KR20090033569A - Heat pressure-type jig for manufacturing 5-layer membrane - Google Patents

Heat pressure-type jig for manufacturing 5-layer membrane Download PDF

Info

Publication number
KR20090033569A
KR20090033569A KR1020070098651A KR20070098651A KR20090033569A KR 20090033569 A KR20090033569 A KR 20090033569A KR 1020070098651 A KR1020070098651 A KR 1020070098651A KR 20070098651 A KR20070098651 A KR 20070098651A KR 20090033569 A KR20090033569 A KR 20090033569A
Authority
KR
South Korea
Prior art keywords
guide
plate
metal
gdl
manufacturing
Prior art date
Application number
KR1020070098651A
Other languages
Korean (ko)
Other versions
KR100957305B1 (en
Inventor
신환수
조상현
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070098651A priority Critical patent/KR100957305B1/en
Priority to DE102007061416A priority patent/DE102007061416A1/en
Priority to CNA2007103070580A priority patent/CN101404333A/en
Priority to US12/006,115 priority patent/US20090084676A1/en
Publication of KR20090033569A publication Critical patent/KR20090033569A/en
Application granted granted Critical
Publication of KR100957305B1 publication Critical patent/KR100957305B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

A heat pressure-type jig is provided to manufacture 5-layer membrane efficiently and improving conventional jig structure, and to reduce troublesome of reheating the temperature of metal plates. A heat pressure-type jig for manufacturing a 5-layer membrane comprises a lower metal plate(210) which is installed at the upper side of a lower heating plate(250) and is laminated with a lower gas diffusion layer(170); a lower guide(230) which is installed at both sides of the metal lower plate, and guides the lower part gas diffusion layer to the correct position; a guide spring(220) elastically supporting the lower guide at lower part of the lower part guide; an external guide(270) fixing a membrane electrode assembly(130) and the upper gas diffusion layer; a upper metal plate(300) which is mounted on the lower part of the upper heating plate(340), and pressurizes the upper gas diffusion layer with press lowering; and an upper plate supporter(310) which installed at both sides of metal upper plate and contacts with the external guide.

Description

5-레이어 멤브레인 제작을 위한 열 가압형 지그{Heat pressure-type jig for manufacturing 5-layer membrane}Heat pressure-type jig for manufacturing 5-layer membrane

본 발명은 5-레이어 멤브레인 제작을 위한 열 가압형 지그에 관한 것으로서, 별도의 외부가이드를 설치하여 이온교환막어셈블리(MEA)가 히팅 플레이트와 분리되고, 금속판이 히팅 플레이트에 일체로 결합되어 금속판의 온도가 일정기간 유지되며, 스프링 구조를 도입하여 가스확산층의 두께에 따른 외부가이드의 위치 조절이 능동적으로 이루어지는 5-레이어 멤브레인 제작을 위한 열 가압형 지그에 관한 것이다.The present invention relates to a heat pressurizing jig for manufacturing a five-layer membrane, wherein an ion exchange membrane assembly (MEA) is separated from the heating plate by installing a separate external guide, and the metal plate is integrally coupled to the heating plate to heat the metal plate. Is maintained for a certain period of time, and a spring structure is introduced to the thermal pressurized jig for manufacturing a five-layer membrane active position control of the outer guide according to the thickness of the gas diffusion layer.

일반적으로 연료전지에서 공급가스(수소, 공기)를 반응시키는 전극촉매와 수소이온을 전달시켜주는 전해질막을 이온교환막어셈블리(Membrane Electrode Assembly;MEA, 이하 "MEA"라 칭한다.)라 한다. In general, an electrode catalyst for reacting a supply gas (hydrogen, air) and an electrolyte membrane for delivering hydrogen ions in a fuel cell are referred to as a membrane exchange assembly (MEA, hereinafter referred to as "MEA").

또한, 분리판 유로에서 공급된 가스를 균일하게 분산시켜주고 반응가스의 전기화학반응으로 생성된 물을 효과적으로 배출시켜주는 역할을 하는 가스확산층(Gas Diffusion Layer:GDL, 이하 "GDL"이라 칭한다. )이 존재한다. In addition, the gas diffusion layer (GDL, hereinafter referred to as "GDL") serves to uniformly disperse the gas supplied from the separator flow channel and effectively discharge the water generated by the electrochemical reaction of the reaction gas. This exists.

이러한 MEA와 GDL, 분리판이 차례로 적층되어서 연료전지 스택을 구성하게된다. 이때, MEA와 GDL을 결합시켜 모듈화 하면 스택의 생산성이 증가하게 된다. The MEA, the GDL, and the separator are sequentially stacked to form a fuel cell stack. At this time, if the modularization by combining the MEA and GDL increases the productivity of the stack.

이하 첨부도면을 참조하여 5-레이어 멤브레인 및 이를 제작하는 방법에 대해 설명하기로 한다.Hereinafter, a 5-layer membrane and a method of manufacturing the same will be described with reference to the accompanying drawings.

첨부한 도 1은 5-레이어 멤브레인의 개시도이고, 도 2a 및 도 2b는 5-레이어 멤브레인의 제작시 주의점을 나타낸 도면이다.1 is a view illustrating a five-layer membrane, and FIGS. 2A and 2B are diagrams showing precautions when manufacturing a five-layer membrane.

흔히, MEA(130)는 수소 전극촉매(110), 고체전해질막(100), 공기 전극촉매(120)로 이루어져서 "3-레이어"로 명명하며, 도 1에서 도시한 바와 같이, 양쪽 전극에 GDL(140)이 각각 1장씩 붙게 되는데, 제조시 작업편의성을 위해서 MEA(130)와 GDL(140) 2장을 결합하여 하나의 제품으로 제조하고 이를 "5-레이어 MEA(90)"라 칭한다.Commonly, the MEA 130 is composed of a hydrogen electrode catalyst 110, a solid electrolyte membrane 100, and an air electrode catalyst 120, and is referred to as a "3-layer". As shown in FIG. Each one of the 140 is attached, for the convenience of manufacturing in manufacturing two MEA (130) and GDL (140) to combine into a single product, which is referred to as "5-layer MEA (90)".

상기 5-레이어 MEA(90)를 만들기 위해서는 구성품을 순서대로 적층한후 위치를 맞추어 일정시간동안 일정한 온도와 압력으로 힘을 가하여 접합시킨다.In order to make the 5-layer MEA (90), the components are stacked in order and then bonded to each other by applying a force at a constant temperature and pressure for a predetermined time.

상기 온도와 압력은 제품의 특성에 따라 변하게 되며, 필요에 의해서 접합을 위한 각종 첨가제를 넣기도 한다. The temperature and pressure will vary depending on the characteristics of the product, and if necessary add various additives for bonding.

또한, 5-레이어 MEA(90)의 제조를 위해서는 온도와 압력을 조절할수 있는 핫프레스(Hot Press)와 정확한 위치에 구성품을 위치시킬수 있는 결합용 지그가 필요하다.In addition, for the manufacture of the five-layer MEA (90) requires a hot press (Hot Press) to control the temperature and pressure and a jig for coupling to position the components in the correct position.

상기 5-레이어 MEA(90)의 구성품을 적층하기 위해서는 GDL(140)-MEA(130)- GDL(140)의 순으로 구성품을 차례로 놓고 가열된 핫플레이트(Hot Plate)로 양쪽 GDL부분에 압력을 균일하게 가해야 한다.To stack the components of the 5-layer MEA 90, the components are sequentially placed in the order of GDL 140, MEA 130, and GDL 140, and pressure is applied to both GDL portions with a heated hot plate. It should be applied evenly.

여기서, 주의해야 할 점은 도 2a에서 도시한 바와 같이, 양쪽 GDL(140)이 결합시 MEA(130)의 촉매부(110, 120)를 완전히 덮고, 양쪽 GDL(140) 위치가 정확히 일치하여하 한다는 점이다. Here, it should be noted that, as shown in Figure 2a, both GDL (140) completely covers the catalyst unit (110, 120) of the MEA (130) when combined, and both GDL (140) positions exactly match Is that.

만약, 도 2b에서 도시한 바와 같이, GDL(140)이 전극촉매(110, 120)를 다 덮지 못할경우 촉매에 충분이 가스를 전달하지 못하여 연료전지의 성능이 감소하고, GDL(140)이 분리판 외각으로 나오게 되면 연료전지제조 자체가 불가능하게 된다. If the GDL 140 does not cover the electrode catalysts 110 and 120 as shown in FIG. 2B, the performance of the fuel cell is reduced due to insufficient gas transfer to the catalyst, and the GDL 140 is separated. When it comes to the outer shell, fuel cell manufacturing itself is impossible.

또한, 양쪽 GDL(140)의 위치가 일치하지 못하면 연료전지 제조시 힘의 불균형이 발생하여 연료전지의 성능이 저하하게 된다.In addition, when the positions of the two GDLs 140 do not match, a force imbalance occurs in manufacturing the fuel cell, thereby degrading the performance of the fuel cell.

이러한 열 가압형 지그와 관련하여, 일본특개 제2000-208140호에는 평행하게 배치된 가열형 가압본체의 사이에 전극부재의 적층제를 삽입하고 가열, 가압하는 지그가 개시되어 있다.In connection with such a thermo-pressing jig, Japanese Laid-Open Patent Publication No. 2000-208140 discloses a jig for inserting, heating and pressurizing a laminating agent of an electrode member between heated pressurized bodies arranged in parallel.

또한, 미국특허 제6,613,470호에는 전체적인 가열, 가압에 의해 MEA를 제조하기 전에, 부분적으로 미리 가열, 가압하여 가고정상태를 유지시키는 지그가 개시되어 있다.Further, U. S. Patent No. 6,613, 470 discloses a jig for partially preheating and pressing to maintain a temporarily fixed state before manufacturing the MEA by total heating and pressurization.

이하 첨부 도면을 참조하여 종래 5-레이어 MEA 제작을 위한 열 가압형 지그를 설명하기로 한다.Hereinafter, a thermal pressurizing jig for manufacturing a conventional 5-layer MEA will be described with reference to the accompanying drawings.

첨부한 도 3은 종래 5-레이어 MEA 제작을 위한 열 가압형 지그의 개시도이다.FIG. 3 is a view showing a heat press type jig for manufacturing a conventional 5-layer MEA.

도 3에서 도시한 바와 같이, 메인바디(150) 중앙 공간에 금속하판(160)이 결합하고, 금속하판(160)의 상부에 하층GDL(170)이 삽입되며, 하층GDL 상부에 MEA(130)가 적층된다.As shown in FIG. 3, the lower metal plate 160 is coupled to the central space of the main body 150, the lower layer GDL 170 is inserted into the upper metal lower plate 160, and the MEA 130 is disposed above the lower layer GDL. Are stacked.

또한, 상기 적층된 MEA(130) 상부에 GDL가이드(190)가 장착되고, 그 위에 상층GDL(200)이 삽입되면 금속상판(210)을 덮은후, 핫프레스(미도시)로 온도와 압력을 가하여 5-레이어 MEA를 제작한다.In addition, the GDL guide 190 is mounted on the stacked MEA 130, and when the upper layer GDL 200 is inserted thereon, the metal top plate 210 is covered, and then a temperature and pressure are applied by a hot press (not shown). To prepare a 5-layer MEA.

여기서, 핫프레스의 핫플레이트부(미도시)와 금속상하판(160, 210)은 멀리 떨어져 있어서 온도유지가 어려우며, 금속상하판이 원하는 온도에 이르는데 과다한 시간이 소요되는 문제점이 있었다.Here, the hot plate portion (not shown) of the hot press and the metal upper and lower plates 160 and 210 are far from each other, so that it is difficult to maintain the temperature, and the metal upper and lower plates have an excessive time for reaching the desired temperature.

또한, 뜨거워진 금속하판(160) 위에 고분자 MEA(130)를 접한 상태로 올려놓게 되어 MEA가 수분증발에 의해 주름진 모양이 형성됨으로써, 접합성, MEA의 물성치 및 치수 안정성이 저하되는 문제점이 있다.In addition, since the polymer MEA 130 is placed in contact with the heated metal lower plate 160 in contact with the polymer MEA 130, a wrinkled shape of the MEA is formed by moisture evaporation.

덧붙여, 지그의 가압시 GDL(170, 200)이 압축되면서 GDL 외곽부와 맞닿는 MEA부위가 아래로 꺾여 들어가 물리적 파손의 위험이 발생하는 문제점이 있다.In addition, when the jig is pressed, the GDL (170, 200) is compressed while the MEA portion in contact with the outer GDL is bent down there is a problem that the risk of physical damage occurs.

따라서, 본 발명은 상술한 문제점을 해결하기 위해 발명된 것으로서, 기존의 지그 구조를 개선하여 5-레이어 멤브레인의 제작이 효율적으로 이루어지고, 특히 금속판이 히팅 플레이트에 일체로 형성되어 다수의 5-레이어 멤브레인 제작시 매번 금속판의 온도를 정상상태까지 재가열하는 번거로움이 줄어들며, MEA가 하부가이드와 일정 간격을 유지한채로 외부가이드에 장착되어 금속판에 의해 건조, 수축 및 변형되는 것이 방지되는 5-레이어 멤브레인 제작을 위한 열 가압형 지그를 제공하는데 그 목적이 있다.Therefore, the present invention has been invented to solve the above-described problems, the production of a five-layer membrane by efficiently improving the existing jig structure, in particular a metal plate is integrally formed on the heating plate a plurality of five-layer When manufacturing the membrane, the hassle of reheating the temperature of the metal plate to the normal state every time is reduced, and 5-layer membrane fabrication is prevented from being dried, shrunk and deformed by the metal plate by mounting the MEA on the outer guide while keeping a certain distance from the lower guide. The purpose is to provide a thermally pressurized jig for the purpose.

상기한 목적을 달성하기 위한 본 발명은 The present invention for achieving the above object

하부 히팅 플레이트 상면에 설치되어 하부 가스확산층(GDL)을 지지하는 금속하판과;A metal lower plate installed on an upper surface of the lower heating plate to support the lower gas diffusion layer GDL;

상기 금속하판의 양쪽에 설치되어 하부 가스확산층을 정위치로 안내하는 하부가이드와;A lower guide installed at both sides of the metal lower plate to guide the lower gas diffusion layer to the home position;

상기 하부가이드 하부에서 하부가이드를 탄성지지하는 가이드스프링과;A guide spring for elastically supporting the lower guide under the lower guide;

상기 하부가이드의 상부에 장착되어 이온교환막어셈블리(MEA) 및 상부 가스확산층을 고정시키는 외부가이드와;An outer guide mounted on an upper portion of the lower guide to fix an ion exchange membrane assembly (MEA) and an upper gas diffusion layer;

상부 히팅 플레이트의 하면에 장착되어 프레스 하강에 의해 상부 가스확산층을 가압하는 금속상판과;A metal upper plate mounted on a lower surface of the upper heating plate and pressurizing the upper gas diffusion layer by pressing down;

상기 금속상판의 양측에 설치되어 프레스의 하강시 상기 외부가이드와 접하는 상판지지대;An upper plate support installed at both sides of the metal upper plate and in contact with the outer guide when the press is lowered;

를 포함하여 구성되는 것을 특징으로 한다.Characterized in that comprises a.

또한, 상기 상판지지대는 상판스프링에 의해 탄성지지되는 것을 특징으로 한 다.In addition, the top plate support is characterized in that the elastic support by the top spring.

덧붙여, 상기 가이드스프링과 하부 히팅 플레이트 사이에 단열재가 적층되는 것을 특징으로 한다.In addition, the insulation is laminated between the guide spring and the lower heating plate.

그리고, 상기 외부가이드의 하부에는 돌출부가 형성되고, 상기 하부가기드의 상부에는 상기 돌출부에 대응하는 삽입홈이 형성되는 것을 특징으로 한다.A protrusion is formed at a lower portion of the outer guide, and an insertion groove corresponding to the protrusion is formed at an upper portion of the lower guard.

이상에서 본 바와 같이 본 발명에 따른 5-레이어 멤브레인 제작을 위한 열 가압형 지그는 다음과 같은 효과를 제공한다.As seen above, the heat pressurized jig for manufacturing a 5-layer membrane according to the present invention provides the following effects.

우선, 금속판이 히팅 플레이트에 일체로 형성되어 다수의 5-레이어 멤브레인 제작시 매번 금속판의 온도를 정상상태까지 재가열하는 번거로움이 줄어들고,First of all, the metal plate is integrally formed on the heating plate to reduce the trouble of reheating the temperature of the metal plate to the normal state every time when manufacturing a plurality of 5-layer membranes,

또한, MEA가 하부가이드와 일정 간격을 유지한채로 외부가이드에 장착되어 금속판에 의해 건조, 수축 및 변형되는 것이 방지되고,In addition, the MEA is mounted on the outer guide while maintaining a predetermined distance from the lower guide to prevent drying, shrinking and deformation by the metal plate,

덧붙여, 하부가이드 및 상판지지대는 각각 스프링에 의해 탄성지지되어 외부가이드가 GDL압축으로 인한 두께변화를 실시간으로 능동 대처함으로써, MEA의 꺽임현상을 방지하고,In addition, the lower guide and the upper plate support are elastically supported by springs respectively, and the outer guide actively copes with the thickness change caused by the GDL compression in real time, thereby preventing the bending of the MEA.

더욱이, 신차종 개발에 의해 MEA 및 GDL의 면적 변화시 지그만을 신규 제작하여 교체함으로써, 프레스의 교체없이 저비용으로 5-레이어 멤브레인 제작할 수 있는 효과가 있다.In addition, by changing the area of the MEA and GDL by the development of new models only by newly manufacturing a jig, there is an effect that can be produced in a five-layer membrane at low cost without replacing the press.

이하 첨부 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도 4는 본 발명에 따른 5-레이어 멤브레인 제작을 위한 열 가압형 지그의 개시도이다.4 is a view illustrating a heat pressurizing jig for manufacturing a 5-layer membrane according to the present invention.

도 4에서 도시한 바와 같이, 하부 가스확산층(170)(Gas Diffusion Layer:GDL, 이하 "GDL"이라 칭한다.)이 적층된 금속하판(210)의 양쪽에 가이드스프링(220)으로 지지되는 하부가이드(230)가 설치되고, 하부가이드(230)의 상부에는 이온교환막어셈블리(Membrane Electrode Assembly;MEA, 이하 "MEA"라 칭한다.) 및 상부GDL(200)을 고정하는 외부가이드(270)가 설치되며, 외부가이드(270)의 상부에는 프레스(360)의 하강에 의해 외부가이드(270) 및 상부GDL(200)을 각각 가압하는 상판지지대(310) 및 금속상판(300)이 설치된다.As shown in FIG. 4, a lower guide supported by guide springs 220 on both sides of a metal lower plate 210 on which a lower gas diffusion layer 170 (GDL, hereinafter referred to as “GDL”) is laminated. 230 is installed, and an upper portion of the lower guide 230 is an ion exchange membrane assembly (MEA, hereinafter referred to as "MEA") and an outer guide 270 for fixing the upper GDL 200 is installed. On top of the outer guide 270, the upper plate support 310 and the metal upper plate 300 for pressing the outer guide 270 and the upper GDL 200 by the lowering of the press 360 are installed.

상기 금속하판(210)은 하부 히팅 플레이트(250)의 상부에 일체로 형성되어 하부 히팅 플레이트(250)에서 발생하는 열을 금속하판(210)의 상부에 적층된 하부GDL(170)에 전달한다.The lower metal plate 210 is integrally formed on the lower heating plate 250 to transfer heat generated from the lower heating plate 250 to the lower GDL 170 stacked on the upper metal lower plate 210.

상기 하부가이드(230)는 금속하판(210)의 양측에 밀접한 상태로 장착되어, 하부GDL(170)이 금속하판(210)의 상면에 적층시 하부GDL(170)이 정확한 지점에 위치하도록 안내하는 역할을 제공한다.The lower guide 230 is mounted in close contact with both sides of the metal lower plate 210 to guide the lower GDL 170 at the correct point when the lower GDL 170 is stacked on the upper surface of the metal lower plate 210. Provide a role.

이때, 양쪽 하부가이드(230) 사이의 거리는 하부GDL(170)의 길이만큼 유지되고, 하부가이드(230)이 높이는 금속하판(210)보다 돌출되어 하부GDL(170)이 양쪽 하부가이드(230) 사이에 안착되도록 한다.At this time, the distance between both lower guide 230 is maintained by the length of the lower GDL (170), the lower guide 230 is protruding than the lower metal plate 210 is raised so that the lower GDL (170) between both lower guide 230 Allow them to settle on.

또한, 하부가이드(230)의 하부에 가이드스프링(220)이 장착되어 금속상판(300) 및 상판지지대(310)의 가압시 하부가이드(230)가 수축하고, 하부가이드(230)의 양측에 가이드지지부(240)가 설치되어 하부가이드(230)의 수축시 하부가이드(230)가 바깥쪽으로 이탈되지 않도록 한다.In addition, the guide spring 220 is mounted on the lower portion of the lower guide 230 so that the lower guide 230 contracts when the metal upper plate 300 and the upper plate support 310 are pressed, and guides on both sides of the lower guide 230. The support 240 is installed so that the lower guide 230 is not separated outward when the lower guide 230 is contracted.

여기서, 상기 가이드스프링(220) 및 가이드지지부(240)의 하부에는 단열재(260)가 적층되어 하부 히팅 플레이트(250)의 열이 가이드스프링(220) 및 가이드지지부(240)에 직접 전달되지 않도록 한다.Here, the heat insulating material 260 is stacked below the guide spring 220 and the guide support 240 so that the heat of the lower heating plate 250 is not directly transmitted to the guide spring 220 and the guide support 240. .

상기 외부가이드(270)는 양쪽 하부가이드(230)의 상부에 장착되고, MEA(130)를 가이드하는 삽입부(271)와, 삽입부 상면에 장착되어 상부GDL(200)을 가이드하는 안내부(272)로 이루어진다.The outer guide 270 is mounted on the upper sides of both lower guides 230, an insertion part 271 for guiding the MEA 130, and a guide part mounted on the insertion part upper surface to guide the upper GDL 200 ( 272).

이때, 상기 삽입부(271) 사이의 거리는 MEA(130)의 길이만큼 유지되고, 상기 안내부(272) 사이의 거리는 상부GDL(200)의 길이(하부GDL(170)의 길이와 동일)만큼 유지된다.At this time, the distance between the insertion portion 271 is maintained by the length of the MEA 130, the distance between the guide portion 272 is maintained by the length of the upper GDL 200 (same as the length of the lower GDL 170). do.

그리고, 상기 외부가이드(270)의 하부는 돌출부(280)가 형성되고, 하부가이드(230)의 상부는 돌출부(280)의 위치 및 크기에 대응하는 삽입홈(290)이 형성되어, 외부가이드(270)가 하부가이드(230)의 정확한 위치에 장착됨로써, 하부GDL(170)이 MEA(130)의 전극촉매를 완전히 덮을 수 있게 된다.In addition, the lower portion of the outer guide 270 is formed with a protrusion 280, the upper portion of the lower guide 230 is formed with an insertion groove 290 corresponding to the position and size of the protrusion 280, the outer guide ( As the 270 is mounted at the correct position of the lower guide 230, the lower GDL 170 may completely cover the electrode catalyst of the MEA 130.

이렇게 상기 MEA(130) 및 상부GDL(200)은 외부가이드(270)에 별도로 장착되어 프레스(360)의 작동전에는 금속하판(210)과 이격된 상태를 유지함으로써, MEA(130)가 가열된 금속하판(210)에 의해 건조 및 변형되는 것이 방지된다.In this way, the MEA 130 and the upper GDL 200 are separately mounted to the outer guide 270, and thus, the MEA 130 is heated by maintaining the state separated from the metal lower plate 210 before the press 360 is operated. It is prevented from being dried and deformed by the lower plate 210.

상기 금속상판(300)은 상부 히팅 플레이트(340)의 하부 중앙에 장착되어 프레스(360)의 작동시 하강함으로써, 외부가이드(270)에 적층된 MEA(130) 및 하부GDL(170)을 가압하게 된다.The metal upper plate 300 is mounted at the lower center of the upper heating plate 340 and descends during operation of the press 360 to press the MEA 130 and the lower GDL 170 stacked on the outer guide 270. do.

이때, 상기 금속하판(210) 및 금속상판(300)의 크기는 상부GDL(200) 및 하부GDL(170)의 크기와 동일하게 제작되어, 금속상하판(210, 300)의 가압이 상하부GDL(170, 200))의 전면에 고르게 미치게 된다.At this time, the size of the metal lower plate 210 and the metal upper plate 300 is the same as the size of the upper GDL 200 and the lower GDL (170), the pressure of the upper and lower metal plates (210, 300) is the upper and lower GDL ( 170, 200) evenly across the front of the).

또한, 상기 금속상판(300)의 양측에는 내부에 일정공간(350)이 형성된 고정체(330)가 장착되고, 고정체(330)의 내부공간(350)에 상판지지대(310)의 일측이 삽입 장착되어 상판지지대(310)가 상하로 이동가능해진다.In addition, both sides of the metal upper plate 300 is mounted with a fixed body 330 having a predetermined space 350 therein, one side of the upper plate support 310 is inserted into the inner space 350 of the fixed body 330 The top plate support 310 is mounted to be movable up and down.

여기서, 상기 상판지지대(310)와 고정체(330) 사이에는 상판스프링(320)이 장착되어 상판지지대(310)가 외부가이드(270)를 가압하는 경우 상판지지대(310)를 탄성 지지하게 된다.Here, the upper plate spring 320 is mounted between the upper plate support 310 and the fixed body 330 to elastically support the upper plate support 310 when the upper plate support 310 presses the outer guide 270.

이하 첨부 도면을 참조하여 상기 구성으로 이루어진 5-레이어 멤브레인 제작을 위한 열 가압형 지그의 작동과정을 설명하기로 한다.Hereinafter, an operation process of a heat pressurizing jig for manufacturing a 5-layer membrane having the above configuration will be described with reference to the accompanying drawings.

첨부한 도 5는 본 발명에 따른 5-레이어 멤브레인 제작을 위한 열 가압형 지그의 작동도이다.5 is an operation diagram of a heat pressurizing jig for manufacturing a 5-layer membrane according to the present invention.

우선, 금속하판(210)의 상면에 하부GDL(170)을 장착하고, MEA(130) 및 상부GDL(200)이 적층되어 있는 상기 외부가이드(270)를 하부가이드(230)의 삽입홈(290)에 맞추어 설치한다.First, the lower GDL 170 is mounted on the upper surface of the metal lower plate 210, and the outer guide 270 in which the MEA 130 and the upper GDL 200 are stacked is inserted into the groove 290 of the lower guide 230. Install according to).

이후, 도 5에서 도시한 바와 같이, 프레스(360)의 상부에 설치된 로드 셀(370)의 설정압력에 따른 프레스(360)의 작동에 의해 상부 히팅 플레이트(340)는 하강하고, 이에 따라 상부 히팅 플레이트(340)의 하부 양측에 장착된 상판지지대(310)는 외부가이드(270)를 가압하게 된다.Subsequently, as shown in FIG. 5, the upper heating plate 340 is lowered by the operation of the press 360 according to the set pressure of the load cell 370 installed on the upper part of the press 360, and thus the upper heating. The upper plate support 310 mounted on both lower sides of the plate 340 presses the outer guide 270.

다음으로, 상부 히팅 플레이트(340)가 더욱 하강하여 도 5에서 도시한 바와 같이, 하부가이드(230)를 탄성지지하는 가이드스프링(220)이 수축함으로써 MEA(130)가 하부GDL(170)에 접하게 되고, 상판지지대(310)를 탄성지지하는 상판스프링(320)이 수축함으로써 금속상판(300)이 상부GDL(200)에 접하게 된다.Next, as the upper heating plate 340 is further lowered as shown in FIG. 5, the guide spring 220 elastically supporting the lower guide 230 contracts so that the MEA 130 contacts the lower GDL 170. As the upper plate spring 320 elastically supports the upper plate support 310, the metal upper plate 300 comes into contact with the upper GDL 200.

이때, 상하부GDL(170, 200)이 압축되면서 발생하는 두께변화에 따라 상기 외부가이드(270)는 가이드스프링(220) 및 상판스프링(320)의 수축 및 복원에 의해 이동함으로써, 외부가이드(270)에 삽입된 MEA(130)가 구부러지지 않도록 한다.At this time, the outer guide 270 is moved by contraction and restoration of the guide spring 220 and the upper plate spring 320 according to the thickness change generated while the upper and lower GDL (170, 200) is compressed, the outer guide 270 Do not bend the MEA 130 inserted in the.

이후, 상부GDL(200), MEA(130), 하부GDL(170)순으로 적층된 5-레이어 멤브레인은 상하부 히팅 플레이트(250)로부터 열을 공급받은 금속상판(300) 및 금속하판(210)에 의해 일정시간 가열 및 가압됨으로써, 각층의 접합이 이루어진다.Subsequently, the 5-layer membrane laminated in the order of the upper GDL 200, the MEA 130, and the lower GDL 170 is provided on the upper and lower heating plates 250 and the upper and lower metal plates 300 and 210. By heating and pressurizing for a predetermined time, bonding of each layer is performed.

이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다.While the invention has been shown and described with respect to certain preferred embodiments thereof, the invention is not limited to these embodiments, and has been claimed by those of ordinary skill in the art to which the invention pertains. It includes all the various forms of embodiments that can be carried out without departing from the spirit.

도 1은 5-레이어 멤브레인의 개시도, 1 is an initial view of a five-layer membrane,

도 2a 및 도 2b는 5-레이어 멤브레인의 제작시 주의점을 나타낸 도면,2a and 2b is a view showing the precautions when manufacturing a five-layer membrane,

도 3은 종래 5-레이어 MEA 제작을 위한 열 가압형 지그의 개시도,3 is a start view of a heat pressurizing jig for manufacturing a conventional 5-layer MEA,

도 4는 본 발명에 따른 5-레이어 멤브레인 제작을 위한 열 가압형 지그의 개시도,4 is a view of a heat pressurizing jig for manufacturing a 5-layer membrane according to the present invention;

도 5는 본 발명에 따른 5-레이어 멤브레인 제작을 위한 열 가압형 지그의 작동도.5 is an operation of the heat pressurizing jig for manufacturing a five-layer membrane according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

130 : MEA 200 : GDL 130: MEA 200: GDL

210 : 금속하판 220 : 가이드스프링210: metal lower plate 220: guide spring

230 : 하부가이드 260 : 단열재 230: lower guide 260: insulation

270 : 외부가이드 300 : 금속상판270: external guide 300: metal plate

Claims (4)

하부 히팅 플레이트 상면에 설치되고, 하부 가스확산층(GDL)이 적층되는 금속하판과;A metal lower plate disposed on an upper surface of the lower heating plate and having a lower gas diffusion layer (GDL) stacked thereon; 상기 금속하판의 양쪽에 설치되어 하부 가스확산층을 정위치로 안내하는 하부가이드와;A lower guide installed at both sides of the metal lower plate to guide the lower gas diffusion layer to the home position; 상기 하부가이드 하부에서 하부가이드를 탄성지지하는 가이드스프링과;A guide spring for elastically supporting the lower guide under the lower guide; 상기 하부가이드의 상부에 장착되어 이온교환막어셈블리(MEA) 및 상부 가스확산층을 고정시키는 외부가이드와;An outer guide mounted on an upper portion of the lower guide to fix an ion exchange membrane assembly (MEA) and an upper gas diffusion layer; 상부 히팅 플레이트의 하면에 장착되어 프레스 하강에 의해 상부 가스확산층을 가압하는 금속상판과;A metal upper plate mounted on a lower surface of the upper heating plate and pressurizing the upper gas diffusion layer by pressing down; 상기 금속상판의 양측에 설치되어 프레스의 하강시 상기 외부가이드와 접하는 상판지지대;An upper plate support installed at both sides of the metal upper plate and in contact with the outer guide when the press is lowered; 를 포함하여 구성되는 것을 특징으로 하는 5-레이어 멤브레인 제작을 위한 열 가압형 지그.Heat press-type jig for manufacturing a five-layer membrane, characterized in that comprising a. 청구항 1에 있어서, 상기 상판지지대는 상판스프링에 의해 탄성지지되는 것을 특징으로 하는 5-레이어 멤브레인 제작을 위한 열 가압형 지그.The method according to claim 1, wherein the top plate support is heat-pressed jig for manufacturing a five-layer membrane, characterized in that the elastic support by the top spring. 청구항 1에 있어서, 상기 가이드스프링과 하부 히팅 플레이트 사이에 단열재가 적층되는 것을 특징으로 하는 5-레이어 멤브레인 제작을 위한 열 가압형 지그.The method of claim 1, wherein the heat insulating jig for manufacturing a five-layer membrane, characterized in that the insulating material is laminated between the guide spring and the lower heating plate. 청구항 1에 있어서, 상기 외부가이드의 하부에는 돌출부가 형성되고, 상기 하부가기드의 상부에는 상기 돌출부에 대응하는 삽입홈이 형성되는 것을 특징으로 하는 5-레이어 멤브레인 제작을 위한 열 가압형 지그.The jig according to claim 1, wherein a protrusion is formed at a lower portion of the outer guide, and an insertion groove corresponding to the protrusion is formed at an upper portion of the lower guard.
KR1020070098651A 2007-10-01 2007-10-01 Heat pressure-type jig for manufacturing 5-layer membrane KR100957305B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020070098651A KR100957305B1 (en) 2007-10-01 2007-10-01 Heat pressure-type jig for manufacturing 5-layer membrane
DE102007061416A DE102007061416A1 (en) 2007-10-01 2007-12-20 Heating-pressure-clamping device for the production of a 5-layer MEA
CNA2007103070580A CN101404333A (en) 2007-10-01 2007-12-28 Heating-pressurizing zig for manufacturing 5-layer mea
US12/006,115 US20090084676A1 (en) 2007-10-01 2007-12-31 Heating-pressurizing zig for manufacturing 5-layer MEA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070098651A KR100957305B1 (en) 2007-10-01 2007-10-01 Heat pressure-type jig for manufacturing 5-layer membrane

Publications (2)

Publication Number Publication Date
KR20090033569A true KR20090033569A (en) 2009-04-06
KR100957305B1 KR100957305B1 (en) 2010-05-13

Family

ID=40384481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070098651A KR100957305B1 (en) 2007-10-01 2007-10-01 Heat pressure-type jig for manufacturing 5-layer membrane

Country Status (4)

Country Link
US (1) US20090084676A1 (en)
KR (1) KR100957305B1 (en)
CN (1) CN101404333A (en)
DE (1) DE102007061416A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148674B1 (en) * 2010-09-01 2012-05-21 현대하이스코 주식회사 Apparatus for manufacturing fuel cell having membrane electrode assembly and gas diffusion layer improved stack precision, quality and the method for manufacturing the same
KR101304700B1 (en) * 2011-09-08 2013-09-06 현대하이스코 주식회사 Hot pressing device for bonding membrane electrode assembly with a function of improved stability
KR101634042B1 (en) * 2015-05-19 2016-06-28 현대제철 주식회사 Alignment jig for welding metal separator of fuel cell
CN108054419A (en) * 2017-12-25 2018-05-18 深圳市坤鼎自动化有限公司 A kind of anti-battery core of hot press is adhered equipment
US10103393B2 (en) 2015-07-10 2018-10-16 Hyundai Motor Company Hot press device and method of hot pressing membrane-electrode assembly of fuel cell
KR20210075475A (en) 2019-12-13 2021-06-23 현대자동차주식회사 Method for producing a membrane electrode assembly in which wrinkle generation is suppressed

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722275B2 (en) * 2010-07-09 2014-05-13 Oorja Protonics Inc. Apparatus comprising assembly jig and method for stacking fuel cells
US9209471B2 (en) * 2011-11-10 2015-12-08 Honda Motor Co., Ltd. Fuel cell assembly and method of manufacturing same, and bonding part manufacturing method and device
WO2014130009A1 (en) * 2013-02-19 2014-08-28 United Technologies Corporation Assembly for making a fuel cell component and a method of using the assembly
JP7110961B2 (en) * 2018-12-10 2022-08-02 トヨタ自動車株式会社 Manufacturing method of membrane electrode gas diffusion layer assembly for fuel cell
KR20210008679A (en) 2019-07-15 2021-01-25 현대자동차주식회사 Apparatus for manufacturing an elastomer cell frame for fuel cell
CN112736256A (en) * 2019-10-29 2021-04-30 中国科学院宁波材料技术与工程研究所 Cathode assembling method and assembling tool for solid oxide fuel cell with symmetric double-cathode structure
CN111396419A (en) * 2020-03-24 2020-07-10 昆山坤和鑫电子科技有限公司 Hot-melting type SMT laser steel mesh frame mesh plate production equipment and production process thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195391A (en) * 1993-12-28 1995-08-01 Hitachi Techno Eng Co Ltd Hot press
JP2000208140A (en) 1999-01-13 2000-07-28 Toshiba Battery Co Ltd Lamination device for polymer battery electrode element
US6613470B1 (en) 1999-09-01 2003-09-02 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolyte fuel cell stack
JP3937129B2 (en) * 2001-04-06 2007-06-27 ソニー株式会社 Hot press device and card manufacturing device
US6823584B2 (en) * 2001-05-03 2004-11-30 Ballard Power Systems Inc. Process for manufacturing a membrane electrode assembly
JP3742320B2 (en) * 2001-08-24 2006-02-01 株式会社名機製作所 Press forming equipment
JP4302447B2 (en) * 2003-06-26 2009-07-29 安田工機株式会社 Press machine
JP2006269138A (en) * 2005-03-23 2006-10-05 Nissan Motor Co Ltd Joining method and device between solid polymer membrane and catalyst layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148674B1 (en) * 2010-09-01 2012-05-21 현대하이스코 주식회사 Apparatus for manufacturing fuel cell having membrane electrode assembly and gas diffusion layer improved stack precision, quality and the method for manufacturing the same
KR101304700B1 (en) * 2011-09-08 2013-09-06 현대하이스코 주식회사 Hot pressing device for bonding membrane electrode assembly with a function of improved stability
KR101634042B1 (en) * 2015-05-19 2016-06-28 현대제철 주식회사 Alignment jig for welding metal separator of fuel cell
US10103393B2 (en) 2015-07-10 2018-10-16 Hyundai Motor Company Hot press device and method of hot pressing membrane-electrode assembly of fuel cell
US11217798B2 (en) 2015-07-10 2022-01-04 Hyundai Motor Company Hot press device and method of hot pressing membrane-electrode assembly of fuel cell
CN108054419A (en) * 2017-12-25 2018-05-18 深圳市坤鼎自动化有限公司 A kind of anti-battery core of hot press is adhered equipment
CN108054419B (en) * 2017-12-25 2020-09-22 深圳市坤鼎自动化有限公司 Electricity core adhesion equipment is prevented to hot press
KR20210075475A (en) 2019-12-13 2021-06-23 현대자동차주식회사 Method for producing a membrane electrode assembly in which wrinkle generation is suppressed

Also Published As

Publication number Publication date
CN101404333A (en) 2009-04-08
KR100957305B1 (en) 2010-05-13
DE102007061416A1 (en) 2009-04-02
US20090084676A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
KR100957305B1 (en) Heat pressure-type jig for manufacturing 5-layer membrane
RU2431220C2 (en) Compression assembly for distribution of external compression force to pile of solid-oxide fuel elements, and pile of solid-oxide fuel elements
JP6056964B2 (en) Fuel cell manufacturing method and manufacturing apparatus
JP4000248B2 (en) FUEL CELL STACK AND METHOD OF PRESSURE AND HOLDING THE SAME
JP5365450B2 (en) Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus
JP4813707B2 (en) Fuel cell stack
US8012648B2 (en) Side spring compression retention system
KR101283045B1 (en) Hot press device for manufacturing membrane-electrode assembly of fuel cell
WO2006109145A1 (en) Fuel cell, method and apparatus for manufacturing fuel cell
CN102171881A (en) Cell stack of fuel cells and method for fastening cell stack of fuel cells
CN102214836A (en) Fuel cell stack compression enclosure apparatus
US20160133948A1 (en) Fuel-cell-stack manufacturing method and fuel-cell-stack
CN109638313A (en) The manufacturing method of the single battery of fuel cell
JP2004303627A (en) Manufacturing method of electrolyte membrane-electrode jointed assembly for direct methanol type fuel cell
JP5162884B2 (en) Solid polymer electrolyte fuel cell
JP6137042B2 (en) Fuel cell separator manufacturing method and thermocompression bonding apparatus
JP5292803B2 (en) Separator, fuel cell stack, and fuel cell stack manufacturing method
CN113366681B (en) Fuel cell stack with compression device
JP5881594B2 (en) Fuel cell stack and manufacturing method thereof
US11114685B2 (en) Bonding dies for fuel cell
JP4435466B2 (en) Assembly method of fuel cell stack
KR20160056028A (en) Stamping and hot-pressing mold for manufacturing membrane-electrode assembly, and method for manufacturing membrane-electrode assembly using the same
JP2008004291A (en) Manufacturing method of press metal separator for fuel cell
US20130089803A1 (en) Force distributor for a fuel cell stack or an electrolysis cell stack
CN102468497B (en) Dual channel step in fuel cell plate

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130430

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180427

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 10