KR20090065732A - Hybrid heat-pump using microcontroller - Google Patents

Hybrid heat-pump using microcontroller Download PDF

Info

Publication number
KR20090065732A
KR20090065732A KR1020070133198A KR20070133198A KR20090065732A KR 20090065732 A KR20090065732 A KR 20090065732A KR 1020070133198 A KR1020070133198 A KR 1020070133198A KR 20070133198 A KR20070133198 A KR 20070133198A KR 20090065732 A KR20090065732 A KR 20090065732A
Authority
KR
South Korea
Prior art keywords
hot water
gas
valve
liquid
cold water
Prior art date
Application number
KR1020070133198A
Other languages
Korean (ko)
Inventor
윤현일
김희경
Original Assignee
윤현일
김희경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤현일, 김희경 filed Critical 윤현일
Priority to KR1020070133198A priority Critical patent/KR20090065732A/en
Publication of KR20090065732A publication Critical patent/KR20090065732A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/002Compression machines, plants or systems with reversible cycle not otherwise provided for geothermal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A hybrid heat pump capable of performing composite heat source control and four-season automatic switchover according to a microcontroller is provided to achieve the optimum thermal efficiency operation and maximize reliability of machine by using an automatic control algorithm based on PID(Proportional Integral Derivative) control. A hybrid heat pump capable of performing composite heat source control and four-season automatic switchover according to a microcontroller includes a compressor(100), a oil separator(110), a condenser(200), a liquid-gas heat exchanger(501), a liquid receiver(500), and an air-cooled evaporator(600). A circulating cycle is composed of a hot water solenoid valve(300), a hot water solenoid valve(301), a hot water solenoid valve(302), an air-cooled expansion valve(303), an air-cooled evaporator and a liquid-gas heat exchanger for simultaneously or respectively produce heating and hot water. A cycle is formed of a cold water evaporator(700), a cold water circulating pump(701), a cold water solenoid valve(400), a cold water solenoid valve(401), a cold water solenoid valve(402), a check valve(404) and a cold water expansion valve(403).

Description

마이크로콘트롤러에 의해 복합열원 제어와 사계절 자동 전환이 가능한 하이브리드 히트펌프{Hybrid heat-pump using microcontroller}Hybrid heat pump that can control multiple heat sources and automatically switch the four seasons by microcontroller {Hybrid heat-pump using microcontroller}

본 발명은 공냉 및 수냉을 겸용하는 히트펌프식 냉온수 공급장치에 관한 것으로 공랭식 증발기를 통한 열원을 흡수함은 물론, 냉수를 공급하기위한 냉수탱크에서 냉수용 열교환기를 통한 증발열을 흡수하거나, 추가로 폐수 또는 지중열을 흡수하기 위해 장치를 병설하여 열교환기를 통한 증발열을 흡수하여 공랭식 증발기의 겨울철 효율감소를 보상하도록 형성되는 마이크로콘트롤러에 의해 복합열원 제어와 사계절 자동 전환이 가능한 하이브리드 히트펌프에 관한 것이다.The present invention relates to a heat pump type cold and hot water supply device that combines air cooling and water cooling, as well as absorbing the heat source through the air-cooled evaporator, as well as absorbing the heat of evaporation through the cold water heat exchanger in the cold water tank for supplying cold water, or additionally wastewater. Alternatively, the present invention relates to a hybrid heat pump capable of controlling the combined heat source and automatically switching the four seasons by a microcontroller which is configured to absorb the evaporative heat through the heat exchanger by adding a device to absorb the ground heat to compensate for the decrease in the winter efficiency of the air-cooled evaporator.

일반적으로 냉수공급을 위한 냉동 사이클과 온수공급을 위한 히트펌프 사이클은 정반대의 냉매순환 구조이기 때문에 배관의 냉매흐름을 정역으로 반전되는 동작을 제어하여야 한다.In general, since the refrigeration cycle for cold water supply and the heat pump cycle for hot water supply are the opposite refrigerant circulation structures, the operation of inverting the refrigerant flow in the pipeline to the forward and reverse regions should be controlled.

전환 과정에서 압축기, 응축기, 수액기, 증발기, 팽창변 등의 부분별 동작특성에 이상 동작이 발생하게 되어 부품의 파손 또는 효율감소 등의 현상 때문에 일 반적으로 수동벨브를 사용하여 기계를 정지한 상태에서 배관 사이클을 전환하고 냉매가 안정된 다음에 기계를 재가동하여야 한다. During the conversion process, abnormal operation occurs in each part's operating characteristics such as compressor, condenser, receiver, evaporator, and expansion valve, and the machine is stopped by using manual valve. The machine must be restarted after the piping cycle has been switched and the refrigerant has stabilized.

이에 일부 종래의 기술은 냉풍, 온풍(냉난방) 자동 전환이 가능하였으나, 냉온수 및 냉난방 온수를 동시 생산 및 개별 생산하는 것이 불가능하였다.Therefore, some conventional technologies have been able to automatically switch between cold and hot air (cooling and heating), but it is impossible to simultaneously produce and separately produce hot and cold water and hot and cold heating water.

또한, 냉동사이클의 제어방법에서 압력센서를 사용한 고압 저압의 PID 제어방법은 일반적인 기술로 적용하여 사용하고 있으나 히트펌프에서 증발기 기능을 수행 할 때는 냉매의 저압과 관련하여 송풍기는 인버터를 통한 풍량 제어로 저압의 압력을 일정하게 유지하는 형태로 많이 사용하나 응축기의 기능을 수행할 때는 냉매의 고압을 대상으로 하는 풍량 제어를 하여야 하기 때문에 저압센서를 고압센서로 절체 되어야 하며 온수순환펌프의 고압제어와 중복이 되어 냉매의 사이클이 이상적인 제어가 불가능하게 된다.In addition, the PID control method of high pressure and low pressure using a pressure sensor in the control method of the refrigeration cycle is applied as a general technique, but when performing the evaporator function in the heat pump, the blower is controlled by the air volume control through the inverter in relation to the low pressure of the refrigerant. It is used in the form of keeping the low pressure constant, but when performing the function of the condenser, the low pressure sensor should be transferred to the high pressure sensor because the air volume control for the high pressure of the refrigerant should be controlled, and overlapped with the high pressure control of the hot water circulation pump. This makes the cycle of the refrigerant impossible to control ideally.

본 발명은 상기의 문제점을 해결하기 위한 것으로, 그 기술적 요지는 냉온수와 냉난방의 복합 형태로 구성된 히트펌프에서 기능의 전환을 자동으로 전환하기 위한 전자변과 첵크벨브 등의 배관구조 및 제어기술을 개선함으로써, 냉방과 온수를 생산할 때 공기 중의 열을 흡수하는 증발기 역할을 하는 공랭식 코일이 온수생산이 완료되면 냉방만을 위해서 증발기가 응축기 역할로 기계적인 무리가 없이 자동 전환되어 운전을 하거나, 냉수와 온수를 생산할 때 냉수부의 열교환 용량과 부족한 열량을 증발기에서 적당량이 흡수되어 냉매의 고압과 저압의 균형을 이루도록 제어할 수 있는 마이크로콘트롤러(Microcontroller)와 자동전환 알고리즘(Algorithm) 기술이 적용된 마이크로콘트롤러에 의해 복합열원 제어와 사계절 자동 전환이 가능한 하이브리드 히트펌프를 제공함에 그 목적이 있다.The present invention is to solve the above problems, the technical spirit of the heat pump composed of cold and hot water and heating and cooling by improving the piping structure and control technology such as electronic valves and check valves for automatically switching the function of the switching When the air-cooled coil that acts as an evaporator to absorb heat in the air when producing cooling and hot water is completed, the evaporator is automatically switched to a condenser as a condenser to operate the hot water. At the time, the heat exchange capacity of the cold water and the insufficient heat amount are controlled by the microcontroller and the microcontroller with the automatic control algorithm (Algorithm) technology that can control the balance of high and low pressure of the refrigerant by absorbing an appropriate amount from the evaporator. Hybrid Heat Pump with Automatic and Four Seasons In the providing it is an object.

다시 말해 냉난방, 냉온수, 난방온수, 에어컨 등의 기능을 자동으로 전환하기 위한 전자변과 체크벨브를 이용하는 자동 전환이 용이한 배관구조의 설계 및 각 운전모드 전환을 위한 마이크로콘트롤러(Microcontroller)의 자동전환 알고리즘(Algorithm)과 운전모드 별 냉매의 고압과 저압의 압력센서를 이용한 송풍기와 순환펌프의 PID제어를 통한 냉매 사이클이 최적의 효율로 운전되도록 하기위한 운전모드별 제어 알고리즘(Algorithm)을 이용하여 제어되는 하이브리드 히트펌프를 제공함에 그 목적이 있다.In other words, the design of the piping structure that can be automatically switched using electronic valves and check valves to automatically switch the functions of heating, cooling, hot and cold water, heating and hot water, and air conditioning, and the automatic switching algorithm of the microcontroller for each operation mode switching. (Algorithm) Controlled by the operation mode control algorithm (Algorithm) to ensure that the refrigerant cycle through the PID control of the blower and circulation pump using the high pressure and low pressure pressure sensor of the refrigerant by operation mode to the optimum efficiency The purpose is to provide a hybrid heat pump.

상술한 목적을 달성하기 위해 본 발명은 압축기(100), 유분리기(110), 응축기(200), 액-가스열교환기(501), 수액기(500), 공냉식증발기(600)로 히트펌프 회로가 구성됨에 있어서, 난방과 온수의 동시 또는 개별 생산을 위해 온수전자변a(300), 온수전자변b(301), 온수전자변c(302), 공냉식팽창변(303), 공냉식증발기(600), 액-가스열교환기(501)의 배관으로 순환 사이클이 형성되고; 냉방과 온수의 동시 또는 개별 생산을 위해 공냉식증발기(600)를 3단 응축기 중 일 응축기로 형성하여 냉수증발기(700)와 냉수순환펌프(701), 냉수전자변a(400), 냉수전자변b(401), 냉수전자변c(402), 첵크벨브(404), 냉수팽창변(403)이 순환되도록 사이클을 형성하되; 상기 난방/온수 사이클과 냉방/온수 사이클은 자동 전환 및 동시 가동은 물론 개별 가동되도록 구성되어 이루어진다.In order to achieve the above object, the present invention provides a heat pump circuit including a compressor 100, an oil separator 110, a condenser 200, a liquid-gas heat exchanger 501, a receiver 500, and an air-cooled evaporator 600. In the configuration, for the simultaneous or separate production of heating and hot water hot water electronic valve a (300), hot water electronic valve (b) 301, hot water electronic valve (302), air-cooled expansion valve (303), air-cooled evaporator (600), liquid- A circulation cycle is formed in the piping of the gas heat exchanger 501; For simultaneous or individual production of cooling and hot water, the air-cooled evaporator 600 is formed as one condenser of the three-stage condenser, thereby forming the cold water evaporator 700, the cold water circulation pump 701, the cold water electronic valve a (400), and the cold water electronic valve b (401). ), Forming a cycle to circulate the cold water electronic valve c (402), the check valve 404, the cold water expansion valve (403); The heating / hot water cycle and the cooling / hot water cycle are configured to be individually operated as well as automatic switching and simultaneous operation.

이때, 상기 공냉식증발기(600)는 저효율을 보상하기 위해 폐열_지열증발기(800), 복합식 전자변(803), 복합식 팽창변(802)이; 더 구성되어 이루어진 것이 바람직하다.At this time, the air-cooled evaporator 600 is a waste heat geothermal evaporator 800, a composite electronic valve 803, a composite expansion valve 802 to compensate for low efficiency; It is preferable that it is further comprised.

이에, 상기 하이브리드 히트펌프는 운전 중 냉매의 사이클을 안정적으로 제어하기 위해 고압가스온도보상변(121), 고압가스온도조절볼벨브(120), 액-가스열교환기(501), 고압측바이패스액관고압전자변(502,503), 저압가스바이패스관(130)이 구성되어 고압가스온도보상과 저압가스온도보상 및 저압가스의 압력보정 을 도모하도록 형성되는 것이 바람직하다.Accordingly, the hybrid heat pump has a high pressure gas temperature compensation valve 121, a high pressure gas temperature control ball valve 120, a liquid-gas heat exchanger 501, a high pressure side bypass to stably control the cycle of the refrigerant during operation. It is preferable that the liquid pipe high pressure electron valves 502 and 503 and the low pressure gas bypass pipe 130 are configured to achieve high pressure gas temperature compensation, low pressure gas temperature compensation, and pressure compensation of low pressure gas .

또한, 상기 하이브리드 히트펌프는 압축기, 유분리기, 응축기, 액-가스열교 환기, 수액기, 공냉식증발기, 액-가스열교환기, 압축기로 순환되는 회로를 형성하되 상기 회로에는 고압측바이패스액관고압전자변(502,503)을 설치하여 압축기의 입구측 저압 가스온도에 의해서 고압측바이패스액관고압전자변(502,503)이 작동되고, 저압냉매가스관인 액-가스열교환기 전후로 형성된 저압가스바이패스관(130)은 액-가스열교환기(501)보다 위로 루프(위로 올린 뒤 구부러져 내려오도록)를 설치하여 증발가스의 흐름을 원활하게 유도하도록 형성된다.In addition, the hybrid heat pump forms a circuit circulated by a compressor, an oil separator, a condenser, a liquid-gas heat exchanger, a receiver, an air-cooled evaporator, a liquid-gas heat exchanger, and a compressor. The high pressure side bypass liquid pipe high pressure electron valve 502, 503 is operated by the low pressure gas temperature at the inlet side of the compressor, and the low pressure gas bypass pipe 130 formed before and after the liquid-gas heat exchanger, which is a low pressure refrigerant gas pipe, -It is formed so as to smoothly induce the flow of the boil-off gas by installing a loop (up and down to be bent up) than the gas heat exchanger (501).

아울러, 상기 하이브리드 히트펌프는 액관 및 가스관의 온도와 압력을 계측하여 그 값을 통신에 의해 인버터 제어를 수행하도록 형성되는 마이크로콘트롤러(Microcontroller), 자동전환 알고리즘(Algorithm), PID제어방식 또는 운전제어 알고리즘(Algorithm)에 의하여 가동되는 것이 바람직하다.In addition, the hybrid heat pump is a microcontroller (Microcontroller), automatic switching algorithm (Algorithm), PID control method or operation control algorithm that is formed to measure the temperature and pressure of the liquid pipe and gas pipe and perform the inverter control by the value communication It is preferable to operate by (Algorithm).

이와 같이, 본 발명은 냉난방, 냉온수, 난방온수를 동시에 제공됨과 동시에 공랭식 증발기의 보상을 위한 폐열 및 지중열의 2중 증발기 기능들을 운전조건에 따라서 사계절 자동 전환되는 하이브리드 방식의 히트펌프이며 PID제어를 기본으로 하는 자동제어 알고리즘(Algorithm)은 사계절 최상의 열효율 운전 및 기계의 신뢰성을 극대화하는 효과가 있다.As described above, the present invention is a hybrid heat pump that automatically provides four heating / cooling / hot / hot water and heating / hot water at the same time, and automatically converts two-vapor evaporator functions of waste heat and ground heat to compensate for an air-cooled evaporator according to operating conditions. Automatic control algorithm (Algorithm) has the effect of maximizing the four seasons the best thermal efficiency operation and the reliability of the machine.

다음은 첨부된 도면을 참조하며 본 발명을 보다 자세히 설명하겠다.The following describes the invention in more detail with reference to the accompanying drawings.

도 1 내지 도 5에 도시된 바와 같이, 기본적인 온수생산 사이클을 위한 구조로 압축기(100), 유분리기(110), 응축기(200), 액-가스열교환기(501), 수액기(500), 온수전자변a(300), 온수전자변b(301), 온수전자변c(302), 공냉식팽창변(303), 공냉식증발기(600), 액-가스열교환기(501)의 형태로 배관이 구성된다. 추가로 냉수 또는 직접 냉방을 동시에 활용하기 위해서는 냉수증발기(700)와 냉수순환펌프(701)또는 공냉식 증발기, 냉수전자변a(400), 냉수전자변b(401), 냉수전자변c(402), 냉수팽창변(403), 체크밸브(404)을 추가하여 구성한다. 1 to 5, the compressor 100, the oil separator 110, the condenser 200, the liquid-gas heat exchanger 501, the receiver 500, the structure for the basic hot water production cycle, The piping is configured in the form of the hot water electron valve a (300), the hot water electron valve (301), the hot water electron valve (302), the air-cooled expansion valve (303), the air-cooled evaporator (600), and the liquid-gas heat exchanger (501). In addition, in order to simultaneously utilize cold water or direct cooling, a cold water evaporator 700 and a cold water circulation pump 701 or an air-cooled evaporator, a cold water electronic valve a (400), a cold water electronic valve b (401), a cold water electronic valve c (402), and a cold water expansion valve 403 and check valve 404 are added and comprised.

이때, 공냉식 증발기(600)의 저효율을 보상하기 위해 폐열_지열증발기(800), 복합식 전자변(803), 복합식 팽창변(802) 등을 구성하여 겨울철 저온기후에 대응하도록 구성한다.In this case, in order to compensate for the low efficiency of the air-cooled evaporator 600, the waste heat_geothermal evaporator 800, the composite electronic valve 803, the composite expansion valve 802, etc. are configured to cope with the low-temperature winter climate.

다시 말해, 본 발명은 압축기 -> 유분리기 -> 응축기 -> 액-가스열교환기(판형열교환기) -> 수액기 -> 증발기 -> 액-가스열교환기(판형열교환기) -> 압축기순으로 사이클이 형성하도록 한다. In other words, the present invention is a compressor-> oil separator-> condenser-> liquid-gas heat exchanger (plate heat exchanger)-> receiver-> evaporator-> liquid-gas heat exchanger (plate heat exchanger)-> compressor Allow the cycle to form.

즉, 위와 같이 사이클을 형성함으로써 동절기와 하절기의 냉매량을 일정하게 유지 하며 불응축 가스를 최소화함으로써 기계의 효율을 상승시킨다. That is, by forming a cycle as described above to maintain a constant amount of refrigerant in the winter and summer, and to minimize the non-condensing gas to increase the efficiency of the machine.

이는 동절기의 냉매수축으로 냉매부족현상과 하절기의 냉매 팽창으로 냉매 과다로 인한 문제점을 해결하며, 4계절에 관계없이 냉매량을 일정하게 유지시켜 준다.This solves the problems caused by the lack of refrigerant due to the shrinkage of the refrigerant during the winter season and the excessive refrigerant due to the expansion of the refrigerant during the summer season, and maintains the amount of refrigerant constant regardless of the four seasons.

이러한 본 발명은 여름철에 에어컨 가동을 위주로 운전되는 것을 기본으로 하되, 온수만 생산시킬 수 있거나 에어컨만 가동할 수 있도록 하는 한편, 상기 온 수와 에어컨을 동시에 가동할 수도 있다.The present invention is based on the operation of operating the air conditioner mainly in the summer, while only hot water can be produced or only to operate the air conditioner, the hot water and the air conditioner can be operated at the same time.

또한, 겨울철에는 난방과 온수 생산을 위주로 운전되는 것을 기본으로 하되, 난방만 생산시킬 수 있거나 급탕펌프의 운전만을 가동할 수 있도록 하는 한편, 상기 난방과 급탕이 동시에 가동할 수도 있다.In addition, in winter, the heating and hot water production is mainly driven, but only the heating can be produced or to operate only the operation of the hot water pump, while the heating and hot water may be operated at the same time.

이때, 응축기는 효율을 높이기 위해 두 개를 직립으로 연결 설치함으로써 개선된 열교환을 이루도록 형성된다.At this time, the condenser is formed to achieve improved heat exchange by connecting the two upright in order to increase the efficiency.

또한, 3방밸브는 급수되는 물의 온도를 일정하게 유지시키도록 형성된다.In addition, the three-way valve is formed to maintain a constant temperature of the water supplied.

이에, 운전 중 냉매의 사이클을 안정적으로 제어하기 위한 고압가스온도보상변(121), 고압가스온도조절볼벨브(120)를 구성하여 고압가스 온도의 상승을 완화시키고, 저압의 증발을 돕기 위해 액-가스열교환기(501), 고압측바이패스액관고압전자변(502,503)을 구성하고 저압측에는 저압가스바이패스관(130)을 구성하여 저압가스온도 및 압력을 상승 보충하는 기능을 하도록 구성한다.Thus, by configuring the high pressure gas temperature compensation valve 121, the high pressure gas temperature control ball valve 120 to stably control the cycle of the refrigerant during operation to mitigate the rise of the high pressure gas temperature, to help the low pressure evaporation A gas heat exchanger 501 and a high pressure side bypass liquid pipe high pressure electronic valve 502 and 503 are configured on the low pressure side, and a low pressure gas bypass pipe 130 is formed to increase and supplement the low pressure gas temperature and pressure.

이는 열교환기 저압측 냉매 가스라인에 바이패스관을 연결해주고, 바이패스관을 연결할때는 열교환기 연결라인보다 위로 높인 다음 가스상태에서 흡입되도록 한다. This connects the bypass tube to the refrigerant gas line of the low pressure side of the heat exchanger, and when connecting the bypass tube, it is raised above the heat exchanger connection line and then sucked in the gas state.

즉, 바이패스관을 만들어 줌으로써 흡입가스의 흐름을 원활하게 한다. 상기와 같이 저압관의 바이패스 관을만들어 가스의 흐름을 원활하게 하고 잔량의 가스와 액은 열교환하여 흡입되는 냉매가스의 온도를 상승시킨다.In other words, by making the bypass pipe to facilitate the flow of the suction gas. By making the bypass pipe of the low-pressure pipe as described above to smooth the flow of gas and the residual amount of gas and liquid heat exchange to increase the temperature of the refrigerant gas is sucked.

이때, 판형열교환기 고압측 바이패스 액관에 전자밸브을 설치하여 흡입되는 가스의 증발 온도을 높이고 저압측 온도센서에 의해서 고압측 바이패스액관 고압전자변(502,503)을 조작하여 흡입가스의 온도를 일정하게 유지한다.At this time, the solenoid valve is installed in the high pressure side bypass liquid pipe of the plate heat exchanger to increase the evaporation temperature of the gas to be sucked, and the high pressure side bypass liquid pipe high pressure electron valves 502 and 503 are operated by the low pressure side temperature sensor to maintain a constant temperature of the suction gas. .

또한, 축열 및 대류현상을 막기 위한 온수탱크1(202), 온수탱크2(203), 온수순환펌프(201)를 구성하여 히트펌프와 원활한 열교환이 되도록 구성한다. In addition, the hot water tank 1 (202), the hot water tank 2 (203), the hot water circulation pump 201 to prevent the heat storage and convection phenomenon is configured to be a smooth heat exchange with the heat pump.

상기의 히트펌프를 제어하기위한 시스템은 주(Main) 마이크로콘트롤러1(10)과 4개의 압력센서(11,12,13,14), 송풍기제어용 인버터(30,31), 순환펌프제어용 인버터(32,33) , 마이크로콘트롤러2(20) 및 8개의 온도센서(21,...28), 디지털메터(50)로 구성되며 RS485통신에 의한 인버터제어방식으로 송풍기와 펌프를 PID제어하며 압축기 및 각종 전자변 등을 제어한다. 장비의 전압, 전류, 전력, 전력량을 디지털메타에서 계측하여 장비운전의 운전조건분석자료로 활용하도록 구성한다. The system for controlling the heat pump includes a main microcontroller 1 (10), four pressure sensors (11, 12, 13, 14), a blower control inverter (30, 31), and a circulation pump control inverter (32). , 33) , microcontroller 2 (20), 8 temperature sensors (21, ... 28), digital meter (50), PID control of blower and pump by inverter control method by RS485 communication, compressor and various Control electronic valves. It is configured to measure the voltage, current, power, and power of equipment by digital meter and to use it as the analysis condition of the operation of equipment.

한편, 온수생산을 위한 냉매 사이클 구조는 압축기, 유분리기, 응축기, 액-가스열교환기, 수액기로 순환되는 회로에서 온수전자변a(300), 온수전자변b(301), 온수전자변c(302), 공냉식팽창변(303), 공냉식증발기(600), 액-가스열교환기, 압축기로 냉매가 순환하도록 개방되며, 온수와 냉수생산을 동시에 하기 위한 냉매 사이클 구조는 온수작동에서 추가로 냉수전자변a(400), 냉수전자변b(401), 냉수전자변c(402), 냉수식팽창변(403)에 냉매를 순환하도록 개방하여 냉수증발기(700)와 공냉식증발기(600)가 이중 증발기로 운전된다. On the other hand, the refrigerant cycle structure for producing hot water is hot water electronic valve a (300), hot water electronic valve (301), hot water electronic valve (302), in the circuit circulated to the compressor, oil separator, condenser, liquid-gas heat exchanger, receiver Air-cooled expansion valve 303, air-cooled evaporator (600), liquid-gas heat exchanger, the compressor is opened to circulate the refrigerant, the refrigerant cycle structure for producing hot water and cold water at the same time in addition to the cold water electronic valve a (400) The cold water evaporator 700 and the air-cooled evaporator 600 are operated by a dual evaporator by opening the refrigerant to the cold water electronic valve b 401, the cold water electronic valve c 402, and the cold water expansion valve 403.

이때, 직접냉방을 할 때는 공랭식증발기(600)가 냉수증발기(700)로 전환되어 운전되고, 공랭식증발기(600)가 응축기로 전화되어 운전하면 온수 및 직접냉방을 동시에 수행한다.At this time, in the case of direct cooling, the air-cooled evaporator 600 is switched to the cold water evaporator 700 and operated, and when the air-cooled evaporator 600 is converted to the condenser, the hot water and direct cooling are simultaneously performed.

상기의 운전 중에 특히 겨울철 실외공기가 영하의 날씨 조건이면 공냉식증발기(600)의 열 흡수율이 낮아져 냉매의 사이클도 문제가 생기거나 압축기의 손상을 초래 할 수도 있다. During the above operation, in particular, when the outdoor air is in the sub-zero weather condition, the heat absorption rate of the air-cooled evaporator 600 is lowered, which may cause a problem in the refrigerant cycle or damage to the compressor.

이러한 문제점을 해결하기 위해 저효율 운전을 보상하기 위해 복합전자변(803), 복합식팽창변(802)에 냉매를 순환하도록 개방하여 폐열_지열증발기(800)로 폐수열 또는 지열의 열원을 흡수하여 부족한 열원을 보충하여 원활한 사이클이 운전이 되도록 제어한다. In order to solve this problem, in order to compensate for low-efficiency operation, the refrigerant is circulated in the composite electronic valve 803 and the composite expansion valve 802 to compensate for the insufficient heat source by absorbing the waste heat or geothermal heat source with the waste heat geothermal evaporator 800. To control the smooth cycle.

아울러, 온수와 냉수 또는 온수와 직접냉방 운전 조건에서 온수의 생산이 완료되었을 때는 응축기(200)의 역할이 정지되고 공랭식 증발기(600)가 응축기의 역할로 전환되어야 냉수 또는 집적냉방의 운전 사이클이 형성된다. In addition, when the production of hot water in the hot water and cold water or hot water and direct cooling operation conditions are completed, the role of the condenser 200 is stopped and the air-cooled evaporator 600 is switched to the role of the condenser to form the operation cycle of cold or integrated cooling do.

이러한 사이클의 전환을 위해서는 단계적인 자동전환 알고리즘(Algorithm)에 따라 제어되어야 한다. 그 과정은 1단계로 가동 중인 압축기를 정지하고 온수전자변a(300), 온수전자변b(301), 온수전자변c(302)을 폐쇄한다. 2단계는 냉수전자변a(400), 냉수전자변b(401), 냉수전자변c(402)를 개방하고 증발기(600)의 송풍기를 최대로 가동하여 내부에 있는 냉매를 최대한 밀어 내도록한다. In order to change the cycle, it must be controlled according to a stepwise automatic switching algorithm. The process stops the compressor in operation in one step and closes the hot water electronic valve a 300, the hot water electronic valve b 301, and the hot water electronic valve c 302. In the second step, the cold water electron valve a 400, the cold water electron valve b 401, and the cold water electron valve c 402 are opened and the blower of the evaporator 600 is operated to the maximum to push out the refrigerant therein.

3단계는 압축기(100) 정지 후 냉매의 적정분포를 위해 5분이상의 휴지 시간 이 지난 다음 압축기(100)를 가동한다. 이때 응축기(200)의 열교환을 최소로 하기위해 순환펌프(201)는 최소 속도로 제어되며 공냉식 응축기(600)에서 열을 발열하며 고압의 압력을 신호로 송풍기의 풍량을 제어하여 일정한 고압을 유지하도록 한다. In the third step, the compressor 100 is operated after a pause of 5 minutes or more for proper distribution of the refrigerant after the compressor 100 is stopped. At this time, in order to minimize the heat exchange of the condenser 200, the circulation pump 201 is controlled at a minimum speed and generates heat in the air-cooled condenser 600 to maintain a constant high pressure by controlling the air volume of the blower with a high pressure signal. do.

또한 온수생산을 위한 전환은 상기의 반대과정으로 진행하여 단계별로 제어되며 압축기(100)의 정지 휴식시간은 공랭식증발기(600)에 남아있는 액상태의 냉매가 압축기(100)로 넘어가는 것을 방지하기 위하여 최소 15분 이상으로 가동을 정지시킨다. In addition, the conversion for hot water production is controlled step by step in the reverse process of the above and the stop break time of the compressor 100 to prevent the refrigerant in the liquid state remaining in the air-cooled evaporator 600 to pass over to the compressor 100 Shut down for at least 15 minutes .

상기의 운전모드별로 냉매의 고압 및 저압의 압력을 계측하여 공랭식증발기(600)의 송풍기와 온수순환펌프(201)를 저압과 고압, 고압과 고압 등의 조건으로 PID제어하며 운전 모드별로 각종 전자변을 열효율이 극대화되도록 제어한다. By measuring the pressure of the high pressure and low pressure of the refrigerant for each operation mode, the PID control of the blower and hot water circulation pump 201 of the air-cooled evaporator 600 under the conditions of low pressure and high pressure, high pressure and high pressure, and various electronic valves for each operation mode. Control to maximize thermal efficiency.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

도 1은 본 발명에 따른 하이브리드방식 히트펌프의 시스템을 나타낸 회로도,1 is a circuit diagram showing a system of a hybrid heat pump according to the present invention;

도 2는 본 발명의 에어컨, 온수생산에 관한 시스템 요약 회로도,Figure 2 is a system summary circuit diagram of the air conditioner, hot water production of the present invention,

도 3은 본 발명의 난방, 온수생산에 관한 시스템 요약 회로도,Figure 3 is a system summary circuit diagram of the heating, hot water production of the present invention,

도 4는 본 발명의 액-가스열교환기의 상세 회로도,4 is a detailed circuit diagram of the liquid-gas heat exchanger of the present invention;

도 5는 본 발명의 마이크로콘트롤러(Microcontroller) 구성도이다.5 is a configuration diagram of a microcontroller of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10...주(Main) 마이크로콘트롤러 11...고압1압력센서 10 ... Main microcontroller 11 ... High pressure 1 pressure sensor

12...저압1압력센서 13...고압2압력센서 12 Low pressure 1 pressure sensor 13 High pressure 2 pressure sensor

14...저압2압력센서 14 Low pressure 2 pressure sensor

20...온도검출 마이크로콘트롤러 21...온수출구온도 20 ... temperature detection microcontroller 21 ... hot water outlet temperature

22...온수입구온도 23...실외기공기온도22 ... hot water inlet temperature 23 ... outdoor air temperature

24...고압토출1온도 25...고압토출2온도24 ... High pressure discharge 1 temperature 25 ... High pressure discharge 2 temperature

26...냉수온도 27...온수탱크온도26 ... cold water temperature 27 ... hot water tank temperature

28...복합열원온도 30...인버터128 Combined heat source temperature 30 Inverter 1

31...인버터2 32...인버터331 Inverter 2 32 Inverter 3

33...인버터4 40...실외기 FAN133 Inverter 4 40 Outdoor unit FAN1

41...실외기 FAN2 42...급수펌프141.Outdoor unit FAN2 42 ... Water pump 1

43...급수펌프2 50...디지탈메터 43 ... water pump 2 50 ... digital meter

51,52,53...전압입력(R,S,T) 54,55,56...전류입력(R,S,T)51, 52, 53 ... voltage input (R, S, T) 54, 55, 56 ... current input (R, S, T)

60...RS485통신 61.. 압축기1번 60 ... RS485 communication 61 .. Compressor no.1

62...압축기2번 63...전자변(위치 바꾸기)62 ... Compressor No. 63 ... Electronic valve (Change position)

100...압축기 110...유분리기 100 Compressor 110 Oil Separator

120...볼벨브1 121...고압가스온도보상변 120 Ball valve 1 121 High pressure gas temperature compensation valve

130...저압가스바이패스관 130 Low pressure gas bypass pipe

200...응축기 201...온수순환펌프 200 ... condenser 201 ... hot water circulation pump

202...온수탱크1 203...온수탱크2 202 ... hot water tank 1 203 ... hot water tank 2

204...난방열교환기) 205...난방순환펌프204 Heating heat exchanger) 205 Heating circulation pump

300...온수전자변a 301...온수전자변b 300 ... Hot water transformer a 301 ... Hot water transformer b

302...온수전자변c 303...공냉식팽창변302 Hot water electronic valve c 303 Air-cooled expansion valve

400...냉수전자변a 401...냉수전자변b 400 ... cold water electronic valve a 401 cold water electronic valve b

402...냉수전자변c 403...냉방증발기팽창변402 ... Cooling water electronic valve c 403 ... Cooling evaporator expansion valve

404...첵크벨브 500...수액기 404 ... check valve 500 ... receiver

501... 액-가스열교환기 502, 503... 고압전자변501 ... Liquid-gas heat exchanger 502, 503 ... High-voltage electronic valve

600...증발_응축기 700...냉수증발기 600 ... evaporator_condenser 700 ... cold water evaporator

701...냉수순환펌프 800...폐열_지열증발기 701.Cold water circulation pump 800.Waste heat_geothermal evaporator

801...순환펌프 802...복합식팽창변 801 Circulating pump 802 Complex expansion valve

803...복합전자변803 Composite Electron Valve

Claims (5)

압축기(100), 유분리기(110), 응축기(200), 액-가스열교환기(501), 수액기(500), 공냉식증발기(600)로 히트펌프 회로가 구성됨에 있어서,In the heat pump circuit of the compressor 100, the oil separator 110, the condenser 200, the liquid-gas heat exchanger 501, the receiver 500, the air-cooled evaporator 600, 난방과 온수의 동시 또는 개별 생산을 위해 온수전자변a(300), 온수전자변b(301), 온수전자변c(302), 공냉식팽창변(303), 공냉식증발기(600), 액-가스열교환기(501)의 배관으로 순환 사이클이 형성되고; For simultaneous or separate production of heating and hot water, hot water electronic valve a (300), hot water electronic valve (301), hot water electronic valve (302), air-cooled expansion valve (303), air-cooled evaporator (600), liquid-gas heat exchanger (501). A circulation cycle is formed with the piping of the; 냉방과 온수의 동시 또는 개별 생산을 위해 공냉식증발기(600)를 3단 응축기 중 일 응축기로 형성하여 냉수증발기(700)와 냉수순환펌프(701), 냉수전자변a(400), 냉수전자변b(401), 냉수전자변c(402), 첵크벨브(404), 냉수팽창변(403)이 순환되도록 사이클을 형성하되;For simultaneous or individual production of cooling and hot water, the air-cooled evaporator 600 is formed as one condenser of the three-stage condenser, thereby forming the cold water evaporator 700, the cold water circulation pump 701, the cold water electronic valve a (400), and the cold water electronic valve b (401). ), Forming a cycle to circulate the cold water electronic valve c (402), the check valve 404, the cold water expansion valve (403); 상기 난방/온수 사이클과 냉방/온수 , 온수 사이클은 자동 전환 및 동시 가동은 물론 개별 가동되도록 구성되어 이루어진 것을 특징으로 하는 마이크로콘트롤러에 의해 복합열원 제어와 사계절 자동 전환이 가능한 하이브리드 히트펌프.The heating / hot water cycle and cooling / hot water, hot water cycle is a hybrid heat pump capable of controlling the combined heat source and automatic four seasons by a microcontroller, characterized in that it is configured to be automatically operated and simultaneously operated as well as individual operation. 제 1항에 있어서, 상기 공냉식증발기(600)는The method of claim 1, wherein the air-cooled evaporator 600 저효율을 보상하기 위해 폐열_지열증발기(800), 복합식 전자변(803), 복합식 팽창변(802)이;In order to compensate for the low efficiency, the waste heat-geothermal evaporator 800, the composite electronic valve 803, the composite expansion valve 802; 더 구성되어 이루어진 것을 특징으로 하는 마이크로콘트롤러에 의해 복합열원 제어와 사계절 자동 전환이 가능한 하이브리드 히트펌프.Hybrid heat pump capable of controlling the combined heat source and automatic four seasons by a microcontroller, characterized in that the further configuration. 제 2항에 있어서, 상기 하이브리드 히트펌프는The method of claim 2, wherein the hybrid heat pump 운전 중 냉매의 사이클을 안정적으로 제어하기 위해 고압가스온도보상변(121), 고압가스온도조절볼벨브(120), 액-가스열교환기(501), 고압측바이패스액관고압전자변(502,503), 저압가스바이패스관(130)이 구성되어 고압가스온도보상과 저압가스온도보상 및 보충, 저압가스의 압력보정을 도모하도록 형성되는 것을 특징으로 하는 마이크로콘트롤러에 의해 복합열원 제어와 사계절 자동 전환이 가능한 하이브리드 히트펌프.In order to stably control the cycle of the refrigerant during operation, the high-pressure gas temperature compensation valve 121, the high-pressure gas temperature control ball valve 120, the liquid-gas heat exchanger 501, the high-pressure side bypass liquid pipe high-pressure electronic valve (502, 503), The low pressure gas bypass tube 130 is configured to control the high pressure gas temperature, compensate and supplement the low pressure gas temperature, and compensate for the pressure of the low pressure gas. Hybrid heat pump. 제 4항에 있어서, 상기 하이브리드 히트펌프는The method of claim 4, wherein the hybrid heat pump 압축기, 유분리기, 응축기, 액-가스열교환기, 수액기, 공냉식증발기, 액-가스가스열교환기, 압축기로 순환되는 회로를 형성하되 상기 회로에는 고압측바이패스액관고압전자변(502,503)을 설치하여 압축기의 입구측 저압 가스온도에 의해서 고압측바이패스액관고압전자변(502,503)이 작동되고, 저압냉매가스관인 액-가스열교환기 전후로 형성된 저압가스바이패스관(130)은 액-가스열교환기(501)보다 위로 루프를 설치하여 증발가스의 흐름을 원활하게 유도하도록 형성되는 것을 특징으로 하는 마이크로콘트롤러에 의해 복합열원 제어와 사계절 자동 전환이 가능한 하이브리드 히트펌프.A circuit circulating to the compressor, oil separator, condenser, liquid-gas heat exchanger, liquid receiver, air-cooled evaporator, liquid-gas gas heat exchanger, and compressor is formed, and the high-pressure side bypass liquid pipe high-pressure electron valve (502, 503) is installed in the circuit. The high pressure side bypass liquid pipe high pressure electronic valves 502 and 503 are operated by the inlet side low pressure gas temperature, and the low pressure gas bypass pipe 130 formed before and after the liquid-gas heat exchanger which is the low pressure refrigerant gas pipe is a liquid-gas heat exchanger 501. Hybrid heat pump capable of controlling multiple heat sources and automatically switching four seasons by a microcontroller, characterized in that the loop is installed above to guide the flow of the evaporated gas smoothly. 제 1항 내지 제 4항 중 어느 한 항에 있어서, 상기 하이브리드 히트펌프는The hybrid heat pump of claim 1, wherein the hybrid heat pump 액관 및 가스관의 온도와 압력을 계측하여 그 값을 통신에 의해 인버터 제어를 수행하도록 형성되는 마이크로콘트롤러(Microcontroller), 자동전환 알고리즘(Algorithm), PID제어방식 또는 운전제어 알고리즘(Algorithm)에 의하여 가동되는 것을 특징으로 하는 마이크로콘트롤러에 의해 복합열원 제어와 사계절 자동 전환이 가능한 하이브리드 히트펌프.It is operated by a microcontroller, an automatic switching algorithm, an PID control method, or an operation control algorithm that measures the temperature and pressure of the liquid pipe and the gas pipe and performs the inverter control by communication. A hybrid heat pump capable of controlling the complex heat source and automatically changing the four seasons by a microcontroller.
KR1020070133198A 2007-12-18 2007-12-18 Hybrid heat-pump using microcontroller KR20090065732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070133198A KR20090065732A (en) 2007-12-18 2007-12-18 Hybrid heat-pump using microcontroller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070133198A KR20090065732A (en) 2007-12-18 2007-12-18 Hybrid heat-pump using microcontroller

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020090050848A Division KR20090084780A (en) 2009-06-09 2009-06-09 Hibrid heat pump system

Publications (1)

Publication Number Publication Date
KR20090065732A true KR20090065732A (en) 2009-06-23

Family

ID=40993950

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070133198A KR20090065732A (en) 2007-12-18 2007-12-18 Hybrid heat-pump using microcontroller

Country Status (1)

Country Link
KR (1) KR20090065732A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170142505A (en) * 2016-06-17 2017-12-28 이완호 Waste heat recycling system using a hybrid heat pump
CN107830655A (en) * 2017-11-29 2018-03-23 大连派思新能源发展有限公司 The distributed energy resource system of summer in winter dual-use can be achieved
CN109579377A (en) * 2018-12-05 2019-04-05 西安交通大学 A kind of CO 2 trans-critical heat pump system electronic expansion valve control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170142505A (en) * 2016-06-17 2017-12-28 이완호 Waste heat recycling system using a hybrid heat pump
CN107830655A (en) * 2017-11-29 2018-03-23 大连派思新能源发展有限公司 The distributed energy resource system of summer in winter dual-use can be achieved
CN109579377A (en) * 2018-12-05 2019-04-05 西安交通大学 A kind of CO 2 trans-critical heat pump system electronic expansion valve control method

Similar Documents

Publication Publication Date Title
CN107014016B (en) Fluorine pump natural cooling evaporation type condensation water chiller and control method thereof
KR101727561B1 (en) Energy-saving industrial air-conditioner and the operation method
US12038195B2 (en) Air conditioning system
US9671143B2 (en) Heat pump of heat source tower for realizing solution regeneration and heat reutilization based on vacuum boiling
CN102472537B (en) Air-conditioning hot-water supply system
KR101336012B1 (en) Ground source heat pump and its control for heating cooling and hot water
CN202254480U (en) Multifunctional water-heating air-conditioning system
CN1982798A (en) Air supplementing system and air supplementing control method for compressor
CN108895707A (en) Recovered steam compression type heat pump assembly condensation heat hot water cyclesystem and application method
CN105674449A (en) Triple-generation system based on energy-saving solar air source heat pump
CN111271893A (en) Air-conditioning heat pump hot water system and control method thereof
CN105627472A (en) Integrated intelligent control system for stereoscopic cold and warm bath freezer
KR20220115839A (en) Electricity-saving air conditioner to reduce power consumption
KR101818743B1 (en) Thermo-hygrostat with energy-saving hot water production system
KR20090065732A (en) Hybrid heat-pump using microcontroller
CN105387546A (en) Integrated double-source freezing station and refrigerating method
CN101936613B (en) Integrated heat exchange system
KR101092230B1 (en) the dualistic regenerative system air-conditioning apparatus
CN216384419U (en) Four-pipe air-cooled cold and hot water unit
CN102853490A (en) Pipeline cold and heat circulation system
CN107101417A (en) The preposition mode changes in temperature hot water three-way set of water- to-water heat exchanger four
CN105115186A (en) Cold and heat balance device of heat pump water heater test room
CN201753994U (en) Integrated heat exchange system
KR100946381B1 (en) Hybrid heat pump type cooling and heating apparatus
CN201344588Y (en) Heat pump hot water unit capable of reliably supplying water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
A107 Divisional application of patent
AMND Amendment
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20090511

Effective date: 20110207