하면서, 부생성물인 염산과 아황산가스를 반응기로부터 연속적으로 추출하였다. Then, after raising the temperature of the reaction mixture to 60 ℃, 178.4 g (1.5 mol) of thionyl chloride was slowly added dropwise for 5 hours. During the reaction, the byproduct hydrochloric acid and sulfurous acid gas were continuously extracted from the reactor while maintaining the temperature of the reaction mixture at 70 to 75 ℃.

티오닐클로라이드의 적하투입이 완료된 후, 반응혼합물의 온도를 80 ℃로 승온시키면서, 시클로헥산 100 ml 를 증류로 제거한 후, 반응혼합물의 온도를 상온으로 냉각하였다. 반응종료 후, 반응혼합물에 시클로헥산 200 ml 를 첨가하고, 20 중량% 가성소다 수용액을 투입하여, 미반응 메타크릴산과 페놀을 중화시켰다.After the dropwise addition of thionyl chloride was completed, 100 ml of cyclohexane was removed by distillation while raising the temperature of the reaction mixture to 80 ° C., and then the temperature of the reaction mixture was cooled to room temperature. After completion of the reaction, 200 ml of cyclohexane was added to the reaction mixture, 20% by weight aqueous sodium hydroxide solution was added to neutralize unreacted methacrylic acid and phenol.

중화반응이 완료된 후, 반응혼합물의 수층을 제거하였다. 반응혼합물의 유기층은 100 ml 의 증류수로 수세한 후 여과하였다. 여과된 유기층을 80 ℃ 및 50 mmHg 의 조건하에서 증류하여, 시클로헥산을 분리 수집하고, 페닐메타크릴레이트를 수득하였다. After the neutralization reaction was completed, the aqueous layer of the reaction mixture was removed. The organic layer of the reaction mixture was washed with 100 ml of distilled water and filtered. The filtered organic layer was distilled under the conditions of 80 ° C. and 50 mm Hg, and cyclohexane was collected separately to obtain phenyl methacrylate.

페닐메타아크릴레이트의 수율은 68.7% 이었다. 가스크로마토그래피를 이용하여 분석한 페닐메타크릴레이트의 순도는 98.5% 이었다. 또한, 본 실시예의 제조과정에서 중합체의 형성은 발생하지 않았다.The yield of phenyl methacrylate was 68.7%. The purity of phenyl methacrylate, which was analyzed by gas chromatography, was 98.5%. In addition, the formation of the polymer did not occur in the manufacturing process of this embodiment.

실시예Example 2 2

냉각관, 교반기 및 온도계가 장착된 500 ml 용량의 4구 플라스크 반응기에, 메타크릴산 100 g (1.2 몰), 페놀 98.4 g (1 몰), 티오닐클로라이드 165.8 g (1.4 몰), 중합금지제로서 메틸에틸하이드로퀴논과 페노시아진을 투입하였다. 메틸에틸하이드로퀴논과 페노시아진의 투입량은 각각, 사용된 메타크릴산 중량의 1000 ppm 이었다.In a 500 ml four-necked flask reactor equipped with a cooling tube, a stirrer and a thermometer, 100 g (1.2 mol) of methacrylic acid, 98.4 g (1 mol) of phenol, 165.8 g (1.4 mol) of thionyl chloride, polymerization inhibitor Methylethylhydroquinone and phenocyazine were added as the solution. The doses of methylethylhydroquinone and phenocyazine were 1000 ppm of the methacrylic acid weight used, respectively.

그 다음, 반응혼합물의 온도를 상온에서 60 ℃ 까지 5 시간에 걸쳐 서서히 승온시키면서 반응을 진행시켰다. 반응이 진행되는 동안, 부생성물인 염산과 아황산가스를 반응기로부터 연속적으로 추출하여 제거하였다. 반응종료 후, 반응혼합물을 상온으로 냉각시킨 후, 200 ml의 톨루엔을 첨가하여, 반응생성물을 톨루엔에 용해시켰다. Then, the reaction proceeded while gradually raising the temperature of the reaction mixture from room temperature to 60 ° C. over 5 hours. During the reaction, byproduct hydrochloric acid and sulfurous acid gas were continuously extracted from the reactor and removed. After completion of the reaction, the reaction mixture was cooled to room temperature, and then 200 ml of toluene was added to dissolve the reaction product in toluene.

이렇게 얻은 반응혼합물을 실시예 1과 동일한 방법으로, 중화, 수세, 여과한 후 증류하여, 순도 98.2 %의 페닐메타크릴레이트 98.3 g 을 수득하였다. 페닐메타크릴레이트의 수율은 59.4 % 이었다. 실시예 2의 제조과정에서도 중합체의 형성은 발생하지 않았다.The reaction mixture thus obtained was neutralized, washed with water, filtered and distilled in the same manner as in Example 1 to obtain 98.3 g of phenyl methacrylate having a purity of 98.2%. The yield of phenyl methacrylate was 59.4%. Formation of the polymer did not occur even in the manufacturing process of Example 2.

비교예Comparative example 1 One

환류기, 교반기 및 온도계가 장착된 500 ml 용량의 유리제 반응기에, 메타크릴산 100 g (1.2 몰), 페놀 98.4 g (1 몰), 반응촉매로서 황산 5 g, 중합금지제로서 메틸에틸하이드로퀴논과 페노시아진을 투입하였다. 메틸에틸하이드로퀴논과 페노시아진의 투입량은 각각, 사용된 메타크릴산 중량의 1000 ppm 이었다. 또한, 반응중 생성되는 부산물인 생성수를 제거하기 위하여 크실렌 200 ml 를 투입하였다.In a 500 ml glass reactor equipped with a refluxer, a stirrer and a thermometer, 100 g (1.2 mol) of methacrylic acid, 98.4 g (1 mol) of phenol, 5 g of sulfuric acid as a reaction catalyst, and methyl ethyl hydroqui as a polymerization inhibitor Paddy and phenocyazine were added. The doses of methylethylhydroquinone and phenocyazine were 1000 ppm of the methacrylic acid weight used, respectively. In addition, 200 ml of xylene was added to remove generated water, a by-product generated during the reaction.

그 다음, 반응혼합물의 온도를 135 ℃ 까지 승온시켜서 반응을 개시하였다. 그 다음, 추출용제인 크실렌이 환류기를 통하여 지속적으로 반응기로 유입되도록 하는 동시에 반응혼합물의 온도를 서서히 승온시키면서, 반응을 16 시간 동안 진행시켰다. 반응종료시 반응혼합물의 온도는 148 ℃ 이었다. Then, the reaction mixture was started by raising the temperature of the reaction mixture to 135 ° C. Then, the reaction proceeded for 16 hours while the xylene as the extraction solvent was continuously introduced into the reactor through the reflux at the same time while gradually increasing the temperature of the reaction mixture. At the end of the reaction, the temperature of the reaction mixture was 148 ° C.

비교예 1의 제조과정에서는, 다량의 중합체가 형성되어 반응기의 안쪽 표면에 달라붙었다. In the manufacturing process of Comparative Example 1, a large amount of polymer was formed and stuck to the inner surface of the reactor.

반응종료 후, 실시예 1과 동일한 방법으로, 반응혼합물을 중화, 수세, 여과 및 증류하여, 순도 96.7 %의 페닐메타크릴레이트 42.9 g 을 수득하였다. 페닐메타크릴레이트의 수율은 25.6 % 이었다.After the completion of the reaction, the reaction mixture was neutralized, washed with water, filtered and distilled in the same manner as in Example 1 to obtain 42.9 g of phenyl methacrylate having a purity of 96.7%. The yield of phenyl methacrylate was 25.6%.

표 1에, 실시예 1, 실시예 2 및 비교예 1의 공정조건을 요약하였다.Table 1 summarizes the process conditions of Example 1, Example 2 and Comparative Example 1.

항목 Item 실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 반응온도(℃) Reaction temperature (℃) 60 -> 80 60-> 80 상온 -> 60 Room temperature-> 60 135 -> 148 135-> 148 티오닐클로라이드 사용 여부Use of thionyl chloride 사용 use 사용 use 미사용 unused 산촉매 사용 여부 Use of acid catalyst 미사용 unused 미사용 unused 사용 use 페닐메타크릴레이트의 순도 (%)Purity of Phenyl Methacrylate (%) 98.5  98.5 98.2 98.2 96.7 96.7 페닐메타크릴레이트의 수율 (%)Yield of phenyl methacrylate (%) 68.7  68.7 59.4 59.4 25.6 25.6 중합체 형성 여부 Polymer Formation 미생성 Unproduced 미생성 Unproduced 다량 생성 Mass production

표 1에 나타난 바와 같이, 티오닐클로라이드를 사용한 실시예 1 및 실시예 2에서 수득한 페닐메타크릴레이트의 순도 및 수율이, 티오닐클로라이드를 사용하지 않은 비교예 1에서 수득한 페닐메타크릴레이트의 순도 및 수율 보다, 월등히 높았다. 순도에 있어서, 98 % 대의 순도와 96% 대의 순도의 차이는, 페닐메타크릴레이트를 원료로 하는 2차 제품의 품질을 중대하게 좌우할 수 있는 정도로 큰 것이다. As shown in Table 1, the purity and yield of the phenyl methacrylate obtained in Example 1 and Example 2 using thionyl chloride were different from those of the phenyl methacrylate obtained in Comparative Example 1 without the thionyl chloride. It was much higher than purity and yield. In purity, the difference between the purity of 98% and the purity of 96% is so large that it can greatly influence the quality of the secondary product made from phenyl methacrylate.

더욱이, 실시예 1 및 실시예 2에서는, 별도의 산촉매를 사용하지 않고도, 그리고, 반응온도를 현저히 낮게 하였음에도 불구하고, 반응이 매우 원활하게 진행되었다. 게다가, 낮은 반응온도로 인하여, 중합체의 형성도 발생하지 않았다. Moreover, in Examples 1 and 2, the reaction proceeded very smoothly without using a separate acid catalyst and despite the fact that the reaction temperature was significantly lowered. In addition, due to the low reaction temperature, no polymer formation occurred.

이에 반하여, 비교예 1에서는, 별도의 산촉매를 사용하고, 그리고, 반응온도를 높게 하였음에도 불구하고, 순도와 수율이 현저히 낮았다. 또한, 중합금지제를 사용하였음에도 불구하고, 고온의 반응온도로 인하여, 다량의 중합체가 발생하였다.On the contrary, in Comparative Example 1, a different acid catalyst was used, and despite the fact that the reaction temperature was increased, the purity and yield were remarkably low. In addition, despite the use of a polymerization inhibitor, a large amount of polymer was generated due to the high temperature of the reaction temperature.

이러한 사실로부터, 본 발명의 제조방법은, 저가의 원료(즉, (메타)아크릴산 및 페놀계 화합물) 및 낮은 반응온도를 사용하면서도, 고순도의 페닐메타크릴레이트 화합물을 고수율로 얻는 것을 가능하게 하는 획기적인 제조방법이라는 것을 알 수 있다.From this fact, the production method of the present invention makes it possible to obtain high-purity phenyl methacrylate compounds in high yield while using low-cost raw materials (i.e., (meth) acrylic acid and phenolic compounds) and low reaction temperatures. It can be seen that it is a breakthrough manufacturing method.

Claims (6)

티오닐클로라이드의 존재하에서 (메타)아크릴산과 페놀계 화합물을 반응시키는 단계를 포함하는 페닐(메타)아크릴레이트 화합물 제조방법.A method for preparing a phenyl (meth) acrylate compound, comprising reacting (meth) acrylic acid with a phenolic compound in the presence of thionyl chloride. 제 1 항에 있어서, 상기 티오닐클로라이드를, (메타)아크릴산과 페놀계 화합물의 반응이 진행되는 동안, 지속적으로 또는 간헐적으로 투입하는 것을 특징으로 하는 페닐(메타)아크릴레이트 화합물 제조방법.The method according to claim 1, wherein the thionyl chloride is continuously or intermittently added while the reaction of the (meth) acrylic acid and the phenolic compound is in progress. 제 1 항에 있어서, 반응온도가 40 내지 100 ℃ 인 것을 특징으로 하는 페닐(메타)아크릴레이트 화합물 제조방법.The method for producing a phenyl (meth) acrylate compound according to claim 1, wherein the reaction temperature is 40 to 100 ° C. 제 1 항에 있어서, 촉매의 추가적 존재하에서, (메타)아크릴산과 페놀계 화합물을 반응시키는 것을 특징으로 하는 페닐(메타)아크릴레이트 화합물 제조방법.The method for producing a phenyl (meth) acrylate compound according to claim 1, wherein (meth) acrylic acid is reacted with a phenolic compound in the presence of a catalyst. 제 1 항에 있어서, 반응매질용 용제의 추가적 존재하에서, (메타)아크릴산과 페놀계 화합물을 반응시키는 것을 특징으로 하는 페닐(메타)아크릴레이트 화합물 제조방법.The method for producing a phenyl (meth) acrylate compound according to claim 1, wherein (meth) acrylic acid is reacted with a phenolic compound in the presence of a solvent for the reaction medium. 제 1 항에 있어서, 중합금지제의 추가적 존재하에서, (메타)아크릴산과 페놀 계 화합물을 반응시키는 것을 특징으로 하는 페닐(메타)아크릴레이트 화합물 제조방법.The method for producing a phenyl (meth) acrylate compound according to claim 1, wherein (meth) acrylic acid is reacted with a phenolic compound in the presence of a polymerization inhibitor.
KR1020070141901A 2007-12-31 2007-12-31 Method for preparing phenyl (meth)acrylates KR20090073839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070141901A KR20090073839A (en) 2007-12-31 2007-12-31 Method for preparing phenyl (meth)acrylates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070141901A KR20090073839A (en) 2007-12-31 2007-12-31 Method for preparing phenyl (meth)acrylates

Publications (1)

Publication Number Publication Date
KR20090073839A true KR20090073839A (en) 2009-07-03

Family

ID=41330946

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070141901A KR20090073839A (en) 2007-12-31 2007-12-31 Method for preparing phenyl (meth)acrylates

Country Status (1)

Country Link
KR (1) KR20090073839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100291A1 (en) * 2011-12-28 2013-07-04 제일모직주식회사 Method for preparing (metha)acrylic acid phenyl ester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100291A1 (en) * 2011-12-28 2013-07-04 제일모직주식회사 Method for preparing (metha)acrylic acid phenyl ester

Similar Documents

Publication Publication Date Title
JP5066447B2 (en) Method for producing 2-hydroxyester compound
CA2591754A1 (en) Process for producing aromatic carbonate
JP2000191590A (en) Production of (meth)acrylic acid phenyl ester
JP5990265B2 (en) Recovery of phenol and acetone from bisphenol A stream
TW201125847A (en) Process for preparing alkanediol and dialkyl carbonate
TWI462898B (en) Process for removing an alkanol impurity from an organic carbonate stream
JP5702048B2 (en) Method for producing (meth) acrylic acid naphthyl ester
TWI501945B (en) Method for producing hydroxyalkyl (meth) acrylic acid ester
KR20090073839A (en) Method for preparing phenyl (meth)acrylates
KR101362883B1 (en) A method for preparing (meth)acrylic acid phenyl ester
TWI461402B (en) (Meth) acrylic acid hydroxyalkyl ester
JP4438465B2 (en) Method for producing tetrakis (4-hydroxyphenyl) ethane compound
JP4086982B2 (en) Process for producing N- (1,1-dimethyl-3-oxobutyl) acrylamide
JP4576173B2 (en) Method for producing adamantyl (meth) acrylate compound
KR101447456B1 (en) Method for Preparing Phosphinate Flame Retardant
CN106674000B (en) Acyl chloride co-production method
JP2005194201A (en) Apparatus and method for producing 4-hydroxybutyl (meth)acrylate and production apparatus therefor
JP2594826B2 (en) Method for producing p- or m-hydroxyphenethyl alcohol
CN114702372B (en) Method for preparing 4- (2-methoxyl) ethylphenol
EP3046898B1 (en) Improved manufacturing process for dihydroxydiphenylmethane with high selectivity for 2,4&#39;- dihydroxydiphenylmethane
KR101055268B1 (en) New (meth) acryloyl chloride process
JP4262977B2 (en) Process for producing 1,1-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
US3732315A (en) Production of aromatic hydroxyaldehydes
SK14342000A3 (en) Process for the preparation of phenol
TW201209035A (en) Method of producing hydroxyalkyl (meth) acrylic acid ester

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination