KR20080109240A - Culns2 absorber layer of thin film solar cell and manufacture method thereof - Google Patents

Culns2 absorber layer of thin film solar cell and manufacture method thereof Download PDF

Info

Publication number
KR20080109240A
KR20080109240A KR1020070057315A KR20070057315A KR20080109240A KR 20080109240 A KR20080109240 A KR 20080109240A KR 1020070057315 A KR1020070057315 A KR 1020070057315A KR 20070057315 A KR20070057315 A KR 20070057315A KR 20080109240 A KR20080109240 A KR 20080109240A
Authority
KR
South Korea
Prior art keywords
thin film
copper
solar cell
indium sulfide
acetate
Prior art date
Application number
KR1020070057315A
Other languages
Korean (ko)
Other versions
KR100894216B1 (en
Inventor
이승엽
박병옥
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020070057315A priority Critical patent/KR100894216B1/en
Publication of KR20080109240A publication Critical patent/KR20080109240A/en
Application granted granted Critical
Publication of KR100894216B1 publication Critical patent/KR100894216B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A CulnS2 absorber layer of thin film solar cell and a manufacture method thereof are provided to form the elaborate film by coating the thin film through the spin coating manner and using the elemental sulfur. A manufacturing method of CulnS2 absorber layer of thin film solar cell comprises the following steps: the step for manufacturing the starting solution using the metal organic precursor of the copper acetate and indium acetate(S10); the step for coating the thin film on the top of the substrate with the starting solution(S20); the step for drying the substrate in which the thin film is coated(S30); the step for completing the CulnS2 absorber by performing sulfuration-processes using the powder of the sulfur(S) after drying(S40,S50).

Description

태양전지용 황화구리인듐 흡수층 및 그의 제조 방법{CulnS2 Absorber Layer of Thin Film Solar Cell and Manufacture Method Thereof}Copper indium sulfide absorber layer for solar cell and manufacturing method thereof {CulnS2 Absorber Layer of Thin Film Solar Cell and Manufacture Method Thereof}

도 1은 본 발명의 바람직한 실시 예에 의한 태양전지용 황화구리인듐(CulnS2) 흡수층의 제조 방법을 나타낸 제조 공정 흐름도1 is a manufacturing process flow diagram illustrating a method of manufacturing a copper indium sulfide (CulnS 2 ) absorption layer for a solar cell according to a preferred embodiment of the present invention

도 2는 본 발명의 실험에서 사용된 황화처리 온도에 따른 CulnS2 박막의 XRD 패턴을 나타낸 도면Figure 2 is a view showing the XRD pattern of the CulnS 2 thin film according to the sulfidation temperature used in the experiment of the present invention

도 3은 다양한 온도에서의 CulnS2 박막의 SEM 이미지를 나타낸 도면3 shows SEM images of CulnS 2 thin films at various temperatures.

도 4는 500℃에서 황화처리된 CulnS2 흡수층의 AFM 이미지와 표면 거칠기를 나타낸 도면4 is an AFM image and surface roughness of a sulfide-treated CulnS 2 absorbent layer at 500 ° C. FIG.

도 5는 500℃에서 황화처리된 CulnS2 박막의 라만 스펙트럼 결과를 나타낸 도면 FIG. 5 shows Raman spectrum results of a CulnS 2 thin film sulfided at 500 ° C. FIG.

본 발명은 태양전지용 황화구리인듐(CulnS2) 흡수층 및 그의 제조 방법에 관한 것으로, 특히 금속유기전구체를 이용하여 회전코팅법으로 박막을 코팅하고 간단한 건조 과정과 황 분말을 이용한 황화처리를 거치면서 치밀한 막을 형성하는 태양전지용 황화구리인듐 흡수층 및 그의 제조 방법에 관한 것이다.The present invention relates to a copper indium sulfide (CulnS 2 ) absorption layer for solar cells and a method of manufacturing the same, and in particular, the coating is a thin film by a rotation coating method using a metal organic precursor, and dense while undergoing a simple drying process and sulfidation using sulfur powder. A copper indium sulfide absorbing layer for forming a film and a method for producing the same.

일반적으로 태양전지는 태양 에너지를 전기에너지로 변환할 목적으로 제작된 광전지이다.In general, solar cells are photovoltaic cells manufactured for the purpose of converting solar energy into electrical energy.

CuInS2(황화구리인듐)은 1.5eV의 밴드갭과 비독성 성분 때문에 박막 태양 전지를 위한 훌륭한 흡수 물질 중의 하나이다. 태양 전지를 위한 최고의 효율은 주로 진공기반법(vacuum-based methods)에 의해 얻어진다([1] J. Klaer, I. Luck, A. Boden, R. Klenk, I.G. Perez, R. Scheer, "Thin Solid Films", 431-432 (2003) 534. 및 [2] J. Klaer, K. Siemer, I.Luck, D.Brㅴunig, "Thin Solid Films", 387 (2001) 169. 참조).CuInS2 (copper indium sulfide) is one of the excellent absorbing materials for thin film solar cells because of the 1.5 eV bandgap and non-toxic components. The best efficiency for solar cells is obtained mainly by vacuum-based methods (1) J. Klaer, I. Luck, A. Boden, R. Klenk, IG Perez, R. Scheer, "Thin Solid Films ", 431-432 (2003) 534. and [2] J. Klaer, K. Siemer, I. Luck, D. Br. Unig," Thin Solid Films ", 387 (2001) 169.).

그러나 간단하고 저렴한 증착(deposition) 방법은 공정의 복잡함과 태양 전지의 비용을 감소시킴으로써 얻어진다.However, a simple and inexpensive deposition method is obtained by reducing the complexity of the process and the cost of the solar cell.

최근의 나노 입자 합성과 처리 방법의 진보는 입자 형태의 전구체(precursor)를 비진공 상태에서 증착 및 소결 작업을 할 수 있도록 이끌었다([3] C. Eberspacher, C. Fredric, K. Pauls, J. Serra, "Thin Solid Films", 387 (2001) 18 및 [4] M. Kaelin, D. Rudmann, A.N. Tiwari, Sol. Energy 77 (2004) 749. 참조).Recent advances in nanoparticle synthesis and processing have led to the deposition and sintering of precursors in the form of particles in a non-vacuum state [3] C. Eberspacher, C. Fredric, K. Pauls, J. Serra, "Thin Solid Films", 387 (2001) 18 and [4] M. Kaelin, D. Rudmann, AN Tiwari, Sol.Energy 77 (2004) 749.).

이러한 접근 아이디어는 간단하고 빠른 기술에 의해 대규모 영역에서 적절한 양의 단일 층을 증착할 수 있도록 하였다.This approach idea enabled simple and fast techniques to deposit the right amount of single layer in large areas.

미세한 전구체는 스프레이(spraying), 딥 코팅(dip coating) 및 페이스트 코딩(paste coating)과 같은 간단한 기술을 이용하여 박막층 내로 증착될 수 있다. 특히, 페이스트 코팅법은 Cu(In,Ga)Se2(copper indium gallium selenide, CIGS, 구리인듐갈륨셀레늄) 물질에서 13%에 이르는 높은 셀 효율 때문에 최근에 주목할 만한 관심을 끌고 있다.Fine precursors may be deposited into the thin film layer using simple techniques such as spraying, dip coating and paste coating. In particular, the paste coating method has recently attracted notable attention due to its high cell efficiency of up to 13% in Cu (In, Ga) Se 2 (copper indium gallium selenide, CIGS, copper indium gallium selenium) materials.

그러나 공정에서 사용되는 H2Se(셀렌화수소)와 같은 강한 독성의 환원제는 많은 국가의 산업 제조 부문의 응용에서 제한되고 있다. 따라서 이러한 작업에서 CuInS2(황화구리인듐) 층이 스크린 인쇄법(screen printing)에 의해 증착되었고, 그의 치밀화(densification)를 할 필요성이 대두 되었다.However, highly toxic reducing agents such as H2Se (hydrogen selenide) used in the process are limited in applications in the industrial manufacturing sector of many countries. Thus, in this work, a CuInS 2 (copper indium sulfide) layer was deposited by screen printing, and a need for densification thereof emerged.

또한, 대한민국 특허출원 제2005-0002969호에는 태양전지용 광흡수층 및 그 제조 방법에 대해 개시되어 있다. 개시된 선행특허는 태양전지용 광흡수층으로 사용되는 CUINSE2, CUGASE2 및 CUIN 1-XGAXSE2 박막을 다층으로 적층하여 태양광의 흡수 능력을 향상시킬 수 있는 태양전지용 광흡수층 및 그 제조방법에 관한 것으로, 기판상에 III족(이하 B 또는 C로 표시하며, B는 C보다 원자번호가 더 큰 것) 원소 B 및 VI족 원소(이하 X로 표시함)를 포함하는 단일 전구체를 이용한 유기금속 화학기상 증착법에 의해 BX 구조식의 화합물 박막을 증착하는 제1 단계와, 상기 BX 구조식의 화합물 박막에 I족 금속 원소(이하, A라 표시함)를 포함하는 전구체를 공급하는 유기금속 화학기상 증착법에 의해 A2X 구조식의 화합물 박막을 형성하는 제 2 단계와, 상기 A2X 구조식의 화합물 박막 상에, III족 원소 C 및 VI족 원소 X를 포함하는 단일 전구체를 이용한 유기금속 화학기상 증착법에 의해 ACX2 구조식의 화합물 박막을 증착하는 제3 단계와, 상기 ACX2 구조식의 화합물 박막 상에, 상기 III족 원소 B 및 VI족 원소 X를 포함하는 단일 전구체를 이용한 유기금속 화학기상 증착법에 의해 ABX2 구조식의 화합물 박막을 증착하여 ACX2/ABX2 구조식의 다층박막을 형성하는 제4 단계를 포함하는 것을 특징으로 하고 있다.In addition, Korean Patent Application No. 2005-0002969 discloses a light absorbing layer for a solar cell and a method of manufacturing the same. The disclosed prior patent relates to a solar cell light absorption layer and a method for manufacturing the same, which can improve the absorption ability of sunlight by stacking CUINSE2, CUGASE2 and CUIN 1-XGAXSE2 thin films used as solar light absorption layers in multiple layers. BX structure formulated by organometallic chemical vapor deposition using a single precursor comprising a group B (hereinafter referred to as B or C, where B has an atomic number greater than C) and a group B and a group VI element (hereinafter referred to as X) The first step of depositing a compound thin film of the compound and the compound thin film of the A2X structural formula by an organometallic chemical vapor deposition method of supplying a precursor containing a group I metal element (hereinafter referred to as A) to the compound thin film of the BX structural formula Forming an ACX2 sphere by organometallic chemical vapor deposition using a single precursor containing a Group III element C and a Group VI element X on the compound thin film of the A2X structure A third step of depositing the compound thin film of the formula; and the compound thin film of the ABX2 structure by organometallic chemical vapor deposition using a single precursor containing the group III element B and the group VI element X on the compound thin film of the ACX2 structure And depositing a fourth step of forming a multilayer thin film having an ACX2 / ABX2 structure.

또한, 대한민국 특허등록 제10-0347106호에는 이원화합물의 진공증발 증착에 의한 CulnS2 박막의 제조방법에 대해 개시하고 있다. 개시된 선행특허는 금속 원소인 Cu, In, Se보다 낮은 온도에서 진공증발이 가능한 Se계 이원화합물(Cu2Se, In2Se3)과 Se을 진공에서 동시에 증발 증착하여 저가 고효율의 CulnS2 박막을 제조하는 것에 대한 것으로, CulnS2(CIS) 화합물반도체를 광흡수층으로 하는 태양전지의 CIS계 화합물반도체 박막을 제조하는 방법에 있어서, 금속원소가 아닌 Se계 이원화합물(Cu2Se, In2Se3)과 Se을 동시증발물질로 사용하여 진공증발증착실에서 진공상태로 기판의 온도에 변화를 주면서 순차적으로 증발 증착하여 CuInSe 2계 박막을 제조하는 것을 특징으로 하고 있다.In addition, Korean Patent Registration No. 10-0347106 discloses a method for producing a CulnS 2 thin film by vacuum evaporation of binary compounds. The disclosed patent discloses a low-cost, high-efficiency CulnS 2 thin film by simultaneously evaporating and depositing Se-based binary compounds (Cu2Se, In2Se3) and Se which can be evaporated at a lower temperature than the metal elements Cu, In, and Se in vacuum. In the method for producing a CIS compound semiconductor thin film of a solar cell having a CulnS 2 (CIS) compound semiconductor as a light absorption layer, Se-based binary compounds (Cu2Se, In2Se3) and Se, not metal elements, are used as co-evaporation materials. CuInSe 2-based thin film is manufactured by sequentially evaporating while changing the temperature of the substrate in a vacuum in the vacuum evaporation chamber.

그러나, 상기에서 예로 들어 설명한 종래의 선행특허의 경우, 진공장비를 사용하여 흡수층을 제조하기 때문에 생산단가가 높은 문제점이 있었다.However, in the prior art described above as an example, there is a problem in that the production cost is high because the absorption layer is manufactured using vacuum equipment.

또한, 종래의 공개문헌 『Journal of Physics and Chemistry of Solids/s. Nakamura외 1명/66(2005) 1944-1946.』 및 『physica status solidi (c)/S. Merdes 외 4명/3(2006) 2535-2538.』에는 CIS2 또는 CISe2 박막을 제조하는 방법에 대해 개시되어 있다. 이 문헌에 개시된 바에 의하면, 구리(Cu-)와 인듐(In-) naphthenates를 이용하여 용액을 만들고 이것을 유리기판상에 회전코팅법으로 코팅한 후 N2+H2 가스를 이용한 열처리한 다음 N2+H2S 가스로 황화처리를 하거나 셀렌(Se) 가스로 셀레늄처리를 하여 CIS2 또는 CISe2 박막을 제조하였다.In addition, the conventional publication, Journal of Physics and Chemistry of Solids / s. Nakamura et al./66(2005) 1944-1946. And physica status solidi (c) / S. Merdes et al. 4 (3) (2006) 2535-2538. Discloses a process for producing CIS 2 or CISe 2 thin films. According to as disclosed in this reference bar, copper (Cu -) and indium (In -) was coated to create a solution by using a naphthenates this as a spin coating method on a glass substrate and heat-treated with N 2 + H 2 gas, and then N 2 + The CIS 2 or CISe 2 thin film was prepared by sulfiding with H 2 S gas or selenium with selenium (Se) gas.

그러나, 이와 같은 종래의 문헌에서는 박막 제조를 위해 출발용액을 유리기판상에 코팅한 후 N2+H2 가스로 열처리하는 공정이 추가되고, 열처리 공정 이후에 N2+H2S 가스로 황화처리를 하거나 셀렌(Se) 가스로 셀레늄처리를 하여 CIS2 또는 CISe2 박막을 제조하기 때문에 생산단가가 높아지는 단점이 있다. However, in such a conventional document, a process of coating a starting solution on a glass substrate and heat-treating with N 2 + H 2 gas is added to prepare a thin film, and sulfiding with N 2 + H 2 S gas is performed after the heat treatment process. In addition, since the selenium treatment with selenium (Se) gas to produce a CIS 2 or CISe 2 thin film has a disadvantage that the production cost increases.

따라서, 본 발명은 상기 문제점을 해결하기 위하여 이루어진 것으로, 본 발명의 제 1 목적은 금속유기전구체를 이용하여 회전코팅법으로 박막을 코팅하고 간단한 건조 과정과 황 분말을 이용한 황화처리를 거치면서 치밀한 막을 형성할 수 있는 태양전지용 황화구리인듐(CulnS2) 흡수층 및 그의 제조 방법을 제공하는 데 있다.Accordingly, the present invention has been made to solve the above problems, and a first object of the present invention is to coat a thin film by a rotary coating method using a metal organic precursor, and to form a dense film through a simple drying process and a sulfidation process using sulfur powder. The present invention provides a copper indium sulfide (CulnS 2 ) absorbent layer for forming a solar cell and a method for producing the same.

또한, 본 발명의 제 2 목적은 금속유기전구체를 회전코팅법으로 코팅한 후 황화처리를 거쳐 흡수층을 제조함으로써, 생산단가를 획기적으로 낮출 수 있는 태양전지용 황화구리인듐(CulnS2) 흡수층 및 그의 제조 방법을 제공하는 데 있다.In addition, the second object of the present invention is a copper indium sulfide (CulnS 2 ) absorption layer for solar cells that can significantly reduce the production cost by coating the metal organic precursor by a rotary coating method and then through the sulfidation to produce an absorbing layer, and its preparation To provide a way.

또한, 본 발명의 제 3 목적은 회전코팅법으로 코팅된 박막을 건조한 후 기존의 N2+H2 가스를 이용한 열처리 없이 황화처리를 거쳐 황화구리인듐(CulnS2) 흡수층을 제조하는 태양전지용 황화구리인듐(CulnS2) 흡수층 및 그의 제조 방법을 제공하는 데 있다.In addition, the third object of the present invention is to dry the thin film coated by the rotary coating method and then to produce a copper indium sulfide (CulnS 2 ) absorbing layer through the sulfidation without heat treatment using the existing N 2 + H 2 gas copper sulfide for solar cells An indium (CulnS 2 ) absorbing layer and a method for producing the same are provided.

또한, 본 발명의 제 4 목적은 박막을 건조한 후 가스상태가 아닌 분말상태의 황을 이용하여 황화처리를 하여 황화구리인듐(CulnS2) 흡수층을 제조하는 태양전지용 황화구리인듐(CulnS2) 흡수층 및 그의 제조 방법을 제공하는 데 있다. Further, the fourth object is subject to sulfiding with sulfur in powder form rather than gaseous After drying of the thin-film copper sulfide indium (CulnS 2) solar cell sulfide copper indium for producing the absorbent layer (CulnS 2) absorbing layer of the present invention, and It is providing the manufacturing method thereof.

상기 목적을 달성하기 위한 본 발명에 의한 태양전지용 황화구리인듐(CulnS2) 흡수층의 제조 방법은, (a) 구리아세테이트(Cu acetate)와 인듐아세테이트(In acetate)의 금속유기전구체를 이용하여 출발용액을 제조하는 단계와; (b) 상기 출발용액으로 기판상에 박막을 코팅하는 단계와; (c) 상기 박막이 코팅된 상기 기판을 건조하는 단계; 및 (d) 상기 건조 후 황(S)의 분말을 이용하여 황화 처리하여 CulnS2 흡수층을 완성하는 단계;를 포함하여 이루어진 것을 특징으로 한다.Method for producing a copper indium sulfide (CulnS 2 ) absorption layer for a solar cell according to the present invention for achieving the above object, (a) a starting solution using a metal organic precursor of copper acetate (Cu acetate) and indium acetate (In acetate) Preparing a; (b) coating a thin film on a substrate with the starting solution; (c) drying the substrate coated with the thin film; And (d) sulfiding using the powder of sulfur (S) after drying to complete the CulnS 2 absorbent layer.

상기 (a)단계에서의 출발용액은, 상기 구리아세테이트와 인듐아세테이트를 2 프로판올과 1프로판올에 각각 용해한 후 두 용액을 섞어서 제조하는 것을 특징으로 한다.The starting solution in step (a) is characterized in that the copper acetate and indium acetate are dissolved in 2 propanol and 1 propanol, respectively, and then prepared by mixing the two solutions.

상기 구리아세테이트는, 1프로판올에 80℃의 조건에서 1시간 동안 용해한 후 다이에탄올아민과 에틸렌글리콜을 섞어서 2프로판올에 용해하는 것을 특징으로 한다.The copper acetate is dissolved in 1 propanol at 80 ° C. for 1 hour and then mixed with diethanolamine and ethylene glycol in 2 propanol.

상기 (a)단계에서, 상기 출발용액의 구리/인듐 몰 비는 1이고, 상기 구리의 몰 농도는 0.25mol/1인 것을 특징으로 한다.In the step (a), the copper / indium molar ratio of the starting solution is 1, the molar concentration of the copper is characterized in that 0.25 mol / 1.

상기 (b)단계에서는 졸젤(sol-gel) 회전코팅법으로 박막을 코팅하는 것을 특징으로 한다.In the step (b) it is characterized in that the coating of the thin film by a sol-gel rotation coating method.

상기 (c)단계에서는 300℃에서 10분간 핫플레이트(hotplate) 상에서 건조하는 것을 특징으로 한다.In the step (c) it is characterized in that the drying on a hotplate (hotplate) for 10 minutes at 300 ℃.

상기 (c)단계에서는 원하는 박막의 두께가 나올 때까지 반복하여 건조하는 것을 특징으로 한다.In the step (c) it is characterized in that repeatedly drying until the desired thickness of the thin film.

상기 (d)단계에서는 500℃의 중성분위기에서 밀폐된 흑연상자 안에서 황화 처리하는 것을 특징으로 한다.The step (d) is characterized in that the sulfidation process in a graphite box sealed in a medium atmosphere of 500 ℃.

상기 황화 처리된 박막의 표면 거칠기는 19.1㎚인 것을 특징으로 한다.The surface roughness of the sulfided thin film is 19.1 nm.

또한, 상기 목적을 달성하기 위한 본 발명에 의한 태양전지용 황화구리인듐 흡수층은, 특허청구범위 제1항 내지 제9항 중 어느 한 항에 기재된 태양전지용 황화구리인듐 흡수층의 제조 방법에 의해 제조된 것을 특징으로 한다.Moreover, the copper indium sulfide absorbing layer for solar cells which concerns on this invention for achieving the said objective was what was manufactured by the manufacturing method of the copper indium sulfide absorbing layer for solar cells as described in any one of Claims 1-9. It features.

이하, 첨부된 도면을 참조하여 본 발명의 실시 예에 대해 더욱 상세히 설명 하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

실시 예Example

도 1은 본 발명의 바람직한 실시 예에 의한 태양전지용 황화구리인듐(CulnS2) 흡수층의 제조 방법을 나타낸 제조 공정 흐름도이다,1 is a manufacturing process flow diagram illustrating a method of manufacturing a copper indium sulfide (CulnS 2 ) absorbing layer for a solar cell according to a preferred embodiment of the present invention.

먼저, 구리아세테이트(Cu acetate)와 인듐아세테이트(In acetate)의 금속유기전구체를 이용하여 출발용액을 제조한다(단계 S10).First, a starting solution is prepared using a metal organic precursor of copper acetate (Cu acetate) and indium acetate (In acetate) (step S10).

이때, 상기 출발용액은 상기 구리아세테이트와 인듐아세테이트를 2프로판올과 1프로판올에 각각 용해한 후 두 용액을 섞어서 제조한다. 상기 구리아세테이트는 1프로판올에 80℃의 조건에서 1시간 동안 용해한 후 다이에탄올아민과 에틸렌글리콜을 섞어서 2프로판올에 용해한다. 상기 출발용액의 구리/인듐 몰 비는 1이고, 상기 구리의 몰 농도는 0.25mol/1인 것이 바람직하다.At this time, the starting solution is prepared by dissolving the copper acetate and indium acetate in 2propanol and 1propanol, respectively, and then mixing the two solutions. The copper acetate is dissolved in 1 propanol at 80 ° C. for 1 hour, and then mixed with diethanolamine and ethylene glycol to dissolve in 2 propanol. The copper / indium molar ratio of the starting solution is 1, and the molar concentration of copper is preferably 0.25 mol / 1.

그 다음, 상기 출발용액으로 기판상에 박막을 코팅한다(단계 S20). Then, the thin film is coated on the substrate with the starting solution (step S20).

이때, 박막을 코팅하는 방법은 졸젤(sol-gel) 회전코팅법을 사용하는 것이 바람직하다.At this time, it is preferable to use a sol-gel rotation coating method for coating the thin film.

그 다음, 상기 박막이 코팅된 상기 기판을 건조한다(단계 S30).Then, the substrate is coated with the thin film (step S30).

이때, 건조 방법은 300℃에서 10분간 핫플레이트(hotplate) 상에서 건조하는 것이 바람직하며, 원하는 박막의 두께가 나올 때까지 반복하여 건조한다.At this time, the drying method is preferably dried on a hotplate for 10 minutes at 300 ℃, and repeatedly dried until the desired thickness of the thin film.

그 다음, 황(S)의 분말을 이용하여 황화 처리(단계 S40)하여 CulnS2 흡수층 을 완성한다(단계 S50).Then, the sulfidation process (step S40) using the powder of sulfur (S) to complete the CulnS 2 absorbent layer (step S50).

이때, 황화 처리 방법은 500℃의 중성분위기에서 밀폐된 흑연상자 안에서 황화 처리하는 것이 바람직하며, 상기 황화 처리된 박막의 표면 거칠기는 19.1㎚인 것이 바람직하다.At this time, the sulfidation method is preferably sulfided in a graphite box sealed in a medium atmosphere of 500 ℃, the surface roughness of the sulfided thin film is preferably 19.1nm.

[실험][Experiment]

CuInS2 박막이 졸젤(sol-gel) 회전코팅법을 이용하여 제조되었다. 구리아세테이트와 인듐아세테이트가 2 프로판올과 1 프로판올에 각각 용해되었다. 두 용액을 섞어서 구리-인듐 결정-성장되기 전 상태의(as-grown) 박막을 위한 출발용액을 만들었다. As-grown 박막은 흑연상자 안에서 황화처리되었다. 이차 상이 없는 명확한 황동석(chalcopyrite) 상이 관찰되었다. 500도에서 황화처리된 박막의 표면 거칠기는 19.1㎚였다. 라만 분광측정으로 박막 내부에 황화구리와 황화인듐이 없다는 것을 알 수 있었다.CuInS 2 thin films were prepared using a sol-gel rotation coating method. Copper acetate and indium acetate were dissolved in 2 propanol and 1 propanol, respectively. The two solutions were mixed to form a starting solution for the as-grown thin film of copper-indium crystals. As-grown thin films were sulfided in graphite boxes. A clear chalcopyrite phase with no secondary phase was observed. The surface roughness of the sulfided thin film at 500 degrees was 19.1 nm. Raman spectroscopy showed no copper sulfide and indium sulfide inside the thin film.

[실험에 의한 항목][Experimental item]

구리-인듐 as-grown 박막에 사용되는 맑은 출발용액을 제조하기 위하여 인듐용액과 구리용액을 각각 제조하였고 후에 두 용액을 섞었다. 인듐용액의 경우 인듐아세테이트가 1 프로판올에 80도 1시간 동안 용해되었다. 다이에탄올아민이 안정화제로서 첨가되었다. 구리용액의 출발물질로는 구리아세테이트가 출발물질로 사용되 었다. 구리아세테이트는 다이에탄올아민과 에틸렌글리콜과 함께 2프로판올에 용해되었다. 이 용액은 상온에서 30분간 저어졌다. 인듐과 구리용액은 상온에서 2시간 동안 저으면서 섞여졌다. 위의 과정을 거치면서 박막의 코팅을 위한 출발용액이 완성되었다. 출발용액의 구리/인듐 몰비는 1이었고, 구리의 몰농도는 0.25 mol/l 였다.To prepare a clear starting solution for the copper-indium as-grown thin film, an indium solution and a copper solution were prepared, respectively, and then the two solutions were mixed. In the case of indium solution, indium acetate was dissolved in 1 propanol for 80 degrees for 1 hour. Diethanolamine was added as a stabilizer. Copper acetate was used as a starting material for the copper solution. Copper acetate was dissolved in 2propanol with diethanolamine and ethylene glycol. This solution was stirred for 30 minutes at room temperature. Indium and copper solution were mixed with stirring for 2 hours at room temperature. Through the above process, the starting solution for the coating of the thin film was completed. The copper / indium molar ratio of the starting solution was 1 and the molar concentration of copper was 0.25 mol / l.

구리-인듐의 as-grown 박막을 위한 출발용액은 코닝 1737 유리기판 위에 떨어뜨려졌고 1500 rpm에서 25초 동안 회전시켜졌다. 기판은 초음파 세척기에서 아세톤, 증류수, 에탄올 순으로 연속적으로 세척되어 졌다. 각각의 회전코팅 후에 코팅된 층은 300도에서 10분간 핫플레이트(hotplate) 위에서 건조되었다. 코팅에서 건조까지의 과정은 0.6㎛의 원하는 두께가 나올 때까지 반복되었다. As-grown 박막은 중성분위기에서 밀폐된 흑연상자 안에서 황화처리되었다. 박막제조공정중에 2단계의 온도 프로파일이 이용되었다. 각각의 반응단계는 30분간 유지되었다.The starting solution for the as-grown thin film of copper-indium was dropped on a Corning 1737 glass substrate and spun for 25 seconds at 1500 rpm. Substrates were washed successively with acetone, distilled water and ethanol in an ultrasonic cleaner. After each spin coating the coated layer was dried on a hotplate at 300 degrees for 10 minutes. The process from coating to drying was repeated until the desired thickness of 0.6 μm was achieved. As-grown thin films were sulfided in a graphite box sealed in a medium atmosphere. During the thin film manufacturing process, two temperature profiles were used. Each reaction step was held for 30 minutes.

XRD를 이용하여 박막의 구조적인 특성이 분석되었다. 박막의 표면과 단면 이미지는 SEM을 이용해서 조사되었고, 표면 거칠기는 AFM을 이용해서 얻어졌다. 박막의 라만 스펙트럼은 마이크로-라만 스펙트로미터(micro-Raman spectrometer)를 이용하여 측정되었다. The structural properties of the thin films were analyzed using XRD. Surface and cross-sectional images of the thin films were examined using SEM and surface roughness was obtained using AFM. Raman spectra of the thin films were measured using a micro-Raman spectrometer.

[결과 및 검토][Results and Review]

도 2는 황화처리 온도에 따른 CuInS2 박막의 XRD 패턴을 보여준다. 구리-인듐 as-grown 박막에서 산화인듐을 나타내는 피크가 관찰되었다. As-grown 박막은 용매 를 휘발시키고 유기물들을 제거하기 위해서 300도의 핫플레이트(hotplate) 위에서 건조되었다. 구리-인듐 화합물이 스퍼터링법과 열 증착법에서 쉽게 생성된다는 것은 잘 알려져 있다. 그러나 이 연구에서는 구리-인듐 화합물은 생성되지 않았다. 산소원자의 제거를 위해 550도 30분간 환원가스가 적용되었지만 산화인듐을 나타내는 피크는 감소하지 않았다. 이것은 환원가스가 인듐과 결합하고 있는 산소를 제거하지 못하고 있다는 것을 나타낸다. 그러나 산소원자는 황화처리에 의해서 제거될 수 있었다. 더구나 황화처리로 CuInS2 상이 생성되었다. 황화처리 온도가 증가함에 따라 CuInS2 상의 (112) 피크 강도가 증가하였고 이차 상은 관찰되지 않았다. 회절 패턴은 2 세터가 27.9도에서 (112) 방향을 나타내는 황동석(chalcopyrite) 상을 나타내었다. 다른 회절피크는 (204)/(220)와 (116)/(312)에 해당한다. 이 패턴은 정방정계(tetragonal) 상의 화학양론적인 CuInS2의 보고된 특징과 일치한다. 샘플의 격자상수는 a=5.528 c=11.143으로 보고된 수치와 잘 일치하였다.Figure 2 shows the XRD pattern of the CuInS2 thin film according to the sulfidation temperature. A peak indicating indium oxide was observed in the copper-indium as-grown thin film. As-grown thin films were dried on a hotplate at 300 degrees to evaporate the solvent and remove organics. It is well known that copper-indium compounds are easily produced by sputtering and thermal evaporation. However, no copper-indium compounds were produced in this study. Reducing gas was applied for 30 minutes at 550 ° C to remove oxygen atoms, but the peak indicating indium oxide did not decrease. This indicates that the reducing gas is not able to remove oxygen bound to indium. However, oxygen atoms could be removed by sulfidation. Furthermore, sulfidation produced a CuInS 2 phase. As the sulfidation temperature increased, the (112) peak intensity of the CuInS2 phase increased and no secondary phase was observed. The diffraction pattern showed a chalcopyrite phase in which the two setters showed the (112) direction at 27.9 degrees. Other diffraction peaks correspond to (204) / (220) and (116) / (312). This pattern is consistent with the reported feature of stoichiometric CuInS 2 on tetragonal. The lattice constant of the sample was in good agreement with the reported value of a = 5.528 c = 11.143.

도 3은 다양한 온도에서의 CuInS2 박막의 SEM 이미지를 나타낸다. 코우스퍼터링법으로 증착된 박막과 비교했을 때 치밀한 입자들을 볼 수 있다. 450도에서 각진 입자들이 관찰되었으며 다른 온도에서 관찰된 둥근 입자들과는 차이가 있었다. 550도에서 입자크기는 표면에서 120㎚였고 박의 내부에서는 60㎚였다. 다시말해서 증기상태의 황과 접하고 있는 입자들은 그렇지 않은 입자들보다 입자크기가 더 컸다. 이것은 황이 박막의 입자크기의 성장을 야기한다는 것을 알려준다. 3 shows SEM images of CuInS 2 thin films at various temperatures. Dense particles can be seen when compared to the thin film deposited by the cous puttering method. Angled particles were observed at 450 degrees and were different from rounded particles observed at other temperatures. At 550 degrees the particle size was 120 nm at the surface and 60 nm inside the foil. In other words, the particles in contact with vaporous sulfur were larger in particle size than those without. This indicates that sulfur causes the growth of the particle size of the thin film.

표면 거칠기는 500도에서 황화처리된 샘플로 측정되었다. AFM 이미지와 표면 거칠기가 도 4에 나타나 있다. 국부적인 함유물(inclusion)을 제외하면 박막은 평탄한 표면을 가지고 있었으며 치밀한 입자들을 보이고 있다. 평탄한 표면은 디바이스에서 암전류를 낮추고 흡수층과 윈도우층 사이의 인터페이스 상태(terface state)의 수를 감소시킨다. Surface roughness was measured with the sulfided sample at 500 degrees. AFM image and surface roughness are shown in FIG. 4. Except for local inclusions, the film had a flat surface and showed dense particles. The flat surface lowers the dark current in the device and reduces the number of interface states between the absorber layer and the window layer.

도 5는 500도에서 황화처리된 CuInS2 박막의 라만 스펙트럼결과를 보여준다. 294, 305, 340 ㎝-1에서 주 피크가 나타나고 있다. 294 와 340 ㎝-1 는 각각 A 1 B 2 모드에 해당한다. 305 ㎝-1 피크는 로컬(local) 진동 모드를 나타낸다. 267와 474 ㎝-1에서 피크가 관찰되지 않음으로써 CuxS 상이 생성되지 않았다는 것을 나타내고 있다. 또한 243, 263, 303, 323 와 363 ㎝-1 박막이 β-In2S3 상을 포함하지 않고 있다는 것을 알 수 있다. 5 shows Raman spectra of a sulfide-treated CuInS 2 thin film at 500 degrees. Main peaks are shown at 294, 305, 340 cm -1 . 294 and 340 cm -1 correspond to A 1 and B 2 modes, respectively. The 305 cm -1 peak represents a local vibration mode. No peaks were observed at 267 and 474 cm -1 , indicating that no Cu x S phase was produced. It can also be seen that the 243, 263, 303, 323 and 363 cm -1 thin films do not contain the β-In 2 S 3 phase.

이상의 본 발명은 상기에 기술된 실시 예들에 의해 한정되지 않고, 당업자들에 의해 다양한 변형 및 변경을 가져올 수 있으며, 이는 첨부된 특허청구범위에서 정의되는 본 발명의 취지와 범위에 포함되는 것으로 보아야 할 것이다. The present invention is not limited to the above-described embodiments, and various modifications and changes can be made by those skilled in the art, which should be regarded as included in the spirit and scope of the present invention as defined in the appended claims. will be.

상술한 바와 같이, 본 발명에 의한 태양전지용 황화구리인듐 흡수층 및 그의 제조 방법에 의하면, 금속유기전구체를 이용하여 회전코팅법으로 박막을 코팅하고 간단한 건조 과정과 황 분말을 이용한 황화처리를 거치면서 치밀한 막을 형성할 수 있을 뿐만 아니라 생산단가를 획기적으로 낮출 수 있는 효과가 있다.As described above, according to the indium sulfide absorption layer for solar cells according to the present invention and a method for manufacturing the same, the thin film is coated by a rotation coating method using a metal organic precursor, and is dense while undergoing a simple drying process and a sulfidation process using sulfur powder. Not only can the film be formed, but also the production cost can be drastically lowered.

Claims (10)

태양전지용 황화구리인듐(CulnS2) 흡수층의 제조 방법에 있어서,In the manufacturing method of the copper indium sulfide (CulnS 2 ) absorption layer for solar cells, (a) 구리아세테이트(Cu acetate)와 인듐아세테이트(In acetate)의 금속유기전구체를 이용하여 출발용액을 제조하는 단계와;(a) preparing a starting solution using a metal organic precursor of copper acetate (Cu acetate) and indium acetate (In acetate); (b) 상기 출발용액으로 기판상에 박막을 코팅하는 단계와;(b) coating a thin film on a substrate with the starting solution; (c) 상기 박막이 코팅된 상기 기판을 건조하는 단계; 및(c) drying the substrate coated with the thin film; And (d) 상기 건조 후 황(S)의 분말을 이용하여 황화 처리하여 CulnS2 흡수층을 완성하는 단계;를 포함하여 이루어진 것을 특징으로 하는 태양전지용 황화구리인듐 흡수층의 제조 방법.(d) sulfiding using the powder of sulfur (S) after drying to complete the CulnS 2 absorbent layer; a method of manufacturing a copper indium sulfide absorber layer for a solar cell, characterized in that it comprises a. 제 1 항에 있어서, 상기 (a)단계에서의 출발용액은:According to claim 1, wherein the starting solution in step (a) is: 상기 구리아세테이트와 인듐아세테이트를 2프로판올과 1프로판올에 각각 용해한 후 두 용액을 섞어서 제조하는 것을 특징으로 하는 태양전지용 황화구리인듐 흡수층의 제조 방법.And dissolving the copper acetate and indium acetate in 2propanol and 1propanol, respectively, and then mixing the two solutions to prepare the copper indium sulfide absorbing layer for solar cells. 제 2 항에 있어서, 상기 구리아세테이트는:The method of claim 2, wherein the copper acetate is: 1프로판올에 80℃의 조건에서 1시간 동안 용해한 후 다이에탄올아민과 에틸렌글리콜을 섞어서 2프로판올에 용해하는 것을 특징으로 하는 태양전지용 황화구리 인듐 흡수층의 제조 방법.A method for producing a copper indium sulfide absorbing layer for solar cells, which is dissolved in 1 propanol for 1 hour at 80 ° C. and then mixed with diethanolamine and ethylene glycol and dissolved in 2 propanol. 제 1 항에 있어서, 상기 (a)단계에서,The method of claim 1, wherein in step (a), 상기 출발용액의 구리/인듐 몰 비는 1이고,The copper / indium molar ratio of the starting solution is 1, 상기 구리의 몰 농도는 0.25mol/1인 것을 특징으로 하는 태양전지용 황화구리인듐 흡수층의 제조 방법.A method for producing a copper indium sulfide absorbing layer for a solar cell, characterized in that the molar concentration of the copper is 0.25 mol / 1. 제 1 항에 있어서, 상기 (b)단계에서는:The method of claim 1, wherein in step (b): 졸젤(sol-gel) 회전코팅법으로 박막을 코팅하는 것을 특징으로 하는 태양전지용 황화구리인듐 흡수층의 제조 방법.A method of manufacturing a copper indium sulfide absorbing layer for a solar cell, characterized in that the thin film is coated by a sol-gel rotation coating method. 제 1 항에 있어서, 상기 (c)단계에서는:The method of claim 1, wherein in step (c): 300℃에서 10분간 핫플레이트(hotplate) 상에서 건조하는 것을 특징으로 하는 태양전지용 황화구리인듐 흡수층의 제조 방법.A method for producing a copper indium sulfide absorbing layer for a solar cell, which is dried on a hotplate at 300 ° C. for 10 minutes. 제 1 항에 있어서, 상기 (c)단계에서는:The method of claim 1, wherein in step (c): 원하는 박막의 두께가 나올 때까지 반복하여 건조하는 것을 특징으로 하는 태양전지용 황화구리인듐 흡수층의 제조 방법.A method for producing a copper indium sulfide absorbing layer for a solar cell, which is repeatedly dried until a desired thin film thickness is obtained. 제 1 항에 있어서, 상기 (d)단계에서는:The method of claim 1, wherein in step (d): 500℃의 중성분위기에서 밀폐된 흑연상자 안에서 황화 처리하는 것을 특징으로 하는 태양전지용 황화구리인듐 흡수층의 제조 방법.A method for producing a copper indium sulfide absorbing layer for a solar cell, characterized in that the sulfiding treatment is carried out in a sealed graphite box at a medium atmosphere of 500 ° C. 제 8 항에 있어서, The method of claim 8, 상기 황화 처리된 박막의 표면 거칠기는 19.1㎚인 것을 특징으로 하는 태양전지용 황화구리인듐 흡수층의 제조 방법.The surface roughness of the sulfide-treated thin film is a manufacturing method of the indium sulfide absorption layer for solar cells, characterized in that 19.1nm. 제 1 항 내지 제 9 항 중 어느 한 항에 기재된 태양전지용 황화구리인듐 흡수층의 제조 방법에 의해 제조된 것을 특징으로 하는 태양전지용 황화구리인듐 흡수층.The indium sulfide absorption layer for solar cells manufactured by the manufacturing method of the copper indium sulfide absorption layer as described in any one of Claims 1-9.
KR1020070057315A 2007-06-12 2007-06-12 CulnS2 Absorber Layer of Thin Film Solar Cell and Manufacture Method Thereof KR100894216B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070057315A KR100894216B1 (en) 2007-06-12 2007-06-12 CulnS2 Absorber Layer of Thin Film Solar Cell and Manufacture Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070057315A KR100894216B1 (en) 2007-06-12 2007-06-12 CulnS2 Absorber Layer of Thin Film Solar Cell and Manufacture Method Thereof

Publications (2)

Publication Number Publication Date
KR20080109240A true KR20080109240A (en) 2008-12-17
KR100894216B1 KR100894216B1 (en) 2009-04-22

Family

ID=40368579

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070057315A KR100894216B1 (en) 2007-06-12 2007-06-12 CulnS2 Absorber Layer of Thin Film Solar Cell and Manufacture Method Thereof

Country Status (1)

Country Link
KR (1) KR100894216B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101116705B1 (en) * 2010-10-06 2012-03-13 한국에너지기술연구원 Solution phase preparation method of cigs thin film and cigs thin film prepared thereby
KR101121476B1 (en) * 2010-02-08 2012-03-13 영남대학교 산학협력단 Preparation method of copper indium diselenide thin film for solar cell using continuous flow reaction process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247718B (en) * 2013-04-09 2015-06-17 许昌学院 Chemical method for in-situ control and synthesis of AgCuS/Ag3CuS2 ternary semiconductor photoelectric thin-film material at normal temperature

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254723A (en) * 1994-03-16 1995-10-03 Yazaki Corp Production of thin film solar cell
JPH10273783A (en) * 1997-03-31 1998-10-13 Yazaki Corp Production of chalcopyrite light absorption film
KR100625082B1 (en) * 2004-10-25 2006-09-20 한국에너지기술연구원 Fabrication of InxOOH,Sy Buffer Layer by Chemical Bath Deposition for CuIn,GaSe2 or CuIn,GaS,Se2 Thin Film Solar Cells and Solar Cells manufactured by thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121476B1 (en) * 2010-02-08 2012-03-13 영남대학교 산학협력단 Preparation method of copper indium diselenide thin film for solar cell using continuous flow reaction process
KR101116705B1 (en) * 2010-10-06 2012-03-13 한국에너지기술연구원 Solution phase preparation method of cigs thin film and cigs thin film prepared thereby

Also Published As

Publication number Publication date
KR100894216B1 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
Yuan et al. Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth
Zhao et al. Solution-deposited pure selenide CIGSe solar cells from elemental Cu, In, Ga, and Se
Fan et al. Deposition temperature effect of RF magnetron sputtered molybdenum oxide films on the power conversion efficiency of bulk-heterojunction solar cells
Yazici et al. Growth of Cu2ZnSnS4 absorber layer on flexible metallic substrates for thin film solar cell applications
US8501524B2 (en) Method of manufacturing thin-film light-absorbing layer, and method of manufacturing thin-film solar cell using the same
US20130045565A1 (en) Method of manufacturing high density cis thin film for solar cell and method of manufacturing thin film solar cell using the same
Tian et al. A robust and low-cost strategy to prepare Cu 2 ZnSnS 4 precursor solution and its application in Cu 2 ZnSn (S, Se) 4 solar cells
Liu et al. Butyldithiocarbamate acid solution processing: its fundamentals and applications in chalcogenide thin film solar cells
US8815123B2 (en) Fabrication method for ibiiiavia-group amorphous compound and ibiiiavia-group amorphous precursor for thin-film solar cells
Long et al. Effects of sulfurization temperature on phases and opto-electrical properties of Cu2ZnSnS4 films prepared by sol–gel deposition
Bayazıt et al. Growth and characterization of Cu 2 SnS 3 (CTS), Cu 2 SnSe 3 (CTSe), and Cu 2 Sn (S, Se) 3 (CTSSe) thin films using dip-coated Cu–Sn precursor
JP6302546B2 (en) CIGS nanoparticle ink preparation with high crack-free limit
Yan et al. Solution-processed Cu 2 ZnSnS 4 thin film with mixed solvent and its application in superstrate structure solar cells
Olgar et al. Impact of sulfurization parameters on properties of CZTS thin films grown using quaternary target
Zhang et al. Effect of sulfurization temperature of solution-processed Cu2SnS3 absorber for low cost photovoltaic cells
Koltsov et al. A post-deposition annealing approach for organic residue control in TiO 2 and its impact on Sb 2 Se 3/TiO 2 device performance
Liu et al. A non-vacuum solution route to prepare amorphous metal oxides thin films for Cu2ZnSn (S, Se) 4 solar cells
KR100894216B1 (en) CulnS2 Absorber Layer of Thin Film Solar Cell and Manufacture Method Thereof
Li et al. Cu2ZnSnS4 solar cells prepared by sulfurization of sputtered ZnS/Sn/CuS precursors
Yeh et al. Growth and characterization of CuInS2 nanoparticles prepared using sonochemical synthesis
Liu et al. Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure
Mazalan et al. Influence of antimony dopant on CuIn (S, Se) 2 solar thin absorber layer deposited via solution-processed route
Zhao et al. Solution-based synthesis of dense, large grained CuIn (S, Se) 2 thin films using elemental precursor
Pakštas et al. Impact of CdS layer thickness on the composition, structure and photovoltaic performance of superstrate CZTSSe solar cells
Zhao et al. Effect of sulfurization process on the properties of solution-processed Cu 2 SnS 3 thin film solar cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130325

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140324

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160329

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee