KR20090038434A - Process for producing polymer film - Google Patents

Process for producing polymer film Download PDF

Info

Publication number
KR20090038434A
KR20090038434A KR1020097001451A KR20097001451A KR20090038434A KR 20090038434 A KR20090038434 A KR 20090038434A KR 1020097001451 A KR1020097001451 A KR 1020097001451A KR 20097001451 A KR20097001451 A KR 20097001451A KR 20090038434 A KR20090038434 A KR 20090038434A
Authority
KR
South Korea
Prior art keywords
conductive polymer
polymer film
forming
substrate
electrolytic
Prior art date
Application number
KR1020097001451A
Other languages
Korean (ko)
Inventor
야스시 오노
타케시 시노하라
타카시 카와베
덴 게 리 레 아오
Original Assignee
가부시키가이샤 아인테슬라
고쿠리츠다이가쿠호진 니이가타 다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 아인테슬라, 고쿠리츠다이가쿠호진 니이가타 다이가쿠 filed Critical 가부시키가이샤 아인테슬라
Publication of KR20090038434A publication Critical patent/KR20090038434A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/125Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3222Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more oxygen atoms as the only heteroatom, e.g. furan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/44Electrochemical polymerisation, i.e. oxidative or reductive coupling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

A method of forming a highly oriented, conductive polymer film on at least one surface of a base in the following manner. Either an electrolyte/organic substance thin layer comprising a conductive high-molecular monomer, a supporting electrolyte, and a (nonaqueous) organic solvent or an electrolyte/aqueous solution thin layer comprising electrolytically polymerizable organic molecules, a supporting electrolyte, and pure water is formed on a liquid-phase lower layer in a liquid vessel. A conductive base which serves as an anode and has been immersed beforehand in the liquid phase is pulled perpendicularly upward from the liquid phase at an extremely low and constant rate while applying an electric field to the anode and a metallic counter electrode to thereby conduct electrolytic polymerization. Namely, a thin film of a polymerizable organic layer forming a conductive polymer film is formed and this thin polymerizable organic layer is deposited on a base surface in an oriented state, and an electric field is applied to the anode and the cathode while moving the base to conduct electrolytic oxidative polymerization. Thus, a thin conductive polymer film oriented in one direction is formed on an oxide coating film.

Description

고분자막의 제조방법{Process for producing polymer film}Process for producing polymer film

본 발명은 도전성 기능 소자의 제조방법에 관한 것으로, 특히, 도전성 층으로서 도전성 고분자재료를 사용하는 전해 중합법에 의한 도전성 고분자막의 제조방법에 관한 것이다.TECHNICAL FIELD This invention relates to the manufacturing method of a conductive functional element. Specifically, It is related with the manufacturing method of the conductive polymer film by the electrolytic polymerization method using a conductive polymer material as a conductive layer.

경량이며 가공성이 용이한 고분자에 도전성의 기능을 부여하면, 이 기능을 살려 전자 소자, 광기능 소자, 전지, 센서를 비롯한 각종 기능 응용의 가능성이 시사되고, 그 중에서도 전해산화 중합법에 의한 고배향성 도전성 고분자막의 제작은, 이방성 재료, 양자 기능 재료, 분자 기능 재료, 분자 소자 등의 신규 기능성 재료 구축의 구동력이 되는 것이 종래부터 지적되어 왔다. 전해 중합법은, 중합성 분자를 포함하는 용액 중에 도전성 기판을 침지하여 통전(通電)하고, 고분자막을 형성시키는 수법으로, 고분자막은 기판 전면(全面)에 동시에 형성되어, 간단하게 필름상으로 합성할 수 있기 때문에 적극적인 가공법으로서 검토되고 있다. 그런데, 많은 도전성 고분자는, 그 공액 고분자가 낮은 내부 에너지를 갖기 때문에 용제 등에 불용(不溶), 불융(不融)이라고 하는 결점이 있다. 또한, LB(랭뮤어 블로젯)막법을 이용한 전해 중합법에 의한 고배향화 기술이 보고되었으나, 중합성 분자가 LB막을 형성할 필요가 있어, 적응 가능한 분자에 커다란 제한이 있었다. If the lightweight and easy-to-process polymer is provided with a conductive function, the use of this function suggests the possibility of various functional applications including an electronic device, an optical device, a battery, and a sensor, and among these, highly oriented conductivity by the electrolytic oxidation polymerization method. It has been pointed out conventionally that the production of a polymer film serves as a driving force for constructing new functional materials such as anisotropic materials, quantum functional materials, molecular functional materials, and molecular elements. The electrolytic polymerization method is a method of immersing a conductive substrate in a solution containing polymerizable molecules to conduct electricity and forming a polymer film. The polymer film is simultaneously formed on the entire surface of the substrate and can be easily synthesized in a film form. As it is possible, it is considered as an active processing method. By the way, many conductive polymers have the drawback of insoluble and insoluble in a solvent etc. because the conjugated polymer has low internal energy. In addition, although a high alignment technique has been reported by the electrolytic polymerization method using the LB (Rangmuer blowjet) film method, the polymerizable molecule needs to form an LB film, and there is a great limitation on the adaptable molecule.

구체적으로 전해 중합에 의해 도전성 고분자층을 제조하는 방법으로서, 특허문헌 1에는 도전성 고분자를 포함하는 전해 중합액에 전계를 인가하면서 양극이 되는 금속체에 전기적으로 접속된 양극 리드를 구비하는 양극 소자를 전계 중합액으로부터 천천히 끌어올림으로써 기체-액체 계면의 중합반응을 이용하여 도전성 고분자층을 형성하는 고체 전자 소자의 제조법이 개시되어 있다. 또한, 특허문헌 2에 있어서는, 기판 위에 친수성 폴리머와 소수성 폴리머의 블록 공중합체를 도포하고, 상기 폴리머의 융점보다 저온에서 상기 폴리머에 전계를 인가하여 마이크로 상분리 구조막을 제조하는 방법이 개시되어 있다. 더 나아가서는, 전해 중합성 유기물의 전해액과 양극으로 한 수은과 같은 액체금속에 의해 액상 계면을 형성하고 전해액 중에 설치한 음극과의 사이에서 전해를 행하여, 액상 계면에 유기물 박막을 중합 석출시키는 방법이 특허문헌 3에 개시되어 있다.Specifically, as a method of manufacturing a conductive polymer layer by electrolytic polymerization, Patent Literature 1 discloses a cathode device having an anode lead electrically connected to a metal body to be an anode while applying an electric field to an electrolytic polymerization liquid containing a conductive polymer. A method for producing a solid electronic device is disclosed in which a conductive polymer layer is formed by using a gas-liquid interface polymerization by slowly pulling out of an electric polymerization liquid. In addition, Patent Document 2 discloses a method of producing a microphase separation structure film by applying a block copolymer of a hydrophilic polymer and a hydrophobic polymer onto a substrate and applying an electric field to the polymer at a lower temperature than the melting point of the polymer. Furthermore, a method of forming a liquid interface with an electrolytic solution of an electrolytic polymerizable organic substance and a liquid metal such as mercury serving as an anode, and conducting electrolysis between a cathode provided in the electrolyte solution to polymerize and deposit an organic thin film on the liquid interface is provided. It is disclosed by patent document 3.

특허문헌 1에 있어서는, 전해 중합액 중에서 전계를 인가하기 위해 본래는 입괴상(粒塊狀)의 중합막을 형성하여 양극체인 기판을 끌어올림으로써 기체-액체 계면의 중합반응을 이용하여 도전성 고분자막을 얻기 때문에, 막두께가 균일하고, 또한 고배향된 박막을 얻는 것이 어렵다. 기능 소자의 응용분야 중 하나인 고체 전해 콘덴서에 있어서는, 이 두께의 불균일성이 나중의 외장 공정에 곤란을 초래하거나, 완성 후의 고체 전해 콘덴서의 사용 중에, 콘덴서 내에 불균형 열분포를 발생시켜, 제품의 열화(劣化)를 초래하는 경우가 있다. 또한, 특허문헌 2에서 개시되어 있는 마이크로 상분리 구조를 갖는 고분자막의 제조방법에서는, 배향성이 있는 친수성·소수성의 블록 공중합체막의 제조를 목적으로 하고 있어, 사전에 기판 위에 폴리머를 도포한 후에 전계를 인가하기 때문에 막두께를 얇고 균일하게 도포하는 것이 어렵다. 또한, 특허문헌 3에 있어서의 유기물 박막의 제조방법은, 액체금속 계면에서 전해액으로부터 전해 중합하여 고배향성 중합막을 형성시키고, 이것을 권취(捲取)하기 때문에 기판 위에 직접 고배향성 중합막을 형성시킬 수 없다. 또한, 중합막의 제조단계에서 수은과 같은 유해한 액체금속을 사용하는 것은, 노동환경위생, 사회환경의 오염이라는 측면에서도 바람직한 제조법이라고는 할 수 없다.In Patent Literature 1, in order to apply an electric field in an electrolytic polymerization liquid, a conductive polymer film is obtained using a gas-liquid interface polymerization by forming a polymerized film of a granular shape and pulling up a substrate which is an anode body. Therefore, it is difficult to obtain a thin film having a uniform film thickness and high orientation. In the solid electrolytic capacitor, which is one of application fields of the functional element, the nonuniformity of the thickness causes difficulty in the later exterior process, or unbalanced heat distribution in the capacitor during the use of the solid electrolytic capacitor after completion, resulting in deterioration of the product ( It may cause deterioration. Moreover, in the manufacturing method of the polymer film which has a micro phase separation structure disclosed by patent document 2, it aims at manufacture of an oriented hydrophilic hydrophobic block copolymer film, and applies an electric field after apply | coating a polymer on a board | substrate beforehand. Therefore, it is difficult to apply the film thickness thinly and uniformly. In addition, in the method for producing an organic thin film in Patent Document 3, a highly orientation polymerized film is formed by electrolytic polymerization from an electrolyte solution at a liquid metal interface and wound up, so that the highly orientation polymerized film cannot be directly formed on a substrate. . In addition, the use of harmful liquid metals such as mercury in the production stage of the polymerized film is not a preferable production method in terms of work environment sanitation and pollution of the social environment.

특허문헌 1 : 일본국 특허공개 제2000-353641호 공보Patent Document 1: Japanese Patent Publication No. 2000-353641

특허문헌 2 : 일본국 특허공개 제2005-314526호 공보Patent Document 2: Japanese Patent Publication No. 2005-314526

특허문헌 3 : 일본국 특허공개 평6-158375호 공보Patent Document 3: Japanese Patent Application Laid-open No. Hei 6-158375

발명의 개시Disclosure of the Invention

발명이 해결하고자 하는 과제Problems to be Solved by the Invention

본 발명의 과제는, 전술한 종래기술의 문제점을 해결하는 것으로서, 그 목적은, 도전성 고분자층을 형성하는 중합반응속도를 높이고, 또한, 박막이며 균일한 배향성이 양호한 도전성 고분자층을 기재 표면에 안정하게 계속해서 형성할 수 있도록 하는 것이다.The problem of the present invention is to solve the above-mentioned problems of the prior art, and its object is to increase the polymerization reaction rate for forming the conductive polymer layer, and to stabilize the surface of the substrate with a conductive polymer layer having a thin film and good uniform orientation. To continue to form.

과제를 해결하기 위한 수단Means to solve the problem

본 발명에 의한 도전성 고분자막의 제조방법은, 띠형상 중합 사이트로서 하층의 수용액상(水溶液相) 위에 박막상의 전해 액상을 형성시키고, 이것에 금속 대극(對極)을 접촉시킨다. 한편, 사전에 수용액상에 침지해둔 양극이 되는 도전성을 갖는 기재를 수용액상으로부터 위쪽으로 미속(微速)·일정속도로 끌어올리면서 양극과 금속 대극간에 전계를 인가하여 전해 중합을 행하고, 상기 기재의 적어도 한쪽의 표면에 고배향의 도전성 고분자막을 형성하는 방법이다. 즉, 먼저, 도전성 고분자막을 형성하는 전해액상의 박막을 형성시키고, 다음으로 이 전해액상의 박막을 기재 표면에 배향시키면서 이동시켜 양극과 음극의 극간에 전계를 인가하고 전해산화 중합을 행하여 고배향의 도전성 고분자 박막을 피복한 기재를 얻는다고 하는 제조법, 또는 도전성을 갖는 기재를 (비수계) 유기용매에 침지하고, 추가적으로 이 유기용매 위에, 전해 중합성 모노머, 물 및 지지(支持) 전해질로 구성되는 전해액 수용액 박층을 형성시켜, 상기 전해액 중에 음극을 설치하는 동시에 상기 기재를 양극으로 하여 전해 중합을 행하면서, 상기 유기용매상으로부터 전해액 수용액 박층을 경유하여 기재를 위쪽으로 미속·일정속도로 끌어올림으로써 상기 기재의 적어도 일방향의 면에 고배향의 도전성 고분자막을 형성하는 방법이다.In the method for producing a conductive polymer film according to the present invention, a thin film-like electrolytic liquid is formed on a lower aqueous solution phase as a band-shaped polymerization site, and a metal counter electrode is brought into contact with this. On the other hand, the electrolytic polymerization is carried out by applying an electric field between the positive electrode and the metal counter electrode while elevating the substrate having the conductivity to be the anode previously immersed in the aqueous solution from the aqueous phase upward at a constant speed and a constant speed. It is a method of forming a highly-oriented conductive polymer film on at least one surface. That is, first, an electrolyte solution thin film forming a conductive polymer film is formed, and then the electrolyte solution thin film is moved while being oriented on the surface of the substrate, an electric field is applied between the poles of the anode and the cathode, and electrolytic oxidation polymerization is performed to conduct a highly aligned conductive polymer. A manufacturing method for obtaining a substrate coated with a thin film, or a conductive substrate is immersed in a (non-aqueous) organic solvent, and further, on this organic solvent, an aqueous electrolyte solution thin layer composed of an electrolytic polymerizable monomer, water, and a supporting electrolyte. By forming a negative electrode in the electrolyte solution and performing electrolytic polymerization using the base material as an anode, while pulling the substrate upwards at a constant speed and constant speed from the organic solvent phase via a thin electrolyte solution solution. It is a method of forming a highly-oriented conductive polymer film in at least one surface direction.

발명의 효과Effects of the Invention

이상 설명한 바와 같이, 본 발명의 도전성 고분자막의 제조방법은, 도전성을 갖는 기재를 수용액에 침지하고, 이 수용액의 계면 위에, 전해 중합성 모노머, 유기용매 및 지지 전해질로 되는 전해액상에 음극을 설치하여, 기재를 양극으로 하여 전해 중합을 행하면서, 상기 수용액으로부터 기재를 위쪽으로 미속으로 끌어올림으로써, 상기 기재의 적어도 한쪽 면에 전해 중합성 폴리머의 배향성이 매우 좋고, 막두께가 얇으며 또한 균일한 도전성 고분자층을 성막할 수 있다. 또한, 전해 중합성 모노머, 물 및 지지 전해질로 되는 전해액 수용액상에 음극을 설치하고, 유기용매에 침지해둔 도전성을 갖는 기재를 상기 유기용매로부터 위쪽으로 끌어올림으로써, 상기 기재의 적어도 한쪽 면에 전해 중합성 폴리머의 배향성이 매우 양호하고, 막두께가 얇으며, 또한, 균일한 도전성 고분자층을 성막할 수 있다.As described above, in the method for producing a conductive polymer film of the present invention, a substrate having conductivity is immersed in an aqueous solution, and a negative electrode is provided on an electrolyte solution comprising an electrolytic polymerizable monomer, an organic solvent, and a supporting electrolyte on the interface of the aqueous solution. The electrolytic polymerization of the electrolytic polymerizable polymer is very good on at least one side of the substrate by thinning the substrate upward from the aqueous solution while performing electrolytic polymerization using the substrate as an anode, and the film thickness is uniform and uniform. A conductive polymer layer can be formed into a film. In addition, an anode is provided on an aqueous electrolyte solution consisting of an electrolytic polymerizable monomer, water, and a supporting electrolyte, and electrolytically immersed in at least one side of the substrate by pulling a conductive substrate immersed in an organic solvent upwards from the organic solvent. The orientation of the polymerizable polymer is very good, the film thickness is thin, and a uniform conductive polymer layer can be formed.

도면의 간단한 설명Brief description of the drawings

도 1은 본 발명의 순수층의 계면 위에 전해액 유기물 박층을 배치했을 때의 도전성 고분자 박막의 형성 개략도이다.1 is a schematic diagram of formation of a conductive polymer thin film when an electrolyte solution organic thin layer is disposed on an interface of a pure layer of the present invention.

도 2는 본 발명의 유기용매층의 계면 위에 전해액 수용액 박층을 배치했을 때의 도전성 고분자 박막의 형성 개략도이다.FIG. 2 is a schematic diagram of formation of a conductive polymer thin film when an aqueous electrolyte solution thin layer is disposed on an interface of an organic solvent layer of the present invention. FIG.

부호의 설명Explanation of the sign

1 전해액 유기물 박층1 electrolyte organic thin layer

2 전해액 수용액 박층2 electrolyte solution thin layer

3 상층과 상용성이 없는 순수층Pure layer without compatibility with 3 upper layers

4 상층과 상용성이 없는 유기용매층4 Organic Solvent Layer Incompatible with Upper Layer

5 금속 대극(음극)5 metal counter electrode (cathode)

6 기재(양극)6 base materials (anode)

7 전원7 power

발명을 실시하기 위한 최선의 형태Best Mode for Carrying Out the Invention

종래의 도전성 고분자막의 제조방법은, 전해 중합시에 막형성과 전해액 유기물질의 중합을 행하는 방법이 주된 것인 반면, 본 발명에 의한 도전성 고분자막의 제조방법은, 전해 중합 전에 전해 중합성 모노머, 유기용매 및 지지 전해질로 되는 전해액상 또는, 전해 중합성 모노머, 물 및 지지 전해질로 되는 전해액상의 박막을 형성하고, 이 박막을 유지하면서 전해 중합을 행하여 도전성 고분자막을 형성시킨다고 하는 2단계의 프로세스를 거치는 것에 특징이 있다.The conventional method for producing a conductive polymer film is mainly a method of forming a film and polymerizing an electrolyte organic material during electrolytic polymerization, whereas the method for producing a conductive polymer film according to the present invention includes an electrolytic polymerizable monomer and an organic polymer before electrolytic polymerization. A two-step process of forming a conductive polymer film by forming a thin film of an electrolyte solution consisting of a solvent and a supporting electrolyte, or of an electrolyte solution consisting of an electrolytic polymerizable monomer, water and a supporting electrolyte, and carrying out electrolytic polymerization while maintaining the thin film. There is a characteristic.

본 발명의 도전성 고분자 박막의 제조방법을 단계적으로 나타내자면, (1) 띠형상 중합 사이트인 전해 중합성 모노머, 유기용매 및 지지 전해질로 되는 전해액 또는, 전해 중합성 모노머, 물 및 지지 전해질로 되는 전해액 수용액의 박층을 상용성이 없는 액상의 위에 형성시키고, (2) 상기 전해액상에 금속 대극을 접촉시키고, 사전에 상용성이 없는 액상에 양극이 되는 도전성을 갖는 기재를 침지해둔다. (3) 상기 기재를 상기 전해액상과 상용성이 없는 액상으로부터 위쪽으로 미속·일정속도로 끌어올리면서 양극과 금속 대극간에 전계를 인가하여 전계 중합을 행한다. (4) 이렇게 하여, 얻어진 적어도 상기 기재의 한쪽 표면 전역에 동일 방향으로 배향된 도전성 고분자 박막을 소정의 크기와 형상으로 성형해서 사용한다.The method for producing a conductive polymer thin film of the present invention is described in stages. (1) Electrolyte polymerizable monomer, an organic solvent and a supporting electrolyte which is a band-shaped polymerization site, or an electrolyte solution comprising an electrolytic polymerizable monomer, water and a supporting electrolyte. A thin layer of aqueous solution is formed on the incompatible liquid phase, (2) a metal counter electrode is brought into contact with the electrolyte solution, and a substrate having conductivity which becomes an anode is immersed in the previously incompatible liquid phase. (3) The electric field polymerization is carried out by applying an electric field between the positive electrode and the metal counter electrode while elevating the substrate from the liquid phase incompatible with the electrolytic solution phase upwards at a constant speed and constant speed. (4) Thus, the conductive polymer thin film oriented in the same direction over at least one surface of the said base material obtained is shape | molded to a predetermined magnitude | size and shape, and is used.

전해 중합성 모노머, 유기용매 및 지지 전해질로 되는 전해액상 또는, 전해 중합성 모노머, 물 및 지지 전해질로 되는 전해액 수용액상을 박층으로 하기 위해 상기 전해액상과 상용성이 부족하여 균일한 박층의 형성이 가능한 액상을 하층으로 하고, 그 액상 표면 위에 상기 전해액 박층을 형성시킨다. 박층을 형성시키기 위해 상기 전해액상의 저점도화와 전해 중합을 가능하게 하기 위해 상기 전해액에는, 유기용매 및 지지 전해질을 사용하여 전해 중합성 모노머를 용해할 수 있다.In order to form a thin layer of an electrolyte solution consisting of an electrolytic polymerizable monomer, an organic solvent and a supporting electrolyte, or an aqueous solution solution of an electrolytic polymerizable monomer, water and a supporting electrolyte, formation of a uniform thin layer is insufficient. The liquid phase is made possible as a lower layer, and the said electrolyte solution thin layer is formed on the liquid surface. In order to enable low viscosity and electrolytic polymerization of the electrolyte phase to form a thin layer, an electrolytic polymerizable monomer may be dissolved in the electrolyte using an organic solvent and a supporting electrolyte.

하층이 되는 액상에는, 전해 중합성 모노머, 유기용매 및 지지 전해질로 되는 전해액상 또는, 전해 중합성 모노머, 물 및 지지 전해질로 되는 전해액상이 하층인 액상 표면에 확산되어 박막을 형성하기 용이하도록 유기상과 수상의 상용성을 향상시키지 않는 범위에서 계면활성제 등을 용해시켜도 된다. 한편, 상기 전해액상이 하층 표면에 박막을 형성하기 용이하도록 상기 전해액에 계면활성제 등을 첨가해도 된다. 어느 경우에도, 이들 첨가물이 전해 중합으로 형성되는 도전성 고분자의 배향성을 저해해서는 안 된다. 또한, 전해액상이 수용액 또는 유기용매 계면에서 박막을 형성하기 위해서는, 전해 중합성 모노머, 유기용매 및 지지 전해질을 함유해서 되는 전해액상은, 하층인 액상보다도 액비중이 작은 것이 바람직하지만, 상기 전해액상을 기재와 함께 이동하는 과정에서 기재 표면에 상기 전해액 박층이 유지된다면 반드시 비중의 대소에 구애받지 않으나, 안정하게 박층을 형성하기 위해서는 상기 전해액의 비중은 하층인 액상의 액비중보다 작은 쪽이 바람직하다.In the liquid phase serving as the lower layer, the organic phase and the electrolytic solution phase composed of the electrolytic polymerizable monomer, the organic solvent and the supporting electrolyte, or the electrolytic solution phase composed of the electrolytic polymerizable monomer, the water and the supporting electrolyte are diffused onto the lower liquid phase surface to easily form a thin film. You may dissolve surfactant etc. in the range which does not improve the compatibility of water phase. On the other hand, you may add surfactant etc. to the said electrolyte solution so that the said electrolyte solution phase may form a thin film on the lower layer surface easily. In any case, these additives should not inhibit the orientation of the conductive polymer formed by electrolytic polymerization. In order to form a thin film at the interface of an aqueous solution or an organic solvent, the electrolyte solution phase containing an electrolytic polymerizable monomer, an organic solvent and a supporting electrolyte is preferably smaller than the liquid phase in the lower layer. If the electrolyte thin layer is maintained on the surface of the substrate in the process of moving with the substrate is not necessarily limited to the size of the specific gravity, but in order to form a stable thin layer, the specific gravity of the electrolyte is preferably smaller than the liquid specific gravity of the lower liquid layer.

상기 전해액상에 포함되는 전해 중합성 모노머로서는, 아닐린, 페놀, 프탈로시아닌, 피롤, 티오펜, 푸란 또는 그들의 유도체, 또는 도전성을 갖지 않는 것이더라도 도펀트(dopant)를 함유시킴으로써 전해 중합 후에 도전성을 갖는 유기화합물이 사용되고, 전해 중합하여 생성한 도전성 고분자막의 도전성에 지장이 없는 범위라면 다른 중합성 모노머를 병용해도 된다.Examples of the electrolytic polymerizable monomer included in the electrolyte solution include an aniline, a phenol, a phthalocyanine, a pyrrole, a thiophene, a furan or derivatives thereof, or an organic compound having conductivity after electrolytic polymerization by containing a dopant even if it does not have conductivity. As long as this is used and it is a range in which the electroconductivity of the electroconductive polymer film | membrane produced | generated by electropolymerization does not have a problem, you may use another polymerizable monomer together.

상기 전해액에 사용되는 유기용매에는, 전해 중합시에 지장이 없는 아세토니트릴, 니트로벤젠, 헥산, 톨루엔, 디에틸에테르, 벤젠 등의 비중이 작고, 하층과의 상용성이 없는 유기용매를 단독 용매 또는 혼합 용매로서 사용할 수 있다. 또한, 다른 유기용매에 지지 전해질을 첨가해서 도전성을 부여하고 전해 중합 가능한 전해액상으로 해도 된다. In the organic solvent used in the electrolyte, specific solvents such as acetonitrile, nitrobenzene, hexane, toluene, diethyl ether, benzene, etc., which are not affected during electrolytic polymerization, have a small specific gravity, and an organic solvent having no compatibility with the lower layer is used as a sole solvent or It can be used as a mixed solvent. In addition, a supporting electrolyte may be added to another organic solvent to impart conductivity, and may be an electrolyte solution capable of electrolytic polymerization.

또한, 사용하는 유기용매의 유전율이 높은(염을 용해하기 쉬운) 유기용매에는, 일반적인 지지염을 첨가하는 것이 바람직하다. 반대로, 유전율이 낮은(염을 용해하기 어려운) 유기용매에는 크라운에테르, 프탈로시아닌 등과 같은 포접화합물이나 이온성 액체를 혼합하는 것이 바람직하다.In addition, it is preferable to add a general supporting salt to the organic solvent having a high dielectric constant (easy to dissolve the salt) of the organic solvent to be used. On the contrary, it is preferable to mix an clathrate compound such as crown ether and phthalocyanine or an ionic liquid in an organic solvent having a low dielectric constant (which is difficult to dissolve salts).

도전성을 갖는 기재를 비수계의 유기용제에 침지하고, 이 비수계 유기용제의 액면 위에 전해액 수용액 박층을 형성시켜서 전해 중합하면서 기재를 미속으로 끌어올리는 경우에 사용하는 비수계 용제로서는, 상기 전해액상과 상용성이 없는 용제로, 상기 전해액상보다 비중이 크며 비도전성 액체일 필요가 있어, 퍼플루오로알칸 등의 각종 알칸류, 퍼플루오로시클로에테르 등의 물에 난용성인 에테르류, 트리클로로에틸렌, 테트라클로로에틸렌, 염화메틸렌(디클로로메탄) 등의 염소계 용제, 니트로벤젠 등이 사용된다.The non-aqueous solvent used when the base material having conductivity is immersed in a non-aqueous organic solvent, and a thin electrolyte layer is formed on the liquid surface of the non-aqueous organic solvent, and the substrate is pulled up to the bottom in the middle of electrolytic polymerization, is used as the electrolyte solution phase. It is a solvent which is not compatible with the solvent, and has a specific gravity greater than that of the electrolyte and needs to be a non-conductive liquid, and ethers, trichloroethylene, which are poorly soluble in water such as various alkanes such as perfluoroalkane, perfluorocycloether, Chlorine solvents, such as tetrachloroethylene and methylene chloride (dichloromethane), nitrobenzene, etc. are used.

본 발명에 사용하는 기재로서는, 전해 중합시에 전계를 인가하는 양극이 될 수 있는 소재라면 특별히 한정은 없다. 통상, 금, 백금, 구리, 탈륨, 알루미늄, 텅스텐, 니오브 등의 도전성 금속 및/또는 이들 금속의 산화물로부터 선택된 것이 사용되고, 그 형상은 특별히 한정되지 않고 하니컴형상, 막대형상 또는 시트형상의 것을 일반적으로 사용할 수 있다. As a base material used for this invention, if it is a raw material which can be an anode which applies an electric field at the time of electrolytic polymerization, there will be no limitation in particular. Usually, those selected from conductive metals such as gold, platinum, copper, thallium, aluminum, tungsten, niobium, and / or oxides of these metals are used, and the shape thereof is not particularly limited, and honeycomb, rod, or sheet form is generally used. Can be used.

도전성을 갖는 기재를 침지한 수용액 또는 유기용매 표면에 형성된 전해 중합성 모노머, 지지 전해질 및 유기용매 또는 물로 되는 전해액상은, 기재가 이동하는 동안은 양극이 되는 기재 표면에 밀착한 상태에서 유지될 필요가 있어, 상기 액상으로부터 위쪽으로 기재를 이동시키는 속도를 미속으로, 또한 일정하게 유지하는 것이 중요하다. 기재 위에서 상기 전해 중합성 모노머 또는 도펀트를 함유시킴으로써 도전성을 갖는 유기화합물의 배향 및 막두께가 안정하게 유지된 상태에서, 양극 및 음극의 극간에 전계를 인가하여 전해 중합을 행하고, 고배향성의 도전성 고분자 박막을 형성하는 것이다.The electrolytic polymerizable monomer, the supporting electrolyte, and the electrolyte solution formed of the organic solvent or water formed on the surface of the aqueous solution or organic solvent immersing the conductive substrate must be kept in close contact with the surface of the substrate to be the anode while the substrate is moved. Therefore, it is important to keep the speed of moving the substrate upward from the liquid phase at a slow speed and constant. By incorporating the electrolytic polymerizable monomer or dopant on the substrate, electrolytic polymerization is performed by applying an electric field between the poles of the positive electrode and the negative electrode in a state in which the orientation and film thickness of the conductive organic compound are stably maintained. To form a thin film.

본 발명의 도전성 고분자 박막을 형성하는 공정을 도면을 사용하여 설명한다.The process of forming the conductive polymer thin film of this invention is demonstrated using drawing.

도 1은 전해액 유기물 박층으로부터 목적으로 하는 도전성 고분자 박막을 형성할 때, 도 2는, 전해액 수용액 박층으로부터 목적으로 하는 도전성 고분자 박막을 형성할 때의 개략 공정도를 각각 나타낸다.When forming the target conductive polymer thin film from the electrolyte solution organic thin layer, FIG. 2 shows the schematic process diagram at the time of forming the target conductive polymer thin film from the electrolyte solution aqueous solution layer, respectively.

전자의 경우는, 도 1에 나타내는 바와 같이, 도전성을 갖는 기재(양극)(6)를 상층과 상용성이 없는 순수층(3)에 침지하고, 이 순수용액(3)의 상면에 배치한, 전해 중합성 모노머, 유기용매 및 지지 전해질로 구성되는 전해액 유기물 박층(1)에 상기 기재(6)를 접촉시킨다. 상기 전해액 유기물 박층(1)에는, 음극(5)을 접촉시키고 있다. 상기 기재(6)를 미속·일정속도로 위쪽방향으로 끌어올리면서 전해 중합하여 도전성 고분자 박막을 상기 기재 표면에 형성한다. 위쪽방향으로서는, 수직방향이 가장 적당하다.In the former case, as shown in FIG. 1, the conductive base material (anode) 6 was immersed in the pure layer 3 which is incompatible with the upper layer, and disposed on the upper surface of the pure solution 3, The substrate 6 is brought into contact with the electrolyte solution organic thin layer 1 composed of an electrolytic polymerizable monomer, an organic solvent, and a supporting electrolyte. The cathode 5 is brought into contact with the electrolyte solution organic thin layer 1. The substrate 6 is electrolyzed while being pulled upward at a constant speed and at a constant speed to form a conductive polymer thin film on the surface of the substrate. As the upward direction, the vertical direction is most suitable.

또한, 도 2에는, 도전성을 갖는 기재(6)를 상층과 상용성이 없는 유기용매층(4)에 침지하고, 이 유기용매층(4)의 상면에 배치한, 전해 중합성 모노머, 물 및 지지 전해질로 되며, 또한 음극(5)을 접촉시키고 있는 전해 수용액 박층(2)에 접촉시키면서 기재(6)를 위쪽방향으로 끌어올린다. 도 1과 마찬가지로, 기재 위에 도전성 고분자 박막을 형성할 수 있다.In addition, in FIG. 2, the electroconductive polymerizable monomer, water, which immersed the electroconductive base material 6 in the organic solvent layer 4 which is incompatible with an upper layer, and was arrange | positioned at the upper surface of this organic solvent layer 4 is shown. The base material 6 is pulled upward while being in contact with the electrolyte solution thin layer 2 which becomes a supporting electrolyte and makes the negative electrode 5 contact. As in FIG. 1, a conductive polymer thin film may be formed on a substrate.

다음으로, 본 발명의 실시예를 들어 구체적으로 기술하나, 본 발명은 반드시 실시예에서 나타내는 범위에 그치는 것은 아니다.Next, although the Example of this invention is given and described concretely, this invention is not necessarily limited to the range shown by an Example.

(실시예 1)(Example 1)

전해 중합성 모노머로서 피롤 0.1 mol/l의 피롤을 사용하고, 지지 전해질, 유기용매로서 각각 1-부틸-3-메틸이미다졸륨헥사플루오로인산염, 초산에틸에 균일하게 용해하여 얻은 전해 중합액을 순수층 위에 소량 적하하여 전해 중합액 박층을 형성하고, 이 박층에 백금 대극을 접촉시켰다. 한편, 사전에 순수층에 침지해둔 기재인 산화물 전극인 ITO(산화인듐:주석)를 딥 코터(미정속 인상장치)에 의해 연직방향으로 끌어올리면서, 대극과 산화물 전극간에 15 V의 전압을 8시간 인가하여 산화물 전극 위에 균일한 막두께 10 ㎛의 도전성 고분자막을 형성시켰다.Pyrrole of 0.1 mol / l pyrrole was used as the electrolytic polymerizable monomer, and the electrolytic polymerization solution obtained by uniformly dissolving in 1-butyl-3-methylimidazolium hexafluorophosphate and ethyl acetate as a supporting electrolyte and an organic solvent, respectively A small amount was added dropwise onto the pure layer to form an electrolytic polymerization liquid thin layer, and the platinum counter electrode was brought into contact with the thin layer. On the other hand, while ITO (indium oxide: tin), which is an oxide electrode, which is a substrate previously immersed in a pure layer, is pulled up in a vertical direction by a dip coater (constant speed pulling device), a voltage of 15 V is applied between the counter electrode and the oxide electrode. It was applied over time to form a conductive polymer film having a uniform film thickness of 10 mu m on the oxide electrode.

(실시예 2)(Example 2)

도전성을 갖는 기재인 금속 탈륨을 클로로포름 중에 침지하고, 이 유기용매인 클로로포름 표면 위에 전해 중합성 유기분자로서 아닐린 농도 0.12 mol/l가 되도록 지지 전해질 1N-KCl로 전해액 수용액상을 형성하고, 이 상에 백금 대극을 접촉시켰다. 사전에 클로로포름 중에 침지시켜둔 기재인 금속 탈륨을 실시예 1과 동일하게 딥 코터에 의해 연직방향으로 끌어올리면서, 백금 대극과 금속 탈륨간에 15 V의 전압을 9시간 인가하여 탈륨 기재 위에 균일한 막두께 8 ㎛의 도전성 고분자박막을 형성시켰다.A metal thallium, which is a conductive substrate, is immersed in chloroform, and an aqueous solution of an electrolyte solution is formed on the surface of the organic solvent chloroform with a supporting electrolyte 1N-KCl so as to have an aniline concentration of 0.12 mol / l as an electrolytic polymerizable organic molecule. The platinum counter electrode was contacted. The metal thallium, which is a substrate previously immersed in chloroform, is vertically pulled up by a dip coater in the same manner as in Example 1, and a voltage of 15 V is applied between the platinum counter electrode and the metal thallium for 9 hours to provide a uniform film on the thallium substrate. A conductive polymer thin film having a thickness of 8 μm was formed.

Claims (14)

도전성을 갖는 기재를 수용액에 침지하고, 추가적으로 이 수용액의 계면 위에, 전해 중합성 모노머, 유기용매 및 지지 전해질로 되는 전해액상을 배치하고, 상기 전해액 중에 음극을 설치하여, 상기 기재를 양극으로서 전해 중합을 행하면서, 상기 수용액으로부터 기재를 위쪽으로 미속으로 끌어올림으로써, 상기 기재의 적어도 한쪽 면에 고배향의 도전성 고분자막을 형성하는 방법.The substrate having conductivity is immersed in an aqueous solution, and an electrolyte solution phase consisting of an electrolytic polymerizable monomer, an organic solvent, and a supporting electrolyte is further disposed on the interface of the aqueous solution, and a negative electrode is provided in the electrolyte solution, and the substrate is electrolytically polymerized as an anode. A method of forming a highly-oriented conductive polymer film on at least one surface of the substrate by pulling the substrate upward from the aqueous solution upwards in a slow motion. 제1항에 있어서,The method of claim 1, 상기 전해액이, 물에 난용인 전해 중합성 모노머 또는 도펀트를 함유시킴으로써 도전성을 갖는 유기화합물 중 어느 하나를 사용하는 것을 특징으로 하는 도전성 고분자막을 형성하는 방법.A method for forming a conductive polymer film, wherein the electrolyte solution contains any of an organic compound having conductivity by containing an electrolytic polymerizable monomer or a dopant which is poorly soluble in water. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 전해 중합성 모노머가, 아닐린, 페놀, 프탈로시아닌, 피롤, 티오펜, 푸란 또는 그들의 유도체로부터 선택된 한 성분 이상을 사용하는 것을 특징으로 하는 도전성 고분자막을 형성하는 방법.A method for forming a conductive polymer film, wherein the electrolytic polymerizable monomer uses at least one component selected from aniline, phenol, phthalocyanine, pyrrole, thiophene, furan or derivatives thereof. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 지지 전해질이, 음이온과 양이온을 포함하는 물에 난용성인 유기염을 함유하는 용액인 것을 특징으로 하는 도전성 고분자막을 형성하는 방법.And the supporting electrolyte is a solution containing an organic salt that is poorly soluble in water containing anions and cations. 제4항에 있어서,The method of claim 4, wherein 상기 음이온 성분이, F4 -, BF4 -, AsF5 -, SbF5 -, PF6 -, PF5 -, I3 -, PF4 -, ClO4 -, I-, Br-, (CF3SO2)2N-, CF3SO3 - 및 방향족 설폰산 음이온 또는 그들의 유도체, 불소 함유 유기 음이온 또는 방향족 카르복실산 음이온으로부터 선택된 한 성분 이상인 것을 특징으로 하는 도전성 고분자막을 형성하는 방법.Wherein the anion moiety, F 4 -, BF 4 - , AsF 5 -, SbF 5 -, PF 6 -, PF 5 -, I 3 -, PF 4 -, ClO 4 -, I -, Br -, (CF 3 SO 2) 2 N -, CF 3 SO 3 - and an aromatic sulfonic acid anion or a method of forming a conductive polymer film, characterized in that at least one component selected from derivatives thereof, fluorine-containing organic anion or an aromatic carboxylic acid anion. 제4항에 있어서,The method of claim 4, wherein 상기 양이온 성분이, 이미다졸륨염, 피리디늄염의 방향족계, 포스포늄염, 피리디늄염, 테트라알킬암모늄염, 알킬암모늄염의 지방족계로부터 선택된 한 성분 이상인 것을 특징으로 하는 도전성 고분자막을 형성하는 방법.And said cationic component is at least one component selected from an aliphatic system of an imidazolium salt, a pyridinium salt, a phosphonium salt, a pyridinium salt, a tetraalkylammonium salt, and an alkylammonium salt. 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 유기용매가, 물과 상용성이 없는 유기용매로부터 선택된 1종 이상의 성분인 것을 특징으로 하는 도전성 고분자막을 형성하는 방법.And wherein said organic solvent is at least one component selected from organic solvents which are incompatible with water. 제1항 내지 제7항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 7, 상기 전해액이, 수용액과 상용성이 없고, 수용액보다 비중이 작은 액체인 것을 특징으로 하는 도전성 고분자막을 형성하는 방법.The electrolytic solution is a liquid which is incompatible with an aqueous solution and has a specific gravity smaller than that of the aqueous solution. 도전성을 갖는 기재를 유기용매에 침지하고, 추가적으로 이 유기용매의 계면 위에, 전해 중합성 모노머, 물 및 지지 전해질을 포함하는 전해액 수용액상을 배치하고, 상기 전해액 수용액상 중에 음극을 설치하여, 상기에 의해 상기 기재의 적어도 한쪽 면에 고배향의 도전성 고분자막을 형성하는 방법.The substrate having conductivity is immersed in an organic solvent, and an aqueous electrolyte solution phase containing an electrolytic polymerizable monomer, water, and a supporting electrolyte is further disposed on the interface of the organic solvent, and a negative electrode is provided in the aqueous electrolyte solution phase. Forming a highly-oriented conductive polymer film on at least one surface of the substrate. 제1항에 있어서,The method of claim 1, 상기 전해액이, 중합 후에 도펀트가 함유되어 있는 경우에 도전성을 갖는 고분자가 되는, 유기용매에 난용인 전해 중합성 모노머를 포함하고 있는 것을 특징으로 하는 도전성 고분자막을 형성하는 방법.The said electrolytic solution contains the electrolytically polymerizable monomer which is poorly soluble in the organic solvent which becomes a conductive polymer when a dopant is contained after superposition | polymerization, The method of forming the conductive polymer film characterized by the above-mentioned. 제9항 또는 제10항에 있어서,The method of claim 9 or 10, 전해 중합성 모노머가, 아닐린, 페놀, 프탈로시아닌, 피롤, 티오펜, 푸란 또는 그들의 유도체로부터 선택된 수용성의 한 성분 이상을 사용하는 것을 특징으로 하는 도전성 고분자막을 형성하는 방법.A method for forming a conductive polymer film, wherein the electrolytically polymerizable monomer uses at least one water-soluble component selected from aniline, phenol, phthalocyanine, pyrrole, thiophene, furan or derivatives thereof. 제9항에 있어서,The method of claim 9, 상기 전해액 수용액상 중의 지지 전해질이, 유기물에 난용성인 이온성 액체 또는 염화물, 요오드화물, 황산염, 인산염, 탄산염으로부터 선택된 용액을 사용하는 것을 특징으로 하는 도전성 고분자막을 형성하는 방법.A method for forming a conductive polymer film, wherein the supporting electrolyte in the aqueous electrolyte solution phase uses an ionic liquid or a solution selected from chlorides, iodides, sulfates, phosphates, and carbonates that are poorly soluble in organic matter. 제9항 내지 제12항 중 어느 한 항에 있어서,The method according to any one of claims 9 to 12, 상기 유기용매상이, 전해액 수용액상과 상용성이 없고, 상기 전해액 수용액상보다 비중이 크며 비도전성 액체인 것을 특징으로 하는 도전성 고분자막을 형성하는 방법.The organic solvent phase is incompatible with the aqueous electrolyte solution phase, has a specific gravity greater than that of the aqueous electrolyte solution phase, and a method for forming a conductive polymer film, characterized in that the non-conductive liquid. 제1항 내지 제13항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 13, 상기 기재가, 도전성의 유기물, 금속, 금속산화물 또는 그들을 피복한 것으로부터 선택된, 하니컴형상, 막대형상 또는 시트형상의 것인 것을 특징으로 하는 고배향성 도전성 고분자막을 형성하는 방법.A method for forming a highly oriented conductive polymer film, wherein the base material is in the form of a honeycomb, a rod, or a sheet, selected from conductive organic materials, metals, metal oxides or coating them.
KR1020097001451A 2006-06-23 2007-06-18 Process for producing polymer film KR20090038434A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2006-174198 2006-06-23
JP2006174198A JP2008001836A (en) 2006-06-23 2006-06-23 Process of producing polymer film

Publications (1)

Publication Number Publication Date
KR20090038434A true KR20090038434A (en) 2009-04-20

Family

ID=38833381

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097001451A KR20090038434A (en) 2006-06-23 2007-06-18 Process for producing polymer film

Country Status (4)

Country Link
JP (1) JP2008001836A (en)
KR (1) KR20090038434A (en)
CN (1) CN101472685A (en)
WO (1) WO2007148639A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101022208B1 (en) * 2008-10-08 2011-03-16 광 석 서 Method for Preparing Organic Solvent Dispersion of Conducting Polymers Using Polymeric Ionic Liquid and the Conducting Polymer by Prepared using the same
CN101935398B (en) * 2010-06-24 2012-03-21 中国科学院宁波材料技术与工程研究所 High-electric conductivity aromatic polymer ionic liquid diaphragm material and preparation method thereof
CN101983758B (en) * 2010-10-21 2013-06-12 中国科学院苏州纳米技术与纳米仿生研究所 Polymer/inorganic nanometer composite separation membrane and preparation method thereof
US11058444B2 (en) 2017-12-11 2021-07-13 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US10874411B2 (en) 2018-06-22 2020-12-29 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US11612430B2 (en) 2019-03-19 2023-03-28 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US11974752B2 (en) 2019-12-12 2024-05-07 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US11963713B2 (en) 2021-06-02 2024-04-23 Covidien Lp Medical treatment system
US11944374B2 (en) 2021-08-30 2024-04-02 Covidien Lp Electrical signals for retrieval of material from vessel lumens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3284993B2 (en) * 1998-12-21 2002-05-27 日本電気株式会社 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2000353641A (en) * 1999-06-14 2000-12-19 Nec Corp Manufacture of solid electronic element
JP2001044080A (en) * 1999-07-30 2001-02-16 Nec Corp Solid electrolytic capacitor and manufacture thereof

Also Published As

Publication number Publication date
WO2007148639A1 (en) 2007-12-27
JP2008001836A (en) 2008-01-10
CN101472685A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
KR20090038434A (en) Process for producing polymer film
US7125479B2 (en) Polymeric compositions comprising thieno[3,4-b]thiophene, method of making, and use thereof
US8644003B2 (en) Electrolytic capacitor element and process for producing the same
Han et al. Morphology of electrodeposited poly (3, 4-ethylenedioxythiophene)/poly (4-styrene sulfonate) films
Vorotyntsev et al. Mechanisms of electropolymerization and redox activity: fundamental aspects
Ren et al. Ionic and electronic conductivity of poly‐(3‐methylpyrrole‐4‐carboxylic acid)
WO2007008977A1 (en) Polymers of thieno[3,4-b]furan, method of making, and use thereof
Villemin et al. Improved adhesion of poly (3, 4-ethylenedioxythiophene)(PEDOT) thin film to solid substrates using electrografted promoters and application to efficient nanoplasmonic devices
KR20180104126A (en) Conductive polymer
Atobe et al. Preparation of highly aligned arrays of conducting polymer nanowires using templated electropolymerization in supercritical fluids
Geetha et al. Studies on polypyrrole film in room temperature melt
Lv et al. Micro/Nano‐Fabrication of Flexible Poly (3, 4‐Ethylenedioxythiophene)‐Based Conductive Films for High‐Performance Microdevices
AU2011235617B2 (en) Dye-sensitised solar cell with nickel cathode
US8120893B2 (en) Tether-containing conducting polymers
RU2035803C1 (en) Process of manufacture of conductive polymer coat on substrate
Han et al. Electropolymerization of polypyrrole on PFIL–PSS-modified electrodes without added support electrolytes
JP2001163960A (en) Method for preparing electrically conductive polymer material and solid electrolytic capacitor
Onoda et al. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures
US7678880B2 (en) Molecular oriented polymer gel and cast film with self-organizable amphiphilic compound as template, and their production methods
JP2008239835A (en) Production method of nano-cylinder-type electroconductive polymer material
JP2016062651A (en) Method for producing conductive composite, and conductive composite
Zotti et al. Mono-and multilayers of oligoethylene oxide-modified poly (3, 4-ethylenedioxythiophene) on ITO and glass surfaces
JP5954558B2 (en) Method for producing polymer membrane and electropolymerization apparatus for polymer membrane production
JP2001163983A (en) Polymerization additive
WO2008059632A1 (en) Method of forming multilayer thin film

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid