KR20090054856A - Energy tunnel - Google Patents

Energy tunnel Download PDF

Info

Publication number
KR20090054856A
KR20090054856A KR1020070121753A KR20070121753A KR20090054856A KR 20090054856 A KR20090054856 A KR 20090054856A KR 1020070121753 A KR1020070121753 A KR 1020070121753A KR 20070121753 A KR20070121753 A KR 20070121753A KR 20090054856 A KR20090054856 A KR 20090054856A
Authority
KR
South Korea
Prior art keywords
energy
tunnel
heat exchange
geothermal
exchange pipe
Prior art date
Application number
KR1020070121753A
Other languages
Korean (ko)
Inventor
진혜경
Original Assignee
에코랜드 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에코랜드 주식회사 filed Critical 에코랜드 주식회사
Priority to KR1020070121753A priority Critical patent/KR20090054856A/en
Publication of KR20090054856A publication Critical patent/KR20090054856A/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/14Layout of tunnels or galleries; Constructional features of tunnels or galleries, not otherwise provided for, e.g. portals, day-light attenuation at tunnel openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Road Paving Structures (AREA)

Abstract

An energy tunnel is provided to utilize the geothermal energy of inside of tunnel, sphere and neighboring effectively. An energy tunnel comprises an energy rock bolt(10) wherein a geothermal heat exchange pipe(1) is installed in a rock bolt borehole, an energy shotcrete(11) in which the geothermics exchange pipe is installed in a shotcrete placing part, an energy outbreak(12) in which the geothermics exchange pipe is installed in an outbreak part, an energy lining(13) in which the geothermics exchange pipe is installed in a lining part, an energy invert(14) in which the geothermics exchange pipe is installed in an invert part, an energy foundation(15) in which the geothermics exchange pipe is installed in a foundation part, and an energy excavated hole(16) in which the geothermics exchange pipe is installed in an excavated hole punched to the specified spot of a tunnel(20) neighboring.

Description

에너지터널{Energy tunnel}Energy tunnel

본 발명은 터널내부 및 터널구체 및 터널주변의 지열에너지를 이용하는 에너지터널에 관한 것이다. The present invention relates to an energy tunnel using geothermal energy in tunnels, tunnel spheres, and tunnels.

일반적으로 지중 또는 지하 -5∼200m에는 약 10∼15℃의 일정한 온도인 지열이 존재한다. 이러한 지열을 이용하면 건물 및 사무실의 냉방 및 난방 또는 도로의 동결방지 등이 가능하다. 현재까지는 지상에서 지하의 심층으로 보링공을 굴착하여 보링공 내에 지열교환파이프를 설치하여 지열을 이용하는 수직형 지열이용시스템이 있다. 그리고 지상에서 지하 천층으로 트렌치를 굴착하여 트렌치 내에 지열교환파이프를 설치하여 지열을 이용하는 수평형 지열이용시스템이 있다. 이는 지상에서 단순히 보링공 또는 트렌치를 굴착하여 지열교환파이프를 설치하여 지열을 이용하는 시스템이다. In general, underground or underground -5 to 200m underground geothermal heat is a constant temperature of about 10-15 ℃. The geothermal heat can be used for cooling and heating buildings and offices or preventing freezing of roads. To date, there has been a vertical geothermal utilization system that uses geothermal energy by drilling boring holes from the ground to the depths of the ground and installing geothermal heat exchange pipes. In addition, there is a horizontal geothermal utilization system that uses geothermal heat by excavating a trench from the ground to an underground ceiling layer and installing geothermal heat exchange pipes in the trench. It is a system that uses geothermal heat by simply drilling a boring ball or trench on the ground and installing a geothermal heat exchange pipe.

일반적으로 터널은 지중 도는 지하 -10∼50m 정도에 설치되게 된다. 따라서 터널 내부 및 구체 및 주변에는 약 10∼15℃의 일정한 온도인 지열이 존재한다. 이러한 지열을 이용하면 건물 및 사무실의 냉방 및 난방 또는 도로의 동결방지 등이 가능하게 된다. 그러나 아직까지는 터널 내부 및 구체 및 주변에 대한 지열을 이용하는 기술이 개발되지 못한 실정이다. In general, the tunnel is to be installed underground -10 to 50m underground. Therefore, there is geothermal heat at a constant temperature of about 10 to 15 ° C. in the tunnel, in the sphere, and around it. By using such geothermal heat it is possible to prevent the cooling and heating of buildings and offices or the freezing of roads. However, the technology that utilizes geothermal heat for the inside of the tunnel and the sphere and surroundings has not been developed yet.

상기와 같은 종래 기술에서의 문제점을 해결하기 위한 본 발명의 목적은, 터널의 내부 및 구체 및 주변을 형성하는 락볼트천공구멍, 숏크리트타설부위, 여굴부위, 라이닝부위, 인버트부위, 기초부위, 굴착공, 터널내부에 지열교환파이프를 설치하여 에너지락볼트, 에너지숏크리트, 에너지여굴, 에너지라이닝, 에너지인버트, 에너지기초, 에너지굴착공, 에너지터널내부를 이루고 이중의 하나 이상으로 구성된 에너지터널을 고안하고자 하는데 있다. An object of the present invention for solving the problems in the prior art as described above, the rock-bolt drilling hole, shotcrete placement site, overhang site, lining site, inverted site, foundation site, excavation to form the interior and sphere and the periphery of the tunnel Geothermal heat exchange pipe is installed inside the ball and tunnel to make energy rock bolt, energy shotcrete, energy excavation, energy lining, energy invert, energy foundation, energy drilling hole, energy tunnel inside, and to construct an energy tunnel consisting of one or more of them It is.

상기된 바와 같은 목적을 달성하기 위한 실시예에 따른 에너지터널은 에너지락볼트, 에너지숏크리트, 에너지여굴, 에너지라이닝, 에너지인버트, 에너지기초, 에너지굴착공, 에너지터널내부의 하나 이상으로 구성되고 이는 터널 내부 및 구체 및 주변의 지열에너지를 이용하는 해결수단을 제공한다. Energy tunnel according to an embodiment for achieving the object as described above is composed of one or more energy rock bolt, energy shotcrete, energy extraction, energy lining, energy invert, energy foundation, energy drilling hole, inside the energy tunnel It provides a solution using geothermal energy inside and around the sphere.

상기한 바와 같이 본 발명은 에너지락볼트, 에너지숏크리트, 에너지여굴, 에너지라이닝, 에너지인버트, 에너지기초, 에너지굴착공, 에너지터널내부에 의하여 에너지터널을 고안하여 터널 내부 및 구체 및 주변의 지열에너지를 효과적으로 이용하는 기술을 제공한다. 또한 지하에 형성된 터널에 지열교환시스템 만을 간단하게 부가 함으로서 현재의 수직형 및 수평형 지열이용시스템보다 경제적이고 효율적인 지열이용시스템을 제공한다. As described above, the present invention devises an energy tunnel by an energy rock bolt, an energy shotcrete, an energy extraction, an energy lining, an energy invert, an energy foundation, an energy drilling hole, and an energy tunnel, and thus, geothermal energy inside and around a tunnel and a sphere. Provide technology to use effectively. In addition, by simply adding a geothermal heat exchange system to a tunnel formed underground, it provides an economical and efficient geothermal heat use system than current vertical and horizontal geothermal heat use systems.

일반적으로 터널은 산악지, 도심지, 평지, 구릉지 등의 지중 및 지하에 건설되는 지하구조물이다. 터널의 종류에는 도로터널, 보도터널, 지하도터널, 지하철터널, 도수터널 등이 있다. 터널에는 터널의 보강을 위하여 락볼트천공구멍 및 숏크리트타설부위가 존재하고, 터널굴착시 터널단면보다 크게 굴착하는 여굴부위가 존재하고, 터널의 구체를 이루는 라이닝부위가 존재하고, 터널의 하부를 이루는 인버트부위가 존재하고, 터널의 기초를 이루는 기초부위가 존재하고, 터널의 내부를 이루는 터널내부가 존재하고, 필요시 터널주변에 굴착공을 설치하게 된다. 본 발명은 이러한 부위 및 구간 및 축조물에 지열교환파이프를 추가 설치하여 터널 내부 및 구체 및 주변의 지열을 이용하는 기술을 제공한다. 본 발명의 상세한 고안사항을 아래에 열거한다. In general, tunnels are underground structures that are built underground and underground, such as mountainous, urban, flat, hilly areas. Tunnel types include road tunnels, sidewalk tunnels, underground tunnels, subway tunnels, and channel tunnels. For reinforcing the tunnel, there are rock bolt drilling holes and shotcrete placing parts for tunnel reinforcement, overhanging part that excavates larger than tunnel section when tunnel excavation exists, lining part that forms the sphere of the tunnel, and forms the lower part of the tunnel. There is an inverted part, there is a foundation part that forms the base of the tunnel, and there is an inside of the tunnel that forms the inside of the tunnel. If necessary, an excavation hole is installed around the tunnel. The present invention provides a technique for using geothermal heat inside and outside the tunnel by installing geothermal heat exchange pipes in these areas, sections and structures. Detailed design of the present invention are listed below.

본 발명은 에너지터널에 관한 것으로 락볼트천공구멍에 지열교환파이프가 설치된 에너지락볼트, 숏크리트타설부위에 지열교환파이프가 설치된 에너지숏크리트, 여굴부위에 지열교환파이프가 설치된 에너지여굴, 라이닝부위에 지열교환파이프가 설치된 에너지라이닝, 인버트부위에 지열교환파이프가 설치된 에너지인버트, 기초부위에 지열교환파이프가 설치된 에너지기초, 터널주변 일정지점까지 천공된 굴착공에 지열교환파이프가 설치된 에너지굴착공, 터널내부에 지열교환파이프가 설치된 에너지터널내부 중의 하나 이상으로 구성되어 터널내부 및 터널구체 및 터널주변의 지열에너지를 이용하는 것을 특징으로 한다.The present invention relates to an energy tunnel, an energy rock bolt having a geothermal heat exchange pipe installed in a rock bolt drilling hole, an energy shotcrete having a geothermal heat exchange pipe installed at a shotcrete site, an energy excavation having a geothermal heat exchange pipe installed at a mine site, and a geothermal heat exchanger at a lining site. Energy lining with pipes installed, energy inverts with geothermal heat exchange pipes installed at the inverted area, energy foundations with geothermal heat exchange pipes installed at the base area, energy drilling holes with geothermal heat exchange pipes installed at the excavated holes drilled to a certain point around the tunnel, inside the tunnel It consists of one or more of the energy tunnel inside the geothermal heat exchange pipe is installed, characterized in that to use the geothermal energy inside the tunnel and the tunnel sphere and the tunnel.

상기 지열교환파이프는 에너지락볼트, 에너지숏크리트, 에너지여굴, 에너지라이닝, 에너지인버트, 에너지기초, 에너지굴착공, 에너지터널내부 중의 하나 이상에 각기 설치되고, 각기 설치된 지열교환파이프의 하나 이상이 서로 연결된 연결구조로 지열이용시스템에 연결되거나 또는 서로 연결되지 않은 독립구조로 지열이용시스템에 연결되거나 또는 연결구조와 독립구조가 조합된 조합구조로 지열이용장치에 연결되어 터널내부 및 터널구체 및 터널주변의 지열에너지를 이용하는 것을 특징으로 한다. The geothermal heat exchange pipes are respectively installed in at least one of an energy rock bolt, an energy shotcrete, an energy mine, an energy lining, an energy invert, an energy foundation, an energy drilling hole, and an inside of an energy tunnel, and one or more of the geothermal heat exchange pipes installed are connected to each other. Connected to the geothermal use system as a connection structure, or connected to the geothermal use system as an independent structure that is not connected to each other, or as a combination structure combining the connection structure and the independent structure, connected to the geothermal use device, It is characterized by using geothermal energy.

상기 지열교환파이프는 직선형, U자형, 더블U자형, 지그재그형, 꼬임형, 나선형, 루프형 중의 하나인 단일형 또는 하나 이상이 조합된 복합형으로 구성되고, 이의 내부에는 열교환용액이 순환되어 흐르고 이의 양단에는 열교환용액이 유입 및 유출되는 유입구 및 유출구가 있는 구조인 것을 특징으로 한다. The geothermal heat exchange pipe is composed of one of linear, U-shaped, double U-shaped, zigzag-shaped, twisted, spiral, loop type, or a combination of one or more of them, and inside the heat exchange solution is circulated and flows therein Both ends are characterized in that the heat exchange solution has a structure inlet and outlet inlet and outlet.

상기 에너지락볼트, 에너지숏크리트, 에너지여굴, 에너지라이닝, 에너지인버트, 에너지기초, 에너지굴착공, 에너지터널내부 중의 하나 이상이 터널내부 및 터널입구 및 터널출구 및 터널주변의 도로, 보도, 벽체, 천정에 대하여 동결융해, 결빙방지, 응결방지, 해빙, 눈녹임, 빙판녹임하는 동결방지지열이용장치 또는 건물 및 사무실에 대하여 냉난방하는 냉난방지열이용장치에 이용되는 것을 특징으로 한다. At least one of the energy lock bolt, energy shotcrete, energy extraction, energy lining, energy invert, energy foundation, energy drilling hole, and energy tunnel inside the tunnel and the tunnel entrance and tunnel exit and the road, sidewalk, wall, ceiling around the tunnel It is characterized in that it is used in the cryopreservation geothermal device for freezing thawing, freezing, condensation prevention, thawing, snow melting, ice melting or cold-heating device for heating and cooling of buildings and offices.

이와 같은 본 발명의 구성을 첨부된 도면에 의거 상세히 설명하면 다음과 같다. Referring to the configuration of the present invention as described above in detail as follows.

도 1은 본 발명의 에너지락볼트(10), 에너지숏크리트(11), 에너지여굴(12), 에너지라이닝(13), 에너지인버트(14), 에너지기초(15), 에너지굴착공(16), 에너지터널내부(17)를 나타낸 단면도이다. 본 도는 락볼트천공구멍(10-1)에 지열교환파이프(1)가 설치된 에너지락볼트(10), 숏크리트타설부위(11-1)에 지열교환파이프(1)가 설치된 에너지숏크리트(11), 여굴부위(12-1)에 지열교환파이프(1)가 설치된 에너지여굴(12), 라이닝부위(13-1)에 지열교환파이프(1)가 설치된 에너지라이닝(13), 인버트부위(14-1)에 지열교환파이프(1)가 설치된 에너지인버트(14), 기초부위(15-1)에 지열교환파이프(1)가 설치된 에너지기초(15), 터널(20)주변 일정지점까지 천공된 굴착공(16-1)에 지열교환파이프(1)가 설치된 에너지굴착공(16), 터널내부(17-1)에 지열교환파이프(1)가 설치된 에너지터널내부(17) 중의 하나 이상으로 구성되어 터널(20)내부 및 터널(20)구체 및 터널(20)주변의 지열에너지를 이용하는 것을 특징으로 하는 에너지터널(20)을 보여준다. 1 is an energy rock bolt 10, an energy shotcrete 11, an energy extraction 12, an energy lining 13, an energy invert 14, an energy foundation 15, an energy drilling hole 16, It is sectional drawing which shows the energy tunnel inside 17. As shown in FIG. This figure shows the energy lock bolt 10 having the geothermal heat exchange pipe 1 installed in the rock bolt drilling hole 10-1, the energy shotcrete 11 having the geothermal heat exchange pipe 1 installed in the shotcrete placing portion 11-1, Energy excavation 12 having geothermal heat exchange pipe 1 installed at the permeation site 12-1, energy lining 13 having geothermal heat exchange pipe 1 installed at the lining site 13-1, and inverted site 14-1. ) Energy invert 14 with geothermal heat exchange pipe 1 installed on the ground, energy foundation 15 with geothermal heat exchange pipe 1 installed on the base 15-1, and drill holes drilled to a predetermined point around the tunnel 20. The tunnel is composed of at least one of an energy excavation hole 16 provided with a geothermal heat exchange pipe 1 at 16-1, and an inner energy tunnel 17 having a geothermal heat exchange pipe 1 installed at a tunnel 17-1. (20) shows an energy tunnel (20) characterized by using geothermal energy around the interior and tunnel (20) and the tunnel (20).

도 2는 본 발명의 에너지락볼트(10), 에너지숏크리트(11), 에너지여굴(12), 에너지라이닝(13), 에너지인버트(14), 에너지기초(15), 에너지굴착공(16), 에너지터널내 부(17)를 나타낸 측면도이다. 본 도는 상기 도 1을 측면에서 바라본 도면을 보여준다. 본 도에서 보는 바와 같이 에너지락볼트(10), 에너지인버트(14), 에너지기초(15), 에너지굴착공(16)에서는 지열교환파이프(1)가 통상 터널(20) 종방향의 단면방향으로 설치가 되고, 에너지숏크리트(11), 에너지여굴(12), 에너지라이닝(13), 에너지터널내부(17)에서는 지열교환파이프(1)가 통상 터널(20) 종방향의 길이방향으로 설치가 되는 것이 유리하다. 2 is an energy rock bolt 10, an energy shotcrete 11, an energy extraction 12, an energy lining 13, an energy invert 14, an energy foundation 15, an energy drilling hole 16, It is a side view which shows the inside part 17 of an energy tunnel. FIG. 1 shows a view from above of FIG. 1. As shown in the figure, in the energy lock bolt 10, the energy invert 14, the energy foundation 15, and the energy drilling hole 16, the geothermal heat exchange pipe 1 is generally in the cross-sectional direction of the longitudinal direction of the tunnel 20. In the energy shotcrete 11, the energy excavation 12, the energy lining 13, and the energy tunnel inside 17, the geothermal heat exchange pipe 1 is usually installed in the longitudinal direction of the tunnel 20 in the longitudinal direction. It is advantageous.

도 3은 본 발명의 락볼트천공구멍(10-1), 굴착공(16-1)에 지열교환파이프(1)가 설치되어 형성된 에너지락볼트(10), 에너지굴착공(16)를 나타낸 단면도이다. 본 도는 지열교환파이프(1)가 락볼트천공구멍(10-1), 굴착공(16-1)에 설치되어 에너지락볼트(10), 에너지굴착공(16)을 형성하는 것을 보여준다. 3 is a cross-sectional view showing an energy rock bolt 10 and an energy drilling hole 16 in which the geothermal heat exchange pipe 1 is installed in the rock bolt drilling hole 10-1 and the excavation hole 16-1 of the present invention. to be. This figure shows that the geothermal heat exchange pipe 1 is installed in the rock bolt drilling hole 10-1 and the excavation hole 16-1 to form the energy rock bolt 10 and the energy excavation hole 16.

도 4는 본 발명의 숏크리트타설부위(11-1)에 지열교환파이프(1)가 설치되어 형성된 에너지숏크리트(11)를 나타낸 단면도이다. 본 도는 지열교환파이프(1)가 숏크리트타설부위(11-1)에 설치되어 에너지숏크리트(11)를 형성하는 것을 보여준다. 4 is a cross-sectional view showing the energy shotcrete 11 formed by installing the geothermal heat exchange pipe 1 in the shotcrete placing portion 11-1 of the present invention. This figure shows that the geothermal heat exchange pipe 1 is installed at the shotcrete placing portion 11-1 to form the energy shotcrete 11.

도 5는 본 발명의 여굴부위(12-1)에 지열교환파이프(1)가 설치되어 형성된 에너지여굴(12)를 나타낸 단면도이다. 본 도는 지열교환파이프(1)가 여굴부위(12-1)에 설치되어 에너지여굴(12)을 형성하는 것을 보여준다. 5 is a cross-sectional view showing an energy extraction 12 formed by installing the geothermal heat exchange pipe 1 in the extraction portion 12-1 of the present invention. This figure shows that the geothermal heat exchange pipe 1 is installed at the excavation site 12-1 to form an energy excavation 12.

도 6은 본 발명의 라이닝부위(13-1)에 지열교환파이프(1)가 설치되어 형성된 에너지라이닝(13)을 나타낸 단면도이다. 본 도는 지열교환파이프(1)가 라이닝부위(13-1)에 설치되어 에너지라이닝(13)을 형성하는 것을 보여준다. 6 is a cross-sectional view showing the energy lining 13 formed by installing the geothermal heat exchange pipe 1 in the lining portion 13-1 of the present invention. This figure shows that the geothermal heat exchange pipe 1 is installed at the lining portion 13-1 to form the energy lining 13.

도 7은 본 발명의 인버트부위(14-1)에 지열교환파이프(1)가 설치되어 형성된 에너지인버트(14)를 나타낸 단면도이다. 본 도는 지열교환파이프(1)가 인버트부위(14-1)에 설치되어 에너지인버트(14)를 형성하는 것을 보여준다. 7 is a cross-sectional view showing an energy invert 14 formed by installing the geothermal heat exchange pipe 1 in the inverted portion 14-1 of the present invention. This figure shows that the geothermal heat exchange pipe 1 is installed at the invert portion 14-1 to form the energy invert 14.

도 8은 본 발명의 기초부위(15-1)가 설치되어 형성된 에너지기초(15)를 나타낸 단면도이다. 본 도는 지열교환파이프(1)가 기초부위(15-1)에 설치되어 에너지기초(15)를 형성하는 것을 보여준다. 8 is a cross-sectional view showing the energy foundation 15 formed by installing the basic portion 15-1 of the present invention. This figure shows that the geothermal heat exchange pipe 1 is installed at the foundation 15-1 to form the energy foundation 15.

도 9는 본 발명의 터널내부(17-1)에 지열교환파이프(1)가 설치되어 형성된 에너지터널내부(17)를 나타낸 단면도이다. 본 도는 지열교환파이프(1)가 터널내부(17-1)에 설치되어 에너지터널내부(17)를 형성하는 것을 보여준다. FIG. 9 is a cross-sectional view showing an energy tunnel inside 17 formed by installing the geothermal heat exchange pipe 1 in the inside 17-1 of the tunnel of the present invention. This figure shows that the geothermal heat exchange pipe 1 is installed inside the tunnel 17-1 to form the energy tunnel interior 17.

도 10은 본 발명의 직선형(1-3), U자형(1-4), 더블U자형(1-5), 지그재그형(1-6)의 단일형(1-1) 지열교환파이프(1)를 나타낸 단면도이다. 본 도는 지열교환파이프(1)가 직선형(1-3), U자형(1-4), 더블U자형(1-5), 지그재그형(1-6)의 단일형(1-1)인 것을 보여준다. 지열교환파이프(1)의 내부에는 열교환용액(4)이 순환되어 흐르고 이의 양단에는 열교환용액(4)이 유입 및 유출되는 유입구(1-10) 및 유출구(1-11)가 있는 구조를 가진다. Fig. 10 is a single type (1-1) geothermal heat exchange pipe (1) of the straight type (1-3), U shape (1-4), double U shape (1-5), and zigzag shape (1-6) of the present invention. It is sectional drawing which shows. This figure shows that the geothermal heat exchange pipe 1 is a single type (1-1) of straight type (1-3), U shape (1-4), double U shape (1-5), and zigzag shape (1-6). . The heat exchange solution 4 is circulated inside the geothermal heat exchange pipe 1, and both ends thereof have inlets 1-10 and outlets 1-11 through which the heat exchange solution 4 flows in and out.

도 11은 본 발명의 꼬임형(1-7), 나선형(1-8), 루프형(1-9)의 단일형(1-1) 지열교환파이프(1)를 나타낸 단면도이다. 본 도는 지열교환파이프(1)가 꼬임형(1-7), 나선형(1-8), 루프형(1-9)인 것을 보여준다. 지열교환파이프(1)의 내부에는 열교환용액(4)이 순환되어 흐르고 이의 양단에는 열교환용액(4)이 유입 및 유출되는 유입구(1-10) 및 유출구(1-11)가 있는 구조를 가진다.Fig. 11 is a cross-sectional view showing the twisted (1-7), helical (1-8) and looped (1-9) unitary (1-1) geothermal heat exchange pipes 1 of the present invention. This figure shows that the geothermal heat exchange pipe 1 is twisted (1-7), spiral (1-8), looped (1-9). The heat exchange solution 4 is circulated inside the geothermal heat exchange pipe 1, and both ends thereof have inlets 1-10 and outlets 1-11 through which the heat exchange solution 4 flows in and out.

도 12는 본 발명의 직선형(1-3), U자형(1-4), 더블U자형(1-5), 지그재그형(1-6), 꼬임형(1-7), 나선형(1-8), 루프형(1-9) 중의 하나 이상이 조합된 복합형(1-2) 지열교환파이프(1)의 일부를 나타낸 단면도이다. 본 도는 이중에서 대표적으로 직선형(1-3)과 꼬임형(1-7)의 복합형(1-2) 지열교환파이프(1) 및 U자형(1-4)과 나선형(1-8)의 복합형(1-2) 지열교환파이프(1)를 보여준다. 12 is a straight (1-3), U-shaped (1-4), double U-shaped (1-5), zigzag (1-6), twisted (1-7), spiral (1--1) of the present invention. 8) A cross-sectional view showing a part of the composite (1-2) geothermal heat exchange pipe (1) in which at least one of the loop types (1-9) is combined. This figure is representative of the straight (1-3) and twisted (1-7) composite (1-2) geothermal heat exchange pipes (1) and U-shaped (1-4) and spiral (1-8) The composite (1-2) geothermal heat exchange pipe (1) is shown.

도 13은 본 발명의 지열이용장치(2)인 동결방지지열이용장치(2-1) 및 냉난방지열이용장치(2-2)의 사시도이다. 본 도는 에너지락볼트(10), 에너지숏크리트(11), 에너지여굴(12), 에너지라이닝(13), 에너지인버트(14), 에너지기초(15), 에너지굴착공(16), 에너지터널내부(17) 중의 하나 이상이 터널(20)내부 및 터널(20)입구 및 터널(20)출구 및 터널(20)주변의 도로, 보도, 벽체, 천정에 대하여 동결융해, 결빙 방지, 응결방지, 해빙, 눈녹임, 빙판녹임하는 동결방지지열이용장치(2-1) 또는 건물 및 사무실(32)에 대하여 냉난방하는 냉난방지열이용장치(2-2)에 이용되는 것을 보여준다. 터널(20)을 에워싸고 있는 지열교환파이프(1)에는 열교환용액(4)이 순환되고 열교환용액(4)의 순환에 의하여 동결방지지열이용장치(2-1) 및 냉난방지열이용장치(2-2)의 지열이용장치(2)에 지열을 공급하게 된다. Fig. 13 is a perspective view of a cryoprevention geothermal apparatus 2-1 and a cold / heat protection apparatus 2-2, which are the geothermal apparatus 2 of the present invention. This figure shows the energy lock bolt 10, energy shotcrete 11, energy excavation 12, energy lining 13, energy invert 14, energy foundation 15, energy drilling hole 16, the inside of the energy tunnel ( 17) one or more freeze-thawing, freezing, preventing condensation, thawing, on the inside of the tunnel 20, the inlet of the tunnel 20, the exit of the tunnel 20, and the roads, sidewalks, walls, and ceilings around the tunnel 20; It is shown that it is used in the cryopreventive geothermal apparatus 2-1 for melting snow and ice, or the anti-heating and anti-heat apparatus 2-2 for heating and cooling the building and the office 32. The heat exchange solution (4) is circulated in the geothermal heat exchange pipe (1) surrounding the tunnel (20), and the freeze-prevention geothermal use device (2-1) and cold / heat prevention heat use device (2- Geothermal heat is supplied to the geothermal device 2 of 2).

도 14는 본 발명의 지열이용장치(2)인 동결방지지열이용장치(2-1) 및 냉난방지열이용장치(2-2)의 상세 사시도이다. 본 도에서와 같이 지열교환파이프(1)는 일정한 구경을 가진 파이프로서 이의 내부에는 열교환용액(4)이 순환되어 동결방지지열이용장치(2-1) 및 냉난방지열이용장치(2-2)의 지열이용장치(2)에 지열이 공급되게 된다. Fig. 14 is a detailed perspective view of the cryoprevention geothermal apparatus 2-1 and the cold / heat protection apparatus 2-2, which are the geothermal apparatus 2 of the present invention. As shown in the figure, the geothermal heat exchange pipe 1 is a pipe having a constant diameter, and the heat exchange solution 4 is circulated therein so as to prevent the freezing prevention geothermal use device 2-1 and the cold / heat prevention heat use device 2-2. Geothermal heat is supplied to the geothermal device (2).

도 15는 본 발명의 지열교환파이프(1) 연결구조(3-1)를 나타낸 단면도이다. 본 발명의 지열교환파이프(1)는 에너지락볼트(10), 에너지숏크리트(11), 에너지여(12), 에너지라이닝(13), 에너지인버트(14), 에너지기초(15), 에너지굴착공(16), 에너지터널내부(17) 중의 하나 이상에 각기 설치되고, 각기 설치된 지열교환파이프(1)의 하나 이상이 서로 연결된 연결구조(3-1)로 지열이용시스템(2)에 연결되거나 또는 서로 연결되지 않은 독립구조(3-2)로 지열이용시스템(2)에 연결되거나 또는 연결구조(3-1)와 독립구조(3-2)가 조합된 조합구조로 지열이용장치(2)에 연결되어 터널(20)내부 및 터널(20)구체 및 터널(20)주변의 지열에너지를 이용하는 것을 특징 으로 한다. 본 도는 이중에서 각기 설치된 지열교환파이프(1)의 하나 이상이 서로 연결된 연결구조(3-1)를 보여준다. 15 is a cross-sectional view showing the geothermal heat exchange pipe (1) connection structure (3-1) of the present invention. The geothermal heat exchange pipe (1) of the present invention is an energy rock bolt (10), energy shotcrete (11), energy filter (12), energy lining (13), energy invert (14), energy foundation (15), energy drilling hole (16), each of which is installed in at least one of the internal energy tunnels 17, and at least one of the installed geothermal exchange pipes 1 is connected to the geothermal utilization system 2 by a connection structure 3-1 connected to each other; It is connected to the geothermal utilization system 2 as independent structures (3-2) that are not connected to each other, or as a combination structure in which the coupling structure (3-1) and the independent structure (3-2) are combined. It is connected to the inside of the tunnel 20 and the tunnel 20, characterized in that using the geothermal energy around the tunnel 20. This figure shows a connection structure 3-1 in which one or more of the geothermal heat exchange pipes 1 respectively installed in a double are connected to each other.

도 16은 본 발명의 지열교환파이프(1) 독립구조(3-2)를 나타낸 단면도이다. 본 도는 지열교환파이프(1)가 에너지락볼트(10), 에너지숏크리트(11), 에너지여굴(12), 에너지라이닝(13), 에너지인버트(14), 에너지기초(15), 에너지굴착공(16), 에너지터널내부(17) 중의 하나 이상에 각기 설치되고, 각기 설치된 지열교환파이프(1)가 서로 연결되지 않은 독립구조(3-2)로 지열이용시스템(2)에 연결되어 터널(20)내부 및 터널(20)구체 및 터널(20)주변의 지열에너지가 이용되는 것을 보여준다. 16 is a cross-sectional view showing the geothermal heat exchange pipe 1 independent structure 3-2 of the present invention. The geothermal heat exchange pipe (1) is an energy rock bolt (10), energy shotcrete (11), energy extraction (12), energy lining (13), energy invert (14), energy foundation (15), energy drilling hole ( 16, each of which is installed in at least one of the energy tunnel interior 17, the geothermal exchange pipe (1) installed in each of them is connected to the geothermal utilization system (2) in an independent structure (3-2) is not connected to each other tunnel 20 It shows that the geothermal energy around the sphere and tunnel 20 inside and tunnel 20 is used.

도 1은 본 발명의 에너지락볼트(10), 에너지숏크리트(11), 에너지여굴(12), 에너지라이닝(13), 에너지인버트(14), 에너지기초(15), 에너지굴착공(16), 에너지터널내부(17)를 나타낸 단면도1 is an energy rock bolt 10, an energy shotcrete 11, an energy extraction 12, an energy lining 13, an energy invert 14, an energy foundation 15, an energy drilling hole 16, Sectional view of the energy tunnel interior 17

도 2는 본 발명의 에너지락볼트(10), 에너지숏크리트(11), 에너지여굴(12), 에너지라이닝(13), 에너지인버트(14), 에너지기초(15), 에너지굴착공(16), 에너지터널내부(17)를 나타낸 측면도2 is an energy rock bolt 10, an energy shotcrete 11, an energy extraction 12, an energy lining 13, an energy invert 14, an energy foundation 15, an energy drilling hole 16, Side view showing the inside of the energy tunnel 17

도 3은 본 발명의 락볼트천공구멍(10-1), 굴착공(16-1)에 지열교환파이프(1)가 설치되어 형성된 에너지락볼트(10), 에너지굴착공(16)를 나타낸 단면도3 is a cross-sectional view showing an energy rock bolt 10 and an energy drilling hole 16 in which the geothermal heat exchange pipe 1 is installed in the rock bolt drilling hole 10-1 and the excavation hole 16-1 of the present invention.

도 4는 본 발명의 숏크리트타설부위(11-1)에 지열교환파이프(1)가 설치되어 형성된 에너지숏크리트(11)를 나타낸 단면도4 is a cross-sectional view showing the energy shotcrete 11 formed by installing the geothermal heat exchange pipe 1 in the shotcrete placing portion 11-1 of the present invention.

도 5는 본 발명의 여굴부위(12-1)에 지열교환파이프(1)가 설치되어 형성된 에너지여굴(12)를 나타낸 단면도5 is a cross-sectional view showing an energy extraction 12 formed by installing the geothermal heat exchange pipe 1 at the extraction portion 12-1 of the present invention.

도 6은 본 발명의 라이닝부위(13-1)에 지열교환파이프(1)가 설치되어 형성된 에너지라이닝(13)을 나타낸 단면도6 is a cross-sectional view showing the energy lining 13 formed by installing the geothermal heat exchange pipe 1 in the lining portion 13-1 of the present invention.

도 7은 본 발명의 인버트부위(14-1)에 지열교환파이프(1)가 설치되어 형성된 에너지인버트(14)를 나타낸 단면도7 is a cross-sectional view showing an energy invert 14 formed by installing the geothermal heat exchange pipe 1 in the inverted portion 14-1 of the present invention.

도 8은 본 발명의 기초부위(15-1)가 설치되어 형성된 에너지기초(15)를 나타낸 단면도8 is a cross-sectional view showing the energy foundation 15 formed by installing the basic portion 15-1 of the present invention.

도 9는 본 발명의 터널내부(17-1)에 지열교환파이프(1)가 설치되어 형성된 에너지터널내부(17)를 나타낸 단면도9 is a cross-sectional view showing an energy tunnel inside 17 formed by installing the geothermal heat exchange pipe 1 in the inside 17-1 of the tunnel of the present invention.

도 10은 본 발명의 직선형(1-3), U자형(1-4), 더블U자형(1-5), 지그재그형(1-6)의 단일형(1-1) 지열교환파이프(1)를 나타낸 단면도Fig. 10 is a single type (1-1) geothermal heat exchange pipe (1) of the straight type (1-3), U shape (1-4), double U shape (1-5), and zigzag shape (1-6) of the present invention. Sectional drawing

도 11은 본 발명의 꼬임형(1-7), 나선형(1-8), 루프형(1-9)의 단일형(1-1) 지열교환파이프(1)를 나타낸 단면도11 is a cross-sectional view showing the twisted (1-7), helical (1-8) and looped (1-9) unitary (1-1) geothermal heat exchange pipes 1 of the present invention.

도 12는 본 발명의 직선형(1-3), U자형(1-4), 더블U자형(1-5), 지그재그형(1-6), 꼬임형(1-7), 나선형(1-8), 루프형(1-9) 중의 하나 이상이 조합된 복합형(1-2) 지열교환파이프(1)의 일부를 나타낸 단면도12 is a straight (1-3), U-shaped (1-4), double U-shaped (1-5), zigzag (1-6), twisted (1-7), spiral (1--1) of the present invention. 8) A cross-sectional view showing a part of the composite type (1-2) geothermal heat exchange pipe (1) in which at least one of the loop type (1-9) is combined.

도 13은 본 발명의 지열이용장치(2)인 동결방지지열이용장치(2-1) 및 냉난방지열이용장치(2-2)의 사시도Figure 13 is a perspective view of a cryoprevention geothermal apparatus 2-1 and a cold and heat prevention apparatus 2-2, which is a geothermal apparatus 2 of the present invention.

도 14는 본 발명의 지열이용장치(2)인 동결방지지열이용장치(2-1) 및 냉난방지열이용장치(2-2)의 상세 사시도14 is a detailed perspective view of the cryoprevention geothermal apparatus 2-1 and the cold and heat prevention apparatus 2-2 which are the geothermal apparatus 2 of the present invention.

도 15는 본 발명의 지열교환파이프(1) 연결구조(3-1)를 나타낸 단면도15 is a cross-sectional view showing the geothermal heat exchange pipe (1) connection structure (3-1) of the present invention.

도 16은 본 발명의 지열교환파이프(1) 독립구조(3-2)를 나타낸 단면도16 is a cross-sectional view showing the geothermal heat exchange pipe 1 independent structure 3-2 of the present invention.

<도면의 주요부분에 대한 부호 설명><Description of Signs of Major Parts of Drawings>

1 : 지열교환파이프 1-1 : 단일형1: Geothermal exchange pipe 1-1: Single type

1-2 : 복합형 1-3 : 직선형1-2: Compound 1-3: Straight

1-4 : U자형 1-5 : 더블U자형1-4: U shape 1-5: Double U shape

1-6 : 지그재그형 1-7 : 꼬임형1-6: Zigzag Type 1-7: Twisted Type

1-8 : 나선형 1-9 : 루프형1-8: Spiral 1-9: Loop Type

1-10 : 유입구 1-11 : 유출구1-10: Inlet 1-11: Outlet

2 : 지열이용시스템 2-1 : 동결방지지열이용시스템2: geothermal utilization system 2-1: freeze prevention geothermal utilization system

2-2 : 냉난방지열이용시스템 3-1 : 연결구조2-2: Heat protection system for cold and cold prevention 3-1: Connection structure

3-2 : 독립구조 4 : 열교환용액3-2: independent structure 4: heat exchange solution

10 : 에너지락볼트 10-1 : 락볼트천공구멍10: energy lock bolt 10-1: rock bolt drilling hole

11 : 에너지숏크리트 11-1 : 숏크리트타설부위11: Energy shotcrete 11-1: Shotcrete casting site

12 : 에너지여굴 12-1 : 여굴부위12: energy mine 12-1: mine area

13 : 에너지라이닝 13-1 : 라이닝부위13 energy lining 13-1 lining part

14 : 에너지인버트 14-1 : 인버트부위14: energy invert 14-1: invert part

15 : 에너지기초 15-1 : 기초부위15: Energy foundation 15-1: Foundation

16 : 에너지굴착공 16-1 : 굴착공16: energy drilling hole 16-1: drilling hole

20 : 터널 30 : 지반 20 tunnel 30 ground

31 : 차량 32 : 건물 및 사무실31: Vehicle 32: Buildings and Offices

33 : 도로33: the road

Claims (4)

락볼트천공구멍(10-1)에 지열교환파이프(1)가 설치된 에너지락볼트(10), 숏크리트타설부위(11-1)에 지열교환파이프(1)가 설치된 에너지숏크리트(11), 여굴부위(12-1)에 지열교환파이프(1)가 설치된 에너지여굴(12), 라이닝부위(13-1)에 지열교환파이프(1)가 설치된 에너지라이닝(13), 인버트부위(14-1)에 지열교환파이프(1)가 설치된 에너지인버트(14), 기초부위(15-1)에 지열교환파이프(1)가 설치된 에너지기초(15), 터널주변 일정지점까지 천공된 굴착공(16-1)에 지열교환파이프(1)가 설치된 에너지굴착공(16), 터널내부(17-1)에 지열교환파이프(1)가 설치된 에너지터널내부(17) 중의 하나 이상으로 구성되어 터널내부 및 터널구체 및 터널주변의 지열에 너지를 이용하는 것을 특징으로 하는 에너지터널Energy lock bolt (10) having geothermal heat exchange pipe (1) installed in the rock bolt drilling hole (10-1), energy shotcrete (11) having geothermal heat exchange pipe (1) installed in the shotcrete placing portion (11-1), and excavation site (12-1) to the energy excavation (12) provided with the geothermal heat exchange pipe (1), the energy lining (13) provided with the geothermal heat exchange pipe (1) to the lining area (13-1), and the inverted area (14-1). Energy invert 14 with geothermal heat exchange pipe 1 installed, energy foundation 15 with geothermal heat exchange pipe 1 installed at foundation 15-1, and excavation hole 16-1 drilled to a predetermined point around the tunnel. At least one of an energy drilling hole 16 in which the geothermal heat exchange pipe 1 is installed, and an inner energy tunnel 17 in which the geothermal heat exchange pipe 1 is installed in the tunnel 17-1. Energy tunnel characterized by using the energy of geothermal energy around the tunnel 제 1 항에 있어서, The method of claim 1, 상기 지열교환파이프(1)는 에너지락볼트(10), 에너지숏크리트(11), 에너지여굴(12), 에너지라이닝(13), 에너지인버트(14), 에너지기초(15), 에너지굴착공(16), 에너지터널내부(17) 중의 하나 이상에 각기 설치되고, 각기 설치된 지열교환파이프(1)의 하나 이상이 서로 연결된 연결구조(3-1)로 지열이용시스템(2)에 연결되거나 또는 서로 연결되지 않은 독립구조(3-2)로 지열이용시스템(2)에 연결되거나 또는 연결구조(3-1)와 독립구조(3-2)가 조합된 조합구조로 지열이용장치(2)에 연결되어 터널내부 및 터널구체 및 터널주변의 지열에너지를 이용하는 것을 특징으로 하는 에너지터널The geothermal heat exchange pipe 1 is an energy rock bolt 10, an energy shotcrete 11, an energy extraction 12, an energy lining 13, an energy invert 14, an energy foundation 15, an energy drilling hole 16 ), Each of which is installed in at least one of the internal energy tunnels 17, and at least one of the installed geothermal heat exchange pipes 1 is connected to the geothermal utilization system 2 or connected to each other by a connection structure 3-1 connected to each other. Unconnected structure (3-2) to the geothermal utilization system (2) or a combination structure of the coupling structure (3-1) and independent structure (3-2) is connected to the geothermal utilization device (2) Energy tunnel, characterized by using the geothermal energy inside the tunnel, the tunnel sphere and the tunnel 제 1 항 및 제 2 항에 있어서, The method according to claim 1 and 2, 상기 지열교환파이프(1)는 직선형(1-3), U자형(1-4), 더블U자형(1-5), 지그재그형(1-6), 꼬임형(1-7), 나선형(1-8), 루프형(1-9) 중의 하나인 단일형(1-1) 또는 하나 이상이 조합된 복합형(1-2)으로 구성되고, 이의 내부에는 열교환용액(4)이 순환되어 흐르고 이의 양단에는 열교환용액(4)이 유입 및 유출되는 유입구(1-10) 및 유출구(1-11)가 있는 구조인 것을 특징으로 하는 에너지터널 The geothermal heat exchange pipe (1) is straight (1-3), U-shaped (1-4), double U-shaped (1-5), zigzag (1-6), twisted (1-7), spiral ( 1-8), a single type (1-1), which is one of the loop types (1-9), or a combination type (1-2) in which one or more are combined, and inside the heat exchange solution 4 is circulated and flows therein, Both ends thereof have an energy tunnel characterized in that there is a structure having an inlet (1-10) and an outlet (1-11) through which the heat exchange solution (4) flows in and out. 제 1 항, 제 2 항 및 제 3항에 있어서, The method according to claim 1, 2 and 3, 상기 에너지락볼트(10), 에너지숏크리트(11), 에너지여굴(12), 에너지라이닝(13), 에너지인버트(14), 에너지기초(15), 에너지굴착공(16), 에너지터널내부(17) 중의 하나 이상이 터널내부 및 터널입구 및 터널출구 및 터널주변의 도로, 보도, 벽체, 천정에 대하여 동결융해, 결빙방지, 응결방지, 해빙, 눈녹임, 빙판녹임하는 동결방지지열이용장치(2-1) 또는 건물 및 사무실(32)에 대하여 냉난방하는 냉난방지열이용장치(2-2)에 이용되는 것을 특징으로 하는 에너지터널 The energy lock bolt 10, energy shotcrete 11, energy extraction 12, energy lining 13, energy invert 14, energy foundation 15, energy drilling holes 16, energy tunnel inside 17 Freeze-thawing geothermal apparatus for freezing-thawing, freezing, preventing condensation, thawing, snow melting, and ice melting on at least one of the tunnel interiors, tunnel entrances, tunnel exits, and roads, walkways, walls, and ceilings (2) -1) or energy tunnel, characterized in that it is used in the heat-resistant heating and cooling device (2-2) for heating and cooling the building and office (32)
KR1020070121753A 2007-11-27 2007-11-27 Energy tunnel KR20090054856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070121753A KR20090054856A (en) 2007-11-27 2007-11-27 Energy tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070121753A KR20090054856A (en) 2007-11-27 2007-11-27 Energy tunnel

Publications (1)

Publication Number Publication Date
KR20090054856A true KR20090054856A (en) 2009-06-01

Family

ID=40986726

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070121753A KR20090054856A (en) 2007-11-27 2007-11-27 Energy tunnel

Country Status (1)

Country Link
KR (1) KR20090054856A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065191B1 (en) * 2009-07-07 2011-09-19 고려대학교 산학협력단 Energy tunnel and construction method therefor
CN106194020A (en) * 2016-08-29 2016-12-07 中国铁建电气化局集团第五工程有限公司 A kind of subway tunnel hangs automatic punching station car
CN106246103A (en) * 2016-08-29 2016-12-21 中国铁建电气化局集团第五工程有限公司 A kind of control system and control method hanging punching chassis for subway tunnel
JP2017075487A (en) * 2015-10-14 2017-04-20 株式会社大林組 Burial structure and method for cable piping in tunnel lining concrete
CN109372562A (en) * 2018-12-17 2019-02-22 中铁西南科学研究院有限公司 It is a kind of for handling the anchor pole and its construction method of tunnel surrounding season frost heave
CN111425257A (en) * 2020-04-16 2020-07-17 航仟源科技(杭州)有限公司 Energy-saving exploration device based on tunnel level
KR20210040821A (en) * 2018-08-12 2021-04-14 이버 테크놀로지스 인크. Thermal profile control and energy recovery method in geothermal wells
CN114382548A (en) * 2022-03-25 2022-04-22 山东硅步机器人技术有限公司 Intelligent control system for underground chamber
US11639830B2 (en) 2019-04-10 2023-05-02 Ecole Polytechnique Federale De Lausanne (Epfl) Heat exchanger module and methods of using thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065191B1 (en) * 2009-07-07 2011-09-19 고려대학교 산학협력단 Energy tunnel and construction method therefor
JP2017075487A (en) * 2015-10-14 2017-04-20 株式会社大林組 Burial structure and method for cable piping in tunnel lining concrete
CN106194020A (en) * 2016-08-29 2016-12-07 中国铁建电气化局集团第五工程有限公司 A kind of subway tunnel hangs automatic punching station car
CN106246103A (en) * 2016-08-29 2016-12-21 中国铁建电气化局集团第五工程有限公司 A kind of control system and control method hanging punching chassis for subway tunnel
CN106246103B (en) * 2016-08-29 2018-08-17 中国铁建电气化局集团第五工程有限公司 A kind of control system and control method for subway tunnel suspension punching trolley
KR20210040821A (en) * 2018-08-12 2021-04-14 이버 테크놀로지스 인크. Thermal profile control and energy recovery method in geothermal wells
CN109372562A (en) * 2018-12-17 2019-02-22 中铁西南科学研究院有限公司 It is a kind of for handling the anchor pole and its construction method of tunnel surrounding season frost heave
US11639830B2 (en) 2019-04-10 2023-05-02 Ecole Polytechnique Federale De Lausanne (Epfl) Heat exchanger module and methods of using thereof
CN111425257A (en) * 2020-04-16 2020-07-17 航仟源科技(杭州)有限公司 Energy-saving exploration device based on tunnel level
CN114382548A (en) * 2022-03-25 2022-04-22 山东硅步机器人技术有限公司 Intelligent control system for underground chamber
CN114382548B (en) * 2022-03-25 2022-06-10 山东硅步机器人技术有限公司 Intelligent control system for underground chamber

Similar Documents

Publication Publication Date Title
KR20090054856A (en) Energy tunnel
JP4535981B2 (en) Tunnel heat exchange panel and tunnel heat utilization heat exchange system
JP5063669B2 (en) Tunnel construction method and its heat exchange path fixture.
JP5384058B2 (en) Geothermal heat exchanger for geothermal heat pump system
CN107524459B (en) Freezing water stop structure and method for vertical shaft and transverse passage of subway underground excavation station
US20070151704A1 (en) Geothermal heat exchange system
KR20070072417A (en) Panel module for tunnel lining and method of tunnel lining using the same
KR101088440B1 (en) Earth heat exchange pipe, earth heat exchange system and manufacturing method of the same
JP5688244B2 (en) Construction method for underground structures
JP2005069538A (en) Buried pipe for heat exchange
KR101328067B1 (en) Freeze preventation apparatus and constructing method of outside road surface of tunnel
CN206174966U (en) Diversion tunnel&#39;s freeze proof bloated structure of heat preservation
JP2007017138A (en) Method of forming heat exchange well, and underground thermal system
CN106013166A (en) Construction method adopting spoke-type freezing and outwards expanded excavation for excavating ultra-deep foundation pit
KR102623215B1 (en) Construction method of geothermal energy system using overlapping columnar pile wall including energy pile
KR101162958B1 (en) Energy bolt apparatus for using geothermal energy and for ground reinforcement and the method using the same
KR20120134659A (en) Combined type geothermal system and construction method using large aperture punchung
CN111648773A (en) Construction method of connection channel communicated with existing underground structure of central urban area
KR20020056430A (en) An air conditioning system using the heat of the earth and method of constructing a large heat-exchanging pipe
CN114109393B (en) Underground tunnel underground excavation construction method combining beam-combination pipe curtain and pipe-jacking freezing
JP2812650B2 (en) Road surface heating panel and conduit construction method
KR102114105B1 (en) Segment tunnel of solar heat exchange system
KR20080092726A (en) Geothermal heat exchanger and construction method for the same
KR20100085416A (en) Earth heat exchange system for tunnel
RU2792466C1 (en) Independent cooling unit

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
E801 Decision on dismissal of amendment
J801 Dismissal of trial

Free format text: REJECTION OF TRIAL FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20090730

Effective date: 20091124