KR20090048082A - A production method of porous silica - Google Patents

A production method of porous silica Download PDF

Info

Publication number
KR20090048082A
KR20090048082A KR1020070114289A KR20070114289A KR20090048082A KR 20090048082 A KR20090048082 A KR 20090048082A KR 1020070114289 A KR1020070114289 A KR 1020070114289A KR 20070114289 A KR20070114289 A KR 20070114289A KR 20090048082 A KR20090048082 A KR 20090048082A
Authority
KR
South Korea
Prior art keywords
silicon
silica
solution
heating
mixed
Prior art date
Application number
KR1020070114289A
Other languages
Korean (ko)
Other versions
KR100921185B1 (en
Inventor
장현태
고용식
박윤국
이지윤
이옥규
안나영
김송이
이미혜
김현정
Original Assignee
학교법인 함주학원
장현태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 함주학원, 장현태 filed Critical 학교법인 함주학원
Priority to KR1020070114289A priority Critical patent/KR100921185B1/en
Publication of KR20090048082A publication Critical patent/KR20090048082A/en
Application granted granted Critical
Publication of KR100921185B1 publication Critical patent/KR100921185B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 규소를 포함하고 있는 폐기물 또는 천연물을 이용하여 표면적이 크고 규칙적인 기공 배열을 갖는 다공성 실리카 제조방법에 관한 것으로, 더욱 상세하게는 규소를 함유하는 물질과 수산화나트륨 및 물을 혼합한 혼합용액에서 규소를 용출하는 단계와, 상기 단계를 거친 혼합용액에 CTABr을 첨가하여 가열하는 단계와, 가열단계를 거친 혼합용액의 수소이온의 농도를 조절하는 단계와, 교반 수열 합성하는 단계, 세척 여과하는 단계 및 소성 단계를 거쳐 이루어져, 높은 기공률을 가지며, 의약품의 약물 저장체, 화장품의 원료 및 유효성분 저장체로 사용될 수 있으며, 고성능 촉매의 담지체 및 흡착제의 담지체로 사용될 수 있고, 타 메조포러스 실리카의 제조공정보다 공정이 단순하고 제조기간이 단축되어 가격이 저렴하나 기존의 당 업계에서 생산되는 실리카와 비교하여 성능면에서 없으며, 규소원으로는 쌀겨의 회분 석탄회재 등에 함유된 규소를 이용함으로써 자원의 활용면에서 우수한 가치를 지니며, 규소가 함유된 폐기물 중 규소의 제거를 통한 폐기물의 재활용율을 높이고, 기존의 메조포러스 실리카의 제조공정보다 높은 효율과 경제성으로 생산되므로 저렴하고 우수한 실리카를 각 산업의 원료로 제공할 수 있는 실리카 제조방법에 관한 것이다.The present invention relates to a method for producing a porous silica having a large surface area and a regular pore array using waste or natural products containing silicon, and more particularly, a mixed solution in which a silicon-containing material is mixed with sodium hydroxide and water. Eluting silicon at step, adding CTABr to the mixed solution, followed by heating, adjusting the concentration of hydrogen ions in the mixed solution, heating, synthesizing agitated hydrothermally, washing and filtering It has a high porosity, can be used as a drug reservoir of medicines, a raw material of cosmetics and an active ingredient reservoir, and can be used as a carrier of high performance catalyst and an adsorbent, and of other mesoporous silica Although the process is simpler than the manufacturing process and the manufacturing period is shorter, the price is lower. It has no performance in comparison with the silica produced and has excellent value in terms of resource utilization by using silicon contained in ash flake ash of rice bran as the silicon source, and waste by removing silicon among the waste containing silicon The present invention relates to a silica manufacturing method capable of increasing the recycling rate and producing a cheap and excellent silica as a raw material for each industry because it is produced with higher efficiency and economic efficiency than a conventional mesoporous silica manufacturing process.

규소, 폐기물, 천연물, 기공, 실리카, 표면적, 촉매, 메조포러스 Silicon, Waste, Natural Products, Pores, Silica, Surface Area, Catalysts, Mesoporous

Description

다공성 실리카의 제조방법{A PRODUCTION METHOD OF POROUS SILICA}Manufacturing method of porous silica {A PRODUCTION METHOD OF POROUS SILICA}

본 발명은 규소를 포함하고 있는 폐기물 또는 천연물을 이용하여 표면적이 크고, 규칙적인 기공 배열을 갖는 다공성 실리카의 제조방법에 관한 것이다.The present invention relates to a method for producing porous silica having a large surface area and a regular pore array using waste or natural products containing silicon.

실리카의 용도는 그 특징에 따라 시멘트 첨가제에서 화장품에 이르기까지 매우 넓은 분야에서 용도를 달리하여 활용되고 있다.The use of silica is used in a wide range of applications from cement additives to cosmetics depending on its characteristics.

겔 형태의 비표면적이 큰 실리카는 최근 단열재 및 차음재로 활용되고 있으며, 규칙적인 배열과 일정한 기공을 지니고 있는 다공성 실리카의 경우 유효면적이 타 담지체에 비하여 3 내지 10배 이상을 나타내므로 인하여 고기능성 촉매의 담지체로 활용되고 있다. 이러한 메조포러스 실리카는 1990년 미국 모빌사에서 합성법이 등록된 이후 합성법에 대한 연구가 지속적으로 이루어지고 있다. Silica having a large specific surface area in gel form has recently been used as a heat insulating material and a sound insulating material. In the case of porous silica having a regular arrangement and a certain pore, its effective area is 3 to 10 times higher than that of other carriers. It is used as a support for the catalyst. Since mesoporous silica was synthesized by the United States Mobil Corporation in 1990, research on the synthesis method is continuously made.

특히 현재 제시된 제조법의 경우 제조공정이 복잡하고 많은 공정이 필요하고 원료의 가격이 고가이므로 인하여 상용화된 공정이 운전되지 못하는 상태이므로 다양한 방법의 메조포러스 실리카의 제조법이 연구개발되고 있다. 현재 제시되고 있 는 합성법의 경우 대부분이 계면활성제를 이용하여 규소를 포함한 화합물을 계면활성제 주변에 배열하고 이를 합성한 후 세척공정을 거쳐 계면활성제를 제거하고 소성을 통하여 안정화시키는 공정으로 이루어져 있다.Particularly, in the presently proposed method, since the manufacturing process is complicated, many processes are required, and the raw material is expensive, the commercialized process cannot be operated. Therefore, various methods of manufacturing mesoporous silica have been researched and developed. In the present synthetic method, most of them are composed of a compound including silicon using a surfactant to be arranged around the surfactant, and then synthesized, followed by a washing process to remove the surfactant and to stabilize it by sintering.

따라서 계면활성제의 공간이 기공으로 존재하며 규칙적인 일정한 배열을 지니게 된다. 기존의 제조방법에서 제시되는 계면활성제의 경우 고가이어서, 그에 따른 원료비용이 상승하였으며, 수열합성공정에서 아세트산을 이용한 지속적인 수소이온의 농도조절이 필요하고, 이때 반응기내의 수소이온의 농도가 균일하지 않은 경우 낮은 배열도가 떨어지고 안정성이 낮아지므로 반응기의 대형화를 어렵게 한다. 또한 수열합성 시간도 100℃의 온도에서 3일 이상이 소요되므로 반응시간이 길어지게 되어 생산성 감소가 나타나고, 세척공정에 많은 시간이 요구되며, 소성시 온도의 상승률에 따라 구조가 파괴될 수 있으므로 인하여 매우 느린 상승률에 의하여 소성시간 또한 길어지게 되는 문제점이 있었다.Therefore, the space of the surfactant is present as pores and has a regular regular arrangement. In the case of the surfactants proposed in the conventional manufacturing method, they are expensive, and thus the raw material cost has increased, and the hydrothermal synthesis process needs to continuously adjust the concentration of hydrogen ions using acetic acid, and the concentration of hydrogen ions in the reactor is not uniform. In this case, low arrangement and low stability make it difficult to enlarge the reactor. In addition, the hydrothermal synthesis time also takes more than 3 days at a temperature of 100 ℃ to increase the reaction time, resulting in a decrease in productivity, a lot of time is required for the washing process, the structure may be destroyed due to the rate of temperature rise during firing There was a problem that the firing time is also lengthened by a very slow rise rate.

본 발명의 경우에도 규칙적인 일정한 배열을 위하여 계면활성제를 사용하며, 규소원으로 각종 규소가 함유된 물질로부터 수산화나트륨을 이용하여 규소를 용출하여, 이 용액을 이용하여 실리카 합성을 이룸으로써 트리에틸올소실리케이트와 같은 고가의 원료를 대용하며, 수열합성시간과 온도를 낮추어 경제성을 향상시킨 방법이다.In the case of the present invention, a surfactant is used for regular regular arrangement, and silicon is eluted using sodium hydroxide from a material containing various silicon as a silicon source, and silica is synthesized using this solution. It substitutes expensive raw materials such as silicate and improves economic efficiency by lowering hydrothermal synthesis time and temperature.

따라서 본 발명은 상기한 종래 제조방법의 문제점을 해결하기 위해 도출된 것으로서, 실리카의 원료가 저렴하고, 제조공정 중의 수열합성 단계 중에서 지속적인 수소이온의 농도 조절이 필요 없으며, 수소이온의 농도도 저렴한 황산을 이용하며, 수열합성시간이 4배 단축된 실리카의 제조방법을 제시하고자 하며, 또한 제조된 실리카의 경우 비표면적이 900 ㎡/g이상, 평균 기공크기 3nm이상의 실리카를 제조할 수 있는 다공성 실리카의 제조방법의 제공을 발명의 목적으로 한다.Therefore, the present invention was derived to solve the above problems of the conventional manufacturing method, the raw material of silica is cheap, sulfuric acid does not need to adjust the concentration of hydrogen ions continuously during the hydrothermal synthesis step in the manufacturing process, sulfuric acid is also cheap In the present invention, a method of preparing silica having a 4 times shorter hydrothermal synthesis time is proposed, and in the case of the prepared silica, a silica having a specific surface area of 900 m 2 / g or more and an average pore size of 3 nm or more is used. It is an object of the invention to provide a manufacturing method.

상기 목적을 달성하기 위한 본 발명의 기술적 구성은 다음과 같다.Technical configuration of the present invention for achieving the above object is as follows.

규소를 함유하는 폐기물 또는 원료물에, 규소성분 대비 중량비 3 ~ 10배의 수산화나트륨, 40 ~ 80배의 물을 혼합하여 조성된 혼합용액을 가열하여 규소를 용출하는 규소용출단계와,A silicon elution step of eluting silicon by heating a mixed solution formed by mixing silicon hydroxide with waste material containing 3 to 10 times the weight ratio of sodium and 40 to 80 times the water to silicon;

그 규소용출단계를 거친 용액에, 중량비 0.005 ~ 0.03배의 세틸트리메틸 암 모늄 브로마이드(CTABr)를 혼합하여 가열하고, 그 CTABr가 혼합된 용액에, 중량비 0.01 ~ 0.1배의 아세테이트를 혼합하여 교반 후 냉각하는 가열단계와,Cetyltrimethyl ammonium bromide (CTABr) having a weight ratio of 0.005 to 0.03 times is mixed and heated to the solution that has undergone the silicon elution step, and the solution having the CTABr mixed is mixed with acetate having a weight ratio of 0.01 to 0.1 times, followed by cooling after stirring. Heating step,

그 가열단계를 거친 용액의 수소이온 농도를 황산을 이용하여 7 ~ 12로 조절하는 pH조절단계와,PH adjustment step of adjusting the hydrogen ion concentration of the solution through the heating step to 7 ~ 12 using sulfuric acid,

pH조절된 용액을 상온 상압에서 6 ~ 48시간 동안 교반 수열합성하는 수열합성단계와,a hydrothermal synthesis step of hydrothermally synthesizing the pH-controlled solution for 6 to 48 hours at room temperature and normal pressure,

수열합성이 종료된 용액을 여과포를 이용하여 세척, 여과하는 세척여과단계와,Washing filtration step of washing and filtering the solution of the hydrothermal synthesis using a filter cloth,

그 세척여과단계를 거친 후 25 ~ 100℃에서 건조하여, 500 ~ 600℃에서 4 ~ 6시간 동안 가열하는 소성단계를 거쳐 이루어지는 다공성 실리카의 제조방법.After the washing filtration step and dried at 25 ~ 100 ℃, a method for producing a porous silica made through a calcining step of heating at 500 ~ 600 ℃ for 4 to 6 hours.

이하, 상기 다공성 실리카 제조방법의 각 제조단계별 기술구성을 더욱 상세히 살펴보도록 한다.Hereinafter, the technical configuration of each manufacturing step of the porous silica manufacturing method will be described in more detail.

규소용출단계Silicon Elution Step

규소를 함유하는 폐기물 또는 원료물 즉, 구체적으로 예를 들면 쌀겨, 모래 또는 석탄회재로부터 규소를 용출하는 단계이다.It is a step of eluting silicon from silicon-containing waste or raw materials, ie specifically rice bran, sand or coal ash.

규소를 용출하기 위해, 규소를 함유하는 폐기물 또는 원료물에 대해 규소성분 대비 중량비 3 ~ 10배의 수산화나트륨 및 40 ~ 80배의 물을 사용하게 되며,In order to elute the silicon, 3 to 10 times the weight ratio of sodium hydroxide and 40 to 80 times the water to the silicon component for waste or raw materials containing silicon,

이때 수산화나트륨을 3배 미만으로 사용하게 되는 경우에는 용출이 완전히 되지 않는 문제가 발생하고, 10배를 초과하여 사용하게 되는 경우에는 과잉의 나트륨의 존재에 의한 배열성이 떨어지는 문제가 있으므로, 상기 수산화나트륨은 규소성분 대비 중량비 3 ~ 10배로 사용하는 것이 바람직하며, 더욱 바람직하게는 7배의 수산화나트륨을 사용한다.In this case, when the sodium hydroxide is used less than three times, the problem of elution does not occur completely. When the sodium hydroxide is used more than 10 times, there is a problem that the arrangement due to the presence of excess sodium is inferior. Sodium is preferably used in a weight ratio of 3 to 10 times compared to the silicon component, more preferably 7 times of sodium hydroxide.

그리고, 물(H2O)을 40배 미만으로 사용하게 되는 경우에는 실리카의 배열이 규칙적이지 않은 문제가 발생하고, 80배를 초과하여 사용하게 되는 경우에는 생산성 감소와 생성 입도가 매우 작아지는 문제가 있으므로, 상기 물은 규소성분 대비 중량비 40 ~ 80배로 사용하는 것이 바람직하며, 더욱 바람직하게는 60배의 물을 사용한다.In addition, when water (H 2 O) is used less than 40 times, a problem arises that the arrangement of the silica is not regular, and when used more than 80 times, the problem of reduced productivity and very small particle size Since the water is preferably used 40 to 80 times the weight ratio compared to the silicon component, more preferably use 60 times of water.

상기비율로 혼합된 규소를 함유하는 폐기물 또는 원료물, 수산화나트륨 및 물을 혼합한 혼합용액은 환류장치에서 130 ~ 180℃로 3 ~ 7시간 동안 가열하여 규소를 용출하게 된다.Waste or raw materials containing silicon mixed at the above ratio, and a mixed solution of sodium hydroxide and water are heated at a reflux apparatus at 130 to 180 ° C. for 3 to 7 hours to elute silicon.

이때 온도가 130℃ 미만인 경우에는 용출수율이 떨어지는 문제가 있었으며, 180℃를 초과하게 되는 경우에는 에너지비용이 증가하는 문제가 있으므로, 그 환류장치의 온도는 130 ~ 180℃로 유지하는 것이 바람직하며, 더욱 바람직하게는 150℃를 유지한다. 그리고 130 ~ 180℃ 온도조건에서 가열시간을 3시간 미만으로 유지하는 경우에는 용출수율이 떨어지고, 7시간을 초과하게 되는 경우에는 에너지비용이 증가하는 문제가 있으므로, 상기 가열시간은 3 ~ 7시간으로 하는 것이 바람직하며, 더욱 바람직하게는 5시간을 동안 가열한다.At this time, if the temperature is less than 130 ℃ has a problem that the elution yield falls, and if the temperature exceeds 180 ℃, there is a problem that the energy cost increases, it is preferable to maintain the temperature of the reflux device at 130 ~ 180 ℃, More preferably, it maintains 150 degreeC. And if the heating time is maintained at less than 3 hours at 130 ~ 180 ℃ temperature conditions, the elution yield is lowered, if it exceeds 7 hours, the energy cost increases, so the heating time is 3 to 7 hours It is preferable to heat, more preferably 5 hours.

가열단계Heating stage

상기 규소용출단계에서 반응이 종료된 용액을 상온으로 냉각한 후, 미 용출된 회분을 여과하여 용액을 취한다.After cooling the solution after the reaction in the silicon elution step to room temperature, the undissolved ash is filtered to take the solution.

다음으로, 이와 같이 여과된 용액에, 중량비 0.005 ~ 0.03배의 세틸트리메틸 암모늄 브로마이드(cetyltrimethylammonium bromide: CTABr)를 혼합하여 밀폐된 용기에 넣고 교반 가열한 후, 내부의 압력증가와 기공 확산을 위하여 CTABr가 혼합된 용액에, 중량비 0.01 ~ 0.1배의 아세테이트를 주입하고, 주입 후 2 ~ 10분간 교반한 후 상온에서 냉각한다.Next, cetyltrimethylammonium bromide (CTABr) having a weight ratio of 0.005 to 0.03 times is mixed with the filtered solution, placed in a closed container and heated with stirring, and CTABr is added for internal pressure increase and pore diffusion. Into the mixed solution, a weight ratio of 0.01 to 0.1 times acetate is injected, stirred for 2 to 10 minutes after the injection and cooled at room temperature.

pHpH 조절단계Adjustment stage

용액의 pH를 조절하는 단계로서, 상기 가열단계를 거친 용액을 2 ~ 7N 황산 용액을 이용하여 7 ~ 12로 pH를 조절한다. 이때 pH가 7 미만인 경우에는 생성되는 실리카의 외벽이 크게 되어 기공이 감소하는 문제가 있으므로, 상기 pH는 7 ~ 12 사이로 조절하는 것이 바람직하다.As a step of adjusting the pH of the solution, the pH of the solution after the heating step is adjusted to 7 to 12 using 2 ~ 7N sulfuric acid solution. At this time, when the pH is less than 7, there is a problem that the outer wall of the resulting silica is large, the pores are reduced, it is preferable to adjust the pH between 7 to 12.

수열합성단계Hydrothermal Synthesis Step

상기 pH가 조절된 용액을 6 ~ 48시간 동안 교반, 합성하는 단계로서, 상기 교반의 방법 중 교반속도 및 교반 온도는 수열합성도와 기공의 크기에 영향을 미치 는 것으로, 상기 교반속도가 60rpm 미만인 경우에는 기공의 배열도가 감소하는 문제가 있고, 10,000rpm을 초과하게 되는 경우에는 공정의 생산성이 감소하는 문제가 있으므로, 60 ~ 10,000rpm의 교반속도를 유지하는 것이 바람직하다.A step of stirring and synthesizing the pH-controlled solution for 6 to 48 hours, the stirring speed and the stirring temperature in the method of stirring affects the hydrothermal synthesis and the size of the pores, when the stirring speed is less than 60rpm There is a problem that the arrangement of pores decreases, and when the excess exceeds 10,000rpm, there is a problem that the productivity of the process decreases, it is preferable to maintain a stirring speed of 60 ~ 10,000rpm.

그리고 상기 교반온도는 0℃ 미만인 경우 기공크기가 작아지는 문제가 있고, 200℃를 초과하게 되는 경우에는 기공의 형성이 불완전하게 되는 문제가 있으므로, 0 ~ 200℃의 온도범위를 유지하는 것이 바람직하다.When the stirring temperature is less than 0 ° C., the pore size is reduced. If the stirring temperature is more than 200 ° C., the formation of pores is incomplete. Therefore, it is preferable to maintain a temperature range of 0 to 200 ° C. .

따라서, 상기 교반속도 및 교반온도를 벗어나게 될 경우에는 실리카의 형태가 완전한 구조로 형성되지 않거나 다른 구조로 변형될 수 있으므로 주의하여야 한다.Therefore, care should be taken when the stirring speed and the stirring temperature are exceeded since the silica may not be formed into a complete structure or may be modified into another structure.

세척여과단계Washing filtration stage

상기 수열합성단계를 거친 후에는 수열합성이 종료된 용액을 여과포를 이용하여 세척, 여과과정을 거치게 되고, 이때 세척은 증류수를 사용하며, 미반응된 반응원료와 반응생성물, 계면활성제를 세척한다. After the hydrothermal synthesis step, the hydrothermal synthesis solution is washed with a filter cloth and subjected to filtration. At this time, the distilled water is used for washing, and the unreacted reaction raw materials, reaction products, and surfactant are washed.

소성단계Firing stage

세척 후에는 건조기에서 25 ~ 100℃로 20 ~ 30시간 동안 건조하고, 건조가 종료된 후에는 상온에서 500 ~ 600℃까지 분당 1℃의 승온속도로 가열하며, 500 ~ 600℃에서 4 ~ 6시간 가열한다. 그리고 바람직하게는 550℃까지 분당 1℃의 승온속도로 가열하며, 550℃에서 5시간 동안 가열함으로써 계면활성제를 완전히 제거하여 본 발명에 따른 실리카의 제조를 완성한다.After washing, the dryer is dried at 25 to 100 ° C. for 20 to 30 hours, and after the drying is finished, the heating is performed at a temperature rising rate of 1 ° C. per minute to 500 to 600 ° C. at room temperature, and 4 to 6 hours at 500 to 600 ° C. Heat. And preferably heated to a temperature increase rate of 1 ℃ per minute to 550 ℃, by heating for 5 hours at 550 ℃ completely remove the surfactant to complete the preparation of silica according to the present invention.

소성단계에서 가열하기 전에 건조과정을 두는 이유는 느린 속도의 건조과정을 통하여 수분 및 유기물을 분리하여 소성 전의 불안정한 형태 기공의 파괴를 막기 위한 것이다. 또한 소성시 급격한 온도의 상승에 의하여도 기공의 파괴가 발생하므로 분당 1℃의 승온속도로 가열하는 것이 바람직하다.The drying process before heating in the firing step is to prevent the destruction of unstable form pores before firing by separating moisture and organic matter through a slow drying process. In addition, since pore breakage occurs even when the temperature rises rapidly during firing, heating at a temperature increase rate of 1 ° C. per minute is preferable.

이와 같은 제조과정을 거쳐 제조된 실리카는 비표면적이 900 ㎡/g이상, 평균 기공크기 3nm 이상이며 수산화기를 표면에 가지고 있는 것을 특징으로 하며, 또한, 소두윰실리케이크(Na-Si)형태의 규소원을 CTABr인 계면활성제 용액에 혼합하고 수소이온의 농도를 조절하여 규소가 계면활성제 주의에 수열합성되게 함으로써 기본 구조를 이루게 하고 계면활성체를 세척하여 제거한 후 이를 건조 소성하여 안정한 형태로 제조하게 된다.Silica prepared through such a manufacturing process is characterized by having a specific surface area of 900 m 2 / g or more, an average pore size of 3 nm or more, and having a hydroxyl group on the surface, and silicon in the form of soybean silicate (Na-Si). The source is mixed with a surfactant solution of CTABr and the hydrogen ion is adjusted to hydrothermally synthesize the silicon to form a basic structure by washing the surfactant. .

그리고, 본 발명의 제조과정을 통해 제조된 실리카는 이산화탄소가 발생하는 흡착제의 담지체로 사용될 수 있으며, 이와 같은 경우, 상기 흡착제는 흡착온도 0 내지 95℃에서 사용될 수 있으며, 탈착온도 95 내지 110℃에서 사용될 수 있다.In addition, the silica produced through the manufacturing process of the present invention may be used as a carrier of the adsorbent that generates carbon dioxide, in this case, the adsorbent may be used at the adsorption temperature of 0 to 95 ℃, the desorption temperature of 95 to 110 ℃ Can be used.

이상에서 살펴본 바와 같이, 본 발명은 폐기물, 천연물을 이용하여 표면적이 크고 규칙적인 기공 배열을 갖는 실리카의 제조방법을 제공함으로써, 그 다공성 실리카의 제조방법에 의해 제조된 실리카의 경우, 3nm정도의 균일한 기공구조를 가지 며, 표면적은 약 1000㎡/g 정도로 다양한 이용이 가능하다. 특히 이전에 당 업계에서 제시되는 방법과 달리 제조시간이 2일 이상 단축되어 제조효율이 높으며, 실리카의 균일성 및 안정도면에서 매우 안정한 실리카로써 우수한 품질을 나타낸다. As described above, the present invention provides a method for producing silica having a large surface area and a regular pore array using waste and natural products, and in the case of silica produced by the method for producing the porous silica, a uniformity of about 3 nm is achieved. It has one pore structure, and its surface area is about 1000㎡ / g and can be used in various ways. In particular, unlike the methods previously proposed in the art, the manufacturing time is shortened by two days or more, and thus the manufacturing efficiency is high.

또한, 본 실리카의 균일한 내부 기공에 존재하는 수산화기를 이용하여 다양한 물질과의 반응이 가능하다. 기공 배열의 균일성으로 인하여 많은 양의 반응물질과 반응이 일어나며, 기공의 크기가 3nm이므로 흡착점과 반응점이 중량당 최대로 나타나므로 인하여 타 담지용 물질보다 우수한 촉매, 흡착제로 사용이 가능하다. 그리고 내부에 약물 성분을 담지 함으로써 완효성 및 선택성을 갖는 신약의 재료로 사용이 가능하다. 즉, 본 발명은 인체에 무해한 실리카 표면에 인체 무해한 물질의 반응과 반응된 물질의 작용기에 따라 의약품, 화장품 등을 공유결합시킴으로써 완효성 효과를 지닌 약물의 저장체로 광범위하게 사용될 수 있다.In addition, it is possible to react with various materials by using a hydroxyl group present in the uniform internal pores of the silica. Due to the uniformity of the pore array, the reaction occurs with a large amount of reactants. Since the pore size is 3 nm, the adsorption point and the reaction point appear at the maximum per weight. And it can be used as a material of a new drug having a slow efficacy and selectivity by supporting the drug component inside. That is, the present invention can be widely used as a reservoir of drugs having a slowing effect by covalently binding medicines, cosmetics, etc. according to functional groups of the reacted substances and the reaction of harmless substances on the surface of silica that is harmless to the human body.

이상에서 살펴본 본 발명의 기술적 구성을 실시 예를 통해 더욱 구체적으로 살펴보고자 한다.The technical configuration of the present invention described above will be described in more detail with reference to the following examples.

실시 예 1 : 쌀겨를 이용한 실리카 제조Example 1 Manufacture of Silica Using Rice Bran

쌀겨 회분에 중량비 4.4배의 수산화나트륨[알드리치화학, 미국]과 중량비 55배의 증류수를 혼합한다. 혼합된 용액을 환류장치가 설치된 상태에서 표면온도 150℃에서 5시간 가열하여 회분 중의 규소를 소두윰실리케이트 형태로 용출한다. 반응 이 종료된 후 혼합 용액을 상온으로 냉각한 후 미 용출된 회분을 여과하여 용액을 취한다. 여과된 용액에 중량비로 0.012배의 CTABr[알드리치화학, 미국]을 혼합한 후 밀폐된 용기에 넣고 교반 가열하여 내부의 압력을 상승시킨다. 압력이 상승된 후 내부의 압력증가와 기공의 확산을 위하여 아세테이트[알드리치화학, 미국]를 용액의 중량비로 0.04배 주입한다. 주입 후 5분간 교반한 후 상온으로 냉각한다. 상온 냉각 후 황산을 이용하여 수소이온의 농도를 10으로 조절한다. 농도가 조절된 후 24시간 동안 상온에서 교반한 후 여과 세척한다. 이때 세척은 증류수를 사용하며, 미반응된 반응원료와 반응생성물, 계면활성제를 세척한다. 세척 후 100℃ 건조기에서 24시간 건조한다. 건조가 종료된 후 상온에서 550℃까지 분당 1℃의 승온속도로 가열하며, 550℃에서 5시간 가열하여 계면활성제를 완전히 제거한다. 이와 같은 방법으로 본 발명에 따른 실리카를 제조하였다.Rice bran ash is mixed with 4.4 times the weight of sodium hydroxide [Aldrich Chemical, USA] and 55 times the weight of distilled water. The mixed solution is heated at a surface temperature of 150 ° C. for 5 hours in a state where a reflux device is installed to elute the silicon in the ash form in the form of soot borosilicate. After the reaction is completed, the mixed solution is cooled to room temperature, and the undissolved ash is filtered to take a solution. 0.012 times of CTABr [Aldrich Chemical, USA] is mixed with the filtered solution, and the mixture is placed in a sealed container and heated by stirring to increase the internal pressure. After the pressure is increased, acetate [Aldrich Chemical, USA] is injected 0.04 times by weight of the solution to increase the pressure inside and diffuse the pores. After the injection, the mixture is stirred for 5 minutes and then cooled to room temperature. After cooling to room temperature, the concentration of hydrogen ions is adjusted to 10 using sulfuric acid. After the concentration is adjusted, the mixture is stirred at room temperature for 24 hours, and then filtered and washed. In this case, distilled water is used for washing, and unreacted reaction raw materials, reaction products, and surfactants are washed. After washing, it is dried for 24 hours in a 100 ℃ dryer. After completion of drying, heating is carried out at room temperature to a temperature of 1 ℃ per minute to 550 ℃, and heated at 550 ℃ for 5 hours to completely remove the surfactant. In this manner, silica was prepared according to the present invention.

실시 예 2 : Example 2: 석탄회재를Coal ash 이용한 실리카 제조 Manufactured Silica

상기 실시 예 1과 동일한 방법으로 수행하되, 규소원을 쌀겨가 아닌 석탄회재를 사용하였다.Performed in the same manner as in Example 1, but using a silicon ash as a coal ash instead of rice bran.

실시 예 3 : 모래를 이용한 실리카 제조Example 3 Manufacture of Silica Using Sand

상기 실시 예 1과 동일한 방법으로 수행하되, 규소원을 쌀겨가 아닌 모래를 사용하였다.The same method as in Example 1 was carried out, but the silicon source was used sand instead of rice bran.

실시 예 4 : Example 4: 석탄회재를Coal ash 이용한 실리카 제조 Manufactured Silica

상기 실시 예 1과 동일한 방법으로 수행하되, 계면활성제를 CTABr가 아닌 도데실아민을 사용하였으며, 규소원으로 석탄회재를 사용하였다.In the same manner as in Example 1, except that dodecylamine was used as a surfactant, not CTABr, and coal ash was used as a silicon source.

실시 예 5 : 쌀겨를 이용한 실리카 제조Example 5 Manufacture of Silica Using Rice Bran

상기 실시 예 1과 동일한 방법으로 수행하되, 계면활성제를 CTABr가 아닌 도데실아민을 사용하였다.The same method as in Example 1, except that dodecylamine was used as the surfactant, not CTABr.

실시 예 6 : 쌀겨를 이용한 실리카 제조Example 6 Manufacture of Silica Using Rice Bran

상기 실시 예 1과 동일한 방법으로 수행하되, 계면활성제를 CTABr와 탄소 14개 이상의 화합물(polyoxyethylene Lauryl Ether, C12H25-O-(CH2CH2O)n-H))을 혼합하여 사용하였다. The same method as in Example 1 was performed, but the surfactant was used by mixing CTABr with 14 or more carbon compounds (polyoxyethylene Lauryl Ether, C 12 H 25 -O- (CH 2 CH 2 O) n -H)). .

시험 예Test example

쌀겨를 연소한 후 남은 회재를 취하여 둥근플라스크에 넣고 2mol의 수산화나트륨용액을 가하여 환류장치를 장착한 후 플라스크의 표면온도를 200℃로 5시간 가열하여 쌀겨 회분 중 다량으로 포함된 규소를 수산화나트륨과 반응시켜 실리케이트용액을 제조하였다. 가열 후 용액을 여과 분리하여 미반응 고형물을 분리하였다.After burning the rice bran, take the remaining ash, put it in a round flask, add 2 mol of sodium hydroxide solution, equip the reflux device, and heat the flask's surface temperature to 200 ℃ for 5 hours to make silicon contained in a large amount of rice bran ash and sodium hydroxide. Reaction to prepare a silicate solution. After heating, the solution was filtered to separate unreacted solids.

분리된 용액을 일정량 취하여 CTABr을 용해시킨 후 아세테이트를 첨가하여 가열 한 후 일정 온도에서 5시간 이상 교반 반응하여 다공성 실리카를 수열 합성하였다. 수열합성 후 미반응 여액 및 반응생성물과 다공성 실리카를 여과 세척하였다. 여과분리된 다공성 실리카를 100℃ 이하에서 1일 이상 건조한 후 550℃에서 소성하여 세척되지 않은 계면활성제를 제거하고 합성된 실리카의 안정성을 부여하였다. 이와 같은 방법으로 제조하였으며, 제조된 실리카의 회절분석결과를 도 1에 나타내었다. 계면활성제의 사용량과 종류를 변화시킴으로써 다양한 형태의 실리카을 얻을 수 있었다.A predetermined amount of the separated solution was taken to dissolve CTABr, heated with acetate, and then stirred at a constant temperature for at least 5 hours to hydrothermally synthesize porous silica. After hydrothermal synthesis, unreacted filtrate, reaction product and porous silica were filtered off. The filtered porous silica was dried at 100 ° C. or less for at least 1 day, and then calcined at 550 ° C. to remove the unwashed surfactant and to impart stability of the synthesized silica. Prepared in this manner, the diffraction analysis of the prepared silica is shown in FIG. By varying the amount and type of surfactant used, various forms of silica could be obtained.

이상에서 설명한 바와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 실시 예보다는 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, those skilled in the art will understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. Therefore, the embodiments described above are to be understood as illustrative and not restrictive in all aspects. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the claims and equivalent concepts rather than the above embodiments are included in the scope of the present invention.

제 1도는 본 발명에 따른 실리카의 회절분석결과를 나타낸 그래프.1 is a graph showing the results of diffraction analysis of silica according to the present invention.

Claims (3)

규소를 함유하는 폐기물 또는 원료물에, 규소성분 대비 중량비 3 ~ 10배의 수산화나트륨, 40 ~ 80배의 물을 혼합하여 조성된 혼합용액을 가열하여 규소를 용출하는 규소용출단계와,A silicon elution step of eluting silicon by heating a mixed solution formed by mixing silicon hydroxide with waste material containing 3 to 10 times the weight ratio of sodium and 40 to 80 times the water to silicon; 그 규소용출단계를 거친 용액에, 중량비 0.005 ~ 0.03배의 세틸트리메틸 암모늄 브로마이드(CTABr)를 혼합하여 가열하고, 그 CTABr가 혼합된 용액에, 중량비 0.01 ~ 0.1배의 아세테이트를 혼합하여 교반 후 냉각하는 가열단계와,Cetyltrimethyl ammonium bromide (CTABr) having a weight ratio of 0.005 to 0.03 times is mixed and heated to the solution that has undergone the silicon elution step, and the solution having the CTABr mixed is mixed with acetate having a weight ratio of 0.01 to 0.1 times, followed by cooling after stirring. Heating step, 그 가열단계를 거친 용액의 수소이온 농도를 황산을 이용하여 7 ~ 12로 조절하는 pH조절단계와,PH adjustment step of adjusting the hydrogen ion concentration of the solution through the heating step to 7 ~ 12 using sulfuric acid, pH조절된 용액을 상온 상압에서 6 ~ 48시간 동안 교반 수열합성하는 수열합성단계와,a hydrothermal synthesis step of hydrothermally synthesizing the pH-controlled solution for 6 to 48 hours at room temperature and normal pressure, 수열합성이 종료된 용액을 여과포를 이용하여 세척, 여과하는 세척여과단계와,Washing filtration step of washing and filtering the solution of the hydrothermal synthesis using a filter cloth, 그 세척여과단계를 거친 후 25 ~ 100℃에서 건조하여, 500 ~ 600℃에서 4 ~ 6시간 동안 가열하는 소성단계를 거쳐 이루어짐을 특징으로 하는 다공성 실리카의 제조방법.After the washing filtration step, and dried at 25 ~ 100 ℃, a method for producing a porous silica, characterized in that through a firing step of heating for 4 to 6 hours at 500 ~ 600 ℃. 제 1항에 있어서,The method of claim 1, 규소를 함유하는 폐기물 또는 원료물은 쌀겨, 모래 또는 석탄회재 중 선택되는 어느 1종 이상인 것을 특징으로 하는 다공성 실리카의 제조방법.Waste or raw material containing silicon is any one or more selected from rice bran, sand or coal ash. 제 1항에 있어서,The method of claim 1, 규소용출단계의 혼합용액의 가열은 130 ~ 180℃로 3 ~ 7시간 동안 이루어짐을 특징으로 하는 다공성 실리카의 제조방법.Method for producing a porous silica, characterized in that the heating of the mixed solution of the silicon elution step is carried out for 3 to 7 hours at 130 ~ 180 ℃.
KR1020070114289A 2007-11-09 2007-11-09 A production method of porous silica KR100921185B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070114289A KR100921185B1 (en) 2007-11-09 2007-11-09 A production method of porous silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070114289A KR100921185B1 (en) 2007-11-09 2007-11-09 A production method of porous silica

Publications (2)

Publication Number Publication Date
KR20090048082A true KR20090048082A (en) 2009-05-13
KR100921185B1 KR100921185B1 (en) 2009-10-13

Family

ID=40857316

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070114289A KR100921185B1 (en) 2007-11-09 2007-11-09 A production method of porous silica

Country Status (1)

Country Link
KR (1) KR100921185B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153897A1 (en) * 2011-05-12 2012-11-15 충남대학교 산학협력단 Method for producing high-purity porous silica and silicon derived from rice husks
KR101309772B1 (en) * 2011-07-18 2013-09-23 전북대학교산학협력단 A natural biomass silica nanopowder having a high pollutant removal performance, extracted from corn cob pellet and a method of manufacturing the same
CN103803564A (en) * 2013-12-13 2014-05-21 中国神华能源股份有限公司 Method for preparing silicon dioxide micropowder by using pulverized fuel ash extracted aluminum residue as raw material and silicon dioxide micropowder
KR20150122306A (en) * 2014-04-22 2015-11-02 한국생산기술연구원 Mesoporous silica for absorption of moisture, and manufacturing method thereof
KR20160082019A (en) * 2014-12-30 2016-07-08 한국세라믹기술원 Eco-friendly Method for producing of silica using ionic liquids
WO2019231063A1 (en) * 2018-06-01 2019-12-05 전주대학교 산학협력단 Biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force, and method for preparing same
KR20210020553A (en) * 2019-08-16 2021-02-24 한국세라믹기술원 Manufacturing method of mesoporous silica from biomass
CN114832782A (en) * 2022-05-04 2022-08-02 中海油天津化工研究设计院有限公司 Deoxygenation adsorbent for Fischer-Tropsch light distillate oil adsorption-rectification coupling technology and preparation method thereof
CN115159532A (en) * 2022-08-15 2022-10-11 锦洋高新材料股份有限公司 Method for preparing porous white carbon black by taking industrial silicon dioxide solid waste as raw material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171114A (en) 2000-05-08 2003-06-17 B M:Kk Method for manufacturing silica gel
CN1167616C (en) 2001-12-31 2004-09-22 天津大学 Process for preparing mesoporous SiO2 microparticles material
CN1222473C (en) 2003-04-24 2005-10-12 清华大学 Process for preparing silicon dioxide aerogel using rice husk ash as raw material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153897A1 (en) * 2011-05-12 2012-11-15 충남대학교 산학협력단 Method for producing high-purity porous silica and silicon derived from rice husks
KR101309772B1 (en) * 2011-07-18 2013-09-23 전북대학교산학협력단 A natural biomass silica nanopowder having a high pollutant removal performance, extracted from corn cob pellet and a method of manufacturing the same
CN103803564A (en) * 2013-12-13 2014-05-21 中国神华能源股份有限公司 Method for preparing silicon dioxide micropowder by using pulverized fuel ash extracted aluminum residue as raw material and silicon dioxide micropowder
KR20150122306A (en) * 2014-04-22 2015-11-02 한국생산기술연구원 Mesoporous silica for absorption of moisture, and manufacturing method thereof
KR20160082019A (en) * 2014-12-30 2016-07-08 한국세라믹기술원 Eco-friendly Method for producing of silica using ionic liquids
WO2019231063A1 (en) * 2018-06-01 2019-12-05 전주대학교 산학협력단 Biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force, and method for preparing same
KR20190137980A (en) * 2018-06-01 2019-12-12 전주대학교 산학협력단 Biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface tension and method for producing the same
KR20210020553A (en) * 2019-08-16 2021-02-24 한국세라믹기술원 Manufacturing method of mesoporous silica from biomass
CN114832782A (en) * 2022-05-04 2022-08-02 中海油天津化工研究设计院有限公司 Deoxygenation adsorbent for Fischer-Tropsch light distillate oil adsorption-rectification coupling technology and preparation method thereof
CN114832782B (en) * 2022-05-04 2024-02-09 中海油天津化工研究设计院有限公司 Deoxidizing adsorbent for Fischer-Tropsch light distillate oil adsorption-rectification coupling technology and preparation method thereof
CN115159532A (en) * 2022-08-15 2022-10-11 锦洋高新材料股份有限公司 Method for preparing porous white carbon black by taking industrial silicon dioxide solid waste as raw material

Also Published As

Publication number Publication date
KR100921185B1 (en) 2009-10-13

Similar Documents

Publication Publication Date Title
KR100921185B1 (en) A production method of porous silica
CN109399648B (en) Micron-sized monodisperse porous silica microsphere and preparation method thereof
CN102633282B (en) Method for preparing mesoporous titanium silicon molecular sieve nanoparticles
CN107286185A (en) A kind of cadmium metal organic framework material and preparation method thereof
KR100525208B1 (en) The preparation method of nanoporous VSB-5 molecular sieve
Tan et al. Ce-doped smart adsorbents with photoresponsive molecular switches for selective adsorption and efficient desorption
CN112280052A (en) Hierarchical pore ZIF-8 material and preparation method and application thereof
JPH0513090B2 (en)
KR101187804B1 (en) Process for the preparation of acrylic acid and acrylates from lactates
CN113559910B (en) Preparation of octahedral carbon nitride photocatalytic material and application thereof in removing antibiotics in water body
CN108745422B (en) 1, 4-butanediol dehydration catalyst with adjustable surface acidity and alkalinity, preparation method and application
CN107970951B (en) Preparation method of flower-like mesoporous structure CdS-ZnO composite material
CN105664860B (en) MOF type multilevel hole material based on ZIF-8 and its preparation method and application
KR101154326B1 (en) Diurea-containing periodic mesoporous organosilica and method for making the same
CN111054419A (en) For CO2Reduced semiconductor/g-C3N4Photocatalyst and preparation method thereof
CN108203711B (en) Method for catalytically synthesizing ethyl caproate by using adsorption water in silicon oxide nano pore channels to enhance immobilized enzyme
CN105948111A (en) Preparation method for titanium dioxide material with specific crystal face
CN107983398B (en) Production method of nano-attapulgite composite catalyst for preparing 3-methylpyridine
CN105802248A (en) Method for preparing conductive composite with attapulgite as substrate
CN105692651A (en) Method for preparing 13X molecular sieve by using potash feldspar as raw material and 13X molecular sieve prepared by method
CN115894955A (en) Zirconium-based metal organic framework material, and synthesis method and application thereof
EP3570977A1 (en) A process for preparing a molding comprising zinc and a titanium-containing zeolite
CN110479240B (en) Vanadium-doped carbon-based Bi2O3Preparation method and application of composite material
KR20150056101A (en) Adsorbents using alum sludges and method of manufacturing the same
CN113105321A (en) Copper-based metal organic framework compound, preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120924

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee