KR20080092842A - Coin type nonaqueous electrolyte secondary battery - Google Patents

Coin type nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
KR20080092842A
KR20080092842A KR1020080025755A KR20080025755A KR20080092842A KR 20080092842 A KR20080092842 A KR 20080092842A KR 1020080025755 A KR1020080025755 A KR 1020080025755A KR 20080025755 A KR20080025755 A KR 20080025755A KR 20080092842 A KR20080092842 A KR 20080092842A
Authority
KR
South Korea
Prior art keywords
battery
positive electrode
coin
secondary battery
electrolyte secondary
Prior art date
Application number
KR1020080025755A
Other languages
Korean (ko)
Inventor
하야토 히구치
가즈유키 나카자와
겐이치 사노
Original Assignee
히다치 막셀 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 막셀 가부시키가이샤 filed Critical 히다치 막셀 가부시키가이샤
Publication of KR20080092842A publication Critical patent/KR20080092842A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

A coin type nonaqueous electrolyte secondary battery is provided to increase discharge load characteristics and to prevent the deformation of a battery due to charge/discharge. A coin type nonaqueous electrolyte secondary battery comprises a band type positive electrode; a band type negative electrode; a band type separator; and a coin type battery can, wherein the positive electrode and the negative electrode are wound with the separator to form a cylindrical jelly roll(10), the winding direction of the jelly roll is identical to the height direction of the battery can, the ratio(D/H) of the outer diameter(D) of the jelly roll to the height(H) of the winding direction of the jelly roll is 1-25, and the ratio(R/A) of the area(A) of the upper surface of the jelly roll and the reaction efficient area(R) where the two electrodes meet each other is 9-25.

Description

코인형 비수전해액 2차 전지{COIN TYPE NONAQUEOUS ELECTROLYTE SECONDARY BATTERY} Coin-type nonaqueous electrolyte secondary battery {COIN TYPE NONAQUEOUS ELECTROLYTE SECONDARY BATTERY}

본 발명은 방전 부하 특성이 높은 코인형 비수전해액 2차 전지에 관한 것이다. The present invention relates to a coin-type nonaqueous electrolyte secondary battery having high discharge load characteristics.

코인형 리튬 이온 2차 전지로 대표되는 코인형 비수전해액 2차 전지는, 버튼(button)형 또는 편평형 비수전해액 2차 전지라고도 불리우며, 헤드폰셋(headphone set), 시계형 통신기기, 신체 부착형 의료기기 등의 사람이 몸에 지니고 사용하는 이른바 웨어러블(wearable) 기기 등에 이용하는 중부하 대응의 소형 전지로서 주목받고 있다.A coin-type nonaqueous electrolyte secondary battery, represented by a coin-type lithium ion secondary battery, is also called a button type or flat nonaqueous electrolyte secondary battery, and includes a headphone set, a watch-type communication device, and a body-mounted medical device. It is attracting attention as a heavy-duty small battery used for what is called a wearable apparatus etc. which a person, such as an apparatus, carries in a body and uses.

종래의 코인형 리튬 이온 2차 전지로서는, 예를 들면 원형으로 펀칭한 양극과 음극을 1매씩 세퍼레이터를 거쳐 적층한 전극체를 사용한 것이 있다. 그러나, 이 타입의 전지에서는, 전극이 두꺼워지기 때문에, 전극의 두께방향에 대한 리튬 이온의 확산 저항이 증가하여, 방전 부하 특성이 저하하는 단점이 있어, 저출력의 용도로 밖에 사용할 수 없다는 문제가 있다.As a conventional coin-type lithium ion secondary battery, there exist some which used the electrode body which laminated | stacked the positive electrode and negative electrode punched circularly, respectively, through the separator. However, in this type of battery, since the electrode becomes thick, there is a disadvantage that the diffusion resistance of lithium ions in the thickness direction of the electrode increases and the discharge load characteristic is lowered, so that it can be used only for low power applications. .

상기 문제를 해결하기 위하여, 띠 형상의 양극과, 띠 형상의 음극을, 띠 형 상의 세퍼레이터를 거쳐 권회한 전극체를 사용함으로써, 전극을 얇게 하는 방법이 제안되어 있다(예를 들면, 특허문헌 1, 특허문헌 2, 특허문헌 3, 특허문헌 4 참조).In order to solve the said problem, the method of thinning an electrode is proposed by using the electrode body which wound the strip | belt-shaped anode and strip | belt-shaped cathode through strip | belt-shaped separator (for example, patent document 1). , Patent Document 2, Patent Document 3, Patent Document 4).

[특허문헌 1][Patent Document 1]

일본국 특개2003-77543호 공보JP 2003-77543 A

[특허문헌 2][Patent Document 2]

일본국 특개2005-310578호 공보Japanese Patent Application Laid-Open No. 2005-310578

[특허문헌 3][Patent Document 3]

일본국 특개평11-345626호 공보Japanese Patent Application Laid-Open No. 11-345626

[특허문헌 4][Patent Document 4]

일본국 특개평11-354150호 공보Japanese Patent Application Laid-Open No. 11-354150

특허문헌 1 및 특허문헌 2에 제안되어 있는 전지에서는, 띠 형상의 양극과, 띠 형상의 음극을, 띠 형상의 세퍼레이터를 거쳐 권회하여 전극체를 형성하고, 그 전극체를 편평 형상으로 성형한 후, 전극체의 권회축 방향과 전지캔의 높이방향(두께 방향)이 직교한 상태에서, 전극체를 전지캔에 삽입하고 있다. 이 경우, 전지캔 내의 전극체는, 전지의 높이방향에서 보아 사각 형상으로 형성되어 있기 때문에, 전극체와 전지캔과의 사이에 간극이 생겨, 용적 로스(loss)가 생기는 문제가 있다. 또, 이 전극구조에서는, 전지의 충방전에 따르는 전극의 팽창·수축방향이 전지캔의 높이방향과 일치하기 때문에, 충방전을 반복하면 전지가 높이방향으로 변형될 염려도 있다.In the batteries proposed in Patent Literature 1 and Patent Literature 2, a strip-shaped anode and a strip-shaped cathode are wound through a strip-shaped separator to form an electrode body, and the electrode body is molded into a flat shape. The electrode body is inserted into the battery can in a state where the winding axis direction of the electrode body and the height direction (thickness direction) of the battery can are orthogonal to each other. In this case, since the electrode body in the battery can is formed in a rectangular shape as viewed in the height direction of the battery, a gap occurs between the electrode body and the battery can, resulting in a problem of volume loss. In this electrode structure, since the expansion / contraction direction of the electrode due to the charge / discharge of the battery coincides with the height direction of the battery can, repeated charge / discharge may cause the battery to deform in the height direction.

한편, 특허문헌 3 및 특허문헌 4에 제안되어 있는 전지에서는, 전극체의 권회축 방향과, 전지캔의 높이방향이 동일하기 때문에, 전극체와 전지캔과의 사이에 간극이 생기지 않고, 또, 전지의 충방전에 따르는 전극의 팽창·수축방향이 전지캔의 지름방향과 일치하기 때문에, 충방전을 반복하여도 전지가 변형될 염려도 없다.On the other hand, in the batteries proposed in Patent Documents 3 and 4, since the winding axis direction of the electrode body and the height direction of the battery can are the same, there is no gap between the electrode body and the battery can. Since the direction of expansion and contraction of the electrode following the charge / discharge of the battery coincides with the diameter direction of the battery can, there is no fear of deforming the battery even after repeated charging and discharging.

그러나, 특허문헌 3 및 특허문헌 4에서는, 단지 전극구조가 개시되어 있을 뿐이며, 중부하 특성의 향상을 위한 구체적 구성이 일체 개시되어 있지 않다. 물론, 특허문헌 1 및 특허문헌 2에도 중부하 특성의 향상을 위한 구체적 구성은, 일체 개시되어 있지 않다.However, in patent document 3 and patent document 4, only an electrode structure is disclosed and the specific structure for the improvement of heavy-load characteristic is not disclosed at all. Of course, neither the specific structure for the improvement of heavy-load characteristic is disclosed in patent document 1 and patent document 2 at all.

본 발명은 상기 문제를 해결한 것으로, 방전 부하 특성이 높은 코인형 비수 전해액 2차 전지를 제공하는 것이다.The present invention solves the above problems, and provides a coin-type nonaqueous electrolyte secondary battery having high discharge load characteristics.

본 발명의 코인형 비수전해액 2차 전지는, 띠 형상의 양극과, 띠 형상의 음극과, 띠 형상의 세퍼레이터와, 코인형 전지캔을 포함하는 코인형 비수전해액 2차 전지로서, 상기 양극과 상기 음극은, 상기 세퍼레이터를 거쳐 권회되어 원통 형상의 권회체를 구성하고, 상기 권회체의 권회축 방향이 상기 전지캔의 높이방향과 동일하고, 상기 권회체의 외경(D)과, 상기 권회체의 권회축 방향의 높이(H)와의 비(D/H)가, 1∼25이고, 상기 권회체의 상면부의 면적(A)과, 상기 양극과 상기 음극이 대향하고 있는 반응 유효면적(R)과의 비(R/A)가, 9∼25인 것을 특징으로 한다.A coin-type nonaqueous electrolyte secondary battery of the present invention is a coin-type nonaqueous electrolyte secondary battery comprising a strip-shaped positive electrode, a strip-shaped negative electrode, a strip-shaped separator, and a coin-type battery can. The negative electrode is wound through the separator to form a cylindrical wound body, the winding axis direction of the wound body is the same as the height direction of the battery can, and the outer diameter D of the wound body and the wound body The ratio D / H to the height H in the winding axis direction is 1 to 25, the area A of the upper surface portion of the wound body, the reaction effective area R to which the positive electrode and the negative electrode face each other, and The ratio R / A is 9 to 25.

본 발명에 의하면, 방전 부하 특성이 높고, 충방전에 따르는 전지의 변형도 없는 코인형 비수전해액 2차 전지를 제공할 수 있다.According to the present invention, it is possible to provide a coin-type nonaqueous electrolyte secondary battery having high discharge load characteristics and no deformation of the battery caused by charging and discharging.

이하, 본 발명의 코인형 비수전해액 2차 전지의 실시형태를 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of the coin type nonaqueous electrolyte secondary battery of this invention is described.

본 발명의 코인형 비수전해액 2차 전지는, 띠 형상의 양극과, 띠 형상의 음극과, 띠 형상의 세퍼레이터와, 코인형 전지캔을 구비하고, 양극과 음극은, 세퍼레이터를 거쳐 권회되어 원통 형상의 권회체를 구성하고 있다. 이 구조에 의하여 전극을 얇게 할 수 있어, 방전 부하 특성을 어느 정도 향상할 수 있다.The coin-type nonaqueous electrolyte secondary battery of the present invention includes a band-shaped anode, a band-shaped cathode, a band-shaped separator, and a coin-type battery can, wherein the cathode and the cathode are wound through a separator to form a cylindrical shape. It constitutes a winding body. By this structure, an electrode can be made thin and the discharge load characteristic can be improved to some extent.

또, 상기 권회체의 권회축 방향은, 전지캔의 높이방향과 동일하게 되어 있다. 이 구조에 의하여, 전극의 팽창·수축방향과, 강도적으로 강고한 전지캔의 지 름방향이 일치하여, 충방전을 반복하여도 전지의 변형을 방지할 수 있다.The winding axis direction of the wound body is the same as the height direction of the battery can. By this structure, the expansion and contraction direction of the electrode coincides with the diameter direction of the battery can which is rigidly strong, and the deformation of the battery can be prevented even when charge and discharge are repeated.

또, 상기 권회체의 외경(D)과, 권회체의 권회축 방향의 높이(H)와의 비(D/H)(편평도)는, 1∼25로 설정되어 있다. D/H가 1미만에서는, 코인형 전지라고는 할 수 없고, 박형 소형으로 고용량이 요구되는 웨어러블 기기용 코인형 비수전해액 2차 전지에는 적합하지 않다.Moreover, ratio D / H (flatness) of the outer diameter D of the said winding body, and the height H of the winding axis direction of the winding body is set to 1-25. If the D / H is less than 1, it is not a coin-type battery and is not suitable for a coin-type nonaqueous electrolyte secondary battery for wearable devices requiring a thin, compact and high capacity.

또, D/H가 25를 넘으면, 통상의 전지설계의 허용 범위를 일탈한다. 즉, 전극을 권회하는 제조공정에 견딜 수 있는 전극 폭은 최저라도 약 2 mm는 필요하기 때문에, 권회체의 권회축 방향의 높이(H)의 최소값은 2 mm 이다. 또, 전지를 탑재하는 기기의 크기로부터, 권회체의 외경(D)의 최대값은 50 mm라고 생각된다. 이 때문에 D/H의 최대값은 25가 된다. 또한 전지를 탑재하는 기기에 필요한 전지용량을 고려하면 D/H는 1.5 내지 23이 더욱 바람직하다.Moreover, when D / H exceeds 25, it will deviate from the allowable range of normal battery design. That is, since the electrode width which can endure the manufacturing process which winds up an electrode requires at least about 2 mm, the minimum value of the height H of the winding-axis direction of a winding body is 2 mm. Moreover, it is thought that the maximum value of the outer diameter D of a wound body is 50 mm from the magnitude | size of the apparatus which mounts a battery. For this reason, the maximum value of D / H is 25. In consideration of the battery capacity required for the equipment on which the battery is mounted, the D / H is more preferably 1.5 to 23.

또, 본 발명의 코인형 비수전해액 2차 전지에서는, 상기 권회체의 상면부의 면적(A)과, 상기 양극과 상기 음극이 대향하고 있는 반응 유효면적(R)과의 비(R/A)는, 9∼25로 설정되고, 더욱 바람직하게는 15∼20으로 설정된다. 이것에 의하여, 방전 부하 특성을 더욱 향상할 수 있고, 중부하 특성이 요구되는 각종 기기용 전지로서 적합하게 된다. 여기서, 반응 유효면적(R)은, 권회된 양극과 음극의 활물질층끼리가 대향하고 있는 면적을 말하며, 통상 리튬 이온 2차 전지에서는, 충전시에 리튬 덴드라이트(lithium dendrite)가 생기지 않도록, 음극 활물질층의 면적을 양극 활물질층의 면적보다도 크게 하여, 양극 활물질층의 전면이 음극 활물질층에 대향하고 있기 때문에, 반응 유효면적은, 실질적으로는 양극 활물질층이 설치되어 있 는 부분의 면적이 된다.In the coin-type nonaqueous electrolyte secondary battery of the present invention, the area (A) of the upper surface portion of the wound body and the ratio (R / A) of the reaction effective area (R) that the positive electrode and the negative electrode face each other are , 9 to 25, and more preferably 15 to 20. As a result, the discharge load characteristic can be further improved, and it is suitable as a battery for various apparatuses in which heavy load characteristics are required. Here, the reaction effective area (R) refers to an area where the active material layers of the wound positive electrode and the negative electrode face each other, and in a lithium ion secondary battery, a negative electrode is usually formed so that lithium dendrite does not occur during charging. Since the area of the active material layer is larger than that of the positive electrode active material layer, and the entire surface of the positive electrode active material layer faces the negative electrode active material layer, the reaction effective area is substantially the area of the portion where the positive electrode active material layer is provided. .

또, 본 발명의 코인형 비수전해액 2차 전지의 체적은, 1 ㎤ 이상 7 ㎤ 이하인 것이 바람직하다. 이 범위 내이면, 박형 소형으로 고용량이 요구되는 웨어러블 기기용 코인형 비수전해액 2차 전지로서 적합하게 된다.Moreover, it is preferable that the volume of the coin type nonaqueous electrolyte secondary battery of this invention is 1 cm <3> or more and 7 cm <3> or less. If it is in this range, it becomes thin and small, and it is suitable as a coin type nonaqueous electrolyte secondary battery for wearable devices which require a high dose.

또한, 본 발명의 코인형 비수전해액 2차 전지는, 전지캔의 외경이, 20 mm 이상 50 mm 이하인 것이 바람직하다. 이 범위 내이면, 상기와 마찬가지로 박형 소형으로 고용량이 요구되는 웨어러블 기기용 코인형 비수전해액 2차 전지로서 적합하게 된다.Moreover, it is preferable that the outer diameter of a battery can of the coin type nonaqueous electrolyte secondary battery of this invention is 20 mm or more and 50 mm or less. If it is in this range, it becomes suitable as a coin type nonaqueous electrolyte secondary battery for wearable devices similar to the above, which is thin and small, and high capacity is required.

다음에, 본 발명의 코인형 비수전해액 2차 전지의 일례를 도면에 의거하여 설명한다. 단, 도 1∼도 10에서는, 동일부분에는 동일한 부호를 붙이고, 중복된 설명은 생략하는 경우가 있다.Next, an example of the coin-type nonaqueous electrolyte secondary battery of the present invention will be described with reference to the drawings. 1-10, the same code | symbol may be attached | subjected to the same part, and the overlapping description may be abbreviate | omitted.

도 1은, 본 발명에 사용하는 권회체의 사시도이다. 도 1에서, 권회체(10)는, 띠 형상의 양극과 띠 형상의 음극을, 띠 형상의 세퍼레이터를 거쳐 권회하여 제작되어 있다.1 is a perspective view of a wound body used in the present invention. In FIG. 1, the wound body 10 is produced by winding a strip | belt-shaped anode and strip | belt-shaped cathode through a strip | belt-shaped separator.

상기 양극은, 양극 활물질, 양극용 도전조제, 양극용 바인더(binder) 등을 포함하는 혼합물에, 용제를 가하여 충분히 혼련하여 얻은 양극합제 페이스트(paste)를, 양극 집전체의 양면에 도포하여 건조한 후에, 그 양극 합제층을 소정의 두께 및 소정의 전극밀도로 제어함으로써 형성할 수 있다. The positive electrode is dried by applying a positive electrode mixture paste obtained by sufficiently kneading by adding a solvent to a mixture containing a positive electrode active material, a positive electrode conductive aid, a positive electrode binder, and the like on both sides of the positive electrode current collector. The positive electrode mixture layer can be formed by controlling to a predetermined thickness and a predetermined electrode density.

상기 양극 활물질로서는, 예를 들면, LiCoO2 등의 리튬 코발트(lithium cobalt)산화물, LiMn2O4 등의 리튬 망간(lithium manganese)산화물, LiNiO2 등의 리튬 니켈(lithium nickel)산화물 등을 사용할 수 있으나, 리튬 이온을 흡장·방출 가능하면 이들에 한정은 되지 않는다.As the positive electrode active material, for example, lithium cobalt oxide such as LiCoO 2 , lithium manganese oxide such as LiMn 2 O 4 , lithium nickel oxide such as LiNiO 2 , or the like can be used. However, as long as lithium ions can be occluded and released, the present invention is not limited thereto.

상기 양극 집전체로서는, 구성된 전지에서 실질적으로 화학적으로 안정된 전자 전도체이면 특별히 한정되지 않는다. 양극 집전체로서는, 예를 들면 알루미늄박 등이 사용된다. The positive electrode current collector is not particularly limited as long as it is an electron conductor that is substantially chemically stable in the battery configured. As the positive electrode current collector, for example, aluminum foil or the like is used.

양극 집전체의 한쪽 끝부에는 양극 합제 페이스트를 도포하고 있지 않은 집전체 노출부가 설치되고, 집전체 노출부를 되접음으로써 양극 리드(lead)(11)가 형성되어 있다. 또, 집전체 노출부는, 집전체의 양쪽 끝부에 설치되어 좋고, 양극 리드도 집전체의 양쪽 끝부에 설치되어도 좋다. 또한, 집전체 노출부를 되접어 형성하는 상기 양극 리드 대신에, 양극 집전체의 한쪽 끝부 또는 양쪽 끝부에 다른 부품으로서의 태브(tab)를 용접하여 양극 리드로 하여도 된다.One end of the positive electrode current collector is provided with a current collector exposed portion that is not coated with a positive electrode mixture paste, and a positive electrode lead 11 is formed by folding back the current collector exposed portion. The current collector exposing portion may be provided at both ends of the current collector, and the positive electrode lead may also be provided at both ends of the current collector. Instead of the positive electrode lead formed by folding the current collector exposed portion, a tab as another component may be welded to one or both ends of the positive electrode current collector to form a positive electrode lead.

상기 음극은, 음극 활물질, 음극용 도전조제, 음극용 바인더 등을 포함하는 혼합물에, 용제를 가하여 충분히 혼련하여 얻은 음극 합제 페이스트를, 음극 집전체의 양면에 도포하여 건조한 후에, 그 음극 합제층을 소정의 두께 및 소정의 전극밀도로 제어함으로써 형성할 수 있다. The negative electrode is applied to both surfaces of a negative electrode current collector by applying a solvent to a mixture containing a negative electrode active material, a negative electrode conductive aid, a negative electrode binder, and the like and sufficiently kneaded with a solvent, followed by drying the negative electrode mixture layer. It can form by controlling to predetermined thickness and predetermined electrode density.

상기 음극 활물질로서는, 예를 들면 천연흑연 또는 덩어리형상 흑연, 플레이크형상 흑연, 흙형상 흑연 등의 인조흑연 등의 탄소재료가 사용되나, 리튬이온을 흡장·방출 가능하면 이들에 한정은 되지 않는다.As said negative electrode active material, carbon materials, such as artificial graphite, such as natural graphite or agglomerate graphite, flake graphite, earth-like graphite, are used, for example, If a lithium ion can be occluded and released, it will not be limited to these.

상기 음극 집전체로서는, 구성된 전지에서 실질적으로 화학적으로 안정된 전자 전도체이면 특별히 한정되지 않는다. 음극 집전체로서는, 예를 들면 구리박 등이 사용된다. The negative electrode current collector is not particularly limited as long as it is an electron conductor that is substantially chemically stable in the battery configured. As a negative electrode collector, copper foil etc. are used, for example.

음극 집전체의 한쪽 끝부에는 음극 합제 페이스트를 도포하고 있지 않은 집전체 노출부가 설치되고, 집전체 노출부를 되접음으로써, 음극 리드(12)가 형성되어 있다. 또, 집전체 노출부는, 집전체의 양쪽 끝부에 설치하여도 되고, 음극 리드도 집전체의 양쪽 끝부에 설치하여도 된다. 또한 집전체 노출부를 되접어 형성하는 상기 음극 리드 대신에, 음극 집전체의 한쪽 끝부 또는 양쪽 끝부에 다른 부품으로서의 태브를 용접하여 음극 리드로 하여도 된다.One end of the negative electrode current collector is provided with a current collector exposed portion that is not coated with a negative electrode mixture paste, and the negative electrode lead 12 is formed by folding back the current collector exposed portion. The current collector exposing portion may be provided at both ends of the current collector, and the negative electrode lead may also be provided at both ends of the current collector. Instead of the negative electrode lead formed by folding the current collector exposed portion, a tab as another component may be welded to one or both ends of the negative electrode current collector to form a negative electrode lead.

도 1에서는, 양극 리드(11)를 권회체(10)의 바깥 둘레측에 설치하고, 음극 리드(12)를 권회체(10)의 안 둘레측에 설치하였으나, 양극 리드(11)를 권회체(10)의 안 둘레측에 설치하고, 음극 리드(12)를 권회체(10)의 바깥 둘레측에 설치하여도 되며, 또, 양극 리드(11) 및 음극 리드(12)를 모두 권회체(10)의 바깥 둘레측에 설치하여도 된다.In FIG. 1, the positive electrode lead 11 is provided on the outer circumferential side of the wound body 10, and the negative electrode lead 12 is provided on the inner circumferential side of the wound body 10, but the positive electrode lead 11 is wound on the wound body. The negative electrode lead 12 may be provided on the outer circumferential side of the wound body 10, and both the positive electrode lead 11 and the negative electrode lead 12 may be wound on the inner circumferential side of the wound body 10. It may be provided on the outer circumference side of 10).

상기 세퍼레이터로서는, 큰 이온 투과도 및 소정의 기계적 강도를 가지는 절연성의 미다공성 박막이 사용된다. 또, 일정 온도 이상(100∼140℃)에서 미세 구멍을 폐쇄하고, 저항을 올리는 기능을 가지는 것이, 전지의 안전성 향상의 점에서 바람직하다. 구체적으로는 상기 세퍼레이터로서는, 내유기용제성 및 소수성을 가지는 폴리프로필렌(PP polypropylene), 폴리에틸렌(PE polyethylene) 등의 올레핀(olefin)계 폴리머(polymer) 또는 유리(glass)섬유로 이루어지는 시트(sheet), 부직포, 직포, 또는 올레핀계의 입자를 접착제로 고착한 다공질체층 등이 사용된다.As the separator, an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used. Moreover, it is preferable from the point of improving the safety of a battery that it has a function which closes a microhole above a fixed temperature (100-140 degreeC), and raises resistance. Specifically, the separator may include a sheet made of olefin-based polymer or glass fiber such as polypropylene (PP polypropylene) and polyethylene (PE polyethylene) having organic solvent resistance and hydrophobicity, A nonwoven fabric, a woven fabric, or the porous layer which fixed the olefin type particle | grains with the adhesive agent, etc. are used.

도 2는 권회체(10)를 원통 형상의 전지캔(13)에 삽입하고 있는 공정을 나타내는 사시도이다. 권회체(10)는, 그 권회축 방향(N)이 전지캔(13)의 높이방향(M)과 동일해지도록 전지캔(13)에 삽입된다. 전지캔(13)의 재질은, 알루미늄 등이 사용된다. 또한, 전지캔(13)의 바닥부에는 하부 절연판(도시 생략)이 배치되어 있다. 하부 절연판의 재질은 특별히 한정되지 않고, 폴리페닐렌술파이드(PPS polyphenylene sulfide) 등의 고분자 재료를 사용할 수 있다,2 is a perspective view showing a step of inserting the wound body 10 into a cylindrical battery can 13. The wound body 10 is inserted into the battery can 13 such that its winding axis direction N is the same as the height direction M of the battery can 13. As the material of the battery can 13, aluminum or the like is used. In addition, a lower insulating plate (not shown) is disposed at the bottom of the battery can 13. The material of the lower insulating plate is not particularly limited, and a polymer material such as polyphenylene sulfide may be used.

도 3은 권회체(10)를 전지캔(13)에 삽입한 후에, 권회체(10)의 위에 상부 절연판(14)을 배치하고 있는 공정을 나타내는 사시도이다. 상부 절연판(14)의 재질은, 상기 하부 절연판과 동일한 재질을 사용할 수 있다.3 is a perspective view illustrating a step in which the upper insulating plate 14 is disposed on the wound body 10 after the wound body 10 is inserted into the battery can 13. As the material of the upper insulating plate 14, the same material as that of the lower insulating plate can be used.

도 4는 상부 절연판(14)을 권회체(10)의 위에 탑재하고, 덮개(15)의 중앙부에 배치된 음극단자(16)의 이면부와 음극 리드(12)를 용접한 상태의 사시도이다. 덮개(15)와 음극단자(16)는, 절연 패킹(packing)(17)에 의하여 절연되어 있다. 덮개(15)의 재질은, 전지캔(13)과 마찬가지로 알루미늄 등이 사용된다. 음극단자(16)의 재질은, 니켈 등이 사용된다. 절연 패킹(17)의 재질은, 폴리프로필렌(PP) 등의 고분자 재료를 사용할 수 있다.4 is a perspective view of a state in which the upper insulating plate 14 is mounted on the wound body 10, and the back surface portion of the negative electrode terminal 16 disposed on the center portion of the lid 15 and the negative electrode lead 12 are welded. The lid 15 and the negative electrode terminal 16 are insulated by an insulating packing 17. As the material of the lid 15, aluminum or the like is used similarly to the battery can 13. Nickel or the like is used for the material of the negative electrode terminal 16. As the material of the insulating packing 17, a polymer material such as polypropylene (PP) can be used.

도 5a는, 전지캔(13)과 덮개(15)를 레이저(laser)접합한 상태의 사시도이다. 도 5b는, 도 5a의 B-B선의 단면도이다. 도 5b에서 덮개(15)와 전지캔(13)으로 형성된 밀폐용기 내에 권회체(10)가 수납되고, 전지캔(13)의 바닥부에는 하부 절연 판(19)이 배치되어 있다. 단, 도 5b에서는, 권회체(10)의 안 둘레측의 부분은 단면으로 하고 있지 않다. 권회체(10)는, 상기한 바와 같이, 띠 형상의 양극(1)과 띠 형상의 음극(2)을, 띠 형상의 세퍼레이터(3)를 거쳐 소용돌이 형상으로 권회한 구조를 가지고 있다. 또, 양극 리드(11)는 전지캔(13)과 덮개(15)와의 사이에 끼워진 상태에서 접합되어 있다. 이에 의하여, 전지캔(13) 및 덮개(15)가 양극단자로서 기능한다. 단, 전지캔(13)의 재질에 따라서는, 전지캔(13) 및 덮개(15)가 음극이 되는 경우도 있다. 제일 마지막으로, 주액구(18)로부터 전해액을 주액하고, 주액구(18)를 봉구체(도시 생략)에 의하여 봉구하면 코인형 비수전해액 2차 전지가 완성된다.5A is a perspective view of a state in which the battery can 13 and the lid 15 are laser bonded. FIG. 5B is a cross-sectional view taken along the line B-B in FIG. 5A. In FIG. 5B, the wound body 10 is accommodated in a sealed container formed of a lid 15 and a battery can 13, and a lower insulating plate 19 is disposed at the bottom of the battery can 13. However, in FIG. 5B, the part of the inner peripheral side of the winding body 10 is not made into a cross section. As described above, the wound body 10 has a structure in which the strip-shaped anode 1 and the strip-shaped cathode 2 are spirally wound through the strip-shaped separator 3. The positive lead 11 is joined in a state sandwiched between the battery can 13 and the lid 15. As a result, the battery can 13 and the lid 15 function as the positive terminal. However, depending on the material of the battery can 13, the battery can 13 and the lid 15 may be negative electrodes. Lastly, the electrolyte is poured from the liquid inlet 18, and the liquid inlet 18 is sealed by a sealing body (not shown) to complete the coin-type nonaqueous electrolyte secondary battery.

상기 전해액은, 예를 들면 비닐렌카보네이트(VC vinylene carbonate), 프로필렌카보네이트(PC propylene carbonate), 에틸렌카보네이트(EC ethylene carbonate), 부틸렌카보네이트(BC butylene carbonate), 디메틸카보네이트(DMC dlmethyl carbonate), 디에틸카보네이트(DEC diethyl carbonate), 메틸에틸카보네이트(MEC methyl ethyl carbonate), γ-부틸올락톤(γ-butyrolactone) 등의 유기용매를 1종류 또는 2종류 이상 혼합한 용매에, 예를 들면, LiClO4, LiPF6, LiBF4, LiAsF6, LiSbF6, LlCF3SO3 등으로부터 선택되는 적어도 1종류의 리튬염을 용해시킨 전해액을 사용하면 좋다. 이 전해액 중의 Li 이온의 농도는, 0.5∼1.5 mol/L로 하면 된다.The electrolyte may be, for example, VC vinylene carbonate, PC propylene carbonate, ethylene carbonate, EC butylene carbonate, dimethyl carbonate, DMC dlmethyl carbonate, LiClO 4 in a solvent in which one or two or more kinds of organic solvents, such as ethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone, are mixed An electrolyte solution in which at least one lithium salt is selected from among LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , and LlCF 3 SO 3 may be used. What is necessary is just to set the density | concentration of Li ion in this electrolyte solution to 0.5-1.5 mol / L.

도 6은, 권회체(10)의 모식도이다. 도 6에서는 양극 리드 및 음극 리드의 도시를 생략하고 있다. 권회체(10)의 외경(D)(mm)과, 권회체(10)의 권회축 방향의 높이(H)(mm)와의 비(D/H)는, 1∼25로 설정되어 있다. 또, 권회체(10)의 상면부의 면적 (A)(㎟)과, 양극과 음극이 대향하고 있는 반응 유효면적(R)(㎟)과의 비(R/A)는, 9∼25로 설정되어 있다.6 is a schematic view of the wound body 10. In FIG. 6, illustration of the anode lead and the cathode lead is omitted. The ratio (D / H) between the outer diameter D (mm) of the wound body 10 and the height H (mm) in the winding axis direction of the wound body 10 is set to 1 to 25. Moreover, the ratio (R / A) of the area (A) (mm 2) of the upper surface portion of the wound body 10 to the reaction effective area R (mm 2) in which the anode and the cathode face each other is set to 9 to 25. It is.

도 7은, 본 발명의 파라미터를 설명하기 위한 양극의 모식도이다. 도 7에서, 띠 형상의 양극(20)의 양극 집전체(21)의 양면에는, 제 1 양극 활물질층(22)과, 제 1 양극 활물질층(22)보다 짧게 형성된 제 2 양극 활물질층(23)이 형성되어 있다. 양극 활물질층이 형성되어 있지 않은 양극 집전체(21)의 끝부는 구부러져 양극 리드(24)를 형성하고 있다. 여기서, 제 1 양극 활물질층(22)의 길이를 L(mm), 제 2 양극 활물질층(23)의 길이를 J(mm), 양극 집전체(21)의 폭을 W(mm)라 하면, 반응 유효면적(R) (㎟)은 R = (L + J) × W가 된다.7 is a schematic diagram of an anode for explaining the parameters of the present invention. In FIG. 7, the first positive electrode active material layer 22 and the second positive electrode active material layer 22 formed shorter than the first positive electrode active material layer 22 are formed on both surfaces of the positive electrode current collector 21 of the strip-shaped positive electrode 20. ) Is formed. The ends of the positive electrode current collector 21 in which the positive electrode active material layer is not formed are bent to form the positive electrode lead 24. Here, when the length of the first positive electrode active material layer 22 is L (mm), the length of the second positive electrode active material layer 23 is J (mm), and the width of the positive electrode current collector 21 is W (mm), Reaction effective area (R) (mm <2>) becomes R = (L + J) * W.

또, 양극 집전체(21), 제 1 양극 활물질층(22), 제 2 양극 활물질층(23)을 포함하는 양극(20)의 단면적을 B(㎟), 양극 리드의 수를 n이라 하면, 이들 비[L/(B× n)]는 2000∼8000이 바람직하다.Moreover, if the cross-sectional area of the positive electrode 20 including the positive electrode current collector 21, the first positive electrode active material layer 22, and the second positive electrode active material layer 23 is B (mm 2) and the number of positive electrode leads is n, As for these ratio [L / (Bxn)], 2000-8000 are preferable.

도 8은, 도 7의 I-I선의 단면도이다. 또, 도 9는 도 7의 II-II선의 단면도이다. 여기서, 양극 리드(24)의 단면적을 C(㎟), 양극 리드의 수를 n, 양극 집전체(21)의 단면적을 S(㎟)라 하면, 이것들의 비[(C×n)/S]는 1 이상인 것이 바람직하다. FIG. 8 is a cross-sectional view taken along the line I-I of FIG. 7. 9 is sectional drawing of the II-II line | wire of FIG. Here, if the cross-sectional area of the positive electrode lead 24 is C (mm 2), the number of positive electrode leads is n, and the cross-sectional area of the positive electrode current collector 21 is S (mm 2), these ratios are [(C × n) / S]. Is preferably 1 or more.

도 10은, 도 7의 양극 리드의 다른 형태를 나타내는 사시도이다. 도 10에서는, 양극 집전체(21)의 끝부에 태브를 용접함으로써 양극 리드(25)를 형성하고 있 다. 도 10의 형태이어도, 상기한 비[L/(B×n)], 비[(C×n)/S]의 적합한 범위는 마찬가지이다.FIG. 10 is a perspective view illustrating another embodiment of the positive electrode lead of FIG. 7. In FIG. 10, the positive electrode lead 25 is formed by welding a tab to an end of the positive electrode current collector 21. Even in the form of FIG. 10, the suitable ranges of the ratio [L / (B × n)] and the ratio [(C × n) / S] are the same.

[실시예]EXAMPLE

이하, 실시예에 의거하여 본 발명을 설명하나, 본 발명은 이하의 실시예에 한정되는 것이 아니다.Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to a following example.

(실시예 1) (Example 1)

<양극의 제작> <Production of Anode>

양극 활물질인 LiCoO2 : 80 중량부와, 도전조제인 아세틸렌 블랙(acetylene black) : 10중량부와, 바인더인 폴리불화비닐리덴(PVDF poly vinylidene fluoride): 5 중량부에, N-메틸-2-피로리돈(NMP N-methyl-2-pyrrolidone)를 용제로서 가하여, 균일해지도록 혼합하여 양극합제 함유 페이스트를 조제하였다. 이 양극합제 함유 페이스트를, 양극 집전체가 되는 두께 20 ㎛의 알루미늄박의 양면에, 표면측의 활물질 도포길이가 1221 mm, 이면측의 활물질 도포길이가 1155 mm가 되도록 도포하여, 건조하였다. 그후, 캘린더(calendar)처리를 행하여, 전체 두께가 134 ㎛가 되도록 전극의 두께를 조정하고, 폭 3.0 mm가 되도록 절단하여, 띠 형상의 양극을 제작하였다. 제작한 띠 형상의 양극의 양쪽 끝부에는, 활물질 미도포부가 형성되어 있다. 80 parts by weight of LiCoO 2 as the positive electrode active material, 10 parts by weight of acetylene black as a conductive aid, and 5 parts by weight of N-methyl-2- as a binder of PVDF poly vinylidene fluoride. Pyridone (NMP N-methyl-2-pyrrolidone) was added as a solvent, mixed to make it uniform, and a positive electrode mixture-containing paste was prepared. The positive electrode mixture-containing paste was applied to both surfaces of a 20 μm-thick aluminum foil serving as a positive electrode current collector so as to have an active material application length of 1221 mm on the front side and an active material application length of 1155 mm on the back side, and dried. Then, a calendering process was performed, the thickness of the electrode was adjusted so that the total thickness was 134 micrometers, it cut | disconnected so that it might be set to width 3.0mm, and the strip | belt-shaped anode was produced. The uncoated portion of the active material is formed at both ends of the produced strip-shaped anode.

여기서, 상기 양극 집전체의 표면측이란, 권회체를 형성한 경우의 바깥 둘레측을 말하고, 그 이면측이란 권회체를 형성한 경우의 안 둘레측을 말하며, 뒤에서 설명하는 음극 집전체의 경우도 마찬가지이다.Here, the surface side of the positive electrode current collector refers to the outer circumferential side when the wound body is formed, and the back side refers to the inner circumferential side when the wound body is formed, and also in the case of the negative electrode current collector described later. It is the same.

<음극의 제작> <Production of Cathode>

음극 활물질인 흑연 : 90 중량부와, 바인더인 PVDF : 5중량부에, NMP를 용제로서 가하여, 균일해지도록 혼합하여 음극 합제 함유 페이스트를 조제하였다. 이 음극 합제 함유 페이스트를, 음극 집전체가 되는 두께 12 ㎛의 구리박의 양면에, 표면측의 활물질 도포길이가 1207 mm, 이면측의 활물질 도포길이가 1207 mm가 되도록 도포하고, 건조하였다. 그 후, 캘린더처리를 행하여, 전체 두께가 142 ㎛가 되도록 전극의 두께를 조정하고, 폭 3.5 mm가 되도록 절단하여, 띠 형상의 음극을 제작하였다. 제작한 띠 형상의 음극의 양쪽 끝부에는, 활물질 미도포부가 형성되어 있다.NMP was added as a solvent to 90 weight part of graphite which is a negative electrode active material, and 5 weight part of PVDF which is a binder, and it mixed so that it might become uniform, and the negative electrode mixture containing paste was prepared. The negative electrode mixture-containing paste was applied to both surfaces of a 12 μm thick copper foil serving as a negative electrode current collector so that the active material application length on the front side was 1207 mm, and the active material application length on the back side was 1207 mm, and dried. Then, calendering was performed, the thickness of the electrode was adjusted so that the total thickness was 142 µm, and cut so as to have a width of 3.5 mm to prepare a strip-shaped cathode. At both ends of the produced strip-shaped negative electrode, an uncoated active material portion is formed.

<권회체의 제작> <Production of the winding body>

상기한 바와 같이 제작한 띠 형상의 양극과 음극과의 사이에, 두께 20 ㎛, 폭 4.3 mm의 폴리에틸렌제의 미다공성 필름으로 이루어지는 세퍼레이터를 배치하고 권회하여, 권회체를 제작하였다. 권회체는, 양극의 양면의 양극 활물질 도포부가 모두 음극 활물질 도포부와 대향하도록 형성하였다. 다음에, 양극의 활물질 미도포부의 알루미늄박을, 권회체의 바깥 둘레부측의 끝부에서 되접어 인출하여, 양극 리드를 1개 형성하였다. 또, 음극의 활물질 미도포부의 구리박을, 권회체의 안 둘레부측(중심측)의 끝부에서 되접어 인출하여, 음극 리드를 1개 형성하였다.Between the strip | belt-shaped positive electrode and negative electrode produced as mentioned above, the separator which consists of a polyethylene microporous film of thickness 20mm and width 4.3mm was arrange | positioned and wound, and the winding object was produced. The wound body was formed so that both positive electrode active material coating parts of both surfaces of the positive electrode could face the negative electrode active material coating part. Next, the aluminum foil of the active material uncoated portion of the positive electrode was folded out and pulled out at the end on the outer peripheral portion side of the wound body to form one positive electrode lead. Moreover, the copper foil of the uncoated portion of the negative electrode active material was pulled out at the end of the inner circumferential side (center side) of the wound body, and one negative electrode lead was formed.

제작한 권회체의 외경(D)은, 23.5 mm, 권회체의 높이(H)는 3.7 mm, 이것들의 비(D/H)는 6.4이었다. 또, 권회체의 상면부의 면적(A)은 398 ㎟, 반응 유효면 적(R)은 7128 ㎟, 이들의 비(R/A)는 17.9이었다.The outer diameter D of the produced winding body was 23.5 mm, the height H of the winding body was 3.7 mm, and these ratios (D / H) were 6.4. The area A of the upper surface portion of the wound body was 398 mm 2, the reaction effective area R was 7128 mm 2, and their ratio (R / A) was 17.9.

<전해액의 조제> <Preparation of electrolyte amount>

에틸렌카보네이트(EC)와 디에틸카보네이트(DEC)와의 혼합용매(EC : DEC의 혼합 체적비는 1 : 2) 중에 LiPF6을 1.2 mol/L 용해시킨 전해액을 조제하였다. An electrolyte solution in which 1.2 mol / L of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a mixed volume ratio of EC: DEC of 1: 2 was prepared.

<전지의 제작> <Production of battery>

외경 24 mm, 높이 5.0 mm, 측면 두께 0.25 mm, 바닥면 두께 0.3 mm의 알루미늄제의 전지캔과, 직경 24 mm, 두께 0.4 mm의 알루미늄제의 덮개를 준비하였다. 덮개의 중앙에는, 직경 6 mm의 니켈제의 음극단자가 폴리프로필렌제의 패킹을 거쳐 끼워 맞춰져 있다. 다음에 상기 전지캔의 바닥부에, 두께 0.05 mm의 PPS제의 하부 절연판을 배치한 후, 권회체의 권회축 방향이 전지캔의 높이방향과 동일해지도록 상기 권회체를 전지캔 내에 삽입하였다. 다음에, 권회체의 상부에 두께 0.05 mm의 PPS제의 상부 절연판을 배치한 후, 음극 리드를 음극단자의 이면측에 용접하였다. 그 후, 양극 리드를 전지캔과 덮개와의 사이에 끼운 채로 전지캔과 덮개를 레이저용접에 의하여 접합하였다.A battery can made of aluminum having an outer diameter of 24 mm, a height of 5.0 mm, a side thickness of 0.25 mm, and a bottom surface thickness of 0.3 mm, and an aluminum cover having a diameter of 24 mm and a thickness of 0.4 mm were prepared. In the center of the lid, a negative electrode terminal made of nickel having a diameter of 6 mm is fitted through a polypropylene packing. Next, after arranging a lower insulating plate made of PPS having a thickness of 0.05 mm at the bottom of the battery can, the wound body was inserted into the battery can such that the winding axis direction of the wound body was the same as the height direction of the battery can. Next, after arranging the upper insulation plate made of PPS of thickness 0.05mm on the upper part of the winding body, the negative electrode lead was welded to the back surface side of the negative electrode terminal. Thereafter, the battery can and the lid were joined by laser welding while the positive electrode lead was sandwiched between the battery can and the lid.

제일 마지막으로, 덮개에 설치된 직경 1.5 mm의 주액구로부터 상기 전해액을 주액하여, 전극체에 전해액을 충분히 침투시킨 후, 밀봉핀을 주액구에 삽입하여 레이저 용접함으로써 봉구하여, 전지 체적이 2.3 ㎤의 코인형 리튬이온 2차 전지를 제작하였다.Lastly, the electrolyte solution was injected from the injection hole of diameter 1.5 mm provided on the cover, and the electrolyte solution was sufficiently infiltrated into the electrode body. Then, the sealing pin was inserted into the injection hole and sealed by laser welding, whereby the battery volume was 2.3 cm 3. A coin-type lithium ion secondary battery was produced.

(실시예 2) (Example 2)

<양극의 제작> <Production of Anode>

양극 집전체의 두께를 25 ㎛, 활물질 도포길이를 표면측 678 mm, 이면측 624 mm, 캘린더처리 후의 전체 두께를 162 ㎛, 폭을 2.0 mm로 한 이외는, 실시예 1과 동일하게 하여 양극을 제작하였다.A positive electrode was prepared in the same manner as in Example 1 except that the thickness of the positive electrode current collector was 25 μm, the active material coating length was 678 mm on the front side, 624 mm on the back side, and the total thickness after calendering was 162 μm and the width was 2.0 mm. Produced.

<음극의 제작> <Production of Cathode>

음극 집전체의 두께를 20 ㎛, 활물질 도포길이를 표면측 667 mm, 이면측 667 mm, 캘린더처리 후의 전체 두께를 177 ㎛, 폭을 2.5 mm로 한 이외는, 실시예 1과 동일하게 하여 음극을 제작하였다. The negative electrode was prepared in the same manner as in Example 1 except that the thickness of the negative electrode current collector was 20 μm, the active material coating length was 667 mm on the front side, 667 mm on the back side, and the total thickness after calendering was 177 μm and the width was 2.5 mm. Produced.

상기 양극 및 상기 음극을 사용하고, 세퍼레이터의 폭을 3.3 mm로 하고, 외경 20 mm, 높이 4.0 mm의 전지캔을 사용한 이외는, 실시예 1과 동일하게 하여 전지 체적이 1.3 ㎤인 코인형 비수전해액 2차 전지를 제작하였다.A coin-type nonaqueous electrolyte having a battery volume of 1.3 cm 3 in the same manner as in Example 1, except that the positive electrode and the negative electrode were used, and the separator width was 3.3 mm, and a battery can having an outer diameter of 20 mm and a height of 4.0 mm was used. A secondary battery was produced.

본 실시예의 권회체의 외경(D)은, 19.5 mm, 권회체의 높이(H)는 2.7 mm, 이것들의 비(D/H)는 7.2이었다. 또, 권회체의 상면부의 면적(A)은 269 ㎟, 반응 유효면적(R)은 2604 ㎟, 이것들의 비(R/A)는 9.7 이었다.The outer diameter D of the wound body of this example was 19.5 mm, the height H of the wound body was 2.7 mm, and these ratios D / H were 7.2. Moreover, the area A of the upper surface part of the wound body was 269 mm 2, the reaction effective area R was 2604 mm 2, and these ratios (R / A) were 9.7.

(실시예 3) (Example 3)

<양극의 제작> <Production of Anode>

활물질 도포길이를 표면측 3146 mm, 이면측 3047 mm, 캘린더처리 후의 전체 두께를 115 ㎛, 폭을 3.5 mm로 한 이외는, 실시예 1과 동일하게 하여 양극을 제작하였다.A positive electrode was produced in the same manner as in Example 1 except that the active material coating length was 3146 mm on the front side, 3047 mm on the back side, and the total thickness after calendering was 115 μm and the width was 3.5 mm.

<음극의 제작> <Production of Cathode>

활물질 도포길이를 표면측 3121 mm, 이면측 3121 mm, 캘린더처리 후의 전체 두께를 122 ㎛, 폭을 4.0 mm로 한 이외는, 실시예 1과 동일하게 하여, 음극을 제작하였다.A negative electrode was produced in the same manner as in Example 1 except that the active material coating length was 3121 mm on the front side, 3121 mm on the back side, and the total thickness after calendering was 122 μm and the width was 4.0 mm.

상기 양극 및 상기 음극을 사용하고, 세퍼레이터의 폭을 4.8 mm로 하고, 외경 35 mm, 높이 5.5 mm의 전지캔을 사용한 이외는, 실시예 1과 동일하게 하여 전지체적이 5.3 ㎤인 코인형 비수전해액 2차 전지를 제작하였다.A coin-type nonaqueous electrolyte having a battery volume of 5.3 cm 3 in the same manner as in Example 1, except that the separator was 4.8 mm wide and the battery can of 35 mm outer diameter and 5.5 mm high was used using the positive electrode and the negative electrode. A secondary battery was produced.

본 실시예의 권회체의 외경(D)은, 34.5 mm, 권회체의 높이(H)는 4.2 mm, 이것들의 비(D/H)는 8.2이었다. 또, 권회체의 상면부의 면적(A)은 881 ㎟, 반응 유효면적(R)은 21676 ㎟, 이것들의 비(R/A)는 24.6이었다.The outer diameter D of the wound body of this example was 34.5 mm, the height H of the wound body was 4.2 mm, and these ratios D / H were 8.2. Moreover, area A of the upper surface part of the wound body was 881 mm <2>, reaction effective area R was 21676 mm <2>, and these ratios (R / A) were 24.6.

(비교예 1) (Comparative Example 1)

<양극의 제작> <Production of Anode>

활물질 도포길이를 표면측 1750 mm, 이면측 1685 mm, 캘린더처리 후의 전체 두께를 89 ㎛로 한 이외는, 실시예 1과 동일하게 하여 양극을 제작하였다. A positive electrode was produced in the same manner as in Example 1 except that the active material coating length was 1750 mm at the front side, 1685 mm at the back side, and the total thickness after calendering was 89 μm.

<음극의 제작> <Production of Cathode>

활물질 도포길이를 표면측 1735 mm, 이면측 1735 mm, 캘린더처리 후의 전체 두께를 91 ㎛로 한 이외는, 실시예 1과 동일하게 하여 음극을 제작하였다.A negative electrode was produced in the same manner as in Example 1 except that the active material coating length was 1735 mm at the front side, 1735 mm at the back side, and the total thickness after calendering was 91 μm.

상기 양극 및 상기 음극을 사용한 이외는, 실시예 1과 동일하게 하여, 전지 체적이 2.3 ㎤인 코인형 비수전해액 2차 전지를 제작하였다.A coin-type nonaqueous electrolyte secondary battery having a battery volume of 2.3 cm 3 was produced in the same manner as in Example 1 except that the positive electrode and the negative electrode were used.

본 비교예의 권회체의 외경(D)은, 23.5 mm, 권회체의 높이(H)는 3.7 mm, 이것들의 비(D/H)는 6.4이었다. 또, 권회체의 상면부의 면적(A)은 398 ㎟, 반응 유 효면적(R)은 10305 ㎟, 이것들의 비(R/A)는 25.9 이었다.The outer diameter D of the wound body of this comparative example was 23.5 mm, the height H of the wound body was 3.7 mm, and these ratios D / H were 6.4. Moreover, the area A of the upper surface part of the wound body was 398 mm 2, the reaction effective area R was 10305 mm 2, and these ratios (R / A) were 25.9.

(비교예 2) (Comparative Example 2)

<양극의 제작> <Production of Anode>

양극 집전체의 두께를 25 ㎛, 활물질 도포길이를 표면측 603 mm, 이면측 548 mm, 캘린더처리 후의 전체 두께를 185 ㎛, 폭을 2.0 mm로 한 이외는, 실시예 1과 동일하게 하여 양극을 제작하였다. A positive electrode was prepared in the same manner as in Example 1 except that the thickness of the positive electrode current collector was 25 μm, the active material coating length was 603 mm on the front side, 548 mm on the back side, and the total thickness after calendering was 185 μm and the width was 2.0 mm. Produced.

<음극의 제작> <Production of Cathode>

음극 집전체의 두께를 20 ㎛, 활물질 도포길이를 표면측 592 mm, 이면측 592 mm, 캘린더처리 후의 전체 두께를 203 ㎛, 폭을 2.5 mm로 한 이외는, 실시예 1과 동일하게 하여 음극을 제작하였다.The negative electrode was prepared in the same manner as in Example 1 except that the thickness of the negative electrode current collector was 20 μm, the active material coating length was 592 mm on the front side, 592 mm on the back side, and the total thickness after calendering was 203 μm and the width was 2.5 mm. Produced.

상기 양극 및 상기 음극을 사용하고, 세퍼레이터의 폭을 3.3 mm로 하고, 외경 20 mm, 높이 4.0 mm의 전지캔을 사용한 이외는, 실시예 1과 동일하게 하여 전지 체적이 1.3 ㎤의 코인형 비수전해액 2차 전지를 제작하였다.Using the positive electrode and the negative electrode, the width of the separator was 3.3 mm, and the battery can of the outer diameter of 20 mm and the height of 4.0 mm was used in the same manner as in Example 1, except that the coin type nonaqueous electrolyte having a volume of 1.3 cm 3. A secondary battery was produced.

본 비교예의 권회체의 외경(D)은, 19.5 mm, 권회체의 높이(H)는 2.7 mm, 이것들의 비(D/H)는 7.2이었다. 또, 권회체의 상면부의 면적(A)은 269 ㎟, 반응 유효면적(R)은 2302 ㎟, 이것들의 비(R/A)는 8.6이었다.The outer diameter D of the wound body of this comparative example was 19.5 mm, the height H of the wound body was 2.7 mm, and these ratios (D / H) were 7.2. Moreover, the area A of the upper surface part of the wound body was 269 mm 2, the reaction effective area R was 2302 mm 2, and these ratios (R / A) were 8.6.

실시예 1 ∼ 실시예 3 및 비교예 1, 비교예 2의 양극 및 음극의 각 치수를 표 1 및 표 2에 정리하여 나타낸다.Each dimension of the positive electrode and negative electrode of Example 1-Example 3, Comparative Example 1, and Comparative Example 2 is put together in Table 1 and Table 2, and is shown.

Figure 112008020157850-PAT00001
Figure 112008020157850-PAT00001

Figure 112008020157850-PAT00002
Figure 112008020157850-PAT00002

또, 실시예 1 ∼ 실시예 3 및 비교예 1, 비교예 2의 전지 파라미터(parameter) 및 권회체 파라미터를 표 3 및 표 4에 나타낸다. In addition, the battery parameters and the wound body parameters of Examples 1 to 3, Comparative Example 1, and Comparative Example 2 are shown in Tables 3 and 4.

Figure 112008020157850-PAT00003
Figure 112008020157850-PAT00003

Figure 112008020157850-PAT00004
Figure 112008020157850-PAT00004

<전지특성의 평가> <Evaluation of Battery Characteristics>

실시예 1 ∼ 실시예 3 및 비교예 1, 비교예 2의 각 전지에 대하여, 0.2 C에서 4.3 V까지 정전류 충전을 행하고, 그 후, 전류값이 0.02 C가 될 때까지 정전압 충전을 행하였다. 다음에 0.2 C에서 3.0 V까지 정전류 방전을 행하여 초기용량(a)을 구하였다. 또한, 「C」란, 전지의 설계용량을 1시간에 방전하는 경우의 전류값을 의미한다. The batteries of Examples 1 to 3 and Comparative Examples 1 and 2 were subjected to constant current charging from 0.2 C to 4.3 V, after which constant voltage charging was performed until the current value became 0.02 C. Next, constant current discharge was performed from 0.2 C to 3.0 V to obtain the initial capacity a. In addition, "C" means the electric current value at the time of discharging the design capacity of a battery in 1 hour.

계속해서, 각 전지를 0.2 C에서 4.3 V까지 정전류 충전을 행하고, 그 후, 전류값이 0.02 C가 될 때까지 정전압 충전을 행하였다. 다음에, 2 C에서 3.0 V까지 정전류 방전을 행하여 중부하 용량(b)을 구하였다.Subsequently, each battery was subjected to constant current charging from 0.2 C to 4.3 V, after which constant voltage charging was performed until the current value became 0.02 C. Next, constant current discharge was performed at 2 C to 3.0 V to obtain a heavy load capacity b.

상기 결과로부터 용량 유지율 Z(%)를 하기식으로부터 구하여, 방전 부하 특성으로서 평가하였다. From the above results, the capacity retention rate Z (%) was obtained from the following equation and evaluated as discharge load characteristics.

Z = (b/a) × 100 Z = (b / a) × 100

상기 전지특성을, 파라미터(D/H) 및 파라미터(R/A)와 함께 표 5에 나타낸다.The battery characteristics are shown in Table 5 together with the parameters (D / H) and parameters (R / A).

<사이클(cycle)특성의 평가> <Evaluation of Cycle Characteristics>

충방전 사이클시험을 다음과 같이 행하였다. 충전은 각 전지에 대하여, 0.5 C에서 4.3 V까지 정전류 충전을 행하고, 그 후, 전류값이 0.02 C가 될 때까지 정전압 충전을 행하였다. 방전은, 1 C에서 3.0 V까지 정전류 방전을 행하였다. 이 충방전을 1 사이클로 하여 200 사이클까지 반복하였다. 다음에, 전지의 외관을 육안으로 관찰하여, 전지의 변형의 유무를 확인하였다. 그 결과를 표 5에 나타낸다.A charge and discharge cycle test was conducted as follows. Charging performed constant current charging from 0.5 C to 4.3 V with respect to each battery, and constant voltage charging was performed until the electric current value became 0.02 C after that. The discharge performed constant current discharge from 1 C to 3.0V. This charge / discharge was made into 1 cycle and it repeated to 200 cycles. Next, the appearance of the battery was visually observed, and the presence or absence of deformation of the battery was confirmed. The results are shown in Table 5.

Figure 112008020157850-PAT00005
Figure 112008020157850-PAT00005

표 5에서 파라미터(R/A)가 9∼25의 범위 내에 있는 실시예 1 ∼ 실시예 3은, 그 범위 밖에 있는 비교예 1, 비교예 2에 비하여 용량 유지율(Z)(중부하 특성)이 높은 것을 알 수 있다. 또, 실시예 1 ∼ 실시예 3 및 비교예 1, 비교예 2의 각 전지에서는 충방전을 200회 반복하여도 전지의 변형은 일체 확인되지 않았다.In Table 5, Examples 1 to 3 in which the parameter (R / A) is in the range of 9 to 25 have a capacity retention ratio (Z) (heavy load characteristic) compared to Comparative Examples 1 and 2, which are out of the range. It is high. In addition, in each of the batteries of Examples 1 to 3, Comparative Example 1, and Comparative Example 2, the deformation of the battery was not confirmed at all even when charging and discharging were repeated 200 times.

이상 설명한 바와 같이, 본 발명은, 방전 부하 특성이 높고, 충방전에 따르는 전지의 변형도 없는 코인형 비수전해액 2차 전지를 제공할 수 있다. 이 코인형 비수전해액 2차 전지는, 웨어러블기기용 전원뿐만 아니라, 여러가지 기기의 전원으로서 널리 이용할 수 있다.As described above, the present invention can provide a coin-type nonaqueous electrolyte secondary battery having high discharge load characteristics and no deformation of the battery due to charge and discharge. The coin-type nonaqueous electrolyte secondary battery can be widely used as a power source for various devices as well as a power source for wearable devices.

도 1은 본 발명에 사용하는 권회체의 사시도,1 is a perspective view of a wound body used in the present invention,

도 2는 권회체를 원통 형상의 전지캔에 삽입하고 있는 공정을 나타내는 사시도,2 is a perspective view showing a step of inserting a wound body into a cylindrical battery can;

도 3은 권회체를 전지캔에 삽입한 후에, 권회체의 위에 상부 절연판을 배치하고 있는 공정을 나타내는 사시도,3 is a perspective view illustrating a step in which an upper insulating plate is disposed on a wound body after the wound body is inserted into a battery can;

도 4는 상부 절연판을 권회체의 위에 탑재하고, 덮개의 중앙부에 배치된 음극단자의 이면부와 음극 리드를 용접한 상태의 사시도,4 is a perspective view of a state in which an upper insulating plate is mounted on a wound body, and a back portion of a negative electrode terminal and a negative electrode lead which are arranged in a central portion of the cover are welded;

도 5a는 전지캔과 덮개를 레이저 용접 등에 의하여 접합한 상태의 사시도,5A is a perspective view of a battery can and a cover bonded to each other by laser welding or the like;

도 5b는 도 5a의 B-B선의 단면도,5B is a sectional view taken along the line B-B in FIG. 5A,

도 6은 권회체의 모식도,6 is a schematic diagram of a wound body;

도 7은 본 발명의 파라미터를 설명하기 위한 양극의 모식도,7 is a schematic diagram of a positive electrode for explaining the parameters of the present invention;

도 8은 도 7의 I-I선의 단면도,8 is a cross-sectional view taken along line II of FIG. 7;

도 9는 도 7의 II-II선의 단면도,9 is a cross-sectional view taken along the line II-II of FIG. 7;

도 10은 도 7의 양극 리드의 다른 형태를 나타내는 사시도이다.FIG. 10 is a perspective view illustrating another embodiment of the positive electrode lead of FIG. 7.

※ 도면의 주요부분에 대한 부호의 설명※ Explanation of code for main part of drawing

1 : 양극 2 : 음극 1 anode 2 cathode

3 : 세퍼레이터 10 : 권회체 3: separator 10: winding object

11 : 양극 리드 12 : 음극 리드 11: positive lead 12: negative lead

13 : 전지캔 14 : 상부 절연판 13 battery can 14 upper insulating plate

15 : 덮개 16 : 음극단자 15: cover 16: cathode terminal

17 : 절연패킹 18 : 주액구 17: Insulation packing 18: Pouring hole

19 : 하부 절연판 20 : 양극 19: lower insulation plate 20: anode

21 : 양극 집전체 22 : 제 1 양극 활물질층 21 positive electrode current collector 22 first positive electrode active material layer

23 : 제 2 양극 활물질층 24 : 양극 리드 23: second positive electrode active material layer 24: positive electrode lead

25 : 양극 리드 25: anode lead

Claims (5)

띠 형상의 양극과, 띠 형상의 음극과, 띠 형상의 세퍼레이터(separator)와, 코인(coin)형의 전지캔을 포함하는 코인형 비수전해액 2차 전지에 있어서,In a coin-type nonaqueous electrolyte secondary battery comprising a band-shaped anode, a band-shaped cathode, a band-shaped separator, and a coin-type battery can, 상기 양극과 상기 음극은, 상기 세퍼레이터를 거쳐 권회되어 원통 형상의 권회체를 구성하고, The anode and the cathode are wound through the separator to form a cylindrical wound body, 상기 권회체의 권회축 방향이, 상기 전지캔의 높이방향과 동일하고,The winding axis direction of the wound body is the same as the height direction of the battery can, 상기 권회체의 외경(D)(mm)과, 상기 권회체의 권회축 방향의 높이(H)(mm)와의 비(D/H)가, 1∼25 이고, The ratio (D / H) between the outer diameter D (mm) of the wound body and the height H (mm) in the winding axis direction of the wound body is 1 to 25, 상기 권회체의 상면부의 면적(A)(㎟)과, 상기 양극과 상기 음극이 대향하고 있는 반응 유효면적(R)(㎟)과의 비(R/A)가, 9∼25인 것을 특징으로 하는 코인형 비수전해액 2차 전지.The area (A) (mm 2) of the upper surface portion of the wound body and the ratio (R / A) of the reaction effective area (R) (mm 2) in which the positive electrode and the negative electrode face each other are 9 to 25. A coin-type nonaqueous electrolyte secondary battery to say. 제 1항에 있어서, The method of claim 1, 상기 비(D/H)가, 1.5∼23인 것을 특징으로 하는 코인형 비수전해액 2차 전지.The coin type nonaqueous electrolyte secondary battery, wherein the ratio (D / H) is 1.5 to 23. 제 1항에 있어서,The method of claim 1, 상기 코인형 비수전해액 2차 전지의 체적이, 1 ㎤ 이상 7 ㎤ 이하인 것을 특징으로 하는 코인형 비수전해액 2차 전지.A coin-type nonaqueous electrolyte secondary battery, wherein a volume of the coin-type nonaqueous electrolyte secondary battery is 1 cm 3 or more and 7 cm 3 or less. 제 1항에 있어서,The method of claim 1, 상기 전지캔의 외경이, 20 mm 이상 50 mm 이하인 것을 특징으로 하는 코인형 비수전해액 2차 전지.An outer diameter of said battery can is 20 mm or more and 50 mm or less, The coin type nonaqueous electrolyte secondary battery characterized by the above-mentioned. 제 1항에 있어서,The method of claim 1, 상기 양극 및 상기 음극은, 리튬이온(lithium ion)을 흡장·방출 가능한 것을 특징으로 하는 코인형 비수전해액 2차 전지.The positive electrode and the negative electrode, the coin-type non-aqueous electrolyte secondary battery, characterized in that it can occlude and release lithium ions (lithium ion).
KR1020080025755A 2007-04-12 2008-03-20 Coin type nonaqueous electrolyte secondary battery KR20080092842A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007105148A JP2008262825A (en) 2007-04-12 2007-04-12 Coin-shaped nonaqueous electrolytic solution secondary battery
JPJP-P-2007-00105148 2007-04-12

Publications (1)

Publication Number Publication Date
KR20080092842A true KR20080092842A (en) 2008-10-16

Family

ID=39985131

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080025755A KR20080092842A (en) 2007-04-12 2008-03-20 Coin type nonaqueous electrolyte secondary battery

Country Status (3)

Country Link
JP (1) JP2008262825A (en)
KR (1) KR20080092842A (en)
CN (1) CN101286572A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150200384A1 (en) * 2014-01-14 2015-07-16 Ford Global Technologies, Llc Electric vehicle battery cell having conductive case
KR20200007560A (en) * 2018-07-13 2020-01-22 주식회사 엘지화학 Secondary battery and method for manufacturing the battery
KR20200142451A (en) * 2019-06-12 2020-12-22 신흥에스이씨주식회사 Secondary battery for small device and method of manufacturing the same
KR20200143245A (en) * 2019-06-13 2020-12-23 신흥에스이씨주식회사 Secondary battery for small device and method of manufacturing the same
CN112952180A (en) * 2021-01-13 2021-06-11 中银(宁波)电池有限公司 Winding button cell with diaphragm as electrode substrate and manufacturing method
US11784379B2 (en) 2020-04-13 2023-10-10 Samsung Sdi Co., Ltd. Button cell

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2394324B1 (en) 2009-02-09 2015-06-10 VARTA Microbattery GmbH Button cells and method for producing same
JP5283544B2 (en) * 2009-03-10 2013-09-04 三洋電機株式会社 Nonaqueous electrolyte secondary battery
DE102009060800A1 (en) 2009-06-18 2011-06-09 Varta Microbattery Gmbh Button cell with winding electrode and method for its production
DE102010033577A1 (en) 2010-08-03 2012-02-09 Varta Microbattery Gmbh Button cell with winding electrode with thermal fuse
CN103346356B (en) * 2013-07-09 2015-07-08 田秀君 Lithium ion battery as well as preparation method thereof and lithium-ion battery pack
CN104659289B (en) * 2013-11-22 2017-03-15 北京好风光储能技术有限公司 A kind of torus power battery pack
JP6811003B2 (en) * 2014-11-19 2021-01-13 セイコーインスツル株式会社 Electrochemical cell and manufacturing method of electrochemical cell
CN106025366A (en) * 2016-07-13 2016-10-12 深圳市秸川材料科技有限公司 Lithium ion button battery
US20180342761A1 (en) * 2017-05-24 2018-11-29 Pellion Technologies Low-Aspect-Ratio Battery Cells
CN107134596A (en) * 2017-07-06 2017-09-05 深圳市力电电池有限公司 Button cell and button cell preparation method
CN110061254B (en) * 2019-03-04 2021-01-26 惠州亿纬锂能股份有限公司 Linkage transmission structure of button cell manufacturing equipment
CN114824413A (en) 2021-01-19 2022-07-29 株式会社Lg新能源 Battery, current collector applied to battery, battery pack comprising current collector and automobile
WO2022264526A1 (en) * 2021-06-14 2022-12-22 株式会社村田製作所 Secondary battery
WO2023210590A1 (en) * 2022-04-28 2023-11-02 パナソニックエナジー株式会社 Cylindrical battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150200384A1 (en) * 2014-01-14 2015-07-16 Ford Global Technologies, Llc Electric vehicle battery cell having conductive case
KR20200007560A (en) * 2018-07-13 2020-01-22 주식회사 엘지화학 Secondary battery and method for manufacturing the battery
KR20200142451A (en) * 2019-06-12 2020-12-22 신흥에스이씨주식회사 Secondary battery for small device and method of manufacturing the same
KR20200143245A (en) * 2019-06-13 2020-12-23 신흥에스이씨주식회사 Secondary battery for small device and method of manufacturing the same
US11784379B2 (en) 2020-04-13 2023-10-10 Samsung Sdi Co., Ltd. Button cell
CN112952180A (en) * 2021-01-13 2021-06-11 中银(宁波)电池有限公司 Winding button cell with diaphragm as electrode substrate and manufacturing method

Also Published As

Publication number Publication date
JP2008262825A (en) 2008-10-30
CN101286572A (en) 2008-10-15

Similar Documents

Publication Publication Date Title
KR20080092842A (en) Coin type nonaqueous electrolyte secondary battery
KR102160701B1 (en) Electrode with Perforated Current Collector, Lithium Secondary Battery containing the Same
JP6192146B2 (en) Lithium electrode and lithium secondary battery including the same
KR100711669B1 (en) Solid Electrolyte Battery
KR101829528B1 (en) Electrode, nonaqueous electrolyte battery and battery pack
KR100367751B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN112703627B (en) Battery cell including short circuit inducing member and safety evaluation method using the same
KR20140085337A (en) Lithium secondary battery
KR101636449B1 (en) Secondary Battery Employed with Seal Tape for Preventing Power Failure of Electrode Assembly
EP3745521B1 (en) Stack-folding type electrode assembly and lithium metal battery comprising same
KR20160134808A (en) Nonaqueous electrolyte secondary battery
JP2008262827A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
JP2008262826A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
EP3322024A1 (en) Nonaqueous electrolyte battery and battery pack
JP6656370B2 (en) Lithium ion secondary battery and battery pack
US20080113260A1 (en) Prismatic nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP2000173657A (en) Solid electrolyte battery
JP7003775B2 (en) Lithium ion secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP2001357874A (en) Nonaqueous electrolyte secondary battery
JPH10241735A (en) Lithium ion battery
JP2007172878A (en) Battery and its manufacturing method
JP4560851B2 (en) Method for producing solid electrolyte battery
JP4878690B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid